
Sun Microsystems, Inc.
www.sun.com

Submit comments about this document at: http://www.sun.com/hwdocs/feedback

OpenSPARC™ T2 Behavioral
Model Specification

Part No. 820-6778-10
November 2008, Revision A

Copyright 2008 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology that is described in this document. In particular, and without
limitation, these intellectual property rights may include one or more of the U.S. patents listed at http://www.sun.com/patents and one or
more additional patents or pending patent applications in the U.S. and in other countries.

This document and the product to which it pertains are distributed under licenses restricting their use, copying, distribution, and
decompilation. No part of the product or of this document may be reproduced in any form by any means without prior written authorization of
Sun and its licensors, if any.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the U.S. and in other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, Java, AnswerBook2, docs.sun.com, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and in other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and in other
countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges
the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun
holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN
LOOK GUIs and otherwise comply with Sun’s written license agreements.

U.S. Government Rights—Commercial use. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.

DOCUMENTATION AND REGISTER TRANSFER LEVEL (RTL) ARE PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS,
REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE
HELD TO BE LEGALLY INVALID.

Copyright 2008 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, Californie 95054, États-Unis. Tous droits réservés.

Sun Microsystems, Inc. possède les droits de propriété intellectuels relatifs à la technologie décrite dans ce document. En particulier, et sans
limitation, ces droits de propriété intellectuels peuvent inclure un ou plusieurs des brevets américains listés sur le site
http://www.sun.com/patents, un ou les plusieurs brevets supplémentaires ainsi que les demandes de brevet en attente aux les États-Unis et
dans d’autres pays.

Ce document et le produit auquel il se rapporte sont protégés par un copyright et distribués sous licences, celles-ci en restreignent l’utilisation,
la copie, la distribution, et la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque
moyen que ce soit, sans l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a.

Tout logiciel tiers, sa technologie relative aux polices de caractères, comprise, est protégé par un copyright et licencié par des fournisseurs de
Sun.

Des parties de ce produit peuvent dériver des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque déposée
aux États-Unis et dans d’autres pays, licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, Java, AnswerBook2, docs.sun.com, et Solaris sont des marques de fabrique ou des marques déposées de
Sun Microsystems, Inc. aux États-Unis et dans d’autres pays.

Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc.
aux États-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun
Microsystems, Inc.

L’interface utilisateur graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun
reconnaît les efforts de pionniers de Xerox dans la recherche et le développement du concept des interfaces utilisateur visuelles ou graphiques
pour l’industrie informatique. Sun détient une license non exclusive de Xerox sur l’interface utilisateur graphique Xerox, cette licence couvrant
également les licenciés de Sun implémentant les interfaces utilisateur graphiques OPEN LOOK et se conforment en outre aux licences écrites de
Sun.

LA DOCUMENTATION EST FOURNIE "EN L’ÉTAT" ET TOUTES AUTRES CONDITIONS, DÉCLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES DANS LA LIMITE DE LA LOI APPLICABLE, Y COMPRIS NOTAMMENT TOUTE
GARANTIE IMPLICITE RELATIVE À LA QUALITÉ MARCHANDE, À L’APTITUDE À UNE UTILISATION PARTICULIÈRE OU À
L’ABSENCE DE CONTREFAÇON.

Contents

Preface ix

1. OpenSPARC T2 NIU SystemC Model 1–1

1.1 Overview 1–1

1.2 SAM NIU Interface Functions 1–4

1.2.1 Interface to NCU 1–5

1.2.2 Interface to SIU 1–5

1.2.3 Interface to MAC 1–7

1.2.4 XAUI SystemC Module 1–8

2. PIU Behavioral Model Specification 2–1

2.1 PIU Overview 2–1

2.2 PIU Block Diagram 2–3

2.3 OpenSPARC T2 PEU Root Complex Feature Summary 2–4

2.4 PCI Express (PEU) Behavioral Model 2–5

2.5 PEU Port Interface 2–5

2.6 10,000 feet 2–8

2.7 ILU Interface BFM (ILU_intf) 2–9

2.8 IHB and IDB 2–9

2.8.1 EHB and EDB 2–10

2.8.2 Link and Transaction Status 2–11

2.9 Transaction Layer Unit (TL) 2–11
Contents iii

2.9.1 Ingress Transaction Layer (ITL) Functionality 2–11

2.9.2 Request Scoreboard (RSB) Processing 2–12

2.9.3 Egress Transaction Layer (ETL) Header and Data Control 2–13

2.9.4 Flow Control 2–13

2.10 Control and Status Register (CSR) and CSR Ring Interface 2–14

2.11 Data Link Layer 2–14

2.11.1 Functionality 2–14

2.11.2 Communication Channels 2–14

2.11.3 DLL Architecture 2–15

2.12 Physical Layer 2–15

2.12.1 Link Initialization and Training 2–16

2.12.2 Scrambling and Descrambling 2–17

2.12.3 Decoding and Encoding 2–17

2.12.4 Framing and Deframing 2–18

2.12.5 Clock Based Frame Boundary Calculation 2–18

2.12.6 Disparity Checks 2–18

2.12.7 Packetization 2–19

2.12.8 SERDES 2–19
iv OpenSPARC T2 Behavorial Model Specification • November 2008

Figures

FIGURE 1-1 Overall Architecture of SystemC Model 1–3

FIGURE 2-1 PIU Block Diagram 2–3
Figures v

vi OpenSPARC T2 Behavorial Model Specification • November 2008

Tables

TABLE 1-1 NCU Interface Signals 1–5

TABLE 1-2 SIU Interface Signals 1–6

TABLE 1-3 MAC Interface Signals 1–8

TABLE 1-4 XAUI Signals 1–9

TABLE 2-1 Abbreviation List 2–1

TABLE 2-2 PEU Root Complex Summary 2–4

TABLE 2-3 PEU Interface Signals 2–6
Tables vii

viii OpenSPARC T2 Behavorial Model Specification • November 2008

Preface

The OpenSPARC T2 Behavioral Model Specification gives information on the NIU
SystemC model serving as an interface between the OpenSPARC T2 RTL and the
SAM NIU C++ model. The PCI Express (PCIe) interface integrates the functionality
of a host to PCI Express bridge onto the OpenSPARC T2 system-on-a-chip.

How This Document Is Organized
Chapter 1 provides information on the NIU SystemC model. The NIU SystemC
model serves as an interface between the OpenSPARC T2 RTL and the SAM NIU
C++ model.

Chapter 2 provides information on the PCI Express (PCIe) SystemC model. The PCI
Express (PCIe) interface model integrates the functionality of a host to PCI Express
bridge onto the OpenSPARC T2 system-on-a-chip.

Using UNIX Commands
This document might not contain information about basic UNIX® commands and
procedures such as shutting down the system, booting the system, and configuring
devices. Refer to the following for this information:

■ Software documentation that you received with your system

■ Solaris™ Operating System documentation, which is at:

http://docs.sun.com
Preface ix

http://docs.sun.com

Shell Prompts

Typographic Conventions

Shell Prompt

C shell machine-name%

C shell superuser machine-name#

Bourne shell and Korn shell $

Bourne shell and Korn shell superuser #

Typeface*

* The settings on your browser might differ from these settings.

Meaning Examples

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output

Edit your.login file.
Use ls -a to list all files.
% You have mail.

AaBbCc123 What you type, when contrasted
with on-screen computer output

% su

Password:

AaBbCc123 Book titles, new words or terms,
words to be emphasized.
Replace command-line variables
with real names or values.

Read Chapter 6 in the User’s Guide.
These are called class options.
You must be superuser to do this.
To delete a file, type rm filename.
x OpenSPARC T2 Behavioral Model Specification • November 2008

Documentation, Support, and Training

Related Documentation
The documents listed as online or download are available at:

http://www.opensparc.net/

Sun Function URL

Documentation http://www.sun.com/documentation/

Support http://www.sun.com/support/

Training http://www.sun.com/training/

Application Title Part Number Format Location

Documentation OpenSPARC T2 Core Microarchitecture
Specification

820-2545 PDF Online

Documentation OpenSPARC T2 System-On-Chip (SoC)
Microarchitecture Specification, Part 1 of 2

820-2620 PDF Online

Documentation OpenSPARC T2 System-On-Chip (SoC)
Microarchitecture Specification, Part 2 of 2

820-5090 PDF Online

Documentation OpenSPARC T2 Processor Megacell
Specification

820-2728 PDF Online

Documentation OpenSPARC T2 Processor Design and
Verification User’s Guide

820-2729 PDF Online

Documentation OpenSPARC T2 Behavioral Model
Specification

820-6778 PDF Online
Preface xi

http://www.opensparc.net/
http://www.sun.com/training/
http://www.sun.com/support/
http://www.sun.com/documentation/

Third-Party Web Sites
Sun is not responsible for the availability of third-party web sites mentioned in this
document. Sun does not endorse and is not responsible or liable for any content,
advertising, products, or other materials that are available on or through such sites
or resources. Sun will not be responsible or liable for any actual or alleged damage
or loss caused by or in connection with the use of or reliance on any such content,
goods, or services that are available on or through such sites or resources.

Sun Welcomes Your Comments
Sun is interested in improving its documentation and welcomes your comments and
suggestions. You can submit your comments by going to:

http://www.sun.com/hwdocs/feedback

Please include the title and part number of your document with your feedback:

OpenSPARC T2 Behavioral Model Specification,
part number 820-6778-10
xii OpenSPARC T2 Behavioral Model Specification • November 2008

http://www.sun.com/hwdocs/feedback

CHAPTER 1

OpenSPARC T2 NIU SystemC
Model

1.1 Overview
NIU SystemC model serves as an interface between the OpenSPARC T2 RTL and the
SAM NIU C++ model. NIU is implemented as a device in SAM model and
implemented as a dynamic library, which is loaded into SAM environment
dynamically during system simulation. The SystemC model makes use of the same
dynamic library to incorporate the NIU functionality into the OpenSPARC T2 RTL
simulation. The SAM NIU model is a zero-time model and is not aware of actual
interfaces available in OpenSPARC T2.

NIU interfaces with OpenSPARC T2 through two separate interfaces.

■ NIU interfaces with NCU to provide access to its configuration registers. NCU
communicates with NIU through a 32-bit data bus and some control signals. Four
32-bit data chunks make up the 128-bit UCB (unit control block) packet send
between the two units. The UCB packet include 64-bit payload data, 40-bit
physical address, 4-bit packet type, cpu id, thread id, buffer size, request size, and
byte mask. Please refer to NCU MAS document for details of UCB packet format
and NIU interface.

■ NIU interfaces with SIU to achieve read and write access to the system memory.
This interface includes a 128-bit data bus and additional control signals. A 128-bit
header is followed by four 128-bit chunks, which makes up 64-bytes of data. The
header includes the physical address, a request id, access type, various error, ecc,
and parity bits. For details of this interface please refer to SIU MAS document.

NIU interfaces with the outside world through two 10-GB XAUI interfaces. The SAM
implementation of the NIU model communicates with the outside world at the
packet level and include most of the functionality of the MAC. However, physical
1-1

layer of networking interface is not implemented. In order to be able to utilize SAM
model in RTL simulation, the SystemC model includes the functionality required to
interface the SAM model to the physical layer. This functionality in SystemC
includes 8b-10b coding/decoding and serialization/deserialization of the 10b codes.

SAM devices, including the NIU device, interact with the system through a
predefined interface, which includes a set of function calls. The interface functions
are implemented in SystemC and interface with the OpenSPARC T2 RTL model.

FIGURE 1-1 shows the overall architecture of the SystemC model for NIU, the
interface signals to the OpenSPARC T2 and the function calls to the SAM NIU
model. There are four SystemC models:

■ NCU interface

■ SIU interface

■ MAC interfaces

■ XUAI model

Details of these SystemC models and SAM interface functions are provided in the
following sections
1-2 OpenSPARC T2 Behavioral Model Specification • November 2008

FIGURE 1-1 Overall Architecture of SystemC Model
Chapter 1 OpenSPARC T2 NIU SystemC Model 1-3

1.2 SAM NIU Interface Functions
SAM NIU model interfaces with SAM simulator through a standard interface, which
includes a set of predefined function calls.

SAM NIU model implements the following functions to allow SAM to access its
functionality. In this case, these functions are implemented to interface with
OpenSPARC T2 RTL.

int mmi_access (uint32_t cpuid, void* obj, uint64_t paddr,
mmi_bool_t wr, uint32_t size, uint64_t* buf, uint8_t bytemask)

Is responsible for IO accessing NIU registers through NCU interface. NCU requests
are received by the NCU Interface SystemC module and are passed to the SAM NIU
through mmi_access function calls. The output of the SAM model is also send back
to NCU through the same SytemC module.

void mmi_memread(uint64_t paddr, uint8_t * data, uint64_t size)

Is responsible for accessing the system memory for read operations. The system
memory is accessed through the SIU interface. This call is implemented through SIU
Interface SystemC module.

void mmi_memwrite(uint64_t paddr, const uint8_t * data, uint64_t
size)

Is responsible for accessing the system memory for write operations. The system
memory is accessed through the SIU interface. This call is implemented through SIU
Interface SystemC module.

int netsim_getmsg (int fd, char * buf, int maxlen, swtchdr * hdr)

Responsible for receiving the networks packets that arrive through the XAUI
interface. XAUI and MAC Interface SystemC modules are responsible for receiving
the packets from the physical layet and passing them to the SAM NIU interface
through this function call. The packets received by SAM NIU model are later written
into the system memory through SIU interface.

int netsim_putmsg (int fd, char * buf, int len, swtchdr * hdr)

Responsible for transmitting packets through the XAUI interface. The packets are
formed by reading the packet data from the system memory through the SIU
interface. The packets formed by SAM NIU model are sent to the physical later
through MAC Interface and XAUI Systemc modules.
1-4 OpenSPARC T2 Behavioral Model Specification • November 2008

The SAM NIU model was initially executed as a separate process and was
communicating to the RTL simulation through a shared memory implementation.
Later, for performance reasons, the SAM NIU model is implemented as a separate
thread and the shared memory semantics of the interface kept in place.

1.2.1 Interface to NCU
For OpenSPARC T2, the NCU is the focal point where PIO requests will be
dispatched to the NIU and where PIO read returns and interrupts are processed. It
serializes the PIOs from different CPU threads to the NIU. It also has an internal
table where, based on the system interrupt data, it looks up the CPU thread number
and the interrupt number used.

NCU Interface SystemC module interfaces between NCU and the SAM NIU model.
The UCB packets received from the NCU are passed to the SAM NIU model. The
response received from the NIU model is send back to the NCU. Furthermore, any
interrupt that is generated by the SAM NIU model is sent to NCU through UCB
packets. Please refer to NIU MAS for details of the UCB packet format.

1.2.2 Interface to SIU
SIU Interface SystemC module interfaces between SIU and the SAM NIU model. The
interface signals for this module is given in TABLE 1-2.

Memory read requests from SAM NIU model (mmi_memread function calls) are
converted into SIU requests. For a read operation only a header is sent to the SIU. A
single memory request from the SAM NIU model can generate a number of SIU read
requests. Each SIU read request returns 64-byte of data from the system memory.

TABLE 1-1 NCU Interface Signals

Signal Direction Description

clk input clock

ncu_niu_data[31:0] input NCU to NIU data bus

ncu_niu_vld input NCU to NIU data valid

ncu_niu_stall input NCU back pressure control signal to NIU

niu_ncu_stall output NIU back pressure control signal to NCU

niu_ncu_data[31:0] output NIU to NCU data bus

niu_ncu_vld output NIU to NCU data valid
Chapter 1 OpenSPARC T2 NIU SystemC Model 1-5

Therefore, a read request larger than 64-bytes needs to be fragmented and sent to
SIU. In addition to fragmentation, SIU interface module also deals with requests that
are not aligned to 64-byte boundaries. While all requests from NIU RTL are 64-byte
aligned, the SAM NIU model does generate unaligned request. The response from
all fragments are collected and sent back to SAM NIU model as a single response.
The thread requesting the read from SAM NIU model is blocked until the read
request is completed.

Memory write requests from SAM NIU model (mmi_memwrite function calls) are
converted into SIU requests as well. For a write operation, a header and four
consecutive data cycles are generated. A single write request, similar to the read
requests, may end up generating a number of SIU requests if the data size is larger
than 64-bytes. The thread requesting the write operation from SAM NIU model is
blocked until the write request is completed.

The SIU Interface SystemC module can handle one write and one read operation at a
time. All other SAM NIU thread requesting a read or write operation are blocked
until the current read/write operation is completed.

TABLE 1-2 SIU Interface Signals

Signal Direction Description

clk input clock

sio_niu_data[127:0] input Contains the header in the header cycle and the
payload in the following data cycles. Data is in
big endian format.

sio_niu_parity[7:0] input Contains the parity for each 16 bit of data
Indicates that header has a payload following
the header valid cycle, this is also asserted in the
header cycle.

sio_niu_datareq input Indicates that header has a payload following
the header valid cycle, this is also asserted in the
header cycle.

sio_niu_hdr_vld input Asserted for one cycle (header cycle) to indicate
that the header packet is being sent on the data
pins

sii_niu_bqdq input Dequeue signal for the bypass queue.

sii_niu_oqdq input Dequeue signal for the ordered queue.

niu_sii_hdr_vld output Asserted for one cycle (header cycle) to indicate
that the header packet is being sent on the data
pins.
1-6 OpenSPARC T2 Behavioral Model Specification • November 2008

1.2.3 Interface to MAC
While SAM NIU model implements complete NIU functionality, the access to the
network does not include physical layer. The SAM NIU model accesses the network
through netsim_putmsg and netsim_getmsg functions. These two functions
simply pass the packet data and the length to the network layer as implemented in
SAM simulation environment.

The MAC interface implemented in SystemC model performs necessary
coding/decoding work to transfer the packets between the XAUI interface and the
SAM NIU model. The interface signals are given in TABLE 1-3. MAC interface
performs 8b-10b coding for packets that are transmitted and performs 8b-10b
decoding for packets that are received from XAUI interface. A simple first-in
first-out queue is implemented on the sharedmem class to queue the packets
received from the XAUI interface until they are processed and written to the system
memory by SAM NIU model. If the queue is filled, the MAC interface starts
dropping the packets. In the transmit path, there is no queue implementation. For
each packet to be transmitted a new thread is created. Each transmit-thread waits
until the XAUI interface is available to transmit the packet. Once the packet is
transmitted by XAUI interface, the transmit-thread terminates.

niu_sii_reqbypass output Indicated that NIU is sending packet to SII’s
‘bypass’ Queue. Asserted in the header valid
cycle.

niu_sii_data[127:0] output Contains the header in the header cycle and the
payload in the following data cycles. Data is in
big endian format.

niu_sii_datareq output Indicates that header has a payload following
the header valid cycle, this is also asserted in the
header cycle.

niu_sii_parity[7:0] output Contains the parity for each 16 bit of data

niu_sio_dq; output Dequeue signal for inbound queue; data flow from sio
to smx is flow control with 4 credits.

TABLE 1-2 SIU Interface Signals (Continued)

Signal Direction Description
Chapter 1 OpenSPARC T2 NIU SystemC Model 1-7

The MAC interface uses rx0/1_packet_rec function to add the packets received
to the packet queue. The tx0/1_wait_packet function is used to check availability
of packets from the NIU SAM model. When the packets are transmitted, the
completion is signal to the transmit-thread with tx0/1_packet_send function call.

1.2.4 XAUI SystemC Module
The XAUI SytemC module mimics the SERDES functionality. The module does not
perform any clock recovery. It does work on two separate input clocks, mac_clk
and xaui_clk and xaui_clk runs 10 times faster than the mac clock. The interface
defined by this module works synchronously as opposed to the real asynchronous
implementation of SERDES. A brief description of the module input/output signals
are provided in TABLE 1-4

TABLE 1-3 MAC Interface Signals

Signal Direction Description

mac_clk input Clock

reset input Reset

esr_mac_rxd0_0[9:0] input Lane0 10b code word from xaui0

esr_mac_rxd1_0[9:0] input Lane1 10b code word from xaui0

esr_mac_rxd2_0[9:0] input Lane2 10b code word from xaui0

esr_mac_rxd3_0[9:0] input Lane3 10b code word from xaui0

mac_esr_txd0_0[9:0] output Lane0 10b code word to xaui0

mac_esr_txd1_0[9:0] output Lane1 10b code word to xaui0

mac_esr_txd2_0[9:0] output Lane2 10b code word to xaui0

mac_esr_txd3_0[9:0] output Lane3 10b code word to xaui0

esr_mac_rxd0_1[9:0] input Lane0 10b code word from xaui1

esr_mac_rxd1_1[9:0] input Lane1 10b code word from xaui1

esr_mac_rxd2_1[9:0] input Lane2 10b code word from xaui1

esr_mac_rxd3_1[9:0] input Lane3 10b code word from xaui1

mac_esr_txd0_1[9:0] output Lane0 10b code word to xaui1

mac_esr_txd1_1[9:0] output Lane1 10b code word to xaui1

mac_esr_txd2_1[9:0] output Lane2 10b code word to xaui1

mac_esr_txd3_1[9:0] output Lane3 10b code word to xaui1
1-8 OpenSPARC T2 Behavioral Model Specification • November 2008

The 10b code word received from MAC interface is serialized and put out as
XAUI_TX_N and XAUI_TX_P signals. The differential signals received from
XAUI_RX_N and XAU_RX_P are deserialized and sent to the MAC Interface. This
module perform comma detection and correctly identifies the 10b code words.

TABLE 1-4 XAUI Signals

Signal Direction Description

XAUI_RX_N[3:0] input High speed serial signal

XAUI_RX_P[3:0] input High speed serial signal

xaui_clk input xaui clock; 10x mac_clk frequency

mac_clk input mac clock

reset input Reset

XAUI_AMUX output

XAUI_TX_N[3:0] output High speed serial signal

XAUI_TX_P[3:0] output High speed serial signal

esr_mac_rxd0[9:0] output Lane0 10b code word to mac

esr_mac_rxd1[9:0] output Lane1 10b code word to mac

esr_mac_rxd2[9:0] output Lane2 10b code word to mac

esr_mac_rxd3[9:0] output Lane3 10b code word to mac

mac_esr_txd0[9:0] input Lane0 10b code word from mac

mac_esr_txd1[9:0] input Lane1 10b code word from mac

mac_esr_txd2[9:0] input Lane2 10b code word from mac

mac_esr_txd3[9:0] input Lane3 10b code word from mac
Chapter 1 OpenSPARC T2 NIU SystemC Model 1-9

1-10 OpenSPARC T2 Behavioral Model Specification • November 2008

CHAPTER 2

PIU Behavioral Model Specification

2.1 PIU Overview
The PCI Express (PCIe) interface integrates the functionality of a host to PCI Express
bridge onto the OpenSPARC T2 system-on-a-chip. In PCI Express PCI Express
terminology this is called a PCI Express Root Complex. This allows an I/O
subsystem based on PCI Express to be connected to an OpenSPARC T2 processor in
flexible configurations using standard PCI Express components such as:

■ PCI Express to PCI Express bridges and switches

■ PCI Express to PCI and/or PCI Express to PCI-X bridges

■ Native PCI Express devices

The use of PCI Express allows the use of inexpensive commodity components while
supporting excellent bandwidth to high throughput I/O devices. Interoperability
with PCI and PCI-X devices is achieved through bridges, and compatibility with
existing software is achieved by using standard PCI abstractions. The signalling
technology of PCI Express has high bandwidth per pin, giving a low pin count and
reduced system cost.

TABLE 2-1 Abbreviation List

Misc. Core Sub-core Block Sub-block Description

PCIe PCI Express

PEU PCI Express Core Behavioral Model

ILU-Intf Ingress Layer SystemC Bus Interface
Model

CSR Behavioral Model for CSR
2-1

PEU_CSR CSR Ring Interface layer, behavioral
model

PCIe TL Transaction Layer Unit

ITL Ingress Transaction Layer

ETL Egress Transaction Layer

RSB Request Scoreboard

DLL DataLink Layer Unit

PL Consumer Ingress packet handler

TL Consumer Egress packet handler

PL Producer Egress traffic producer

TL Producer Forwarding ingress traffic

Retry Buffer Replay buffer manager

FC Init Flow Control Initialization

PL Physical Layer Unit

LTSSM Link Training and Initialization State
Machine

SDL Scrambler/Descrambler logic

EDL Encode Decode function

SKEW Skew generator

SERDES Functional Serializer and Deserializer

DMU Data Manager Core

TMU Transaction Manager Unit

DIM Data Ingress Manager

DEM Data Egress Manager

ILU Transaction Manager Unit

IIL Ingress Interface Layer

EIL Egress Interface Layer

ISB Interface Score Board

CIB CSR Interface Block

TABLE 2-1 Abbreviation List (Continued)

Misc. Core Sub-core Block Sub-block Description
2-2 OpenSPARC T2 Behavioral Model Specification • November 2008

This document describes the functional specifications and features of the PEU (PCI
Express Unit) behavioral model for the OpenSPARC T2.

2.2 PIU Block Diagram

FIGURE 2-1 PIU Block Diagram

IIL

PEU

ILU

ISB EIL CIB

PEU_CSR

TMU

CSR

ILU Interface BFM

PCI Express

Transaction Layer

Data Link Layer

Physical Layer

DMU

(CSR Ring intf)

PCI Express Link Interface
Chapter 2 PIU Behavioral Model Specification 2-3

2.3 OpenSPARC T2 PEU Root Complex
Feature Summary
TABLE 2-2 PEU Root Complex Summary

Feature SystemC Model Supported

PCI Express Specification Compliance 1.0a+

IO Virtualization
IOMMU (handles using granularity by bus id);
Number of PCI Express functions supported

No
Yes
1

Link at 2.5Gb/sec: 2.0GByte/sec per direction
Link Width;
Max_Payload_Size [Device Capability -> Device Control]

x8 max;
512B

Flow control Credit:
Posted Header;
Posted Data;
Non-Posted Header;
Non-Posted Data;
Completion Header
Completion Data

(Default Values)
32 credits;
192 credits;
16 credits;
infinite (not used as RC)
infinite (16 credits);
infinite (64 credits)

Power Management:
Power States;
Link States;

Active State Power Management (Receive Support);
PME Message Receive Support;
Set_Slot_Power_Limit Transmit Support;
Wake from PME (Vaux Support);

D0
L0, L0s

No
No
No
No

PCI Express Configuration Register Support:
PCI Express Root Complex Compliant Configuration Space;
Parameters loadable via SPROM (sw-initiated);
Implemented as part of CSR tool Ring

Single Function;
No;
Yes;
Yes

Traffic Class / Virtual Channels
TC0-TC7 on VC0 supported
(Completions returned w/same TC as req);
All egress TLPs sent w/TC0

Yes;
Yes

ECRC Generation & Checking Supported No
2-4 OpenSPARC T2 Behavioral Model Specification • November 2008

2.4 PCI Express (PEU) Behavioral Model
The PCI Express behavioral model is a transaction level, non-synthesizable model.
This transaction level model behaves as a Root Complex device on the PCI Express
link. It models logical state machine of the Link Initialization and link status state
machine. It does not model electrical timings of the actual design.

2.5 PEU Port Interface
The PEU model interfaces with the PCI Express link and models the complete logical
behavior of the link interface including the initialization state transitions, framing,
serialization and deserialization. The link clock is supplied externally, and is not
auto extracted from the link.

The model has bus interface with the ILU/DMU of the OpenSPARC T2. The ILU
(Interface Layer Unit) can read and write the ingress/egress transactions from the
TL. This interface is modelled into the ILU interface BFM, to connect the behavioral
model to the T2 design.

TABLE 2-3 provides the list of signal interfaces for the PEU model.

Hot Plug Support (instead relies on external Switch) No

Interrupts:
Legacy interrupt support with INTX emulation;
Translates MSI/MSI-X interrupts into mondo interrupts

Yes;
Yes

Error Handling:
Sun-Extended PCI Express Advanced Error Handling; Yes

Ordering Rules:
Sun4u/Sun4v compliant;
Device Control Reg: Relaxed ordering bit

Yes;
No

TABLE 2-2 PEU Root Complex Summary (Continued)

Feature SystemC Model Supported
Chapter 2 PIU Behavioral Model Specification 2-5

TABLE 2-3 PEU Interface Signals

Signal Direction Description

PCI Express Link Interface

link_clk Input OpenSPARC T2 Signal

link_in[7:0] Input OpenSPARC T2 Signal

link_in_bar[7:0] Input OpenSPARC T2 Signal

link_out[7:0] Output OpenSPARC T2 Signal

link_out_bar[7:0] Output OpenSPARC T2 Signal

PEU-DMU Interface

d2p_csr_ack Input OpenSPARC T2 Signal

d2p_csr_rcd[95:0] Input OpenSPARC T2 Signal

d2p_csr_req Input OpenSPARC T2 Signal

d2p_cto_ack Input OpenSPARC T2 Signal

d2p_csr_ack Input OpenSPARC T2 Signal

d2p_csr_rcd[95:0] Input OpenSPARC T2 Signal

d2p_csr_req Input OpenSPARC T2 Signal

d2p_cto_ack Input OpenSPARC T2 Signal

d2p_ech_wptr[5:0] Input OpenSPARC T2 Signal

d2p_edb_addr[7:0] Input OpenSPARC T2 Signal

d2p_edb_data[127:0] Input OpenSPARC T2 Signal

d2p_edb_dpar[3:0] Input OpenSPARC T2 Signal

d2p_edb_we Input OpenSPARC T2 Signal

d2p_ehb_addr[5:0] Input OpenSPARC T2 Signal

d2p_ehb_data[127:0] Input OpenSPARC T2 Signal

d2p_ehb_dpar[3:0] Input OpenSPARC T2 Signal

d2p_ehb_we Input OpenSPARC T2 Signal

d2p_erh_wptr[5:0] Input OpenSPARC T2 Signal

d2p_ibc_nhc[7:0] Input OpenSPARC T2 Signal

d2p_ibc_pdc[11:0] Input OpenSPARC T2 Signal

d2p_ibc_phc[7:0] Input OpenSPARC T2 Signal

d2p_ibc_req Input OpenSPARC T2 Signal
2-6 OpenSPARC T2 Behavioral Model Specification • November 2008

d2p_idb_addr[7:0] Input OpenSPARC T2 Signal

d2p_ihb_addr[5:0] Input OpenSPARC T2 Signal

d2p_spare[4:0] Input OpenSPARC T2 Signal

p2d_ce_int Output OpenSPARC T2 Signal

p2d_csr_ack Output OpenSPARC T2 Signal

p2d_csr_rcd[95:0] Output OpenSPARC T2 Signal

p2d_csr_req Output OpenSPARC T2 Signal

p2d_cto_req Output OpenSPARC T2 Signal

p2d_cto_tag[4:0] Output OpenSPARC T2 Signal

p2d_drain Output OpenSPARC T2 Signal

p2d_ecd_rptr[7:0] Output OpenSPARC T2 Signal

p2d_ech_rptr[5:0] Output OpenSPARC T2 Signal

p2d_erd_rptr[7:0] Output OpenSPARC T2 Signal

p2d_erh_rptr[5:0] Output OpenSPARC T2 Signal

p2d_ibc_ack Output OpenSPARC T2 Signal

p2d_idb_data[127:0] Output OpenSPARC T2 Signal

p2d_idb_dpar[3:0] Output OpenSPARC T2 Signal

p2d_ihb_data[127:0] Output OpenSPARC T2 Signal

p2d_ihb_dpar[3:0] Output OpenSPARC T2 Signal

p2d_ihb_wptr[6:0] Output OpenSPARC T2 Signal

p2d_mps[2:0] Output OpenSPARC T2 Signal (Minimum
of all EP functions’ mps)

peu_dmu_epmode Output EP mode bit: 1 = in EP mode, 0 = in
RC mode

peu_dmu_ro_en Output 1 = Relaxed ordering enabled

p2d_oe_int Output OpenSPARC T2 Signal

p2d_spare[4:0] Output OpenSPARC T2 Signal

p2d_ue_int Output OpenSPARC T2 Signal

TABLE 2-3 PEU Interface Signals (Continued)

Signal Direction Description
Chapter 2 PIU Behavioral Model Specification 2-7

2.6 10,000 feet
The PCI Express behavioral model, models a transaction level model for the PCI
Express block. It implements the physical layer, data link layer and transaction layer
functionality. For the OpenSparc T2, it includes the ILU Bus Interface Model and
models the Header and Data Buffer interfaces to the ILU.

Listed here are the main functions of the PEU Behavioral Model at 10,000 feet level.

Physical Layer:

■ Link Training and Initialization

■ Link Retrain/Reconfig and Drain State

■ Packet framing

■ 8b/10b Encoding and Decoding

■ Packet Scrambling and Descrambling

Data Link Layer:

■ Flow Control Initialization

■ LCRC calculation

■ Ack/Nak TLP packet

■ Retransmit packet for reliable communication

Transaction Layer:

■ Ingress Transaction Packet Header Parsing and Data Checking

■ Egress Transaction Request Scoreboarding

■ Drain State handling

Global Signals

gclk Input global cmp clock grid, 1.4GHz

pc_clk Input OpenSPARC T2 Signal

rst_wmr_ Input OpenSPARC T2 Signal

rst_por_ Input OpenSPARC T2 Signal

TABLE 2-3 PEU Interface Signals (Continued)

Signal Direction Description
2-8 OpenSPARC T2 Behavioral Model Specification • November 2008

CSR:

■ CSR Ring Interface

ILU_Intf BFM:

■ Model Ingress Header Buffer (IHB) and Ingress Data Buffer (IDB) Data Memory
Interface

■ Model Egress Header Buffer (EHB) and Egress Data Buffer (EDB) Data Memory
Interface

2.7 ILU Interface BFM (ILU_intf)
The ILU Interface BFM responsible for interfacing the SystemC model with the ILU
RTL signal level interface.

Main functions of the ILU interface are:

■ Forward ingress packet from ITL to the ILU/DMU.

■ Capture and forward the complete egress packet to ETL and RSB.

■ Emulate the transaction layer data buffers, IHB, IDB, EHB, and EDB.

■ Insert and check parity on egress header/data.

■ Update interrupt and timeout signals to the ILU

ILU Interface BFM interfaces the DMU/ILU block. The Transaction Layer packets
are exchanged over the buffer interface between the ILU and the BFM. The BFM
emulates the read/write behavior of four data RAMs:

■ Ingress header buffer (IHB)

■ Ingress data buffer (IDB)

■ Egress header buffer (EHB)

■ Egress data buffer (EDB)

2.8 IHB and IDB
IHB and IDB are treated as a single circular buffers.

As a consumer of IHB, ILU would detect IHB’s emptiness.
Chapter 2 PIU Behavioral Model Specification 2-9

The IHB’s emptiness detection is through its read/write pointers. There are 64
entries in IHB. Therefore, it’s a six-bit IHB read/write address (d2p_ihb_addr).
However, the IHB write pointer passed from the BFM to ILU is seven-bit
(p2d_ihb_wptr) with the MSB as a roll-over bit. ILU keeps its own seven-bit IHB
read pointer with the MSB as a roll-over bit too. It’s empty if the seven-bit
read/write pointers are the same.

The IHB’s fullness detection is through global PCI Express flow control credit
mechanism.

There is no need for IDB emptiness detection because it’s guaranteed that the
transaction associated payload is ready to pull in IDB when the transaction header is
processed down the pipeline.

2.8.1 EHB and EDB
EHB and EDB are treated as two circular buffers (half/half). The low address space
(one half) is partitioned for completion (DMA Cpl/CplD) records and their
associated payload (named as ECH & ECD buffer); the high address space (the other
half) for request (PIOs) records and their associated payload (named as ERH & ERD
buffer).

For each header circular buffer, ILU passes its write pointer to the BFM
(d2p_ech_wptr for ECH and d2p_erh_wptr for ERH); The BFM passes its read
pointer to ILU (p2d_ech_rptr for ECH and p2d_erh_rptr for ERH). The MSB in these
read/write pointers is a roll-over bit.

Similarly, for the data circular buffers the BFM passes read pointer to ILU
(p2d_ecd_rptr for ECD and p2d_erd_rptr for ERD). The MSB in these read pointers
is a roll-over bit.

As a producer of EHB and EDB, ILU detects their fullness for both circular buffers.
ILU keeps its own set of write pointers to ERD and ECD with the MSB as a roll-over
bit. A circular buffer is full if their roll-over bits in read/write pointers vary and the
rest are the same.

As a consumer of EHB and EDB, the BFM detects the emptiness for the two header
circular buffers. However, there is no need to detect the emptiness for the two data
circular buffers because it’s guaranteed that the transaction associated payload is
ready to pull in EDB when the transaction header is processed in ETL. A circular
buffer is empty if their read/write pointers are the same.
2-10 OpenSPARC T2 Behavioral Model Specification • November 2008

2.8.2 Link and Transaction Status
The interface BFM also updates the interrupts to the DMU/software in case
transaction errors, or uncorrectable link errors.

2.9 Transaction Layer Unit (TL)
The TL contains three major blocks:

■ Ingress Transaction Layer (ITL)

■ Request Scoreboard (RSB)

■ Egress Transaction Layer (ETL)

2.9.1 Ingress Transaction Layer (ITL) Functionality
Ingress Transaction Layer parses the ingress transaction header to identify any error
in the transaction, and would flag any unsupported and malformed transactions.

As the functionality of the root complex (RC) would identify following type of
header types as unsupported requests.

1. Types (unsupported requests)

a. Memory Read Request - Locked

b. I/O Read Request

c. I/O Write Request

d. Configuration Reads

e. Configuration Writes

f. Message Requests with data payload

2. Message Codes (unsupported requests)

a. PM_Active_State_Nak

b. PME_Turn_Off

c. Unlock
Chapter 2 PIU Behavioral Model Specification 2-11

d. Vendor_Defined Type 0

e. All Hot Plug signaling messages

3. Malformed packet checks

a. Reserved types

b. Crossing 4 KB boundary

c. Max payload size exceeded

d. Any message which is not traffic class zero

2.9.2 Request Scoreboard (RSB) Processing
Request scoreboard validates all the PIO completion packets. It would identify the
following six categories of the PIO completion errors:

1. Unsolicited Completion Error (as long as one of the following conditions meets)

a. "tlp_tag" in completion header (Cpl/CplD) doesn’t match any outstanding PIO
request’s "tlp_tag"

b. "req_id" in completion header doesn’t match its corresponding request’s
"req_id". Since OpenSPARC T2 PEU is a root complex, the "req_id" is 16’b0 for
all the PIO requests. Thus, it’s an unsolicited completion error as long as
"req_id" in completion is not 16’b0

c. It’s a CplLk type

d. It’s a CplDLk type

2. Malformed Completion Error (as long as one of the following conditions meets)

a. CplD with unsuccessful status

b. Completion status is "configuration retry" for a non-configuration PIO request

c. CplD associates with a PIO write request

d. Successful Cpl associates with a PIO read request

e. Any mismatches in the following fields between a completion and its
corresponding PIO request:

i. TC (OpenSPARC T2 PEU sets it to 3’b0 in the requests)

ii. Attr (OpenSPARC T2 PEU sets it to 2’b0 in the requests)

iii. Length (only check for CplD)
2-12 OpenSPARC T2 Behavioral Model Specification • November 2008

iv. Byte Count (it should be 12’h4 in Cpl/CplD resulted from PIO io/cfg rd/wr
requests)

v. Lower Address (it should be 7’b0 in Cpl/CplD resulted from PIO io/cfg
rd/wr requests)

3. Configuration Retry Error - completion status in Cpl header is "configuration
retry" for a configuration PIO request

4. Unsuccessful Read Error - completion resulted from PIO read request, whose
status in Cpl header is not "successful completion"

5. Unsuccessful Write Error - completion resulted from PIO write request, whose
status in Cpl header is not "successful completion"

6. Time Out Error - no response within a programmed amount of time

2.9.3 Egress Transaction Layer (ETL) Header and Data
Control
Transaction layer accepts the packet coming from the ILU and the request
scoreboard and forwards them to the Data Link Layer for transmission if required
credits are available.

All the posted transactions are posted with the request scoreboard for the
completion checks. The functionality of request scoreboard, and associated errors are
explained above.

2.9.4 Flow Control
Release records are used to flow control the issuing of transactions between the TMU
and ILU. A Core will not issue transaction records if it has no credit to do so.

There are two credit bases which control transactions between the TMU and ILU,
one for ingress and one for egress, which track requests and associated completions.

The TMU owns the credit base for TLP requests it issues to the ILU (egress). The ILU
owns the credit base for TLP requests it issues to the TMU (ingress). The ILU will
accept up to sixteen TLP non-posted read/write requests without flow controlling
the TMU/ILU interface.
Chapter 2 PIU Behavioral Model Specification 2-13

2.10 Control and Status Register (CSR) and
CSR Ring Interface
The PEU CSR are implemented as part of the SystemC model, using STL map for
CSR address and record. All subblocks in the model can connect directly to the CSR
over the CSR interface port, and read/write to the CSR.

All the external access to the CSR over the CSR ring protocol are gated to the CSR
through the peu_csr module. The peu_csr connects to rest of the design over the CSR
ring interface.

Also for the test env, to have direct (signal cross referenced) interface to the CSR is
provided through the csr omni interface. Omni interface provides the updated
snapshot of the CSR data values to the Verilog signals, and vice versa.

2.11 Data Link Layer

2.11.1 Functionality
Data link layer is responsible for providing the necessary communication channels
between TL and PL.

The major responsibilities of Data Link Layer (DLL) include:

■ Send/Receive FC initialization/update packets

■ Append Sequence numbers to the TL packets

■ Perform LCRC and CRC checks on packets

■ Send ACK/NACK for DLLPs received from PL

■ Replay packets which were NAKed

2.11.2 Communication Channels
DLL contains the five TLM channels which interact with Transaction (TL) and
Physical (PL) layers. There are two TLM channels which send and receive packets
to/from TL. There are three TLM channels between DLL and PL. One of these
2-14 OpenSPARC T2 Behavioral Model Specification • November 2008

channels receive packets from PL, the other two are used to send packets to PL for
DLLP and TLP packets separately. This is done to ensure that no starvation of each
type of packet will occur at the PL level.

2.11.3 DLL Architecture
There are four separate producer/consumer threads which interact with TL and PL:

■ pl_consumer: Upon receiving a STP packet, lcrc and sequence numbers are
checked and ACK/NAK is sent to PL accordingly. If SDP packets are received,
flow control registers are updated provided packet has the correct CRC.

■ pl_producer: This thread retrieves packets from TLP and DLLP queues and
transfers the packet to the PL layer.

■ tl_consumer: After receiving the TLP from TL, sequence number and LCRC are
appended to the packet and put into the TLP queue.

■ tl_producer: Packets from Tl queue are retrieved and sent to TL by this thread.

Additionally architecture is added to:

■ calculate_lcrc: Calculates LCRC

■ dll_ctrl_mgmt: Implements the state machine for DL state machine during link
training

■ fc_init: Sends and receives FC init packets during initialization

■ replay_buffer: Implements the replay buffer which stores transactions to be
replayed

2.12 Physical Layer
As discussed in the previous sections, the physical layer is the third among the three
layers in the PCIe fabric. The Physical Layer gets the data from and sends it to the
upper two layers (Data Link Layer and Transaction Layer).

In the SystemC architecture, the Physical Layer has been implemented in both
SystemC and Verilog. It has been designed to follow the PCIe specification and
performs the following functionality.

1. Performs link initialization and training

2. Performs 8b/10b decoding and encoding

3. Framing/Deframing of the encoded data
Chapter 2 PIU Behavioral Model Specification 2-15

4. Clock based frame boundary calculation

5. Disparity Checks

In addition, the PL talks to a very basic SERDES interface. The basic unit of
transaction is the packet. The Data Link Layer puts both DLL and TL packets in a
queue. The enqueuing of these packets into the DLL queue and the TL queue are
asynchronous. The PL then takes the necessary amount of time to send the contents
of the entire packet (DLL or TL packet) over the link. Similarly, the PL gathers
packets over the link and forwards them to the DLL.

2.12.1 Link Initialization and Training
Link Initialization is done by the PL. This is done by a module called LTSSM (Link
Training and Status State Machine). The following states have been implemented

1) DETECT_QUIET

2) DETECT_ACTIVE

3) POLLING_ACTIVE

4) POLLING_CONFIG

5) CFG_LINKWIDTH_START (config linkwidth start)

6) CFG_LINKWIDTH_ACCEPT (config linkwidth accept)

7) CFG_LANENUM_WAIT (config lanenum wait)

8) CFG_LANENUM_ACCEPT (config lanenum accept)

9) CFG_IDLE

10) L0

11) Disabled Entry

12) Disabled Idle

13) Disabled

14) Recovery Recover Lock

15) Recovery Recover Config

16) Recovery Idle

17) Hot Reset

18) L0s
2-16 OpenSPARC T2 Behavioral Model Specification • November 2008

Transitions among all of the states above are supported. The power management
states L1, and L2 are currently not supported. The current implementation also
accounts for a single channel (single link). Multiple lanes in a link are supported.
LINK_WIDTH of 2, 4, 8, 16, and 32 are supported. The default LINK_WIDTH is 8.
No electrical properties are checked. There is a default timeout value for the state
machine to transition from the DETECT_QUIET to the DETECT_ACTIVE and from
the DETECT_ACTIVE to the POLLING_ACTIVE states.

The LTSSM module does not perform actual clock extraction during link
initialization. Instead, it samples initial data at both the positive edge and negative
edge to understand the rate of change of data. Once it understands how the data
changes, it locks onto either the positive or the negative edge of the clock and forms
the frame boundary accordingly.

There are two separate engines running in the module, the receiver engine and the
transmitter engine. Accordingly, there are two frame boundaries, the receiver frame
boundary and the transmitter frame boundary. The link training state machine is
dependent on both the receiver as well as the transmitter engines. Since the model is
for a Root Complex, the LTSSM starts off with sending the first initialization data.

2.12.2 Scrambling and Descrambling
Scrambling and Descrambling is done on eight bits of data. The
scrambler/descrambler module uses an LFSR logic to do this. The LFSR is set to an
initial value and then with every advancing clock tick, it applies an XOR logic to the
sampled bits with the current LFSR value and then shifts the LFSR value.

Special control (K) characters are never scrambled. The COM (comma) character
resets the LFSR to the initial value. Intermittent SKP (skip) symbols are used to align
the LFSRs of both the root complex and the end point.

Scrambling and Descrambling starts only after the PCI Express device reaches the
CFG_IDLE state during initialization.

2.12.3 Decoding and Encoding
Decoding and Encoding is performed, based on a map table. There are four Hash
Map tables. Two for special character encoding and two for data character encoding.
Each type requires two encodings because the PCI Express specification allows for
disparities in the link. Each 8b symbol has a (+) positive encoding and a (-) negative
encoding. While getting data from the upper layers, it first scrambles the data and
then encodes it. While receiving data from the link, it first decodes data and then
descrambles before passing it on to the upper layers. Decoding and encoding is done
continously.
Chapter 2 PIU Behavioral Model Specification 2-17

2.12.4 Framing and Deframing
The PL is responsible for framing data while putting it onto the link and then
deframing the data it receives from the link.

Framing is also responsible for sending data on multiple links at the same time. This
takes advantage of multiple lanes in PCI Express. Typically, a frame consists of
LINK_WIDTH number of columns and ten rows. Each symbol is transmitted or
received on one column. Thus, it takes ten clock cycles to receive LINK_WIDTH
number of symbols. The higher the number of lanes supported, the more the number
of symbols transmitted or received in one frame boundary. Typically, every frame
boundary is ten clock cycles.

2.12.5 Clock Based Frame Boundary Calculation
The concept of framing and deframing is dependent on the calculation of the frame
boundary. This is calculated in the LTSSM module based on the arrival of the first
COM (K28.5) character.

A counter is utilized to assert the frame boundary signal after every ten clock cycles.
It is triggered by the arrival of the first COM character.

There are two frame boundaries, the transmitter and the receiver. The transmitter
frame boundary is based on what is being transmitted by the LTSSM. The receiver
frame boundary is calculated based on what the LTSSM receives from the link.

The frame boundary is continuously calculated based on the clock and the COM
character. If the transmitter changes from driving at one edge to another, the frame
boundary changes too. This makes sure that the symbols are aligned right after
coming out of a reset sequence.

2.12.6 Disparity Checks
One characteristic of the PCI Express link is that it transmits equal number of 1s and
0s over a period of time. This keeps the potential of the link neutral. From the
functional point of view, this gives rise to the two separate encodings for a 8b
symbol. Different lanes can maintain different disparities. The (+) positive encoding
is for a lane where the previous transaction for that lane had more 1s than 0s. The (-)
negative encoding for a lane is where the previous transaction for that lane had more
0s than 1s. Some of the lanes can have neutral disparities due to having equal
number of 0s and 1s. For those lanes, the existing disparity for that lane is retained
during encoding.
2-18 OpenSPARC T2 Behavioral Model Specification • November 2008

There is a disparity checker in both the LTSSM and the PL modules to insure that the
symbols received on the ingress side are encoded correctly and follow the current
disparity for that lane.

2.12.7 Packetization
The basic unit of a transaction in the model is a packet. The DLL produces a packet
and puts it into a queue for the PL to consume. The PL similarly produces a packet
and puts it into the queue for the DLL to consume.

The transformation from a frame to a packet and vice versa is done in the PL Top
module. A packet can be thought of as the logical equivalent of a frame. When the
PL receives raw data from the link, it first decodes, descrambles and frames the data.
It then strips each lane in the frame to form the packet. A packet consists of
sequential symbols. These symbols could be special symbols or data symbols. For
example, a DLL packet starts with a SDP symbol and ends with either the END or
EDB symbol. Similarly, a TL packet starts with the STP symbol.

2.12.8 SERDES
The physical layer implements a very basic SERDES interface. Based on a frame
boundary, it serializes and deserializes the incoming data. This frame boundary is
supplied by the LTSSM module. On the egress side, the SERDES takes in a frame
and then serializes it. Typically, it takes ten clock cycles for the SERDES to put one
frame onto the link. Each serialized data is a concatenation of all the bits of the lanes.
Thus, the size of a serialized data is LINK_WIDTH bits.

For example, if the LINK_WIDTH is 8, one frame of serialized data = {lane7[0],
lane6[0], lane5[0], lane4[0], lane3[0], lane2[0], lane1[0], lane0[0]}. The next frame will
contain bit one of all these lanes, the next will contain bit two and so on.

The SERDES does a reverse transformation while deserializing the incoming data.
Chapter 2 PIU Behavioral Model Specification 2-19

2-20 OpenSPARC T2 Behavioral Model Specification • November 2008

	OpenSPARC™ T2 Behavioral Model Specification
	Contents
	Figures
	Tables
	Preface
	OpenSPARC T2 NIU SystemC Model
	1.1 Overview
	1.2 SAM NIU Interface Functions
	1.2.1 Interface to NCU
	1.2.2 Interface to SIU
	1.2.3 Interface to MAC
	1.2.4 XAUI SystemC Module

	PIU Behavioral Model Specification
	2.1 PIU Overview
	2.2 PIU Block Diagram
	2.3 OpenSPARC T2 PEU Root Complex Feature Summary
	2.4 PCI Express (PEU) Behavioral Model
	2.5 PEU Port Interface
	2.6 10,000 feet
	2.7 ILU Interface BFM (ILU_intf)
	2.8 IHB and IDB
	2.8.1 EHB and EDB
	2.8.2 Link and Transaction Status

	2.9 Transaction Layer Unit (TL)
	2.9.1 Ingress Transaction Layer (ITL) Functionality
	2.9.2 Request Scoreboard (RSB) Processing
	2.9.3 Egress Transaction Layer (ETL) Header and Data Control
	2.9.4 Flow Control

	2.10 Control and Status Register (CSR) and CSR Ring Interface
	2.11 Data Link Layer
	2.11.1 Functionality
	2.11.2 Communication Channels
	2.11.3 DLL Architecture

	2.12 Physical Layer
	2.12.1 Link Initialization and Training
	2.12.2 Scrambling and Descrambling
	2.12.3 Decoding and Encoding
	2.12.4 Framing and Deframing
	2.12.5 Clock Based Frame Boundary Calculation
	2.12.6 Disparity Checks
	2.12.7 Packetization
	2.12.8 SERDES

