// ========== Copyright Header Begin ========================================== // // OpenSPARC T2 Processor File: mcu_mbist_ctl.v // Copyright (C) 1995-2007 Sun Microsystems, Inc. All Rights Reserved // 4150 Network Circle, Santa Clara, California 95054, U.S.A. // // * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. // // This program is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation; version 2 of the License. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA // // For the avoidance of doubt, and except that if any non-GPL license // choice is available it will apply instead, Sun elects to use only // the General Public License version 2 (GPLv2) at this time for any // software where a choice of GPL license versions is made // available with the language indicating that GPLv2 or any later version // may be used, or where a choice of which version of the GPL is applied is // otherwise unspecified. // // Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, // CA 95054 USA or visit www.sun.com if you need additional information or // have any questions. // // ========== Copyright Header End ============================================ module mcu_mbist_ctl ( mcu_mbist_run, mcu_mbist_addr, mcu_mbist_sel_bank0or1, mcu_mbist_sel_hiorlo_72bits, mcu_mbist_wdata, mcu_mbist_wdqrf00_wr_en, mcu_mbist_wdqrf00_rd_en, mcu_mbist_wdqrf01_wr_en, mcu_mbist_wdqrf01_rd_en, mcu_mbist_wdqrf10_wr_en, mcu_mbist_wdqrf10_rd_en, mcu_mbist_wdqrf11_wr_en, mcu_mbist_wdqrf11_rd_en, scan_out, mcu_mbist_done, mcu_mbist_fail, l2clk, scan_in, tcu_pce_ov, tcu_aclk, tcu_bclk, tcu_scan_en, mcu_mbist_start, mcu_mbist_bisi_mode, mcu_mbist_user_mode, read_data); wire pce_ov; wire siclk; wire soclk; wire se; wire l1clk; wire config_reg_scanin; wire config_reg_scanout; wire [7:0] config_in; wire [7:0] config_out; wire start_transition; wire reset_engine; wire mbist_user_loop_mode; wire mbist_done; wire run; wire bisi; wire user_mode; wire user_data_mode; wire user_addr_mode; wire user_loop_mode; wire ten_n_mode; wire mbist_user_data_mode; wire mbist_user_addr_mode; wire mbist_ten_n_mode; wire user_data_reg_scanin; wire user_data_reg_scanout; wire [7:0] user_data_in; wire [7:0] user_data_out; wire user_start_addr_reg_scanin; wire user_start_addr_reg_scanout; wire [4:0] user_start_addr_in; wire [4:0] user_start_addr; wire user_stop_addr_reg_scanin; wire user_stop_addr_reg_scanout; wire [4:0] user_stop_addr_in; wire [4:0] user_stop_addr; wire user_incr_addr_reg_scanin; wire user_incr_addr_reg_scanout; wire [4:0] user_incr_addr_in; wire [4:0] user_incr_addr; wire user_array_sel_reg_scanin; wire user_array_sel_reg_scanout; wire [1:0] user_array_sel_in; wire [1:0] user_array_sel; wire user_bisi_wr_reg_scanin; wire user_bisi_wr_reg_scanout; wire user_bisi_wr_mode_in; wire user_bisi_wr_mode; wire user_bisi_rd_reg_scanin; wire user_bisi_rd_reg_scanout; wire user_bisi_rd_mode_in; wire user_bisi_rd_mode; wire mbist_user_bisi_wr_mode; wire mbist_user_bisi_wr_rd_mode; wire start_transition_reg_scanin; wire start_transition_reg_scanout; wire start_transition_piped; wire run_reg_scanin; wire run_reg_scanout; wire counter_reg_scanin; wire counter_reg_scanout; wire [3:0] counter_in; wire [3:0] counter_out; wire cycle16; wire run_piped16; wire msb; wire addr_reg_scanin; wire addr_reg_scanout; wire [4:0] mbist_address; wire wdata_reg_scanin; wire wdata_reg_scanout; wire [7:0] mbist_wdata; wire wdqrf00_wr_rd_reg_scanin; wire wdqrf00_wr_rd_reg_scanout; wire mbist_wdqrf00_wr_en; wire mbist_wdqrf00_rd_en; wire wdqrf01_wr_rd_reg_scanin; wire wdqrf01_wr_rd_reg_scanout; wire mbist_wdqrf01_wr_en; wire mbist_wdqrf01_rd_en; wire wdqrf10_wr_rd_reg_scanin; wire wdqrf10_wr_rd_reg_scanout; wire mbist_wdqrf10_wr_en; wire mbist_wdqrf10_rd_en; wire wdqrf11_wr_rd_reg_scanin; wire wdqrf11_wr_rd_reg_scanout; wire mbist_wdqrf11_wr_en; wire mbist_wdqrf11_rd_en; wire done_reg_scanin; wire done_reg_scanout; wire mbist_fail_reg_scanin; wire mbist_fail_reg_scanout; wire fail; wire read_data_reg_scanin; wire read_data_reg_scanout; wire [71:0] read_data_pipe; wire control_reg_scanin; wire control_reg_scanout; wire [18:0] control_in; wire [18:0] control_out; wire bisi_wr_rd; wire [1:0] array_sel; wire [1:0] data_control; wire address_mix; wire [3:0] march_element; wire [4:0] array_address; wire upaddress_march; wire [2:0] read_write_control; wire five_cycle_march; wire one_cycle_march; wire increment_addr; wire [4:0] start_addr; wire [4:0] next_array_address; wire next_upaddr_march; wire next_downaddr_march; wire [4:0] stop_addr; wire [5:0] overflow_addr; wire [4:0] incr_addr; wire overflow; wire [5:0] compare_addr; wire [4:0] add; wire [4:0] adj_address; wire increment_march_elem; wire [1:0] next_array_sel; wire [1:0] next_data_control; wire next_address_mix; wire [3:0] next_march_element; wire array_write; wire array_read; wire true_data; wire [7:0] data_pattern; wire done_counter_reg_scanin; wire done_counter_reg_scanout; wire [2:0] done_counter_in; wire [2:0] done_counter_out; wire wdqrf00_sel; wire wdqrf01_sel; wire wdqrf10_sel; wire wdqrf11_sel; wire sel_bank0or1; wire sel_hiorlo_72bits; wire data_pipe_reg1_scanin; wire data_pipe_reg1_scanout; wire [7:0] data_pipe_reg1_in; wire [7:0] data_pipe_out1; wire data_pipe_reg2_scanin; wire data_pipe_reg2_scanout; wire [7:0] data_pipe_reg2_in; wire [7:0] data_pipe_out2; wire data_pipe_reg3_scanin; wire data_pipe_reg3_scanout; wire [7:0] data_pipe_reg3_in; wire [7:0] data_pipe_out3; wire data_pipe_reg4_scanin; wire data_pipe_reg4_scanout; wire [7:0] data_pipe_reg4_in; wire [7:0] data_pipe_out4; wire [7:0] mbist_piped_wdata; wire ren_pipe_reg1_scanin; wire ren_pipe_reg1_scanout; wire ren_pipe_reg1_in; wire ren_pipe_out1; wire ren_pipe_reg2_scanin; wire ren_pipe_reg2_scanout; wire ren_pipe_reg2_in; wire ren_pipe_out2; wire ren_pipe_reg3_scanin; wire ren_pipe_reg3_scanout; wire ren_pipe_reg3_in; wire ren_pipe_out3; wire ren_pipe_reg4_scanin; wire ren_pipe_reg4_scanout; wire ren_pipe_reg4_in; wire ren_pipe_out4; wire ren_pipe_reg5_scanin; wire ren_pipe_reg5_scanout; wire ren_pipe_reg5_in; wire ren_pipe_out5; wire mbist_piped_ren; wire sel_pipe_reg1_scanin; wire sel_pipe_reg1_scanout; wire [1:0] sel_pipe_reg1_in; wire [1:0] sel_pipe_out1; wire sel_pipe_reg2_scanin; wire sel_pipe_reg2_scanout; wire [1:0] sel_pipe_reg2_in; wire [1:0] sel_pipe_out2; wire sel_pipe_reg3_scanin; wire sel_pipe_reg3_scanout; wire [1:0] sel_pipe_reg3_in; wire [1:0] sel_pipe_out3; wire sel_pipe_reg4_scanin; wire sel_pipe_reg4_scanout; wire [1:0] sel_pipe_reg4_in; wire [1:0] sel_pipe_out4; wire sel_pipe_reg5_scanin; wire sel_pipe_reg5_scanout; wire [1:0] sel_pipe_reg5_in; wire [1:0] sel_pipe_out5; wire piped_sel_hiorlo_72bits; wire piped_sel_bank0or1; wire wdqrf00_sel_piped; wire wdqrf01_sel_piped; wire wdqrf10_sel_piped; wire wdqrf11_sel_piped; wire fail_reg_scanin; wire fail_reg_scanout; wire [3:0] fail_reg_in; wire [3:0] fail_reg_out; wire qual_sio_wdqrf11_fail; wire qual_sio_wdqrf10_fail; wire qual_sio_wdqrf01_fail; wire qual_sio_wdqrf00_fail; wire fail_detect; wire spares_scanin; wire spares_scanout; // ///////////////////////////////////////////////////////////////////////////// // Outputs // ///////////////////////////////////////////////////////////////////////////// output mcu_mbist_run; output [4:0] mcu_mbist_addr; //Select the 144 bits from wdqrf00 and 01 (when 0) OR wdqrf10 and 11 (when 1) output mcu_mbist_sel_bank0or1; //Select the 72 bits from wdqrf00 over 01 OR wdqrf10 over 11 (when 0) //Assumed wdqrf00 and wdqrf10 provide the lower 72 bits! output mcu_mbist_sel_hiorlo_72bits; output [7:0] mcu_mbist_wdata; output mcu_mbist_wdqrf00_wr_en; output mcu_mbist_wdqrf00_rd_en; output mcu_mbist_wdqrf01_wr_en; output mcu_mbist_wdqrf01_rd_en; output mcu_mbist_wdqrf10_wr_en; output mcu_mbist_wdqrf10_rd_en; output mcu_mbist_wdqrf11_wr_en; output mcu_mbist_wdqrf11_rd_en; output scan_out; output mcu_mbist_done; output mcu_mbist_fail; // ///////////////////////////////////////////////////////////////////////////// // Inputs // ///////////////////////////////////////////////////////////////////////////// input l2clk; input scan_in; input tcu_pce_ov; // scan signals input tcu_aclk; input tcu_bclk; input tcu_scan_en; input mcu_mbist_start; input mcu_mbist_bisi_mode; input mcu_mbist_user_mode; input [71:0] read_data; // ///////////////////////////////////////////////////////////////////////////// // Scan Renames // ///////////////////////////////////////////////////////////////////////////// assign pce_ov = tcu_pce_ov; assign siclk = tcu_aclk; assign soclk = tcu_bclk; assign se = tcu_scan_en; //////////////////////////////////////////////////////////////////////////////// // Clock header mcu_mbist_ctl_l1clkhdr_ctl_macro clkgen ( .l2clk (l2clk ), .l1en (1'b1 ), .stop (1'b0 ), .l1clk (l1clk ), .pce_ov(pce_ov), .se(se) ); // ///////////////////////////////////////////////////////////////////////////// // // MBIST Config Register // // ///////////////////////////////////////////////////////////////////////////// // // A low to high transition on mbist_start will reset and start the engine. // mbist_start must remain active high for the duration of MBIST. // If mbist_start deasserts the engine will stop but not reset. // Once MBIST has completed mbist_done will assert and the fail status // signals will be valid. // To run MBIST again the mbist_start signal must transition low then high. // // Loop on Address will disable the address mix function. // // ///////////////////////////////////////////////////////////////////////////// mcu_mbist_ctl_msff_ctl_macro__width_8 config_reg ( .scan_in(config_reg_scanin), .scan_out(config_reg_scanout), .din ( config_in[7:0] ), .dout ( config_out[7:0] ), .l1clk(l1clk), .siclk(siclk), .soclk(soclk)); assign config_in[0] = mcu_mbist_start; assign config_in[1] = config_out[0]; assign start_transition = config_out[0] & ~config_out[1]; assign reset_engine = start_transition | (mbist_user_loop_mode & mbist_done); // assign run = config_out[1] & (mbist_user_loop_mode | ~mbist_done); assign run = config_out[0] & config_out[1]; // 9/19/05 run to follow start only! assign config_in[2] = start_transition ? mcu_mbist_bisi_mode: config_out[2]; assign bisi = config_out[2]; assign config_in[3] = start_transition ? mcu_mbist_user_mode: config_out[3]; assign user_mode = config_out[3]; assign config_in[4] = config_out[4]; assign user_data_mode = config_out[4]; assign config_in[5] = config_out[5]; assign user_addr_mode = config_out[5]; assign config_in[6] = config_out[6]; assign user_loop_mode = config_out[6]; assign config_in[7] = config_out[7]; assign ten_n_mode = config_out[7]; assign mbist_user_data_mode = user_mode & user_data_mode; assign mbist_user_addr_mode = user_mode & user_addr_mode; assign mbist_user_loop_mode = user_mode & user_loop_mode; assign mbist_ten_n_mode = user_mode & ten_n_mode; mcu_mbist_ctl_msff_ctl_macro__width_8 user_data_reg ( .scan_in(user_data_reg_scanin), .scan_out(user_data_reg_scanout), .din ( user_data_in[7:0] ), .dout ( user_data_out[7:0] ), .l1clk(l1clk), .siclk(siclk), .soclk(soclk)); assign user_data_in[7:0] = user_data_out[7:0]; // Defining User start, stop, and increment addresses. mcu_mbist_ctl_msff_ctl_macro__width_5 user_start_addr_reg ( .scan_in(user_start_addr_reg_scanin), .scan_out(user_start_addr_reg_scanout), .din ( user_start_addr_in[4:0] ), .dout ( user_start_addr[4:0] ), .l1clk(l1clk), .siclk(siclk), .soclk(soclk)); assign user_start_addr_in[4:0] = user_start_addr[4:0]; mcu_mbist_ctl_msff_ctl_macro__width_5 user_stop_addr_reg ( .scan_in(user_stop_addr_reg_scanin), .scan_out(user_stop_addr_reg_scanout), .din ( user_stop_addr_in[4:0] ), .dout ( user_stop_addr[4:0] ), .l1clk(l1clk), .siclk(siclk), .soclk(soclk)); assign user_stop_addr_in[4:0] = user_stop_addr[4:0]; mcu_mbist_ctl_msff_ctl_macro__width_5 user_incr_addr_reg ( .scan_in(user_incr_addr_reg_scanin), .scan_out(user_incr_addr_reg_scanout), .din ( user_incr_addr_in[4:0] ), .dout ( user_incr_addr[4:0] ), .l1clk(l1clk), .siclk(siclk), .soclk(soclk)); assign user_incr_addr_in[4:0] = user_incr_addr[4:0]; // Defining User array_sel. mcu_mbist_ctl_msff_ctl_macro__width_2 user_array_sel_reg ( .scan_in(user_array_sel_reg_scanin), .scan_out(user_array_sel_reg_scanout), .din ( user_array_sel_in[1:0] ), .dout ( user_array_sel[1:0] ), .l1clk(l1clk), .siclk(siclk), .soclk(soclk)); assign user_array_sel_in[1:0] = user_array_sel[1:0]; // Defining user_bisi write and read registers mcu_mbist_ctl_msff_ctl_macro__width_1 user_bisi_wr_reg ( .scan_in(user_bisi_wr_reg_scanin), .scan_out(user_bisi_wr_reg_scanout), .din ( user_bisi_wr_mode_in ), .dout ( user_bisi_wr_mode ), .l1clk(l1clk), .siclk(siclk), .soclk(soclk)); assign user_bisi_wr_mode_in = user_bisi_wr_mode; mcu_mbist_ctl_msff_ctl_macro__width_1 user_bisi_rd_reg ( .scan_in(user_bisi_rd_reg_scanin), .scan_out(user_bisi_rd_reg_scanout), .din ( user_bisi_rd_mode_in ), .dout ( user_bisi_rd_mode ), .l1clk(l1clk), .siclk(siclk), .soclk(soclk)); assign user_bisi_rd_mode_in = user_bisi_rd_mode; assign mbist_user_bisi_wr_mode = user_mode & bisi & user_bisi_wr_mode & ~user_bisi_rd_mode; // assign mbist_user_bisi_rd_mode = user_mode & bisi & user_bisi_rd_mode & ~user_bisi_wr_mode; assign mbist_user_bisi_wr_rd_mode = user_mode & bisi & ((user_bisi_wr_mode & user_bisi_rd_mode) | (~user_bisi_wr_mode & ~user_bisi_rd_mode)); //////////////////////////////////////////////////////////////////////////////// // Piping start_transition //////////////////////////////////////////////////////////////////////////////// mcu_mbist_ctl_msff_ctl_macro__width_1 start_transition_reg ( .scan_in(start_transition_reg_scanin), .scan_out(start_transition_reg_scanout), .din ( start_transition ), .dout ( start_transition_piped ), .l1clk(l1clk), .siclk(siclk), .soclk(soclk)); //////////////////////////////////////////////////////////////////////////////// // Staging run for 16 cycles for mbist engines supporting async FIFO's //////////////////////////////////////////////////////////////////////////////// mcu_mbist_ctl_msff_ctl_macro__width_1 run_reg ( .scan_in(run_reg_scanin), .scan_out(run_reg_scanout), .din ( run ), .dout ( mcu_mbist_run ), .l1clk(l1clk), .siclk(siclk), .soclk(soclk) ); mcu_mbist_ctl_msff_ctl_macro__width_4 counter_reg ( .scan_in(counter_reg_scanin), .scan_out(counter_reg_scanout), .din ( counter_in[3:0] ), .dout ( counter_out[3:0] ), .l1clk(l1clk), .siclk(siclk), .soclk(soclk)); assign cycle16 = (&counter_out[3:0] == 1'b1); assign counter_in[3:0] = reset_engine ? 4'b0: run & ~cycle16 ? counter_out[3:0] + 4'b0001: counter_out[3:0]; assign run_piped16 = config_out[0] & cycle16 & ~msb; // As soon as run goes low, mbist operation is done! //////////////////////////////////////////////////////////////////////////////// // // Creating the flop boundary around the mbist controller // //////////////////////////////////////////////////////////////////////////////// mcu_mbist_ctl_msff_ctl_macro__width_5 addr_reg ( .scan_in(addr_reg_scanin), .scan_out(addr_reg_scanout), .din ( mbist_address[4:0] ), .dout ( mcu_mbist_addr[4:0] ), .l1clk(l1clk), .siclk(siclk), .soclk(soclk)); mcu_mbist_ctl_msff_ctl_macro__width_8 wdata_reg ( .scan_in(wdata_reg_scanin), .scan_out(wdata_reg_scanout), .din ( mbist_wdata[7:0] ), .dout ( mcu_mbist_wdata[7:0] ), .l1clk(l1clk), .siclk(siclk), .soclk(soclk)); mcu_mbist_ctl_msff_ctl_macro__width_2 wdqrf00_wr_rd_reg ( .scan_in(wdqrf00_wr_rd_reg_scanin), .scan_out(wdqrf00_wr_rd_reg_scanout), .din ( {mbist_wdqrf00_wr_en, mbist_wdqrf00_rd_en} ), .dout ( {mcu_mbist_wdqrf00_wr_en, mcu_mbist_wdqrf00_rd_en} ), .l1clk(l1clk), .siclk(siclk), .soclk(soclk)); mcu_mbist_ctl_msff_ctl_macro__width_2 wdqrf01_wr_rd_reg ( .scan_in(wdqrf01_wr_rd_reg_scanin), .scan_out(wdqrf01_wr_rd_reg_scanout), .din ( {mbist_wdqrf01_wr_en, mbist_wdqrf01_rd_en} ), .dout ( {mcu_mbist_wdqrf01_wr_en, mcu_mbist_wdqrf01_rd_en} ), .l1clk(l1clk), .siclk(siclk), .soclk(soclk)); mcu_mbist_ctl_msff_ctl_macro__width_2 wdqrf10_wr_rd_reg ( .scan_in(wdqrf10_wr_rd_reg_scanin), .scan_out(wdqrf10_wr_rd_reg_scanout), .din ( {mbist_wdqrf10_wr_en, mbist_wdqrf10_rd_en} ), .dout ( {mcu_mbist_wdqrf10_wr_en, mcu_mbist_wdqrf10_rd_en} ), .l1clk(l1clk), .siclk(siclk), .soclk(soclk)); mcu_mbist_ctl_msff_ctl_macro__width_2 wdqrf11_wr_rd_reg ( .scan_in(wdqrf11_wr_rd_reg_scanin), .scan_out(wdqrf11_wr_rd_reg_scanout), .din ( {mbist_wdqrf11_wr_en, mbist_wdqrf11_rd_en} ), .dout ( {mcu_mbist_wdqrf11_wr_en, mcu_mbist_wdqrf11_rd_en} ), .l1clk(l1clk), .siclk(siclk), .soclk(soclk)); mcu_mbist_ctl_msff_ctl_macro__width_1 done_reg ( .scan_in(done_reg_scanin), .scan_out(done_reg_scanout), .din ( mbist_done ), .dout ( mcu_mbist_done ), .l1clk(l1clk), .siclk(siclk), .soclk(soclk) ); mcu_mbist_ctl_msff_ctl_macro__width_1 mbist_fail_reg ( .scan_in(mbist_fail_reg_scanin), .scan_out(mbist_fail_reg_scanout), .din ( fail ), .dout ( mcu_mbist_fail ), .l1clk(l1clk), .siclk(siclk), .soclk(soclk) ); // mcu_mbist_ctl_msff_ctl_macro__width_72 read_data_reg ( .scan_in(read_data_reg_scanin), .scan_out(read_data_reg_scanout), .din ( read_data[71:0] ), .dout ( read_data_pipe[71:0] ), .l1clk(l1clk), .siclk(siclk), .soclk(soclk)); // ///////////////////////////////////////////////////////////////////////////// // // MBIST Control Register // // ///////////////////////////////////////////////////////////////////////////// // Remove Address mix disable before delivery // ///////////////////////////////////////////////////////////////////////////// mcu_mbist_ctl_msff_ctl_macro__width_19 control_reg ( .scan_in(control_reg_scanin), .scan_out(control_reg_scanout), .din ( control_in[18:0] ), .dout ( control_out[18:0] ), .l1clk(l1clk), .siclk(siclk), .soclk(soclk)); assign msb = control_out[18]; assign bisi_wr_rd = (bisi & ~user_mode) | mbist_user_bisi_wr_rd_mode ? control_out[17] : 1'b1; assign array_sel[1:0] = user_mode ? user_array_sel[1:0] : control_out[16:15]; assign data_control[1:0] = control_out[14:13]; assign address_mix = (bisi | mbist_user_addr_mode) ? 1'b0: control_out[12]; assign march_element[3:0] = control_out[11:8]; assign array_address[4:0] = upaddress_march ? control_out[7:3] : ~control_out[7:3]; assign read_write_control[2:0] = ~five_cycle_march ? {2'b11, control_out[0]} : control_out[2:0]; assign control_in[2:0] = reset_engine ? 3'b0: ~run_piped16 ? control_out[2:0]: (five_cycle_march && (read_write_control[2:0] == 3'b100)) ? 3'b000: (one_cycle_march && (read_write_control[2:0] == 3'b110)) ? 3'b000: control_out[2:0] + 3'b001; assign increment_addr = (five_cycle_march && (read_write_control[2:0] == 3'b100)) || (one_cycle_march && (read_write_control[2:0] == 3'b110)) || (read_write_control[2:0] == 3'b111); // start_transition_piped was added to have the correct start_addr at the start // of mbist during user_addr_mode assign control_in[7:3] = start_transition_piped || reset_engine ? start_addr[4:0]: ~run_piped16 || ~increment_addr ? control_out[7:3]: next_array_address[4:0]; assign next_array_address[4:0] = next_upaddr_march ? start_addr[4:0]: next_downaddr_march ? ~stop_addr[4:0]: (overflow_addr[4:0]); // array_addr + incr_addr assign start_addr[4:0] = mbist_user_addr_mode ? user_start_addr[4:0] : 5'b00000; assign stop_addr[4:0] = mbist_user_addr_mode ? user_stop_addr[4:0] : 5'b11111; assign incr_addr[4:0] = mbist_user_addr_mode ? user_incr_addr[4:0] : 5'b00001; assign overflow_addr[5:0] = {1'b0,control_out[7:3]} + {1'b0,incr_addr[4:0]}; assign overflow = compare_addr[5:0] < overflow_addr[5:0]; assign compare_addr[5:0] = upaddress_march ? {1'b0, stop_addr[4:0]} : {1'b0, ~start_addr[4:0]}; assign next_upaddr_march = ( (march_element[3:0] == 4'h0) || (march_element[3:0] == 4'h1) || (march_element[3:0] == 4'h6) || (march_element[3:0] == 4'h5) || (march_element[3:0] == 4'h8) ) && overflow; assign next_downaddr_march = ( (march_element[3:0] == 4'h2) || (march_element[3:0] == 4'h7) || (march_element[3:0] == 4'h3) || (march_element[3:0] == 4'h4) ) && overflow; assign add[4:0] = five_cycle_march && ( (read_write_control[2:0] == 3'h1) || (read_write_control[2:0] == 3'h3)) ? adj_address[4:0]: array_address[4:0]; assign adj_address[4:0] = { array_address[4:2], ~array_address[1], array_address[0] }; // In case it is 2 blks of 16 rows! assign mbist_address[4:0] = address_mix ? {add[0],add[4],add[3],add[2],add[1]}: add[4:0]; // Definition of the rest of the control register assign increment_march_elem = increment_addr && overflow; assign control_in[18:8] = reset_engine ? 11'b0: ~run_piped16 ? control_out[18:8]: {msb, bisi_wr_rd, next_array_sel[1:0], next_data_control[1:0], next_address_mix, next_march_element[3:0]} + {10'b0, increment_march_elem}; assign next_array_sel[1:0] = user_mode ? 2'b11: control_out[16:15]; assign next_data_control[1:0] = (bisi || (mbist_user_data_mode && (data_control[1:0] == 2'b00))) ? 2'b11: data_control[1:0]; assign next_address_mix = bisi | mbist_user_addr_mode ? 1'b1 : address_mix; // Modified next_march_element to remove a possible long path. // Incorporated ten_n_mode! assign next_march_element[3:0] = ( bisi || (mbist_ten_n_mode && (march_element[3:0] == 4'b0101)) || ((march_element[3:0] == 4'b1000) && (read_write_control[2:0] == 3'b100)) ) && overflow ? 4'b1111: march_element[3:0]; assign array_write = ~run_piped16 ? 1'b0: five_cycle_march ? (read_write_control[2:0] == 3'h0) || (read_write_control[2:0] == 3'h1) || (read_write_control[2:0] == 3'h4): (~five_cycle_march & ~one_cycle_march) ? read_write_control[0]: ( ((march_element[3:0] == 4'h0) & (~bisi || ~bisi_wr_rd || mbist_user_bisi_wr_mode)) || (march_element[3:0] == 4'h7)); assign array_read = ~array_write && run_piped16; // && ~initialize; // assign mbist_done = msb; assign mbist_wdata[7:0] = true_data ? data_pattern[7:0]: ~data_pattern[7:0]; assign five_cycle_march = (march_element[3:0] == 4'h6) || (march_element[3:0] == 4'h8); assign one_cycle_march = (march_element[3:0] == 4'h0) || (march_element[3:0] == 4'h5) || (march_element[3:0] == 4'h7); assign upaddress_march = (march_element[3:0] == 4'h0) || (march_element[3:0] == 4'h1) || (march_element[3:0] == 4'h2) || (march_element[3:0] == 4'h6) || (march_element[3:0] == 4'h7); // assign true_data = read_write_control[1] ^ ~march_element[0]; assign true_data = (five_cycle_march && (march_element[3:0] == 4'h6)) ? ((read_write_control[2:0] == 3'h0) || (read_write_control[2:0] == 3'h2)): (five_cycle_march && (march_element[3:0] == 4'h8)) ? ((read_write_control[2:0] == 3'h1) || (read_write_control[2:0] == 3'h3) || (read_write_control[2:0] == 3'h4)): one_cycle_march ? (march_element[3:0] == 4'h7): ~(read_write_control[0] ^ march_element[0]); assign data_pattern[7:0] = (bisi & mbist_user_data_mode) ? ~user_data_out[7:0]: mbist_user_data_mode ? user_data_out[7:0]: bisi ? 8'hFF: // true_data function will invert to 8'h00 (data_control[1:0] == 2'h0) ? 8'hAA: (data_control[1:0] == 2'h1) ? 8'h99: (data_control[1:0] == 2'h2) ? 8'hCC: 8'h00; ///////////////////////////////////////////////////////////////////////// // Creating the mbist_done signal ///////////////////////////////////////////////////////////////////////// // Delaying mbist_done 8 clock signals after msb going high, to provide // a generic solution for done going high after the last fail has come back! mcu_mbist_ctl_msff_ctl_macro__width_3 done_counter_reg ( .scan_in(done_counter_reg_scanin), .scan_out(done_counter_reg_scanout), .din ( done_counter_in[2:0] ), .dout ( done_counter_out[2:0] ), .l1clk(l1clk), .siclk(siclk), .soclk(soclk)); // config_out[1] is AND'ed to force mbist_done low 2 cycles after mbist_start // goes low. assign mbist_done = (&done_counter_out[2:0] == 1'b1) & config_out[1]; assign done_counter_in[2:0] = reset_engine ? 3'b000: msb & ~mbist_done & config_out[1] ? done_counter_out[2:0] + 3'b001: done_counter_out[2:0]; // ///////////////////////////////////////////////////////////////////////////// // Memory Select Definitions // ///////////////////////////////////////////////////////////////////////////// assign wdqrf00_sel = ~array_sel[1] & ~array_sel[0]; assign wdqrf01_sel = ~array_sel[1] & array_sel[0]; assign wdqrf10_sel = array_sel[1] & ~array_sel[0]; assign wdqrf11_sel = array_sel[1] & array_sel[0]; assign sel_bank0or1 = array_sel[1]; // 1: wdqrf10 or 11 assign sel_hiorlo_72bits = array_sel[0]; // 1: wdqrf01 or 11 assign mbist_wdqrf00_rd_en = wdqrf00_sel && array_read; assign mbist_wdqrf00_wr_en = wdqrf00_sel && array_write; assign mbist_wdqrf01_rd_en = wdqrf01_sel && array_read; assign mbist_wdqrf01_wr_en = wdqrf01_sel && array_write; assign mbist_wdqrf10_rd_en = wdqrf10_sel && array_read; assign mbist_wdqrf10_wr_en = wdqrf10_sel && array_write; assign mbist_wdqrf11_rd_en = wdqrf11_sel && array_read; assign mbist_wdqrf11_wr_en = wdqrf11_sel && array_write; // ///////////////////////////////////////////////////////////////////////////// // Pipeline for wdata, read_en, and select lines // ///////////////////////////////////////////////////////////////////////////// // 3 stages to account for memory + flop after 1st output mux and flop on // read_data in mbist engine. // 5/27/05: Added one more stage to account for additional memory input muxing // in RTL. mcu_mbist_ctl_msff_ctl_macro__width_8 data_pipe_reg1 ( .scan_in(data_pipe_reg1_scanin), .scan_out(data_pipe_reg1_scanout), .din ( data_pipe_reg1_in[7:0] ), .dout ( data_pipe_out1[7:0] ), .l1clk(l1clk), .siclk(siclk), .soclk(soclk)); mcu_mbist_ctl_msff_ctl_macro__width_8 data_pipe_reg2 ( .scan_in(data_pipe_reg2_scanin), .scan_out(data_pipe_reg2_scanout), .din ( data_pipe_reg2_in[7:0] ), .dout ( data_pipe_out2[7:0] ), .l1clk(l1clk), .siclk(siclk), .soclk(soclk)); mcu_mbist_ctl_msff_ctl_macro__width_8 data_pipe_reg3 ( .scan_in(data_pipe_reg3_scanin), .scan_out(data_pipe_reg3_scanout), .din ( data_pipe_reg3_in[7:0] ), .dout ( data_pipe_out3[7:0] ), .l1clk(l1clk), .siclk(siclk), .soclk(soclk)); mcu_mbist_ctl_msff_ctl_macro__width_8 data_pipe_reg4 ( .scan_in(data_pipe_reg4_scanin), .scan_out(data_pipe_reg4_scanout), .din ( data_pipe_reg4_in[7:0] ), .dout ( data_pipe_out4[7:0] ), .l1clk(l1clk), .siclk(siclk), .soclk(soclk)); assign data_pipe_reg1_in[7:0] = reset_engine ? 8'h00: mcu_mbist_wdata[7:0]; assign data_pipe_reg2_in[7:0] = reset_engine ? 8'h00: data_pipe_out1[7:0]; assign data_pipe_reg3_in[7:0] = reset_engine ? 8'h00: data_pipe_out2[7:0]; assign data_pipe_reg4_in[7:0] = reset_engine ? 8'h00: data_pipe_out3[7:0]; assign mbist_piped_wdata[7:0] = data_pipe_out4[7:0]; // 4 stages to account from array_read mcu_mbist_ctl_msff_ctl_macro__width_1 ren_pipe_reg1 ( .scan_in(ren_pipe_reg1_scanin), .scan_out(ren_pipe_reg1_scanout), .din ( ren_pipe_reg1_in ), .dout ( ren_pipe_out1 ), .l1clk(l1clk), .siclk(siclk), .soclk(soclk)); mcu_mbist_ctl_msff_ctl_macro__width_1 ren_pipe_reg2 ( .scan_in(ren_pipe_reg2_scanin), .scan_out(ren_pipe_reg2_scanout), .din ( ren_pipe_reg2_in ), .dout ( ren_pipe_out2 ), .l1clk(l1clk), .siclk(siclk), .soclk(soclk)); mcu_mbist_ctl_msff_ctl_macro__width_1 ren_pipe_reg3 ( .scan_in(ren_pipe_reg3_scanin), .scan_out(ren_pipe_reg3_scanout), .din ( ren_pipe_reg3_in ), .dout ( ren_pipe_out3 ), .l1clk(l1clk), .siclk(siclk), .soclk(soclk)); mcu_mbist_ctl_msff_ctl_macro__width_1 ren_pipe_reg4 ( .scan_in(ren_pipe_reg4_scanin), .scan_out(ren_pipe_reg4_scanout), .din ( ren_pipe_reg4_in ), .dout ( ren_pipe_out4 ), .l1clk(l1clk), .siclk(siclk), .soclk(soclk)); mcu_mbist_ctl_msff_ctl_macro__width_1 ren_pipe_reg5 ( .scan_in(ren_pipe_reg5_scanin), .scan_out(ren_pipe_reg5_scanout), .din ( ren_pipe_reg5_in ), .dout ( ren_pipe_out5 ), .l1clk(l1clk), .siclk(siclk), .soclk(soclk)); assign ren_pipe_reg1_in = reset_engine ? 1'b0: array_read; assign ren_pipe_reg2_in = reset_engine ? 1'b0: ren_pipe_out1; assign ren_pipe_reg3_in = reset_engine ? 1'b0: ren_pipe_out2; assign ren_pipe_reg4_in = reset_engine ? 1'b0: ren_pipe_out3; assign ren_pipe_reg5_in = reset_engine ? 1'b0: ren_pipe_out4; assign mbist_piped_ren = ren_pipe_out5; // sel_hiorlo_72bits and sel_bank0or1 mcu_mbist_ctl_msff_ctl_macro__width_2 sel_pipe_reg1 ( .scan_in(sel_pipe_reg1_scanin), .scan_out(sel_pipe_reg1_scanout), .din ( sel_pipe_reg1_in[1:0] ), .dout ( sel_pipe_out1[1:0] ), .l1clk(l1clk), .siclk(siclk), .soclk(soclk)); mcu_mbist_ctl_msff_ctl_macro__width_2 sel_pipe_reg2 ( .scan_in(sel_pipe_reg2_scanin), .scan_out(sel_pipe_reg2_scanout), .din ( sel_pipe_reg2_in[1:0] ), .dout ( sel_pipe_out2[1:0] ), .l1clk(l1clk), .siclk(siclk), .soclk(soclk)); mcu_mbist_ctl_msff_ctl_macro__width_2 sel_pipe_reg3 ( .scan_in(sel_pipe_reg3_scanin), .scan_out(sel_pipe_reg3_scanout), .din ( sel_pipe_reg3_in[1:0] ), .dout ( sel_pipe_out3[1:0] ), .l1clk(l1clk), .siclk(siclk), .soclk(soclk)); mcu_mbist_ctl_msff_ctl_macro__width_2 sel_pipe_reg4 ( .scan_in(sel_pipe_reg4_scanin), .scan_out(sel_pipe_reg4_scanout), .din ( sel_pipe_reg4_in[1:0] ), .dout ( sel_pipe_out4[1:0] ), .l1clk(l1clk), .siclk(siclk), .soclk(soclk)); mcu_mbist_ctl_msff_ctl_macro__width_2 sel_pipe_reg5 ( .scan_in(sel_pipe_reg5_scanin), .scan_out(sel_pipe_reg5_scanout), .din ( sel_pipe_reg5_in[1:0] ), .dout ( sel_pipe_out5[1:0] ), .l1clk(l1clk), .siclk(siclk), .soclk(soclk)); assign sel_pipe_reg1_in[1:0] = reset_engine ? 2'h0: {sel_bank0or1, sel_hiorlo_72bits}; assign sel_pipe_reg2_in[1:0] = reset_engine ? 2'h0: sel_pipe_out1[1:0]; assign sel_pipe_reg3_in[1:0] = reset_engine ? 2'h0: sel_pipe_out2[1:0]; assign sel_pipe_reg4_in[1:0] = reset_engine ? 2'h0: sel_pipe_out3[1:0]; assign sel_pipe_reg5_in[1:0] = reset_engine ? 2'h0: sel_pipe_out4[1:0]; assign mcu_mbist_sel_hiorlo_72bits = sel_pipe_out3[0]; // After mux for bank0 or 1, there is a flop assign mcu_mbist_sel_bank0or1 = sel_pipe_out3[1]; // therefore, one more stage for hiorlo_72bits! assign piped_sel_hiorlo_72bits = sel_pipe_out5[0]; assign piped_sel_bank0or1 = sel_pipe_out5[1]; assign wdqrf00_sel_piped = ~piped_sel_bank0or1 & ~piped_sel_hiorlo_72bits; assign wdqrf01_sel_piped = ~piped_sel_bank0or1 & piped_sel_hiorlo_72bits; assign wdqrf10_sel_piped = piped_sel_bank0or1 & ~piped_sel_hiorlo_72bits; assign wdqrf11_sel_piped = piped_sel_bank0or1 & piped_sel_hiorlo_72bits; // ///////////////////////////////////////////////////////////////////////////// // Shared Fail Detection // ///////////////////////////////////////////////////////////////////////////// // Updated to meet these new features: // 1.When mbist_done signal is asserted when it completes all the // tests, it also need to assert static membist fail signal if // there were any failures during the tests. // 2.The mbist_fail signal won't be sticky bit from membist // engine. The TCU will make it sticky fail bit as needed. mcu_mbist_ctl_msff_ctl_macro__width_4 fail_reg ( .scan_in(fail_reg_scanin), .scan_out(fail_reg_scanout), .din ( fail_reg_in[3:0] ), .dout ( fail_reg_out[3:0] ), .l1clk(l1clk), .siclk(siclk), .soclk(soclk)); assign fail_reg_in[3:0] = reset_engine ? 4'b0: {qual_sio_wdqrf11_fail,qual_sio_wdqrf10_fail,qual_sio_wdqrf01_fail,qual_sio_wdqrf00_fail} | fail_reg_out[3:0]; assign qual_sio_wdqrf00_fail = fail_detect && wdqrf00_sel_piped; assign qual_sio_wdqrf01_fail = fail_detect && wdqrf01_sel_piped; assign qual_sio_wdqrf10_fail = fail_detect && wdqrf10_sel_piped; assign qual_sio_wdqrf11_fail = fail_detect && wdqrf11_sel_piped; assign fail = mbist_done ? |fail_reg_out[3:0]: qual_sio_wdqrf00_fail | qual_sio_wdqrf01_fail | qual_sio_wdqrf10_fail | qual_sio_wdqrf11_fail; assign fail_detect = (({9{mbist_piped_wdata[7:0]}} != read_data_pipe[71:0]) && mbist_piped_ren); supply0 vss; // <- port for ground supply1 vdd; // <- port for power // ///////////////////////////////////////////////////////////////////////////// // spare gates mcu_mbist_ctl_spare_ctl_macro__num_2 spares ( .scan_in(spares_scanin), .scan_out(spares_scanout), .l1clk(l1clk), .siclk(siclk), .soclk(soclk) ); // fixscan start: assign config_reg_scanin = scan_in ; assign user_data_reg_scanin = config_reg_scanout ; assign user_start_addr_reg_scanin = user_data_reg_scanout ; assign user_stop_addr_reg_scanin = user_start_addr_reg_scanout; assign user_incr_addr_reg_scanin = user_stop_addr_reg_scanout; assign user_array_sel_reg_scanin = user_incr_addr_reg_scanout; assign user_bisi_wr_reg_scanin = user_array_sel_reg_scanout; assign user_bisi_rd_reg_scanin = user_bisi_wr_reg_scanout ; assign start_transition_reg_scanin = user_bisi_rd_reg_scanout ; assign run_reg_scanin = start_transition_reg_scanout; assign counter_reg_scanin = run_reg_scanout ; assign addr_reg_scanin = counter_reg_scanout ; assign wdata_reg_scanin = addr_reg_scanout ; assign wdqrf00_wr_rd_reg_scanin = wdata_reg_scanout ; assign wdqrf01_wr_rd_reg_scanin = wdqrf00_wr_rd_reg_scanout; assign wdqrf10_wr_rd_reg_scanin = wdqrf01_wr_rd_reg_scanout; assign wdqrf11_wr_rd_reg_scanin = wdqrf10_wr_rd_reg_scanout; assign done_reg_scanin = wdqrf11_wr_rd_reg_scanout; assign mbist_fail_reg_scanin = done_reg_scanout ; assign read_data_reg_scanin = mbist_fail_reg_scanout ; assign control_reg_scanin = read_data_reg_scanout ; assign done_counter_reg_scanin = control_reg_scanout ; assign data_pipe_reg1_scanin = done_counter_reg_scanout ; assign data_pipe_reg2_scanin = data_pipe_reg1_scanout ; assign data_pipe_reg3_scanin = data_pipe_reg2_scanout ; assign data_pipe_reg4_scanin = data_pipe_reg3_scanout ; assign ren_pipe_reg1_scanin = data_pipe_reg4_scanout ; assign ren_pipe_reg2_scanin = ren_pipe_reg1_scanout ; assign ren_pipe_reg3_scanin = ren_pipe_reg2_scanout ; assign ren_pipe_reg4_scanin = ren_pipe_reg3_scanout ; assign ren_pipe_reg5_scanin = ren_pipe_reg4_scanout ; assign sel_pipe_reg1_scanin = ren_pipe_reg5_scanout ; assign sel_pipe_reg2_scanin = sel_pipe_reg1_scanout ; assign sel_pipe_reg3_scanin = sel_pipe_reg2_scanout ; assign sel_pipe_reg4_scanin = sel_pipe_reg3_scanout ; assign sel_pipe_reg5_scanin = sel_pipe_reg4_scanout ; assign fail_reg_scanin = sel_pipe_reg5_scanout ; assign spares_scanin = fail_reg_scanout ; assign scan_out = spares_scanout ; // fixscan end: endmodule // ///////////////////////////////////////////////////////////////////////////// // any PARAMS parms go into naming of macro module mcu_mbist_ctl_l1clkhdr_ctl_macro ( l2clk, l1en, pce_ov, stop, se, l1clk); input l2clk; input l1en; input pce_ov; input stop; input se; output l1clk; cl_sc1_l1hdr_8x c_0 ( .l2clk(l2clk), .pce(l1en), .l1clk(l1clk), .se(se), .pce_ov(pce_ov), .stop(stop) ); endmodule // any PARAMS parms go into naming of macro module mcu_mbist_ctl_msff_ctl_macro__width_8 ( din, l1clk, scan_in, siclk, soclk, dout, scan_out); wire [7:0] fdin; wire [6:0] so; input [7:0] din; input l1clk; input scan_in; input siclk; input soclk; output [7:0] dout; output scan_out; assign fdin[7:0] = din[7:0]; dff #(8) d0_0 ( .l1clk(l1clk), .siclk(siclk), .soclk(soclk), .d(fdin[7:0]), .si({scan_in,so[6:0]}), .so({so[6:0],scan_out}), .q(dout[7:0]) ); endmodule // any PARAMS parms go into naming of macro module mcu_mbist_ctl_msff_ctl_macro__width_5 ( din, l1clk, scan_in, siclk, soclk, dout, scan_out); wire [4:0] fdin; wire [3:0] so; input [4:0] din; input l1clk; input scan_in; input siclk; input soclk; output [4:0] dout; output scan_out; assign fdin[4:0] = din[4:0]; dff #(5) d0_0 ( .l1clk(l1clk), .siclk(siclk), .soclk(soclk), .d(fdin[4:0]), .si({scan_in,so[3:0]}), .so({so[3:0],scan_out}), .q(dout[4:0]) ); endmodule // any PARAMS parms go into naming of macro module mcu_mbist_ctl_msff_ctl_macro__width_2 ( din, l1clk, scan_in, siclk, soclk, dout, scan_out); wire [1:0] fdin; wire [0:0] so; input [1:0] din; input l1clk; input scan_in; input siclk; input soclk; output [1:0] dout; output scan_out; assign fdin[1:0] = din[1:0]; dff #(2) d0_0 ( .l1clk(l1clk), .siclk(siclk), .soclk(soclk), .d(fdin[1:0]), .si({scan_in,so[0:0]}), .so({so[0:0],scan_out}), .q(dout[1:0]) ); endmodule // any PARAMS parms go into naming of macro module mcu_mbist_ctl_msff_ctl_macro__width_1 ( din, l1clk, scan_in, siclk, soclk, dout, scan_out); wire [0:0] fdin; input [0:0] din; input l1clk; input scan_in; input siclk; input soclk; output [0:0] dout; output scan_out; assign fdin[0:0] = din[0:0]; dff #(1) d0_0 ( .l1clk(l1clk), .siclk(siclk), .soclk(soclk), .d(fdin[0:0]), .si(scan_in), .so(scan_out), .q(dout[0:0]) ); endmodule // any PARAMS parms go into naming of macro module mcu_mbist_ctl_msff_ctl_macro__width_4 ( din, l1clk, scan_in, siclk, soclk, dout, scan_out); wire [3:0] fdin; wire [2:0] so; input [3:0] din; input l1clk; input scan_in; input siclk; input soclk; output [3:0] dout; output scan_out; assign fdin[3:0] = din[3:0]; dff #(4) d0_0 ( .l1clk(l1clk), .siclk(siclk), .soclk(soclk), .d(fdin[3:0]), .si({scan_in,so[2:0]}), .so({so[2:0],scan_out}), .q(dout[3:0]) ); endmodule // any PARAMS parms go into naming of macro module mcu_mbist_ctl_msff_ctl_macro__width_72 ( din, l1clk, scan_in, siclk, soclk, dout, scan_out); wire [71:0] fdin; wire [70:0] so; input [71:0] din; input l1clk; input scan_in; input siclk; input soclk; output [71:0] dout; output scan_out; assign fdin[71:0] = din[71:0]; dff #(72) d0_0 ( .l1clk(l1clk), .siclk(siclk), .soclk(soclk), .d(fdin[71:0]), .si({scan_in,so[70:0]}), .so({so[70:0],scan_out}), .q(dout[71:0]) ); endmodule // any PARAMS parms go into naming of macro module mcu_mbist_ctl_msff_ctl_macro__width_19 ( din, l1clk, scan_in, siclk, soclk, dout, scan_out); wire [18:0] fdin; wire [17:0] so; input [18:0] din; input l1clk; input scan_in; input siclk; input soclk; output [18:0] dout; output scan_out; assign fdin[18:0] = din[18:0]; dff #(19) d0_0 ( .l1clk(l1clk), .siclk(siclk), .soclk(soclk), .d(fdin[18:0]), .si({scan_in,so[17:0]}), .so({so[17:0],scan_out}), .q(dout[18:0]) ); endmodule // any PARAMS parms go into naming of macro module mcu_mbist_ctl_msff_ctl_macro__width_3 ( din, l1clk, scan_in, siclk, soclk, dout, scan_out); wire [2:0] fdin; wire [1:0] so; input [2:0] din; input l1clk; input scan_in; input siclk; input soclk; output [2:0] dout; output scan_out; assign fdin[2:0] = din[2:0]; dff #(3) d0_0 ( .l1clk(l1clk), .siclk(siclk), .soclk(soclk), .d(fdin[2:0]), .si({scan_in,so[1:0]}), .so({so[1:0],scan_out}), .q(dout[2:0]) ); endmodule // Description: Spare gate macro for control blocks // // Param num controls the number of times the macro is added // flops=0 can be used to use only combination spare logic module mcu_mbist_ctl_spare_ctl_macro__num_2 ( l1clk, scan_in, siclk, soclk, scan_out); wire si_0; wire so_0; wire spare0_flop_unused; wire spare0_buf_32x_unused; wire spare0_nand3_8x_unused; wire spare0_inv_8x_unused; wire spare0_aoi22_4x_unused; wire spare0_buf_8x_unused; wire spare0_oai22_4x_unused; wire spare0_inv_16x_unused; wire spare0_nand2_16x_unused; wire spare0_nor3_4x_unused; wire spare0_nand2_8x_unused; wire spare0_buf_16x_unused; wire spare0_nor2_16x_unused; wire spare0_inv_32x_unused; wire si_1; wire so_1; wire spare1_flop_unused; wire spare1_buf_32x_unused; wire spare1_nand3_8x_unused; wire spare1_inv_8x_unused; wire spare1_aoi22_4x_unused; wire spare1_buf_8x_unused; wire spare1_oai22_4x_unused; wire spare1_inv_16x_unused; wire spare1_nand2_16x_unused; wire spare1_nor3_4x_unused; wire spare1_nand2_8x_unused; wire spare1_buf_16x_unused; wire spare1_nor2_16x_unused; wire spare1_inv_32x_unused; input l1clk; input scan_in; input siclk; input soclk; output scan_out; cl_sc1_msff_8x spare0_flop (.l1clk(l1clk), .siclk(siclk), .soclk(soclk), .si(si_0), .so(so_0), .d(1'b0), .q(spare0_flop_unused)); assign si_0 = scan_in; cl_u1_buf_32x spare0_buf_32x (.in(1'b1), .out(spare0_buf_32x_unused)); cl_u1_nand3_8x spare0_nand3_8x (.in0(1'b1), .in1(1'b1), .in2(1'b1), .out(spare0_nand3_8x_unused)); cl_u1_inv_8x spare0_inv_8x (.in(1'b1), .out(spare0_inv_8x_unused)); cl_u1_aoi22_4x spare0_aoi22_4x (.in00(1'b1), .in01(1'b1), .in10(1'b1), .in11(1'b1), .out(spare0_aoi22_4x_unused)); cl_u1_buf_8x spare0_buf_8x (.in(1'b1), .out(spare0_buf_8x_unused)); cl_u1_oai22_4x spare0_oai22_4x (.in00(1'b1), .in01(1'b1), .in10(1'b1), .in11(1'b1), .out(spare0_oai22_4x_unused)); cl_u1_inv_16x spare0_inv_16x (.in(1'b1), .out(spare0_inv_16x_unused)); cl_u1_nand2_16x spare0_nand2_16x (.in0(1'b1), .in1(1'b1), .out(spare0_nand2_16x_unused)); cl_u1_nor3_4x spare0_nor3_4x (.in0(1'b0), .in1(1'b0), .in2(1'b0), .out(spare0_nor3_4x_unused)); cl_u1_nand2_8x spare0_nand2_8x (.in0(1'b1), .in1(1'b1), .out(spare0_nand2_8x_unused)); cl_u1_buf_16x spare0_buf_16x (.in(1'b1), .out(spare0_buf_16x_unused)); cl_u1_nor2_16x spare0_nor2_16x (.in0(1'b0), .in1(1'b0), .out(spare0_nor2_16x_unused)); cl_u1_inv_32x spare0_inv_32x (.in(1'b1), .out(spare0_inv_32x_unused)); cl_sc1_msff_8x spare1_flop (.l1clk(l1clk), .siclk(siclk), .soclk(soclk), .si(si_1), .so(so_1), .d(1'b0), .q(spare1_flop_unused)); assign si_1 = so_0; cl_u1_buf_32x spare1_buf_32x (.in(1'b1), .out(spare1_buf_32x_unused)); cl_u1_nand3_8x spare1_nand3_8x (.in0(1'b1), .in1(1'b1), .in2(1'b1), .out(spare1_nand3_8x_unused)); cl_u1_inv_8x spare1_inv_8x (.in(1'b1), .out(spare1_inv_8x_unused)); cl_u1_aoi22_4x spare1_aoi22_4x (.in00(1'b1), .in01(1'b1), .in10(1'b1), .in11(1'b1), .out(spare1_aoi22_4x_unused)); cl_u1_buf_8x spare1_buf_8x (.in(1'b1), .out(spare1_buf_8x_unused)); cl_u1_oai22_4x spare1_oai22_4x (.in00(1'b1), .in01(1'b1), .in10(1'b1), .in11(1'b1), .out(spare1_oai22_4x_unused)); cl_u1_inv_16x spare1_inv_16x (.in(1'b1), .out(spare1_inv_16x_unused)); cl_u1_nand2_16x spare1_nand2_16x (.in0(1'b1), .in1(1'b1), .out(spare1_nand2_16x_unused)); cl_u1_nor3_4x spare1_nor3_4x (.in0(1'b0), .in1(1'b0), .in2(1'b0), .out(spare1_nor3_4x_unused)); cl_u1_nand2_8x spare1_nand2_8x (.in0(1'b1), .in1(1'b1), .out(spare1_nand2_8x_unused)); cl_u1_buf_16x spare1_buf_16x (.in(1'b1), .out(spare1_buf_16x_unused)); cl_u1_nor2_16x spare1_nor2_16x (.in0(1'b0), .in1(1'b0), .out(spare1_nor2_16x_unused)); cl_u1_inv_32x spare1_inv_32x (.in(1'b1), .out(spare1_inv_32x_unused)); assign scan_out = so_1; endmodule