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Preface

This OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification includes
detailed functional descriptions of the OpenSPARC T2 System-on-Chip I/O
components. This manual is divided into two volumes, Part 1 of 2 (P/N 820-2620-10)
and Part 2 of 2 (P/N 820-5090-10).

This manual also provides I/O signal list for each component. This processor
expands Sun’s throughput computing initiative by doubling the number of threads
from the OpenSPARC T1 processor and adding support for industry standard I/O
interfaces like PCI-Express and 10Gigabit Ethernet.

How This Document Is Organized
This OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification (Part 1 of 2),
(P/N 820-2620-10) includes detailed functional descriptions of the following
OpenSPARC T2 System-on-Chip I/O components.

Chapter 1 describes the overall OpenSPARC T2

Chapter 2 describes the L2 Cache

Chapter 3 describes the Memory Control Unit (MCU)

Chapter 4 describes the Test Control Unit (TCU)

Chapter 5 describes the Clock Control Unit (CCU)

Chapter 6 describes System Interface Unit (SIU)

Chapter 7 describes the Non-Cacheable Unit (NCU)
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Using UNIX Commands
This document might not contain information about basic UNIX® commands and
procedures such as shutting down the system, booting the system, and configuring
devices. Refer to the following for this information:

■ Software documentation that you received with your system

■ Solaris™ Operating System documentation, which is at:

http://docs.sun.com
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Shell Prompts

Typographic Conventions

Shell Prompt

C shell machine-name%

C shell superuser machine-name#

Bourne shell and Korn shell $

Bourne shell and Korn shell superuser #

Typeface*

* The settings on your browser might differ from these settings.

Meaning Examples

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output

Edit your.login file.
Use ls -a to list all files.
% You have mail.

AaBbCc123 What you type, when contrasted
with on-screen computer output

% su

Password:

AaBbCc123 Book titles, new words or terms,
words to be emphasized.
Replace command-line variables
with real names or values.

Read Chapter 6 in the User’s Guide.
These are called class options.
You must be superuser to do this.
To delete a file, type rm filename.
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Related Documentation
The documents listed as online are available at:

http://www.opensparc.net/

Application Title Part Number Format Location

Documentation OpenSPARC T2 Core
Microarchitecture
Specification

820-2545 PDF Online

Documentation OpenSPARC T2 System-
On-Chip (SoC)
Microarchitecture
Specification (Part 1 of 2)

820-2620 PDF Online

Documentation OpenSPARC T2 System-
On-Chip (SoC)
Microarchitecture
Specification (Part 2 of 2)

820-5090 PDF Online
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Documentation, Support, and Training

Third-Party Web Sites
Sun is not responsible for the availability of third-party web sites mentioned in this
document. Sun does not endorse and is not responsible or liable for any content,
advertising, products, or other materials that are available on or through such sites
or resources. Sun will not be responsible or liable for any actual or alleged damage
or loss caused by or in connection with the use of or reliance on any such content,
goods, or services that are available on or through such sites or resources.

Sun Welcomes Your Comments
Sun is interested in improving its documentation and welcomes your comments and
suggestions. You can submit your comments by going to:

http://www.sun.com/hwdocs/feedback

Please include the title and part number of your document with your feedback:

OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification (Part 1 of 2), part
number 820-2620-10.

OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification (Part 2 of 2) , part
number 820-5090-10.

Sun Function URL

OpenSPARC T2 http://www.opensparc.net/

Documentation http://www.sun.com/documentation/

Support http://www.sun.com/support/

Training http://www.sun.com/training/
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CHAPTER 1

OpenSPARC T2 Basics

1.1 Background
OpenSPARC T2 is the follow-on chip multi-threaded (CMT) processor to the highly
successful OpenSPARC T1 processor. The product line fully implements Sun’s
Throughput Computing initiative for the horizontal system space. Throughput
Computing is a technique that takes advantage of the thread-level parallelism that is
present in most commercial workloads. Unlike desktop workloads, which often have
a small number of threads concurrently running, most commercial workloads
achieve their scalability by employing large pools of concurrent threads.

Historically, microprocessors have been designed to target desktop workloads, and
as a result have focused on running a single thread as quickly as possible. Single
thread performance is achieved in these processors by a combination of extremely
deep pipelines (over 20 stages in Pentium 4) and by executing multiple instructions
in parallel (referred to as instruction-level parallelism or ILP). The basic tenet behind
Throughput Computing is that exploiting ILP and deep pipelining has reached the
point of diminishing returns, and as a result current microprocessors do not utilize
their underlying hardware very efficiently. For many commercial workloads, the
processor will be idle most of the time waiting on memory, and even when it is
executing it will often be able to only utilize a small fraction of its wide execution
width. So rather than building a large and complex ILP processor that sits idle most
of the time, a number of small, single-issue processors that employ multithreading
are built in the same chip area. Combining multiple processors on a single chip with
multiple strands per processor, allows very high performance for highly threaded
commercial applications. This approach is called thread-level parallelism (TLP), and
the difference between TLP and ILP is shown in the FIGURE 1-1.
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FIGURE 1-1 Differences Between TLP and ILP

The memory stall time of one strand can often be overlapped with execution of other
strands on the same processor, and multiple processors run their strands in parallel.
In the ideal case, shown in FIGURE 1-1, memory latency can be completely
overlapped with execution of other strands. In contrast, instruction-level parallelism
simply shortens the time to execute instructions and does not help much in
overlapping execution with memory latency.1

Given this ability to overlap execution with memory latency, why don’t more
processors utilize TLP? The answer is that designing processors is a mostly
evolutionary process, and the ubiquitous deeply pipelined, wide ILP processors of
today are the evolutionary outgrowth from a time when the processor was the
bottleneck in delivering good performance. With processors capable of multiple GHz
clocking, the performance bottleneck has shifted to the memory and I/O
subsystems, and TLP has an obvious advantage over ILP for tolerating the large I/O
and memory latency prevalent in commercial applications. Of course, every
architectural technique has its advantages and disadvantages. The one disadvantage
to employing TLP over ILP is that execution of a single thread will be slower on the
TLP processor than an ILP processor. With processors running well over a GHz, a
strand capable of executing only a single instruction per cycle is fully capable of
completing tasks in the time required by the application, making this disadvantage a
nonissue for nearly all commercial applications.

1. Processors that employ out-of-order ILP can overlap some memory latency with execution. However, this
overlap is typically limited to shorter memory latency events such as L1 cache misses that hit in the L2 cache.
Longer memory latency events such as main memory accesses are rarely overlapped to a significant degree
with execution by an out-of-order processor.

Strand 1

Strand 2

Strand 3

Strand 4

Executing Stalled on Memory

TLP

ILP
Single strand
executing two
instructions per
cycle
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1.2 OpenSPARC T2 Overview
OpenSPARC T2 is a single chip multi-threaded (CMT) processor. OpenSPARC T2
contains eight SPARC physical processor cores. Each SPARC physical processor core
has full hardware support for eight strands, two integer execution pipelines, one
floating-point execution pipeline, and one memory pipeline. The floating-point and
memory pipelines are shared by all eight strands. The eight strands are
hard-partitioned into two groups of four, and the four strands within a group share
a single integer pipeline.

While all eight strands run simultaneously, at any given time at most two strands
will be active in the physical core, and those two strands will be issuing either a pair
of integer pipeline operations, an integer operation and a floating-point operation,
an integer operation and a memory operation, or a floating-point operation and a
memory operation. Strands are switched on a cycle-by-cycle basis between the
available strands within the hard-partitioned group of four using a least recently
issued priority scheme. When a strand encounters a long-latency event, such as a
cache miss, it is marked unavailable and instructions will not be issued from that
strand until the long-latency event is resolved. Execution of the remaining available
strands will continue while the long-latency event of the first strand is resolved.

Each physical core has a 16 KB, 8-way associative instruction cache (32-byte lines), 8
Kbytes, 4-way associative data cache (16-byte lines), 64-entry fully-associative
instruction TLB, and 128-entry fully associative data TLB that are shared by the eight
strands. In addition, each physical core has a cryptography (stream processing) unit
that is controlled by processor loads and stores but executes as an independent
coprocessor. The eight physical cores are connected through a crossbar to an on-chip
unified 4 Mbyte, 16-way associative L2 cache (64-byte lines). The L2 cache is banked
eight ways to provide sufficient bandwidth for the eight physical cores. The L2 cache
connects to four on-chip DRAM controllers, which directly interface to a pair of fully
buffered DIMM (FBD) channels. In addition, an on-chip PCI-EX controller, two
1-Gbit/10-Gbit Ethernet MACs, and several on-chip I/O-mapped control registers
are accessible to the SPARC physical cores. Traffic from the PCI-EX port coherently
interacts with the L2 cache. A block diagram of the OpenSPARC T2 chip is shown in
FIGURE 1-2.
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FIGURE 1-2 OpenSPARC T2 Chip Block Diagram
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1.3 OpenSPARC T2 Components
This section describes each component in OpenSPARC T2.

1.3.1 SPARC Physical Core
Each SPARC physical core has hardware support for eight strands. This support
consists of a full register file (with eight register windows) per strand, with most of
the ASI, ASR, and privileged registers replicated per strand. The eight strands share
the instruction and data caches and Translation Lookaside Buffers (TLBs). An
auto-demap feature is included with the TLBs to allow the multiple strands to
update the TLB without locking.

A single floating-point unit is shared by all eight strands within a SPARC physical
core. The shared floating-point unit is sufficient for most commercial applications
which typically have less than 1% of their instructions being a floating-point
operation.

Each physical core also contains a Stream Processing Unit (SPU) to accelerate
cryptography.

Detailed information on the core processor is provided in OpenSPARC T2 Core
Microarchitecture Specification.

1.3.2 SPARC System-On Chip (SoC)
Each SPARC physical core is supported by system on chip hardware components.

Information on each of the functioning units of the system on chip of OpenSPARC
T2 are provided in the following chapters of OpenSPARC T2 System-On Chip (SoC)
Microarchitecture Specification (this manual).

1.3.3 L2 Cache
The L2 cache is banked eight ways. To provide for better partial-die recovery,
OpenSPARC T2 can also be configured in 4-bank and 2-bank modes (with 1/2 and
1/4 the total cache size respectively). Bank selection based on physical address bits
8:6 for 8 banks, 7:6 for 4 banks, and 6 for 2 banks. The cache is 4 Mbytes, 16-way set
associative with pseudo-LRU replacement (replacement is based on a used bit
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scheme). The line size is 64 bytes. Unloaded access time is 26 cycles for an L1 data
cache miss and 24 cycles for an L1 instruction cache miss. Memory Control Unit
(MCU)

OpenSPARC T2 has four MCUs, one for each memory branch with a pair of L2
banks interacting with exactly one Dynamic Random-Access Memory (DRAM)
branch. The branches are interleaved based on physical address bits 7:6, and support
1–16 Double Data Rate (DDR)2 DIMMs. Each memory branch is two Fully Bufered
DIMM (FBD) channels wide. A branch may use only one of the FBD channels in a
reduced power configuration.

Each DRAM branch operates independently and can have a different memory size
and a different kind of DIMM (for example, a different number of ranks or different
CAS latency). Software should not use address space larger than four times the
lowest memory capacity in a branch because the cache lines are interleaved across
branches. The DRAM controller frequency is the same as that of the DDR data buses,
which is twice the DDR frequency. The FBD links run at six times the frequency of
the DDR data buses.

1.3.4 Test Control Unit (TCU)
The TCU is the OpenSPARC T2 Test Control Unit and provides access to the chip
test logic. It also participates in Reset, EFuse programming, clock stop/start
sequencing, and chip debug. The TCU including JTAG is completely stuck-fault
testable via ATPG manufacturing scan

1.3.5 Clock Control Unit (CCU)
The Clock Control Unit encompasses the following functions:

■ PLL to drive the core and memory clocks

■ Interfacing with random number generator

■ UCB interface for programming the PLL's/RNG and reading RNG data

■ Provide sync pulses for deterministic clock domain crossing

■ Clock stretch and other test clocking mechanisms such as SerDes testing (via
DTM) for OpenSPARC T2.
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1.3.6 System Interface Unit (SIU)
The System Interface Unit connects the NIU, DMU and L2 Cache. SIU is the L2
Cache access point for the Network and PCI-Express subsystems. The SIU-L2 Cache
interface is also the ordering point for PCI-Express ordering rule.

1.3.7 Non-Cacheable Unit (NCU)
The NCU performs an address decode on I/O-addressable transactions and directs
them to the appropriate block (for example, NIU, DMU, CCU). In addition, the NCU
maintains the register status for external interrupts.

1.3.8 Data Management Unit (DMU)
The DMU manages Transaction Layer Packet (TLP) to/from the PCI-Express Unit
(PEU) and maintains the same ordering as from the PCI-Express Unit (PEU) and
then to the SIU. For maintaining ordering between PEU and SIU, the DMU requires
the policy that has Programmable Input/Output (PIO) reads pulling Direct Memory
Access (DMA) writes to completion. When the PEU issues complete TLP
transactions to the DMU, the DMU segments the TLP packet into multiple
cacheline-oriented SIU commands and issues them to the SIU. The DMU also queues
the response cachelines from SIU, reassembles the multiple cachelines into one TLP
packet with maximal payload size. Furthermore, the DMU accepts and queues the
PIO transactions requests from NCU, and coordinates with the appropriate
destination, to which the address and data will be sent.

The DMU encapsulates the functions necessary to resolve a virtual PCI-Express
packet address into a L2 cacheline physical address which can be presented on the
SIU interface. The DMU also encapsulates the functions necessary to interpret
PCI-Express message signaled interrupts, emulated INTX interrupts and provides
the functions to post interrupt events to queues managed by software in main
memory and generates the Solaris Interrupt Mondo to notify software. The DMU
decodes INTACK and INTNACK from interrupt targets and conveys the information
to the interrupt function so that it can move on to service the next interrupt if any
(for INTACK) or replay the current interrupt (for INTNACK).

1.3.9 Miscellaneous Input/Output (MIO)
MIO holds majority of non-Serdes I/O's of OpenSPARC T2. The I/O's in MIO block
fall broadly under the functional categories of clock, reset, test (scan and ramtest),ssi
interface, process control PCM), efuse program enable and debug. Most of the I/O's
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in MIO are on Boundary Scan chain under control of TCU. All the functional flops in
MIO are connected on regular scan chain with scanin,scanout and flush reset
capabilities under the control of TCU.

1.3.9.1 SSI ROM Interface (SSI)

OpenSPARC T2 has a 50 Mb/s serial interface (SSI), which connects to an external
field-programmable gate array (FPGA) that interfaces to the boot ROM. In addition,
the SSI supports Programmable Input/Output (PIO) accesses across the SSI, thus
supporting optional Control and Status registers (CSRs) or other interfaces within
the Field Programmable Gate Array (FPGA).

Note – The SSI microarchitecture description is not included in this document.

1.3.10 Debug
This chapter describes OpenSPARC T2 HW features for post silicon debugability
which involves debugging any issues that interfere with early bringup as well as
debugging the difficult, complex bugs that eluded pre-silicon verification, and are
unexpected or unusual corner cases. The overall goal of implementing these features
is to make silicon debug more efficient, shortening the time to root cause complex
bugs and thereby reducing time to remove and replace.

1.3.11 eFuse
The Efuse (electronic fuse) unit (EFU) contains an Efuse array macro (EFA), TCU
interface and an Efuse controller(FCT). In a broad sense, the Efuse array is a
non-volatile memory used to store information that needs to be programmed at the
factory and used in the field.

The eFuse (Electronic Fuse) unit contains configuration information that is
electronically burned in as part of manufacturing, including part Serial Number and
Strand_Available information.

1.3.12 Reset
The Reset Unit asserts signals that cause other units to immediately revert to the
initial state defined by the Programmer’s Reference Manual.
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The OpenSPARC T2 team has endeavored to keep OpenSPARC T2 as much the same
as OpenSPARC T1 as possible. One major difference is that OpenSPARC T2
conforms to the CMP Programming Model.

1.3.13 Network Interface Unit (NIU)
The NIU connects a pair of on-chip 10 Gb/s Ethernet MACs to the rest of the system.
The NIU also contains the registers to control Ethernet traffic.
Chapter 1 OpenSPARC T2 Basics 1-9



1-10 OpenSPARC T2 SoC Microarchitecture Specification Part 1 of 2 • May 2008



CHAPTER 2

Level 2 Cache

This chapter contains the following sections:

■ L2 Cache Functional Description

■ Appendix

2.1 L2 Cache Functional Description
The following sections describe the OpenSPARC T2 processor level 2 cache
(L2-cache):

■ L2 Cache Overview

■ L2 Cache Block Functional Description

■ L2 Pipeline

■ L2 Interactions with Core

■ Functional Description of Sub-blocks

2.1.1 L2 Cache Overview
The OpenSPARC T2 L2 cache is 4 MB in size and is composed of eight symmetrical
banks interleaved on a 64 B boundary. Each bank operates independently of all
others. Banks are 16 way set associative and 512KB in size. Block (line) size is 64 B.
Each L2 bank has 512 sets.

The L2 cache accepts requests from the SPARC cores on the processor to cache
crossbar (PCX) and responds on the cache to processor crossbar (CPX). The L2 is also
responsible for maintaining on-chip coherency across all L1 caches on the chip by
keeping a copy of all L1 tags in a directory structure. Since OpenSPARC T2
implements system on a chip with single memory interface and no L3 cache, there is
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no off-chip coherency requirement for OpenSPARC T2 L2 cache other than being
coherent with main memory. The L2 cache is a writeback cache and has lines in one
of three states - invalid, clean, or dirty.

Each L2 bank has a 128b Fill interface and a 64b write interface with the dram
controller.

Requests arriving on the I/O interface are sent to the L2 from the System Interface
Unit.

The L2 cache unit works at the same frequency as the core (1.4 Ghz).
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FIGURE 2-1 OpenSPARC T2 Processor Block Diagram

2.1.2 L2 Cache Block Functional Description
The L2 cache is organized into eight identical banks as shown in the FIGURE 2-1. Each
bank has its own interface with SIU, MCU and Crossbar.
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Each L2 cache bank interfaces with the eight cores through a Processor Cache
Crossbar. The crossbar routes the L2 request (loads, ifetches, stores, atomics, asi
accesses) from all eight cores to the appropriate L2 bank. The crossbar also accepts
read return data, invalidation packets and store ack packets from each L2 bank and
forwards them to the appropriate core(s).

Every two L2 cache banks interface with one MCU to issue reads and evictions to
DRAM on misses in the L2. Writebacks get issued 64bits at a time to MCU. Fills
happen 128 bits at a time from MCU to L2.

For 64 byte I/O writes from SIU, L2 does not allocate, but issues the writes to DRAM
through a 64 bit interface with MCU. There is a single 64 bit interface with MCU for
writebacks and I/O writes, and hence round robin arbitration is used between the
Writeback Buffer and the I/O Write Buffer for access to MCU.

Each L2 cache banks also accepts RDD (read to discard), WRI (block write
invalidate) and WR8 (partial write with random byte enables) packets from SIU over
a 32 bit interface and queues the packet in the SIU Q. RDD and WRI do not allocate
in the L2. On a hit, WRI invalidates in the L2 and issues a 64 B block write to DRAM.
On a hit, RDD gets back 64 B of data from L2. On a miss, RDD fetches data from
DRAM but does not install in L2, while WRI (on a miss) issues a 64 B block write to
DRAM. WR8 packets cause partial stores to happen in L2 like regular CPU stores
with random byte enables.

Each L2 cache bank is composed of the following sub-blocks:

■ IQ: The input queue is a 16 entry FIFO which queues packets arriving on the PCX
when they cannot be immediately accepted into the L2 pipe. Each entry in the IQ
is 130 bits wide.

■ SIUQ (SIU queue): Accepts RDD,WRI and WR8 packets from the SIU and issues
them to the pipe after arbitrating against other requests.

■ Arbiter: The arbiter manages access to the L2 pipeline from the various sources
which request access. The IQ, MB, SIUQ, FB and stalled instruction in pipe all
need access to the L2 pipe.

■ L2 Tag: holds the L2 tag array and associated control logic. Tag is protected by
SEC ECC.

■ L2 VUAD: contains the Valid, Dirty, Used and Allocated bits for the tags in L2
organized in an array structure. There is one array for Valid and Dirty bits and a
separate array for Used and Allocate bits. Each array is protected by SEC DED
ECC.

■ L2 Data: Contains 512 KB of L2 Data storage and associated control logic. Data is
protected by SEC DED ECC on a 32/7 boundary.

■ L2 Directory: The directory maintains a copy of the L1 tags for coherency
management and also ensures that the same line is not resident in both the icache
and dcache (across all cores). The directory is split into an icache directory (icdir)
and a dcache directory (dcdir), which are similar in size and functionality.
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■ Miss Buffer: The Miss Buffer (MB) has 32 entries and stores instructions which
cannot be processed as a simple cache hit. This includes true L2 cache misses (no
tag match), instructions that have the same cache line address as a previous miss
or an entry in the Writeback Buffer, instructions requiring multiple passes
through the L2 pipeline (atomics and partial stores), unallocated L2 misses, and
accesses causing tag ECC errors.

■ Fill Buffer: The Fill Buffer is an eight entry buffer used to temporarily store data
arriving from DRAM on an L2 miss request. Data arrives from DRAM in four 16B
quad-words starting with the critical quad-word.

■ Write Back Buffer: The Writeback Buffer is an eight entry buffer used to store
dirty evicted data from the L2 on a miss. Evicted lines are streamed out to DRAM
opportunistically.

■ I/O Write Buffer: The I/O Write Buffer is a four entry buffer which stores
incoming data from the PCI-EX interface in the case of a 64 B write operation.
Since the PCI-EX interface bus width is only 32 bits wide, the data must be
collected over 16 cycles before writing to DRAM

FIGURE 2-2 shows a diagram of the major components of the L2 cache.
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FIGURE 2-2 L2 Cache Organization
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2.1.2.1 L2 Cache Interface Description

L2 cache interfaces with Crossbar, SIU and DRAM.

Crossbar

L2 cache receives requests from the core through the crossbar. These requests are
received, decoded and forwarded to the arbiter logic by the Input queue (IQ)
depending on the status of the arbiter block. The Input queue pipe line data path
diagram is shown in FIGURE 2-3.

FIGURE 2-3 Input Queue Pipeline Data Path Diagram

The timing diagram for a single load from PCX is shown in FIGURE 2-4.

The protocol for receiving a request from the crossbar is as follows:

The Input queue receives (pcx_l2t_data_rdy_px1) data valid signal followed by the
data (pcx_l2t_data_px2) in the next cycle. Along with the data valid signal, the
crossbar also dispatches a signal indicating if the instruction is atomic in
nature(pxc_l2t_atm_px1). The request thus received is decoded into address, data
and instruction fields in PX2 stage and forwarded to the arbiter logic to request
access to L2 cache to process the request. If the arbiter accepts the request, it gets
forwarded to L2 in the next clock, at which point the instruction reaches its C1 stage.
If the arbiter is busy then it can either be sent after one or two clocks or recorded in
the IQ array and dispatched later to the L2 pipe.

C
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 pcx_sctag_atm_px1
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 pcx_l2t_data_px2[129:0] Inst[129:0]
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FIGURE 2-4 Timing Diagram for a Single Load from PCX

The protocol for L2 cache to send back a packet to the crossbar is as follows:

The L2 cache sends a request (l2t_cpx_req_cq) out in C7 of the pipeline if it has a
packet to be dispatched. The packet may be return data for load/ifetch requests,
acknowledgments for stores and invalidates for evictions and stores. The packet is
dispatched in C8 (through l2t_cpx_data_ca). If the packet is consumed by the
crossbar, an (cpx_l2t_gnt_cx) ack is received in C9. If an ack is not received from the
crossbar within one or two cycles from C8, it gets retried from the flops at the input
and output of the OQ respectively; if the ack gets received after two cycles, it gets
retried from the OQ. In case the ack does not come for a long time, the new packets
coming from the L2 pipe get accumulated in OQ until OQ fills up at which point the
L2 pipe gets stalled.

The Input queue is 16 deep. PCX packets get written to IQ only when the L2 pipeline
is stalled or busy and the PX2 arbiter does not accept any new PCX requests. IQ
asserts l2t_pcx_stall_pg to crossbar when it is five short of being full. This is shown
in FIGURE 2-5. These five cycles covers the packet shut off latency from core assuming
the worst case latency of the core shutting off packet dispatch after dispatching an
atomic packet.

Load data return 
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pcx_l2t_data_px2[129:0]

Load hit

0
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L2t_cpx_data_ca[145:0]

PX1   PX2  C1    C2    C3    C4    C5    C52    C6    C7    C8  C9
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FIGURE 2-5 IQ written from PCX, PCX stall from IQ

SIU Interface

Requests from I/Os are received by L2 cache through SIU Queue block. There are
three kinds of requests that can be received from the SIU: RDD (Read 64B), WRI
(write 64B) and WR8 (write 8Bytes). FIGURE 2-6 shows the pipeline data path diagram
for the SIU Queue Block.
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FIGURE 2-6 SIU Queue Pipeline Data path Diagram

SIU dispatches requests to L2 cache through an unified address, data and instruction
bus called sii_l2t_req. This bus is 32 bits wide.

FIGURE 2-7 Timing Diagram showing RDD Request and Read Data Return

The FIGURE 2-7 shows a typical RDD hit in L2.
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The protocol to receive a request from SIU is as follows:

A valid signal (sii_l2t_req_vld) is sent along with the request to L2 cache. This signal
is used to qualify a valid request transfer from the SIU block. Once the request is
received by L2 cache, the instruction is registered and decoded into address, data
and instruction fields as shown in FIGURE 2-7.

L2 SIU Queue block can record up to two requests in it’s two-deep FIFO. Each FIFO
entry registers the incoming packet from SIU over four groups of registers as shown
in FIGURE 2-7 for WR8 and RDD transactions and into two groups (address and tag)
for WRI transaction. For RDD, SIU will issue two dummy (pad) cycles on the
sii_l2t_data[31:0] bus, so that the RDD and WR8 pipeline within SIU Queue can stay
the same

The requests are received serially. There are two counters on the SIU side for flow
control. One counter tracks the number of transaction dispatched to L2 cache and
the other tracks the number of WRIs issued to L2 cache. The transaction counter is
maintained in the SIU side incrementing on a transaction dispatch to L2 cache and
decrementing upon receiving l2t_sii_iq_dequeue. WRI counter is incremented on
dispatching a WRI transaction to L2 cache and decremented upon receiving
l2t_sii_wib_dequeue signal. I/O Write Buffer can hold up to four cache lines. The
transaction counter would block issue of any more transactions that the two-deep
FIFO in the L2 SIU queue block can hold, while the WRI counter will keep a track of
overall number of WRIs issued (cannot exceed 4). Thus as long as the WRIs are
issued without violating the transaction count specified by the transaction counter,
and the WRI count of the WRI counter, there can be four WRIs outstanding to
DRAM at any point of time though the SIU queue is two-deep only.

l2t _sii_iq_dequeue signal is asserted when an instruction is issued down the L2 pipe
(WR8,WRI & RDD transactions) in C1 stage. l2t_sii_wib_dequeue is asserted when
the contents of an I/O Write Buffer entry are streamed to DRAM (only WRI
transaction).

1. RDD: 64 byte read request is received by L2 cache over five clocks. During the
data cycle, dummy data is driven. The 64byte data from L2 is returned to SIU
over 16 cycles with ctag_vld information.

2. WR8: Eight byte writes are received by L2 cache over five clocks. The L2 treats
this instruction in exactly the same way as a store. When the write data gets
written into the L2 Data Array, an encoded 32 bit ack is sent out to SIU by
asserting ctag_vld in the same clock.

3. WRI: 64 byte write is received by L2 cache over 19 clocks. The line being written
is not allocated in the L2 cache. However if the write hits in the L2 cache, it
invalidates the L2 cache entry and also copies of the line in L1 caches. The WRI
packet gets written into the I/O Write Buffer from where the data gets written to
DRAM opportunistically. l2t_sii_iq_dequeue signal is asserted when the write
instruction is issued down the L2 pipe, and l2t_sii_wib_dequeue is asserted when
Chapter 2 Level 2 Cache 2-11



the contents of an I/O Write Buffer entry are streamed to DRAM. Also an
encoded write ack is sent out to SIU on l2b_sio_data[31:0] by asserting ctag_vld
indicating completion of the WRI.

Ordering of SIU Transactions in L2 (Data Returns and Write Acks from
L2 to SIU):

1. For same address to the same L2 bank, read returns and write acks will be always
in transaction order from SIU

2. For different addresses to the same L2 bank, depending on hit or miss, RDDs can
send back data out of order.

3. For different addresses to the same L2 bank, WR8s (partial writes with byte
masks) can send back acks out of order, depending on hit or miss. (WR8s do read
modify writes, and WR8 ack gets sent only in the store update phase of the WR8).
So if there are two back to back WR8s, and the first one misses, the second one
hits: ack will get sent for the second one before the ack for the first one, while the
first one is still waiting to fetch the data from memory.

4. For different addresses to the same L2 bank, WRIs will send back acks in
transaction order from SIU as WRIs go straight to memory and do not update L2.

2.1.2.2 MCU Interface:

L2 cache issues read and write requests to MCU. All instructions which do not hit in
L2 cache are recorded in the Miss Buffer (MB). Miss Buffer evaluates and sets a
(dram_pick) bit if it needs to be issued to MCU.

Reads which need to be dispatched to MCU should satisfy the following criteria:

■ Win arbitration among all pending reads (with the dram_pick bit set for reads).

■ Should have no pending (read or write) transactions to MCU waiting for an ack.

■ Should have enough place in the Fill Buffer for the read data to return.
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FIGURE 2-8 Read Request from L2 Cache to MCU and Read Data Return

The protocol for sending out a read request is as follows:

A read request is dispatched to MCU by asserting a a read request (l2t_mcu_rd_req)
signal. Along with the read request the address and a read request ID
(l2t_mcu_rd_req_id) is dispatched in the same cycle. The read address is also
recorded in the Fill Buffer. MCU records and processes the read request. A read ack
(mcu_l2t_rd_ack) is sent back indicating that the read request was recorded.

When the data is ready, MCU returns the data to the L2 cache. The data is returned
with the data_valid (mcu_l2t_data_vld_r0) being sent first. Data (128 bits wide
mcu_l2t_data_r2), the read request id (mcu_l2t_qword_id[1:0]) and ECC information
(mcu_l2t_ecc_r2 [27:0]) related to the data is sent after 3 clocks. The read data
returned by the MCU gets recorded by the Fill Buffer. Upon receiving the data, the
missed load/ifetch from the Miss Buffer gets replayed through the L2 pipe and reads
the data from the Fill Buffer itself (critical 16B or 32B first) and sends data to
requesting core. After this, the Fill Buffer requests arbiter to complete the fill. The
qword data arrives from MCU in four packets. There is no relationship between the
dispatch of packets.

Also in case of a miss in L2 for a Block Init Store with PA[5:0] = 0, L2 will issue a
dummy read request to DRAM (l2t_mcu_rd_dummy_req), but MCU will send back
all zeros in four packets. L2 will install the line with all zeros in the data.

Writes to the MCU get issued when a request is recorded in the I/O Write Buffer
(IOWB) or Write back Buffer (WBB).

The following condition needs to be satisfied for a write to be dispatched to MCU:

■ Win arbitration among all pending writes. Writes can be in IOWB (WRI from SIU)
or WBB (eviction).

■ There should be no pending (read or write) transactions to MCU waiting for an
ack.

l2t_mcu_rd_req

l2t_mcu_addr[39:5]

l2t_mcu_rd_req_id[2:0]

mcu_l2t_rd_ack

mcu_l2t_data_vld_r0

mcu_l2b_data_r2[127:0] 0

mcu_l2b_ecc_r2[27:0]

mcu_l2t_chunk_id[2:0] 0 1 2 3

3 clk
1 32 3

1 32 30
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FIGURE 2-9 MCU Write Transaction

The protocol is similar for writes:

A write request (l2t_mcu_wr_req) is sent to MCU along with the address for the
write data. Upon receiving a write request, DRAM sends a acknowledge back
indicating it is ready for receiving the write data. L2 cache takes five clocks upon
receiving the ack to the time it starts to send data to DRAM in sizes of 8Byte.

2.1.3 L2 Pipeline
The L2 pipeline has 9 stages, the details of which are described below.

■ Arbitration (PX2):

■ Mux between PCX, IQ, I/O, MBF and FBF and C1 (stalled) instructions

■ Tag Access (C1):

■ Tag access, VUAD Read and Bypass

■ Tag Compare

■ Miss Buffer CAM Operation in Phase1.

■ Miss Buffer Hit logic

■ Generation of ECC for store data

■ Generation & check of ECC for the access address

■ WBB and Fb CAM in Phase 2.

■ Way Sel Generation (C2):

■ Tag Hit logic

■ Replacement way logic (pseudo LRU)

■ Miss Buffer Hit generation and 2 cyc bypass.

■ Way select logic

■ Set, index, col, way sel, rd/wr, word enables xmit to the data array

5 clk

l2t_mcu_wr_req

l2t_mcu_addr[39:5]

mcu_l2t_wr_ack

l2b_mcu_data_vld_r5

l2b_mcu_wr_data[63:0] 0 1 2 3 4 5 6 7
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■ Stall for mutlicycle operations (For e.g. Eviction, Fill etc.) or column offset
collision.

■ Way Sel Xmit (C3):

■ Set, index, col, way sel, rd/wr, word enables xmit in the data array

■ Evict way sel generation and eviction logic

■ MB tag write, MB Valid bit setting

■ Fb hit entry xmit to FB Data array (in l2b)

■ Data Access cyc1 (C4):

■ Data array read/write cycle 1 (for load/store hit)

■ Fb data buffer read.

■ Way sel transmit to data array for Fill only

■ Setup directory inputs for CAM/write operations.

■ Data Access cyc2 (C5):

■ Data array read/write cycle 2 (for load/store hit)

■ Data array read cyc 1 for eviction

■ WB tag write in the case of a dirty eviction

■ VUAD array Write

■ Way sel transmit within data array for Fill only

■ Stage Fb data

■ Write/CAM directory

■ Data Access cyc3 (C52):

■ Data array read/write cycle 3 (for load/store hit), 4:1 mux for L2 data

■ FB and L2 data mux

■ Data array read cyc 2 for eviction

■ Data array write cyc 1 for Fill

■ Data Return xmit (C6):

■ 16B data xmit to tag block

■ Data array read cyc 3 for eviction

■ Invalidation vector processing.

■ Request vector generation logic

■ Data array write cyc 2 for Fill

■ Error Correction (C7):

■ Error Correction/Detection

■ Request vector to OQ/CPX

■ Data array write cyc 3 for Fill
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■ Data Response (C8):

■ L2 data and Invalidation data MUX

■ Data xmit to OQ/CPX

■ Write WBB data

■ 64b data merge for PSTs and 64b compare for CASX

2.1.4 L2 Interactions with Core
OpenSPARC T2 Cores will use eight bit Byte Mask fields for stores instead of two bit
size field that OpenSPARC T1Cores use. The main reason for this is to support VIS
partial stores with random byte enables.

This section describes the pipeline flow for a few representative L2 operations.

2.1.4.1 Load Hit

Loads always return 16B of data, and lower address bits are ignored, i.e. if a load
request to address 0x13 is presented to the L2, the 16 bytes at 0x10 are returned. The
eight-bit byte mask field is ignored for loads. The different instruction types that fall

TABLE 2-1 Pipeline Diagram: Load Hit

C1 C2 C3 C4 C5 C52 C6 C7 C8

tag,
VUAD
read
VUAD
bypass
tag
compare
Check
ECC for
Tags
MB CAM
and MB
hit logic
FB CAM
WBB
CAM

way sel
logic
xmit way sel
to l2d
rd/wr! Gen,
xmit
VUAD ECC
check

way sel
xmit in l2d

data array
read cyc1
FB data
read cycle
Xmit
inputs to
directory

data array
read cyc2
stage FB data
D$ directory
write
I$ directory
CAM
VUAD write

data
array
read
cyc3
4:1 mux
mux
with FB
data

data
xmit
cycle
gen
inval.
vector

request to
the dest cpx
queuecheck
ECC on
data

Mux
Data/In
val.
Vector
data
return to
dest. cpx
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in the category of loads are: load, prefetch, stream load, mmu load. Out of these, prefetch, stream
load and mmu load are non-cacheable (will have NC bit set in the PCX packet). These
loads do not cam the I$ directory and do not update the D$ directory.
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FIGURE 2-10 Load Hit
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2.1.4.2 Store Hit

Eight bytes of store data is always sent to the L2. The LSU will ensure that the data
is properly aligned to the 8B boundary. The eight-bit byte mask indicates which
bytes are to be stored. Again, the lower address bits are ignored.

(This is different than OpenSPARC T1. OpenSPARC T1 L2 had to use the lower
address bits along with the size to determine what to store.)

FIGURE 2-11 shows the timing diagram for a 8/4 byte store with the following
combination of Byte Enables:

1111 1111

1111 0000

0000 1111

TABLE 2-2 Pipeline Diagram: Store Hit

C1 C2 C3 C4 C5 C52 C6 C7 C8

tag,VUAD
read
VUAD
bypass
tag
compare
Check
ECC for
Tags
MB CAM
and MB
hit logic
perform
store data
ECC
FB CAM
WBB
CAM

way sel
logic
xmit way sel
to l2d
rd/wr!
gen,xmit
VUAD ECC
check

way sel
xmit in l2d

ddata
array
write
cyc1
Xmit
inputs to
directory

data array
write cyc2
I$ and D$
directory
CAM
VUAD write

data
array wr
cyc3

gen
inval.vec
tor

request to
the dest cpx
queue (ack
for write)
check ECC
on data

Mux
Data/In
val.
Vector
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FIGURE 2-11 Store Hit
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send back acks to core in case stores from L1 hit to outstanding store miss to the
same line in Miss Buffer. This would involve adding a control flop in Miss Buffer
control logic to associate a load miss or store miss with the MB entry. However the
ack will get sent back if it hits only in store misses. If any one of the addresses it hits
is a load miss, the ack will not be generated.

Note – In OpenSPARC T1, stores are ack’ed when they make their first pass through
the L2 pipe - hit or miss. The exception to this is when the store hits an entry in the
Miss Buffer. The reason for not issuing the ack in this case is that if the entry in the
MB were a load, the ack would cause the L1 to update before the load returned data,
causing WAR hazard. However, if the entry in the MB was a store, no such hazard
exists, and the ack can be issued.

Main reason for wanting to add this earlier ack capability in OpenSPARC T2 is to
complement the addition of store pipelining in the L1 for stores going to the same L2
cache line. In this scheme, a store that follows another store to the same L2 line can
be issued without waiting for the first store to be ack’ed, however in the absence of
acks for these stores, the Store Buffer entries cannot be dequeued. This would stall
dequeue of Store Buffer entries due to stores to different lines and different banks
also that are behind the stores to the same line. In this particular case (stores to the
L2 line are all waiting in the Miss Buffer for the data return from DRAM), this can
amount to stalling the drain of the Store Buffer in L1 for ~160 cpu cycles, causing it
to be filled up and thread(s) to stall.

The Store Buffer is only eight entries per thread, and once it fills up, the thread stalls,
so we want to minimize this. STB stalls cause a noticeable degradation in
performance. The decrease in stalls from adding pipelining gained somewhere
around 15% on Spec INT, so it’s a worthwhile change.

2.1.4.3 Partial Store

Partial stores are stores which have any combination of byte masks other than
00001111,11110000 and 11111111.

Even for partial stores, eight bytes of store data is always sent to the L2. The LSU
will ensure that the data is properly aligned to the 8B boundary. The eight-bit byte
mask would indicate which bytes are to be stored. Again, the lower address bits
(0,1,2) are ignored.
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Partial stores are handled as a read-modify-write operation in two passes through
the pipe. The first pass is shown in Timing Diagram. The second pass is identical to
a store, except that the ack does not get sent again.

The merged data is written into the Miss Buffer and is readied for reissue in C9.

TABLE 2-3 Timing Diagram: Partial Store

C1 C2 C3 C4 C5 C52 C6 C7 C8

tag,VUAD
read
VUAD
bypass
tag
compare
Check
ECC for
Tags
MB CAM

and MB
hit logic
FB CAM
WBB
CAM

way sel
logic
xmit way sel
to l2d
rd/wr!
Gen,xmit
VUAD ECC
check

way sel
xmit in l2d

data array
read cyc1
FB data
read cycle
Xmit
inputs to
directory

data array
read cyc2
stage FB data
I$ and D$
directory
CAM
VUAD write

C52
data
array
read
cyc3
4:1 mux
mux
with FB
data

data
xmit
cycle
gen
inval.
vector

request to
the dest cpx
queue (ack
for write)
check ECC
on data

Mux
Data/in
val
vector
Merge
data
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2.1.4.4 Ifetch Hit

ICache line is 32 B, so two data reads are required for an Instruction Fill request.

TABLE 2-4 Timing Diagram: Ifetch Hit

C1 C2 C3 C4 C5 C52 C6 C7 C8

tag,VUAD
read
VUAD
bypass
tag
compare
Check
ECC for
Tags
MB CAM
and MB
hit logic
FB CAM
WBB
CAM

way sel
logic
xmit way sel
to l2d
rd/wr!
Gen,xmit
VUAD ECC
check
stall next
instruction

way sel
xmit in l2d

data array
read cyc1
FB data
read cycle
Xmit
inputs to
directory

data array
read cyc2
stage FB data
I$ directory
write
D$ directory
CAM
VUAD write

data
array
read
cyc3
4:1 mux
mux
with FB
data

data
xmit
cycle
gen
inval.
vector

request to
the dest cpx
queue
check ECC
on data

Mux
Data/In
val.
Vector

data
return to
dest. cpx
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FIGURE 2-12 Ifetch Hit
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The following 16B data block is transmitted in C9. Note that Ifetch misses are 32B
aligned, and 32 B get returned to the core over two consecutive cycles. For a 32 B
ifetch with lower address bits non-zero (unaligned 32B read), the two 16B lines are
returned in address order, not critical line first. The eight-bit byte mask field is
ignored for Ifetch.

Note that if the NC bit is a 1 for an Ifetch request (L1 I$ is disabled), it will still cam
the D$ directory and send an invalidation vector if there is a hit in the D$ directory.

2.1.4.5 Miss

An instruction that does not hit the L2 cache, Fill Buffer or the Writeback Buffer is
queued in the Miss Buffer as a "true miss". Eviction is performed during the second
pass of the miss operation. This is done to remove the hit/miss determination from
the critical C1 stall signal. To improve the performance of stores from L1, L2 cache in
OpenSPARC T2 would send back acks to core in case stores from L1 hit to
outstanding store miss to the same line in Miss Buffer. This would involve adding a
control flop in Miss Buffer control logic to associate a load miss or store miss with
the MB entry. However the ack will get sent back if it hits only in store misses. If any
one of the addresses it hits is a load miss, the ack will not be generated.

In C9, EVICT_READY bit gets set in MB. The instruction (along with data for a
store) gets written to MB also in C9.

TABLE 2-5 Timing Diagram: Miss

C1 C2 C3 C4 C5 C52 C6 C7 C8

tag,VUAD
read
tag
compare
MB CAM
perform
store data
ECC (for
store)
VUAD
bypass
FB CAM
WBB
CAM

way sel
logic,
check
VUAD ECC

write MB
tag
set MB
valid bit

request to
the dest cpx
queue (ack
for write in
case it is a
store miss
but hits in
one or more
MB store
miss
entries)
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2.1.4.6 Eviction (Clean or Dirty)

The entry in the Miss Buffer is selected for issue in case the EVICT_READY bit gets
set indicating it is ready for eviction. An evict instruction gets issued from the Miss
Buffer which causes eviction to happen as it makes a pass down the pipe. This also
clears the EVICT_READY bit provided evict instruction pass does not encounter a
TECC error. Invalidation of L1 cache lines happen for eviction of clean or dirty lines.
However only dirty lines are sent to DRAM, clean lines just get overwritten.

2.1.4.7 Fill

TABLE 2-6 Timing Diagram: Eviction

C1 C2 C3 C4 C5 C52 C6 C7 C8 C9

tag,VUA
D read
tag
compare

VUAD
byp

perform pseudo
LRU
stall two cycles
to avoid
collision with
instruction after
evict instruction
for data array
access

way sel
logic
mux out
evicted
tag

way sel
Xmit to
l2d

way sel
xmit in
l2d

data array read
cyc1
I$ and D$
directory CAM
write evicted
tag in WBB
VUAD
Write

data
array
read
cyc2

data
array
read
cyc3
gen
inval.
vector

xmit inv
response
to dest cpx
queues

inv
packet
to dest
cpx
data
queues
write
WBB
data

ready
for
reque
st to
DRA
M

TABLE 2-7 Timing Diagram: Fill

C1 C2 C3 C4 C5 C52 C6 C7

tag write stall three cycles
to avoid collision with
instruction after fill for
data array access

Xmit FB
entry to
l2b

way sel
xmit to
l2d
read FB

VUAD write
Xmit way sel
inside l2d
mux fbdata with
l2d

data
array wr
cyc 1

data
array
wr cyc2

data
array wr
cyc3
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FIGURE 2-13 Read Miss and Read Data Fill from DRAM
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FIGURE 2-14 Evict and Write back to DRAM
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2.1.4.8 Atomics LDSTUB/SWAP 1st Pass

Same as a load with a merge in C8.

The first pass through the L2 pipe reads 16B of data at the address requested
(ignoring the lower bits), returns it to the requesting processor, and merges the
swap/UB data. The merged data is written into the Miss Buffer and is readied for
reissue in C9. The instruction then goes through a second pass upon which the new
data is stored and an acknowledgment is sent to the requesting processor. The
second pass of a ldstub/swap is same as that for a store hit.

For SWAP and LDSTUB, the bytes to write in L2 will be picked up from the Byte
Mask itself. SWAP is always 32b aligned on four byte boundary and LDSTUB is
always 8b.

2.1.4.9 Atomics CAS

CAS{X} instructions are handled as two packets. The first packet (CAS(1)) reads the
data from memory, sends the data back to the requesting processor, and performs
the comparison in C8. The second packet (CAS(2)) is inserted into the MB as a store.
If the comparison result is true, the second packet proceeds like a normal store. If the
result was false, the second pass proceeds to only generate the store
acknowledgment. The data arrays are not written.

TABLE 2-8 Timing Diagram: Atomics LDSTUB/SWAP 1st Pass:

C1 C2 C3 C4 C5 C52 C6 C7 C8

tag,VUAD
read
VUAD
bypass
tag
compare
Check
ECC for
Tags
MB CAM
and MB
hit logic
FB CAM
WBB
CAM

way sel
logic
xmit way sel
to l2d
rd/wr! Gen,
xmit
VUAD ECC
check

way sel
xmit in l2d

data array
read cyc1
FB data
read cycle
Xmit
inputs to
directory

data array
read cyc2
stage FB data
D$ directory
write
I$ directory
CAM
VUAD write

data
array
read cyc
3
4:1 mux
mux
with FB
data

data
xmit
cycle
gen
inval.
vector

request to
the dest cpx
queue
check ECC
on data

Mux
Data/In
val.
Vector

data
return to
dest.
Cpx

Merge
data as
in Partial
Store
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CASA/CASXA are similar, but with one difference. CASA is 32b, aligned on four
byte boundary and CASXA is 64b. The compare and conditional store are assumed
to be on an 8B boundary (except the load return which is always 16B). The eight-bit
Byte Mask will indicate which bytes to compare and conditionally store.

2.1.4.10 Prefetch Invalidate Cache Entry (ICE)

L2 supports Prefetch ICE instruction which gets used by SW to flush lines in L2
based on an index and a way specified as part of the Physical Address in the
instruction itself. Bits [39:37] of the PA has to be driven as 3’b011 by SW and the way,
index, bank information would be on PA[21:18], PA[17:9] and PA[8:6] respectively.
LSU issues a prefetch instruction over the crossbar to L2 with bit 116 (inv bit) of the
cpx packet being 1’b1. On seeing this packet, L2 flips bit 39 to 1’b1 before storing it
in IQ array or feeding to the pipe. Thus with PA[39:37] = 3’b111, it is guaranteed that
the instruction always misses in L2 irrespective of 8/4/2 bank mode of operation.

The Prefetch ICE gets executed in L2 in two passes. First pass is like a regular
prefetch which misses in the L2 tags. On the miss, the instruction gets written to the
Miss Buffer and also the Evict bit gets set. However the DRAM read gets suppressed
as this is a flush instruction only and no data needs to be read from memory.

In the second pass, an evict instruction gets issued from the Miss Buffer for the
Prefetch ICE and it will use the way specified in PA[21:18] of the Prefetch ICE packet
itself to pick the Eviction way and L2 Directory Lookup way, instead of the way
picked by the LRU logic. Then the eviction proceeds like normal: an eviction
invalidation packet gets generated and sent to the crossbar to invalidate all L1 ways
for all cores that are included in that line. In case the line is dirty, a writeback
happens to DRAM. In the eviction pass of the instruction, it gets deleted from the
Miss Buffer. No response packet gets sent to the cores for the instruction itself.

Note that in case the Prefetch ICE instruction encounters a Tag Parity Error or
VUAD CE in either the first pass, the error is ignored (not logged and reported) and
the Prefetch ICE goes on as normal. However in its second pass if the Prefetch ICE
detects a tag parity error, it will be re-inserted into the Miss Buffer, the eviction pass
will not happen and a scrub will be issued from the Miss Buffer. After the scrub is
complete, the eviction pass of the Prefetch ICE will occur and if this time there are
no more tag parity error detected, the eviction pass will complete. This is because
the tag parity error could have corrupted any bit of the address, so that unless
corrected, the eviction of a dirty line would cause data corruption in memory.
However if the eviction pass of the Prefetch ICE encounters a VUAD CE, the error
would be ignored and the eviction pass would go through since we know the way
already that has to be evicted. The VUAD data would get silently corrected before it
gets written to the VUAD array in C5.

Note that since any error in the Dirty bit would have been silently cleaned in the
first pass of Prefetch ICE itself, in the second pass of the Prefetch ICE, the way to
flush would be identified correctly as clean or dirty and the dirty line would get
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evicted to DRAM properly. Also if the Dirty bit error gets detected in C2 stage of the
second pass of Prefetch ICE (the corruption in the array happened in between the
first and second passes), the way to flush would still get correctly identified as clean
or dirty in the second pass, as the data would get silently corrected in C2 stage of the
second pass itself.

Prefetch ICE First Pass (Miss in L2)

In C9, EVICT_READY bit gets set in MB. The instruction gets written to MB also in
C9. However dram_ready bit does not get set in C9, thereby stopping issue of a
DRAM read request.

TABLE 2-9 Timing Diagram: Prefetch ICE First Pass (Miss in L2):

C1 C2 C3 C4 C5 C52 C6 C7 C8 C9

tag,
VUAD
read
tag
compare
MB CAM
VUAD
bypass
FB CAM
WBB
CAM

miss
detected
Tag parity
error NOT
checked
VUAD ECC
checked,
data
corrected if
SE detected
(CE not
logged)

write MB
tag
set MB
valid bit

VUAD
write

set
evict_rd
y in MB
Prefetch
ICE
written
in MB
dram_rd
y not set
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2nd Pass of Prefetch ICE (Eviction plus Delete from Miss Buffer)

Note that to ensure ordering, after the Prefetch ICE is inserted into the Miss Buffer,
requests from crossbar and SIU are blocked from entering into the L2 pipeline, and
the second pass of the Prefetch ICE (eviction pass) is not issued from the Miss Buffer
until the Miss Buffer count becomes one (the Prefetch ICE is the only instruction in
the Miss Buffer). After the second pass of Prefetch ICE completes, the stall of the
crossbar and SIU requests are removed, and instructions that accumulated in IQ
Array and Snoop queue can go through.

TABLE 2-10 Timing Diagram: 2nd Pass of Prefetch ICE (Eviction plus Delete from Miss Buffer)

C1 C2 C3 C4 C5 C52 C6 C7 C8 C9

tag,
VUAD
read
tag
compare
VUAD
byp

pick
replacemen
t way from
PA[21:18],
Tag parity
error NOT
checked
VUAD ECC
checked,
data
corrected if
SE
detected.
(CE not
logged)
stall two
cycles to
avoid
collision
with
instruction
after evict
instruction
for data
array access

way sel
logic
mux out
evicted
tag
way sel
Xmit to
l2d
delete
entry
from MB

way sel
xmit in
l2d

data array
read cyc1
I$ and D$
directory
CAM
write
evicted tag
in WBB
write
VUAD
array

data
array
read
cyc2

data
array
read
cyc3
gen
inval.
vector

xmit inv
respons
e to dest
cpx
queues

inv
packet
to dest
cpx data
queues
write
WBB
data
(if dirty)

ready
for WBK
request
to
DRAM
(if dirty)
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Diagnostic Read of Data Array:

Diagnostic read access to the L2 data array is done through 64-bit read that access a
32-bit data subblock along with the corresponding 7-bit ECC. The instruction that
gets used is Diagnostic Load.

Diagnostic Write of Data Array:

Diagnostic write access to the L2 data array is done through 64-bit store that access a
32-bit data subblock along with the corresponding 7-bit ECC.The instruction that
gets used is Diagnostic Store.

TABLE 2-11 Timing Diagram: Diagnostic Read of Data Array

C1 C2 C3 C4 C5 C52 C6 C7 C8 C9

tag,
VUAD
read

disable
way sel
gen
stall c1
instruc.

Gen way
sel from
decoded
address

Xmit way
sel to l2d

Xmit way
sel inside
l2d

read data
array
cyc 1

read
data
array
cyc 2

read
data
array
cyc 3

Xmit 156
bits of data
to l2t

Mux
out 39
bits.
Xmit
req on
CPX

Xmit 39
bits of
data
with
rest of
CPX
packet

TABLE 2-12 Timing Diagram: Diagnostic Write of Data Array

C1 C2 C3 C4 C5 C52 C6 C7 C8 C9

tag,
VUAD
read

disable
way sel
gen
stall c1
instruc.

Gen way
sel from
decoded
address

Xmit way
sel to l2d

Xmit way
sel inside
l2d

write data
array
cyc 1

write
data
array
cyc 2

write
data
array
cyc 3

Gen inv
vector =
zeros

Xmit
write
ack to
CPX

Mux
data/in
v vector
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Diagnostic Read of Tag Array

Diagnostic read to the L2 tag array is done through 64-bit read that accesses the tag
along with the corresponding six-bit ECC. The instruction that gets used is
Diagnostic Load.

Diagnostic Write of Tag Array:

Diagnostic write to the L2 tag array is done through 64-bit write that accesses the tag
along with the corresponding six-bit ECC. The instruction that gets used is
Diagnostic Store.

Diagnostic Read of VD/UA Array:

TABLE 2-13 Timing Diagram: Diagnostic Read of Tag Array

C1 C2 C3 C4 C5 C52 C6 C7 C8 C9

diagnostic
decode

mux
px2
index

read
tag
array

prepare
way mux
selects

mux
out tag
and
flop

stage
data

stage
data

stage
data

xmit req to CPX
mux with data from
other srcs
(diagnostic/VUAD
diagnostic/return
data/inv vector)

xmit tag
data to
CPX

TABLE 2-14 Timing Diagram: Diagnostic Write of Tag Array

C1 C2 C3 C4 C5 C52 C6 C7 C8 C9

do
nothing

enable
write into
the tag
stall pipe
for 3 cycles

write into
the tag

do
nothing

do
nothing

do
nothing

do
nothing

do
nothing

xmit
request
to cpx

xmit ack to
CPX

TABLE 2-15 Timing Diagram: Diagnostic Read of VD/UA Array

C1 C2 C3 C4 C5 C52 C6 C7 C8 C9

VUAD
array
read

stall pipe for
four cycles
mux out
appropriate bits
(VD or UA
based on
address)

flop
o/p
data

flop
o/p
data

flop
o/p
data

flop
o/p
data

flop
o/p
data

flop
o/p
data

xmit req to requesting
cpx
mux VUAD data with
data from other srcs

xmit
data to
cpx
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Diagnostic read to the L2 VD/UA arrays is done through a pair of address access
ranges. The first accesses the valid and dirty bits for an entire set plus the parity for
each of those bits across the set via 64-bit read. The second range accesses the AU
bits for the entire set via 64-bit read. The instruction that gets used is Diagnostic
Load.

Diagnostic Write of VD/UA Array:

Diagnostic write to the L2 VD/UA arrays is done through a pair of address access
ranges. The first accesses the valid and dirty bits for an entire set plus the parity for
each of those bits across the set via 64-bit write. The second range accesses the used
and allocate bits for the entire set via 64-bit write. The instruction that gets used is
Diagnostic Store.

Block Loads:

The core issues four 16B loads non-atomically. The L2 treats them as four separate
load instructions.

Block Stores:
■ Issued by the core with bis bit (bit 114) and bst bit (bit 115) both =1 on the PCX

packet.

■ On a hit in L2, each store behaves like a normal store.

■ On an L2 miss, line is fetched from DRAM, allocated in L2 and updated in L2.

■ On directory CAM access, all matching L1’s are invalidated. In addition, the entry
in the directory that got hit also gets invalidated.

Block Init Stores:
■ Issued by the core with the bis bit (bit 114) of PCX packet = 1.

■ On a hit in L2, each store behaves like a normal store.

■ On a miss in L2, if PA[5:0] = 0, the line is initialized with all zeros by issuing a
dummy read request to MCU instead of a regular read request, followed by the
store happening.

TABLE 2-16 Timing Diagram: Diagnostic Write of VD/UA Array

C1 C2 C3 C4 C5 C52 C6 C7 C8 C9

do
nothing

stall pipe
for four
cycles

stage wr
data

stage wr
data

vuad
write

do
nothing

do
nothing

do
nothing

xmit
req to
CPX

xmit
ack to
CPX
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■ On a miss in L2, if PA[5:0]!= 0, it behaves like a regular store miss, in that it
fetches the line from DRAM and then writes to it.

■ On directory CAM access, all matching L1s are invalidated. In addition, the entry
that got hit in the directory also gets invalidated.

Data Array Scrub:

Data array scrubbing refers to recomputing ECC for data across all ways in a
particular index, detecting and correcting error in either data or ECC for each way.
OpenSPARC T2 L2 data uses SEC/DED ECC (has a single bit error correction and
double bit error detection). Through scrubbing single bit errors get corrected and
double bit errors get flagged.

The Data Array in L2 gets scrubbed at regular (programmable) intervals after a data
fill operation under configuration status register (CSR) control. If the CSR bit
enabling the Scrub Mode bit is on, then after a programmed interval of time a bit
called TECC gets set by the Scrub controller logic. The scrubber gets called on the
first fill with this bit set and starts the scrub operation for an index (which
increments with every scrub routine and has no relationship to the fill index) right
after the fill completes in the pipe. It scrubs 64-bits of data at a time for each way, so
it takes (8 x 16 ways) = 128 back to back scrub operations to complete the data scrub
of that particular index in the L2 bank. While the scrub is going on the pipe stays
stalled. Timing Diagram shows a typical data scrub operation following a fill.

TABLE 2-17 Timing Diagram: Fill

C1 C2 C3 C4 C5 C52 C6 C7 C8

tag write stall four
cycles

Xmit FB
entry to
l2b
Fill Op
with
TECC = 1

way sel
xmit to l2d
read FB

VUAD write
Xmit way sel
inside l2d
mux fbdata
with l2d

data
array wr
cyc1

data
array wr
cyc2

data array
wr cyc3

Start scrub
FSM. stall
pipe (cnt=0)

(cnt=1) Setup tag
read with
scrub idx
(cnt=2)

Read Tag
Read Valid bit
(cnt=3)

Gen
scrub
way
(cnt=4)

Xmit
Scrub
way to
l2d (cnt=
5)

Scrub read 1
(cnt = 6)

Scrub
Read 2
(cnt=7)
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Tag Array Scrub:

Tag array scrubbing refers to recomputing ECC for tag across all ways in a particular
index, detecting and correcting error in either tag or ECC for each way. OpenSPARC
T2 L2 tag uses SEC ECC (has a single bit error correction, no double error detection).
Through scrubbing single bit errors get corrected.

Once a parity error is detected in C2 on any Tag entry, TECC is marked as 1 in the
instruction that gets written to the Miss Buffer in C3. Then the scrub instruction gets
issued from the MB and enters the pipe. All 16 ways for the index with parity error
gets scrubbed, so the scrub operation takes a total of (8x16) = 128 L2 clocks during
which the L2 pipeline stays stalled. Timing diagram TABLE 2-20 shows a typical Tag
Scrub operation.

TABLE 2-18 Timing Diagram: Data Scrub

C1 C2 C3 C4 C5 C52 C6 C7 C8

Scrub
Read 3
(cnt=8)

Xmit to l2t
(cnt=9)

ECC corr.
(cnt = 10)

Mux out
64 bit
(cnt = 11)

Mux with c1
inst data
Perform stecc
& gen waysel
l2d_wr &
col_off
(cnt = 12)

way sel
xmit to
l2d
(cnt =
13)

Xmit
way sel
inside
l2d
(cnt = 0)
Start
scrub
FSM.
stall
pipe

Scrub data
array wr
cyc1
(cnt = 1)

Scrub
data
array wr
cyc2
(cnt = 2)
Setup
tag read
with
scrub
idx

TABLE 2-19 Timing Diagram: Tag Scrub Operation

C1 C2 C3 C4 C5 C52 C6 C7 C8 C9

tecc inst
from MB
assert
pipe stall

Setup Tag
read of
corrupted
index
(cnt=0)

Setup
Index
(cnt = 1)

Tag Read
(cnt = 2)

Setup
Muxsel
(cnt = 3)

Mux
Tag
(cnt = 4)

ECC
corr.
(cnt =
5)

Setup
Write
Index
(cnt = 6)

Tag
Write

(cnt =
7)

Setup
Tag
read of
corrupt
ed
index
(cnt=0)
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VUAD SBE Correction:

OpenSPARC T1 protects VD and UA arrays with parity. Parity check happens in C2,
and if an error is detected, a fatal error trap gets taken. So for a false hit in C1, the
read/write happens, but the machine gets fatal error trap and resets. Since this is
one of the largest sources of fatal errors, OpenSPARC T2 would protect the VD and
UA arrays with SEC DED ECC.

For every set, there would be seven ECC bits with 16 Dirty bits and 16 Valid bits (i.e.
32/7 ECC). Also for every set, there would be seven ECC bits with 16 Allocate bits
and 16 Use bits (i.e. 32/7 ECC). Note that the seventh ECC bit is also the parity bit
across 32 data bits and six ECC bits to detect double bit error. So a total of (39 + 39)
= 78 bits of storage per set. Even though the Used bits need not be ECC protected
(since their value is non-critical: any error in the used bits will cause potentially
different replacement order, but still functionally correct operation), since VD and
UA arrays would be implemented out of the same Register File array, L2 would
protect the Use bits and the Allocate bits with ECC.

For any instruction from core or from SIU, the VD and UA arrays get read in C1
stage of the L2 pipe and get muxed with forwarded VD,UA bits from prior
instructions in the pipe that are to the same index. The output of the mux gets
written to a C2 flop. In case this C1 mux select points to the leg coming from the
VD/UA arrays, ECC would get checked in C2 on the data from the arrays. The data
will get corrected in C2 stage itself (for a single bit error) and will get written back to
the VD,UA arrays with regenerated ECC in C5 stage of the pipe for all instructions
other than diagnostic accesses. If a double bit (Uncorrectable) error gets detected in
any one of VD or UA arrays, L2 will log LVU in L2 Error Status register which will
cause L2 to assert fatal error reset request to the Reset block. The execution recovery
and logging mechanism for Correctable VD/UA errors in L2 is as follows:

1. If the instruction was any flavor of load, store, atomic, ifetch from core, L2 would
detect the Correctable error in C2 and log it as LVC (VUAD correctable error)
with the syndrome in L2 Error Status register in C9 stage of the same pass.The
PA[39:0] (index [8:0]) would be captured in the L2 UE/CE address register. The
caming of the L2 directories, updates of the L2 directories and dispatch of
crossbar packets back to cores would be gated off by the correctable error. If the
error resulted in a false hit (tag match but valid = 1 while it should be 0), the data
array operation (load or store) would still happen though the crossbar packet
would be gated off. There is no memory corruption issue as store to an invalid
way does not cause data corruption. Also the instruction would be moved into
the Miss Buffer and readied for reissue in C9. However the DRAM ready bit
would not be set in the Miss Buffer thereby disabling dispatch of requests to
MCU. Once the instruction gets reissued down the L2 pipe, it would see corrected
data in the VD/UA arrays and would execute properly based on correct state of
the L2 lines at that index. The LVC error that got logged in the first pass would
get reported to the Virtual Core specified in the
2-38 OpenSPARC T2 SoC Microarchitecture Specification Part 1 of 2 • May 2008



L2_CONTROL_REG.ERRORSTEER field on bits [139:138] of Error Indication
packet of crossbar after the occurrence of the next L2 fill if error reporting is
enabled.

2. If the instruction was a RDD or WR8 or WRI from SIU, L2 would detect the
Correctable error in C2 and log it as LVC (VUAD correctable error) with the
syndrome in L2 Error Status register in C9 stage of the same pass.The PA[39:0]
(index [8:0]) would be captured in the L2 UE/CE address register. The caming of
the L2 directories, updates of the L2 directories and dispatch of data return and
write ack packets in the first pass back to SIU would be gated off by the
correctable error. If the error resulted in a false hit (tag match but valid = 1 while
it should be 0), the data array operation (load or store) would still happen though
the SIU packet would be gated off. There is no memory corruption issue as store
to an invalid way does not cause data corruption. Also the instruction would be
moved into the Miss Buffer and readied for reissue in C9. However the DRAM
ready bit would not be set in the Miss Buffer thereby disabling dispatch of
requests to MCU. Once the instruction gets reissued down the L2 pipe, it would
see corrected data in the VD/UA arrays, would execute properly based on correct
state of the L2 lines at that index and would return packets (read data, wri
ack,wib_dequeue) to SIU. The LVC error that got logged in the first pass would
get reported to the Virtual Core specified in the
L2_CONTROL_REG.ERRORSTEER field on bits [139:138] of Error Indication
packet of crossbar after the occurrence of the next L2 fill if error reporting is
enabled.

3. If the instruction is of any of the types mentioned in (1) and (2) but issued from
the Miss Buffer, all the things mentioned in (1) and (2) happen with one
exception: the instruction does not get re-inserted into the Miss Buffer, but the
valid bit in the Miss Buffer stays set, and the instruction gets replayed again
through the vuad_ce_rdy and vuad_ce_replay bits being set in the Miss Buffer.

4. If the instruction was an evict instruction issued from the Miss Buffer and there is
a VUAD CE detected and the instruction is not a Prefetch ICE instruction, the
Evict Bit and Evict Ready bit stay set in the Miss Buffer, so that the eviction gets
replayed from the Miss Buffer. By this time the VUAD CE has been corrected and
the eviction happens as normal. Also in the eviction pass that detected the VUAD
CE, the caming of the L2 directories, updates of the L2 directories and dispatch of
crossbar packets back to cores and copying of the line to the Write Back Buffer are
gated off by the correctable error.

5. If the instruction was any flavor of diagnostic, Icache Invalidate, Dcache
Invalidate, Tecc, Fill, Prefetch ICE or replayed instruction from Miss Buffer hitting
in the Fill Buffer Tags, L2 would not detect the Correctable error and would not
log LVC. Also the instruction will proceed as normal as if nothing happened and
would send back responses to the cores as normal. However for all of the above
mentioned instructions other than Diagnostics, the corrected data would get
written in the VUAD arrays in C5, basically doing a silent correction.
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Timing Diagram TABLE 2-20 shows the error detection and correction pass for VUAD
single bit correctable error for loads, stores, ifetches, atomics, wr8s, rdds, and wris.

This pass gets followed by the instruction reissue from Miss Buffer by which time
the error is already corrected, and the instruction executes normally as shown by
earlier pipe diagrams in the document.

Ordering of Future Instructions in L2 in the case of a VUAD SBE:

All instructions other than diagnostic, Icache Invalidate, Dcache Invalidate, Tecc, Fill
or Prefetch ICE (and not issued from the Miss Buffer) that would detect VUAD SBE
would set the DEP bit when they get inserted into the Miss Buffer. This would
guarantee that a future instruction to the same PA would hit in the Miss Buffer and
see the DEP bit set and would also get moved into the Miss Buffer. Also, this future
instruction would not be issued to the pipe until the offending instruction has been
issued to the pipe and its DEP bit cleared. This would maintain ordering and remove
hazards. However it is possible that instructions to different PA would send acks
and data back to crossbar and SIU out of order with respect to order of arrival to L2.
For loads, ifetches, atomic reads and rdds this would not be an issue. However for
stores out of order acks may be an issue if loads following the stores return old data
instead of new data (this would have caused TSO ordering violation). But since we
put the offending instruction in the Miss Buffer and set the DEP bit, loads would
always be ordered after stores to the same address and would not complete until the
store completes, and hence would return new data.

Also in case the instruction above hits against another address in the Miss Buffer
and detects a VUAD CE, the instruction would set its DEP bit and get inserted into
the Miss Buffer, but would not get replayed immediately. It would get replayed only
when its dependency cleared. In this case the instruction would not set the
vuad_ce_rdy and vuad_ce_replay bits in the Miss Buffer.

TABLE 2-20 Timing Diagram: VUAD SBE Error Detection and Correction

C1 C2 C3 C4 C5 C52 C6 C7 C8 C9

tag read
VUAD
read
VUAD
bypass

VUAD
ECC check
Single Bit
Error
Detected

Write
Instruction to
MB
Set DEP bit
Disable SIU
ack gen logic,
IOWB
eviction logic
for WRIs

Gate of
I$,D$ Dir
CAM,
I$,D$ Dir
Update

VUAD write
(corrected
data

Gate off
crossbar
request

Ready
Instruct
ion for
reissue
Do not
set
DRAM_
READY
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For any instruction other than diagnostic, Icache Invalidate, Dcache Invalidate, Tecc,
Fill or Prefetch ICE and issued from the Miss Buffer that detects VUAD SBE, the
DEP bit would not get set, however the Valid bit would not be cleared and the
instruction would not get re-inserted into the Miss Buffer. The instruction would get
replayed from the Miss Buffer through the vuad_ce_rdy and vuad_ce_replay bits
being set in the Miss Buffer.

Tag Parity Error and VUAD Error detected in Single Pass:

Any instruction from core or SIU other than Diagnostics, Prefetch ICE and
I$,D$invalidates can detect tag parity error and VUAD SBE. It is architecturally
possible for such an instruction to detect a tag parity error and VUAD SBE in the
same pass. If that happens, the recovery and correction mechanism will be as
follows:

1. Instruction would be inserted into the Miss Buffer in the first pass (in which it
detected tag parity error and VUAD ce) and will be readied for reissue not in C9
but by the scrub instruction that is to follow.

2. The VUAD SBE would get corrected in the first pass itself (with the VUAD array
getting updated in c5).

3. A scrub instruction will get issued from Miss Buffer which will walk down L2
pipe and do the scrub of the tag array

4. Original instruction will get issued from the Miss Buffer and this time will detect
neither tag parity error nor VUAD SBE and will complete as normal.
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2.1.4.11 L2 Interactions with SIU (System Interface Unit)

Block Reads (RDDs):

Block Read from SIU goes through L2 pipe like a regular load from the core. On a
hit, 64 B of data is returned to SIU. On a miss, L2 does not allocate, but sends a
non-allocating read to DRAM. It gets 64 bytes of data from DRAM and sends it back
to SIU (read once data only) directly without installing in the L2 cache.

In C10, L2 starts issuing data return to SIU 32-bits per clock from l2b block. While
processing a block read from SIU, the L2 arbiter does not accept any other SIU read
or write request until the block read is complete. This is because there is not enough
queue space within L2 to hold the data that is getting streamed out in case a new
block read request comes from SIU.

Write Invalidates (WRIs):

For a 64 B write (write invalidate from SIU), the SIU issues a 64 B write request to
L2. The data goes to IOWB and waits there until the write makes it through the pipe
after resolving any dependencies with the Miss Buffer entries (resolves ordering
issues w.r.t prior accesses from the CPU to the same line). Once this happens, the
IOWB empties its contents to DRAM, after arbitrating with the WBB.

TABLE 2-21 Timing Diagram: Block Reads

C1 C2 C3 C4 C5 C52 C6 C7 C8

tag,VUA
D read
VUAD
bypass
tag
compare
Check
ECC for
Tags
MB CAM
and MB
hit logic
FB CAM
WBB
CAM

way sel
logic
xmit way
sel to l2d
rd/wr!
Gen,xmit
VUAD
ECC check
stall next
instruction

way sel
xmit in
l2d
FB data
read
enable
(on a
miss)

data
array
read cyc1
FB data
read
cycle 1
write 64
B Fbdata
to l2d
flop

data array
read cyc2
VUAD write
stage FB
data

data
array
read
cyc3
mux
with FB
data
write 64
B data
to flop
in l2d

data
Xmit
cyc 1

write 64
B data
to flop
in l2b

stage
64 B data
in flop in
l2b

32:1
Mux
to get
32-bits
of data
from 64
bytes
(in
l2b,criti
cal
32-bits
first)

Check
ECC on
data
(32-bits)
flop
data in
l2b
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When the write progresses through the pipe, it looks up the tags. If tag hit, it
invalidates the entry and all L1 entries that match. If tag miss, it does nothing (just
comes down the pipe) to maintain order. The only two cases where a WRI gets put
into the Miss Buffer are on tag parity error (potential false miss case) or VUAD SBE
(can be anything: true miss, false miss, true hit, false hit).

Partial Line Writes (WR8’s):

When the SIU issues 8B writes to L2 with random byte enables, the L2 treats them
just like 8B stores from core (i.e. does two pass partial store if odd number of byte
enables are active or if misaligned access, otherwise regular store). Data gets
committed to L2 cache.

2.1.4.12 L2 Pipeline Stalls
■ Same column stall - Each column (sub-bank) of the data array (also referred to as

subbanks) requires two cycles to access. Therefore, the same column cannot be
accessed in consecutive cycles. A one cycle stall is inserted if a collision is
detected.

■ Ifetch - Ifetch operations require two reads of the data array. A one cycle stall is
inserted for any ifetch operation.

■ Fill - Fill operation stalls the pipe for stall three cycles

■ Eviction - Eviction operation stalls pipe by two cycles

■ Diagnostics

■ Tag/Data array scrubs

2.1.5 Functional Description of Sub-blocks
The L2 Cache Unit is composed of the following sub-blocks:

■ L2 Tags

■ L2 VUAD

■ L2 Data

■ Directory

■ Input Queue (IQ)

■ IU Queue (SIUQ)

■ Output Queue (OQ)

■ Arbiter

■ Miss Buffer (MB)
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■ Fill Buffer (FB)

■ Writeback Buffer (WBB)

■ I/O Write Buffer (IOWB)

2.1.5.1 L2 Tags

TABLE 2-22 shows the physical address mapping for the L2 cache.

Given a bank of 512 KB with 64 B lines, the tag index is bits <17:9>. Each tag entry
contains address<39:18> + six ECC bits. The state of each line is maintained using
valid (V), used (U), allocated (A), and dirty (D) bits. These are stored in the VUAD
array.

Each 22-bit tag is protected by six-bits of ECC. A 16 way 27-bit compare (with the
appropriate bits from the issuing instruction) is performed to generate the way
selects for accessing the data array. This approach removes error detection from the
"tag to data" critical path.

Thus total Tag Memory per bank of L2 is 28 KB for 64 B line size.

L2 Tag ECC

The L2 tag arrays are protected by ECC. For every 22-bits of tag, there are five SEC
ECC bits and one parity bit (which covers all 27-bits). OpenSPARC T1 L2 does not
detect Uncorrectable (Double Bit) errors for tag and OpenSPARC T2 L2 won’t either
(unless we get Epic 9 data which shows high enough Failure In Time (FIT) rate).

In pipe stage C1, {22 tag bits, five ECC bits} get compared with corresponding
27-bits in all of the 16 ways in the set. This prevents a false hit from happening. If {22
tag bits, five ECC bits} match in one entry, then it is a true hit. If a true hit does not
happen, then it is miss. As the instruction moves to pipe stage C2, parity is
recommitted for each of 16 ways over {22 tag bits, five ECC bits}. If there is a parity
error detected in C2, the instruction is moved into Miss Buffer and a scrub
instruction is issued from the Miss Buffer to scrub and correct ECC and parity for
any entry in error. After the scrub instruction is complete, the original instruction
gets re-issued from the Miss Buffer.

Note that if the instruction did not hit in any of the tags in C1, there are four
possibilities:

TABLE 2-22 Physical Address Mapping for the L2 Cache

39 18 17 9 8 6 5 4 3 0

tag index L2 bank subbank addr 16b offset
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■ There is no parity error in C2. In which case it would be a true miss and go to
DRAM.

■ There is a parity error in C2 and one of the ways differs by one bit only in the tag
field with respect to the instruction, then this could be a case of a false miss (if
upon scrubbing this bit that is different gets chosen as the bit to be flipped). Then
the instruction after getting replayed from the Miss Buffer will hit in L2.

■ There is a parity error in C2 and one of the ways differs by one bit only in the tag
field with respect to the instruction, but the error is in one of the ECC bits or on
another data bit, in which case the address is different, and it will miss in L2 after
getting replayed from Miss Buffer and will go to DRAM.

■ There is a parity error in C2 and instruction tag mismatches by more than one bit
with each way, it will miss in L2 after getting replayed from Miss Buffer and will
go to DRAM.

Note – What happens if tag hits in two ways? OpenSPARC T2 L2 response is
indeterministic. The SRAM circuits are protected from getting burnt out in such a
case. The functional behavior of L2 is not defined.

2.1.5.2 L2 VUAD

This 4.9 KB (including ECC) dual ported array is used to maintain the state of every
line in the L2 cache for each bank. The state of each line is maintained using the
Valid (V), Used (U), Allocate (A) and Dirty (D) bits. Allocate bit indicates that the
marked line has been allocated to a miss. This bit is also used in the processing of
some special instruction’s such as atomics and "partial" stores (since these do
read-modify-writes, which involve two passes through the pipe, the line needs to be
locked until the second pass completes; otherwise the line may get replaced before
the second pass happens). The Used bit is a reference bit used in the replacement
algorithm.

The Allocate bit (per way) gets set when a line gets picked for replacement. For a
load or ifetch, it gets cleared when fill happens, and for store when store completes.
The Used bit gets set when any store/load hits (1 per way). Used bits get cleared (all
16 at a time) when there are no unused or unallocated entries for that set. The dirty
bit (per way) gets set when a stores modifies the line. It gets cleared when the line is
invalidated. The valid bit (per way) gets set when a new line is installed in that way.
It gets reset when that line gets invalidated.

The L2 uses a Round Robin algorithm to pick replacement candidates. When there is
a L2 miss and a line needs to be selected for replacement, in reference to a dynamic
pointer which can point to any one of the 16 ways, the first entry with (A = 0 and U
= 0) otherwise (A = 0) gets picked for replacement. All 16 ways get looked at in a
wrap-around fashion starting from the way that is currently pointed at by this
pointer.
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The algorithm used to select a way, out of 16 ways, to be evicted out of the L2 cache
is not a true LRU algorithm but Round Robin arbitration. Round Robin arbitration is
done in two stages by dividing 16 ways in four quads of four ways each. First
Round Robin is done within each quads to select one of the four ways and then
Round Robin is done to select one of the four quads. A four bit state register is kept
for each quad at each level. A one on a bit location corresponding to a way
represents highest priority for that way. Every time an eviction takes place, state
register is updated by shifting it left by one bit otherwise state of the register does
not change. State register is used in C2 for the way selection and it is updated in the
C3. On reset state register is initialized to a state such that way0 has the highest
priority.

Way selection algorithm depends on the Used and Allocate bit of the VUAD array,
read during C1, for the way selection. First priority is given to the ways that has not
been Used and has not been Allocated for the eviction in the previous cycle. If there
is no Unused and Unallocated way then a way that has not been previously
Allocated is given preference. Invalid bit is not used for the way selection as if a way
is Invalid then its Used bit will not be set, so checking Invalid bit is redundant.

Note – What happens if all 16 ways have A = 1? No new instructions can enter the
pipe until at least one A = 0. This is guaranteed by MB stalling the pipe
speculatively. Since MB is 32 entries in OpenSPARC T2, and since there are 16 ways
per set, the L2 control logic will detect 12 entries of the same index in MB and
speculatively stop accepting requests from PCX and SIUQ (this accounts for four
instructions in flight in PX2, C1, C2, and C3 that can take the count to 16 misses to
the same index). The stall to PCX/IQ and SIUQ requests lasts for until the number of
entries of the same index in MB reaches 11.

2.1.5.3 L2 VUAD ECC

OpenSPARC T1 protects VUAD array with parity. Parity check happens in C2, and if
an error is detected, a fatal error trap gets taken. So for a false hit in C1, the
read/write happens, but the machine gets fatal error trap and resets. Since this is
one of the largest sources of fatal errors, OpenSPARC T2 would protect the VD and
UA arrays with SEC DED ECC.

For every set, there would be seven ECC bits with 16 Dirty bits and 16 Valid bits (i.e.
32/7 ECC). Also for every set, there would be seven ECC bits with 16 Allocate bits
and 16 Use bits (i.e. 32/7 ECC). Note that the seventh ECC bit is also the parity bit
across 32 data bits and six ECC bits to detect double bit error. So a total of (39 + 39)
= 78 bits of storage per set. Even though the Used bits need not be ECC protected
(since their value is non-critical: any error in the used bits will cause potentially
different replacement order, but still functionally correct operation), since VD and
UA arrays would be implemented out of the same Register File array, L2 would
protect the Use bits and the Allocate bits with ECC.
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For any instruction from core or from SIU, the VD and UA arrays get read in C1
stage of the L2 pipe and get muxed with forwarded VD,UA bits from prior
instructions in the pipe that are to the same index. The output of the mux gets
written to a C2 flop. In case this C1 mux select points to the leg coming from the
VD/UA arrays, ECC would get checked in C2 on the data from the arrays. The data
will get corrected in C2 stage itself (for a single bit error) and will get written back to
the VD,UA arrays with regenerated ECC in C5 stage of the pipe for all instructions
other than diagnostic accesses. If a double bit (Uncorrectable) error gets detected in
any one of VD or UA arrays, L2 will log LVU in L2 Error Status register which will
cause L2 to assert fatal error reset request to the Reset block. If L2 detects
Correctable SBE in C2, it will log it as LVC (VUAD correctable error) with the
syndrome in L2 Error Status register in C9 stage of the same pass. The index [8:0]
would be captured in the L2 UE/CE address register.

2.1.5.4 L2 Data

Each L2 data array bank is a single ported SRAM structure capable of performing
the following operations:

■ 16B read

■ 64B read

■ 8B write with any combination of word enables

■ 64B write (with any combination of word enables). However fills would update
all 64 bytes at a time.

Each L2 bank is 512 KB in size, with each logical line 64 B in size.

Each L2 data array bank is further subdivided into four sub-banks, also referred to
as columns, each 16 B in width. These sub-banks are accessed based on bits <5:4> of
the physical address. Loads (which are a maximum of 16 B in size) and stores
(maximum of 8 B in size) access one subbank. Cache fills and line evictions are 64 B
in size, and access four sub-banks per cycle.

Any L2 cache data array access takes two cycles to complete, so no sub-bank can be
accessed in consecutive cycles. All access can be pipelined except, back to back
accesses to the same sub-bank.

Each 32b word is protected by seven bits of SEC/DED ECC. (Each line is 32 x [32 +
7 ECC] = 1248 bits). All sub-word accesses require a read modify write operation to
be performed and are referred to in this document as "partial stores".
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2.1.5.5 L2 Directory

The directory maintains a copy of the L1 tags for coherency management and also
ensures that the same line is not resident in both the icache and dcache (across all
cores). The directory is split into an icache directory (icdir) and a dcache directory
(dcdir), which are similar in size and functionality.

The directory is written only when a load is performed. On certain data accesses
(loads, stores and evictions), the directory is camed to determine whether the data is
resident in L1 caches. The result of this CAM operation is a set of match bits which
is encoded to create an invalidation vector to be sent back to the SPARC Cores to
invalidate L1 lines.

■ Loads - The icdir is camed to maintain I/D exclusivity. The dcdir is updated to
reflect the load data that fills the L1 cache.

■ IFetch - The dcdir is camed to maintain I/D exclusivity. The icdir is updated to
reflect the instruction data that fills the L1 cache.

■ Stores - Both directories are camed. This ensures that (i) if the store is to
instruction space, the L1 icache invalidates the line and does not pick up stale
data; (ii) if a line is shared across SPARC Cores, the L1 dcache invalidates other
cores and does not pick up stale data; and (iii) the issuing core has the most
current information on the validity of its line.

■ Evictions from the L2 cache - Both directories are camed to invalidate any line
that is no longer resident in the L2.

2.1.5.6 Directory Organization

D$ Dir:

There are eight cores in OpenSPARC T2. L1 Dcache for each core has 128 sets, each
set has four ways. Since L1 Dcache line size is 16 B, this gives a total of (8 x 128 x 4
x 16) bytes = 64 KB or 4K L1 lines in all cores together. Each L1 Dcache is 8KB.

Thus each L1 Dcache will map (128/8) 16 sets to each L2 bank. So for each L2 bank,
the DCache directory will consist of (16 x 8) sets of L1 Dcache lines for all cores
combined. This gives a total of 512 L1 Dcache lines per bank.

These 512 L1 Dcache line mappings gets organized physically in the DCache
directory as follows:

Each Dcache directory has 16 panels arranged as four rows and four columns. Row
gets accessed by address[5:4], column by address[10,9]. Each panel has 32 entries
indexed by {cpu_id(three-bits), replacement way (two-bits)}.
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For an update related to a load, the panel is accessed by address {10,9,5,4} and the
entry within the panel to be updated is selected by {cpu_id(three-bits), replacement
way (two-bits)} for the load.

For a store or a ICache mutual-exclusivity check on a Ifetch, which can potentially
invalidate a maximum eight L1 cache lines (one L1 line per core), the panel gets
selected by address {10, 9, 5, 4} and all 32 entries within that panel get camed against
the store, based on which a invalidation vector gets generated for a max of eight L1
Dcache line invalidation’s (one per core). The way number for each L1 Dcache will
be encoded as a two-bit field in the inval vector.

For an eviction, since the L2 cache line is 64 bytes, four panels out of 16 will get
camed based on address[10,9] (i.e. one column). This would mean a total of 32x4 =
128 compares to invalidate a max of four cache lines per L1, i.e. a max of 4x8 = 32 L1
Dcache lines for all cores combined. This will come out as 32 D$ L1 lines eviction
vector from L2. The way number for each L1 Dcache will be encoded as a two-bit
field in the inval vector.

Each entry in the directory will store {L2 index[9-bits], L2 way[4-bits], parity, valid}
i.e. a total of 15-bits corresponding to the location in L2 that the L1 line maps to.

For a load hit, the entry gets updated with {L2 index[9-bits], L2 way[4-bits], parity},
while on a store or eviction or a ICache mutual-exclusivity check on a Ifetch, the {L2
index[9-bits], L2 way[4-bits]} gets camed against the stored value of each entry.

I$ Dir:

L1 Icache for each core has 64 sets, each set has eight ways. Since L1 Icache line size
is 32 B, this gives a total of (8 x 64 x 8 x 32) bytes = 128 KB or 4K L1 Icache lines in
all cores together. Each L1 Icache is 16 KB.

Thus each L1 Icache will map (64/8) = eight sets to each L2 bank. So for each L2
bank, the ICache directory will consist of (8 x 8) sets of L1 Icache lines for all cores
combined. This gives a total of 512 L1 Icache lines per bank.

These 512 L1 Icache line mappings gets organized physically in the ICache directory
as follows:

Each Icache directory has 16 panels arranged as four rows and four columns. Row
gets accessed by {address[5], I$ replacement way[2]}, column by address[10,9]. Each
panel has 32 entries indexed by {cpu_id(3-bits), I$ replacement way[1:0]}.

For an update related to a Ifetch hit, the panel is accessed by {address {10,9,5}, I$
replacement way[2]} and the entry within the panel to be updated is selected by
{cpu_id(3-bits), I$ replacement way[1:0]} for the Ifetch hit.
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For a store or a Dcache mutual-exclusivity check on a load, which can potentially
invalidate a maximum eight L1 Icache lines (one line per core), two panels gets
selected by address {10,9,5} and all 32 entries within each panel get camed against
the store, based on which a invalidation vector gets generated for a max of eight L1
Icache line invalidation’s (one per core). The way number for each L1 Icache line will
be encoded as a 3-bit field in the inval vector.

For an eviction, since the L2 cache line is 64 bytes, four panels out of 16 will get
camed based on address[10,9] (i.e. one column). This would mean a total of 64x2 =
128 compares to invalidate a max of two Icache lines per L1, i.e. a max of 2x8 = 16 L1
Icache lines for all cores combined. This will come out as 16 I$ L1 lines eviction
vector from L2. The way number for each L1 Icache line will be encoded as a 3-bit
field in the inval vector.

Each entry in the directory will store {L2 index[9-bits],L2 way[4-bits], parity, valid}
i.e. a total of 15-bits corresponding to the location in L2 that the L1 line maps to.

For a Ifetch hit, the entry gets updated with {L2 index[9-bits],L2 way[4-bits], parity},
while on a store or eviction or a Dcache mutual-exclusivity check on a load, the {L2
index[9-bits],L2 way[4-bits]} gets camed against the stored value of each entry.

2.1.5.7 SIU Queue (SIUQ)

The SIU Queue accepts RDD,WRI and WR8 packets from the SIU and issues them to
the pipe after arbitrating against other requests.L2 SIU Queue block can record up to
two requests from SIU in it’s two-deep FIFO. The requests are received serially. A
counter is maintained in the SIU side incrementing on a transaction dispatch to L2
cache and decrementing upon receiving l2t_siu_iq_dequeue or l2t_siu_wib_dequeue
signals from the L2 cache. l2t_siu_iq_dequeue signal is asserted when an instruction
is issued down the L2 pipe (RDD, WRI, and WR8 instructions). l2t_siu_wib_dequeue
is asserted when the contents of a I/O Write Buffer entry gets streamed to DRAM
(WRI).

2.1.5.8 Input Queue (IQ)

The input queue is a 16 entry FIFO which queues packets arriving on the PCX when
they cannot be immediately accepted into the L2 pipe. Each entry in the IQ is 130
bits wide. The FIFO is implemented with a dual ported array. The write port is used
for writing into the IQ from the PCX interface. The read port is for reading contents
for issue into the L2 pipeline. If the IQ is empty when a packet comes on the PCX,
the packet can pass around the IQ if it is selected for issue to the L2 pipe.
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The IQ asserts a stall to the PCX when 11 entries are used in the FIFO. This allows
for packets already in flight as shown in

2.1.5.9 Output Queue (OQ)

The output queue is a 16 entry FIFO which queues operations waiting for access to
the CPX. Each entry in the OQ is 146 bits wide. The FIFO is implemented with a
dual ported array. The write port is used for writing into the OQ from the L2 pipe.
The read port is for reading contents for issue to the CPX. If the OQ is empty when
a packet comes from the L2 pipe, the packet can pass around the OQ if it is selected
for issue to the CPX.

Multicast requests are dequeued from the FIFO only if all the destination CPX
queues can accept the response packet.

When the OQ reaches its high water mark, the L2 pipe stops accepting inputs from
the Miss Buffer or the PCX. Fills can happen while the OQ is full since they don’t
generate CPX traffic. The high water mark is TBD, which accounts for instructions
already in the L2 pipe.

2.1.5.10 Arbiter

The arbiter manages access to the L2 pipeline from the various sources which
request access. The IQ, MB, IO interface, and FB all need access to the L2 pipe.
Access to the pipe is granted based on the following priority:

■ Access currently stalled in the pipe

■ Second packet of a CAS operation

■ SIU instruction from SIU Queue

■ Miss Buffer instruction

■ Fill Buffer instruction

■ Instruction from the IQ

TABLE 2-23 Input Queue Pipeline

PQ A B C D E F

PA A B C D E stall

PX A B C D E

PX? A B C D E

C1 A B C D E

C@ (count) 12 13 14 15 16
Chapter 2 Level 2 Cache 2-51



■ Background scrub request

2.1.5.11 Miss Buffer (MB)

The Miss Buffer (MB) has 32 entries and stores instructions which cannot be
processed as a simple cache hit. This includes true L2 cache misses (no tag match),
instructions that have the same cache line address as a previous miss or an entry in
the Writeback Buffer, instructions requiring multiple passes through the L2 pipeline
(atomics and partial stores), unallocated L2 misses, and accesses causing tag ECC
errors.

Miss Buffer in OpenSPARC T2 L2 would be 32 entries instead of 16 as in
OpenSPARC T1 L2. This is needed to reduce L2 stalls due to Miss Buffer full which
affects the CPI of each of the 64 threads (due to the fact that Miss Buffer going full
stalls all accesses to L2; load hits and store hits cannot happen). With DDR 280 Mhz,
for TPCC, CPI per thread improves by 8% between 16 and 32 entry Miss Buffer and
L2 stall due to MB full reduces from 6.4% to 0.08%. With DDR 333 Mhz, for TPCC,
CPI per thread improves by about 7.6% with 32 entry Miss Buffer while L2 stall due
to MB full goes closer to zero.

The Miss Buffer is divided into a dual ported RAM portion which holds store data
and a CAM portion which contains the address.

A read request is issued to DRAM and the requesting instruction is replayed when
the "critical quad-word" of data arrives from DRAM.

All entries in the Miss Buffer that share the same cache line address are linked in the
order of insertion to preserve ordering. Instructions to the same address are
processed in age order whereas instructions to different addresses are not ordered
and exist as a free list.

When a MB entry gets picked for issue to the DRAM (load, store, ifetch miss), the
entry gets copied into the Fill Buffer and a valid bit gets set. There can be up to eight
reads outstanding from L2 to DRAM at any point of time. Data can come from
DRAM to L2 out of order with respect to the address order. When the data comes
back out of order, the MB entries get readied for issue in the order of data return.
This means that there is no concept of age in the order of data returns to core as
these are all independent accesses to different addresses. Thus when a later read gets
replayed from the MB down the pipe and invalidates its slot in the MB, a new
request from the pipe will take its slot in the MB, even while an older read has not
yet returned data from DRAM.

In most cases, when a data return happens, the replayed load from the MB makes it
through the pipe before the Fill Request can. Hence the valid bit of the MB entry gets
cleared (after the replayed MB instruction execution is complete in the pipe) before
the Fill Buffer valid bit. However if there are other prior MB instructions like partial
stores that get picked instead of the MB instruction of concern, the fill request can
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enter the pipe before the MB instruction and in those cases the valid bit in the Fill
Buffer would get cleared prior to the MB valid bit. Thus the MB valid bit and FB
valid bits always get set in the order of MB valid first, FB valid later. However they
can get cleared in any order.

When the MB reaches its high water mark, the arbiter no longer accepts requests
from the IQ or PCX. The high water mark is TBD, which accounts for instructions
that are already in the pipe that may be inserted into the MB.

2.1.5.12 Fill Buffer (FB)

The Fill Buffer is an eight entry buffer used to temporarily store data arriving from
DRAM on an L2 miss request. Data arrives from DRAM in four 16 B blocks starting
with the critical quad-word. A load instruction waiting in the Miss Buffer can enter
the pipeline after the critical quad-word arrives from DRAM (critical 16B will arrive
first from DRAM) In this case, the data is bypassed. After all four quad-words
arrive, the fill instruction enters the pipeline and fills the cache (and the Fill Buffer
entry gets invalidated). For a non-allocating read (e.g. I/O read), the data gets
drained from the Fill Buffer directly to the I/O Interface when data arrives, and the
Fill Buffer entry gets invalidated.

When the FB is full, the Miss Buffer cannot make requests to DRAM.

The Fill Buffer is divided into a RAM portion which stores the data returned from
DRAM waiting for a fill to the cache and a CAM portion which contains the address.

2.1.5.13 Writeback Buffer (WBB)

The Writeback Buffer is an eight entry buffer used to store dirty evicted data from
the L2 on a miss. Evicted lines are streamed out to DRAM opportunistically. An
instruction whose cache line address matches the address of an entry in the WBB is
inserted into the Miss Buffer. This instruction must wait for the entry in the WBB to
write to DRAM before entering the L2 pipe.

When the WBB reaches its high water mark, the arbiter no longer issues instructions
from the Miss Buffer. This stops read requests to DRAM and allow writebacks to
proceed. The high water mark is TBD, which accounts for evictions that are already
in the pipe.

The Writeback Buffer is divided into a RAM portion which stores the evicted data
until it can be written to DRAM and a CAM portion which contains the address.
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2.1.5.14 I/O Write Buffer (IOWB)

The I/O Write Buffer is a four entry buffer which stores incoming data from the
PCI-EX interface in the case of a 64 B write operation. Since the PCI-EX interface bus
width is only 32-bits wide, the data must be collected over 16 cycles before writing
to DRAM. An instruction whose cache line address matches the address of an entry
in the IOWB is inserted into the Miss Buffer. This instruction waits for the entry in
the IOWB to write to DRAM before entering the L2 pipe.

The I/O Write Buffer is divided into a RAM portion which stores the data from the
IO interface until it can be written to DRAM and a CAM portion which contains the
address.

It is the responsibility of the IO interface to use a handshaking protocol to track the
state of the IOW Buffer.

The IO interface must never issue an operation requiring the buffer when the buffer
is full.
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2.1.6 Unit-level Interface Signals

TABLE 2-24 Unit Level Interface Signals

Signal Name I/O Size
From/
To Timing Description

Crossbar

l2t_cpx_req_cq O 8 CCX Request to be drained out of L2

l2t_cpx_data_ca O 146 CCX Data from L2 cache

cpx_l2t_grant_cx I 8 CCX Grant to gain access to crossbar

l2t_cpx_atom_cq O 1 CCX First packet of Imiss

l2t_pcx_stall_pq O 1 PCX Cannot accept any more requests to
L2Cache from core since the Input FIFO is
full.

pcx_l2t_data_rdy_px1 I 1 PCX Cannot accept any more requests to
L2Cache from core since the Input FIFO is
full.

pcx_l2t_data_px2 I 130 PCX Data bus from core

pcx_l2t_atm_px1 I 1 PCX Indicates atomic instruction

SIU

l2t_sii_iq_dequeue O 1 SIU Entry in a IOWBB array has freed. l2t is
unloading a request

l2t_sii_wib_dequeue O 1 SIU Write invalidate buffer (size= 4x64 B cache
lines) is being unloaded

l2b_sio_data O 32 SIU Read Data to SIU.

l2b_sio_ue_err O 1 SIU UE on read data to SIU

l2b_sio_ctag_vld O 1 SIU Ack to SIU from L2

sii_l2t_req_vld I 1 SIU SIU request valid.

sii_l2t_req I 32 SIU SIU requests L2 cache to be serviced.

sii_l2b_ecc I 7 SIU Data ECC

DRAM

l2t_mcu_rd_req O Read request to DRAM

l2t_mcu_rd_dummy_req O Flush request to MCU (=COMMIT)
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2.1.7 Reliability, Availability, and Serviceability (RAS)

2.1.7.1 General Overview

The Failure In Time (FIT) rates for L2 structures in OpenSPARC T2 in Epic8c are
similar to their OpenSPARC T1 counterparts. To improve FIT rates L2, OpenSPARC
T2 improves protection on L2 structures already protected on OpenSPARC T1 (e.g.
VUAD Array).

L2 consists of the following two major structures that are candidates for protection.

The first type is 6-device, single-ported SRAM cells optimized for density, such as L2
data arrays. These SRAM cells have high Failure In Time (FIT) rates (300-400 FITs
per Mb in Epic8c). All L2 SRAMs have ECC protection.

l2t_mcu_rd_req_id O MCU Request id

l2t_mcu_addr O MCU Read/write Address

l2t_mcu_wr_req O MCU Write request to mcu

l2b_mcu_wr_data_r5 O MCU Write back data to memory

l2b_mcu_data_vld_r5 O MCU Writeback Data Valid signal

l2b_mcu_data_mecc_r5 O MCU Error signal for mcu

mcu_l2t_rd_ack I 1 MCU Read request recorded

mcu_l2t_wr_ack I 1 MCU Write request recorded

mcu_l2t_qword_id_r0 I 2 MCU Quad-word number for a transaction

mcu_l2t_data_vld_r0 I 1 MCU Valid signal with data

mcu_l2t_rd_req_id_r0 I 3 MCU Read request ID returned

mcu_l2t_scb_mecc_err I 1 MCU Async Scrub Error Signals from mcu

mcu_l2t_scb_secc_err I 1 MCU Async Scrub Error Signals from mcu

mcu_l2b_data_r2 I 128 MCU Fill data from mcu

mcu_l2t_mecc_err_r2 I 1 MCU Error information

mcu_l2t_secc_err_r2 I 1 MCU Error information

mcu_l2b_ecc_r2 I 28 MCU SEC ECC Information

TABLE 2-24 Unit Level Interface Signals (Continued)

Signal Name I/O Size
From/
To Timing Description
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The second type is a CAM cell, whose FIT rate may be 1/2 of a standard SRAM cell.
CAM cells are difficult to protect. Adding parity to a CAM cell eliminates false CAM
hits due to single-bit errors, but cannot detect false misses.

In L2, only the I$ and D$ Directory CAMs are protected by parity. None of the other
CAM structures in L2 are big enough to contribute to the overall FIT rate and hence
are not protected by parity.

2.1.7.2 RAS Support in L2 Sub-Blocks

L2 Data Arrays

The L2 data arrays are protected via SEC/DED ECC on a word (32-bit) basis. A
correctable error on a core data read or write results in an error being logged in one
of the core ESRs and, if enabled, causes a precise or disrupting trap request to the
core making the request. On a load, data gets corrected (if a single bit error was
detected) when returned to the core but the error still gets reported to the core on
ERR bits of the CPX packet for the load return. A core data read results from an
instruction cache miss, a data cache miss, an atomic operation, a partial store or a
store of less than 32-bits, or an SPU operation. A correctable error on an I/O data
read or write results in an error being logged in a global ESR and, if enabled, causes
a disrupting trap to the core identified by the ERRORSTEER field of the L2 Control
Register. Hardware corrects the error, and rewrites the L2 line with corrected data.

An uncorrectable error on an L2 data read by a core is logged to a global ESR, and,
if enabled, causes a disrupting trap to the core on a store. If the core request is due
to an instruction fetch or load due to data cache miss or atomic operation, the error
is actually a precise trap.

In the case of an I/O read or write with an uncorrectable error, the error is logged in
a global ESR, and a disrupting trap is signaled to the core identified in the
ASI_CMP_ERROR_STEERING register.

L2 Tag Arrays

The L2 tag arrays are protected by SEC ECC. A correctable error is logged to a global
ESR, and, if enabled, signals a disrupting trap request to the core identified in the
ERRORSTEER field of the L2 Control Register. Hardware (scrubber) corrects and
re-writes the tag. The operation is completed by replaying from Miss Buffer.

OpenSPARC T1 L2 does not detect Uncorrectable double bit errors for tag and
OpenSPARC T2 L2 wont either. This is because in OpenSPARC T2 with total FIT
rates in the ballpark of 400, the double bit errors in the L2 tag are contributing only
0.1 FITs.
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L2 VUAD Arrays

The VUAD array contains valid, used, allocated, and dirty bits. OpenSPARC T1
protects this array with parity. Any single bit error in the valid, allocated, or dirty
bits can lead to data corruption and is fatal. OpenSPARC T2 protects the VD and UA
arrays via SEC DED ECC since it is one of the largest sources of fatal errors.

A correctable error in VD or UA array (LVC) is logged in L2 ESR. If enabled, the
error generates a disrupting trap request to the core identified in the ERRORSTEER
field of the L2 control Register. Hardware corrects the entry, and the replayed access
is completed.

An uncorrectable error in VD or UA array (LVU) is also logged in L2 ESR. However
this would cause OpenSPARC T2 to assert warm reset.

L2 Directories

L2 protects it’s I$ and D$ directories with parity. Parity error is fatal. The L2
directory performs a background parity detect which is synchronized with a store
issue down the L2 pipe. The entry being checked for parity can be reset using
dbginit_l so as to make a test repeatable.

Miss Buffer

The Miss Buffer contains miss requests as well as multi-pass L2 operations. The
buffer contains data and address (tag) entries. The tag array is an 32 entry CAM of
40 bits each. A false hit on a tag can result in data corruption. A false miss can also
result in data corruption. OpenSPARC T1 does not protect the tags or data.
OpenSPARC T2 also does not protect the data or tags due to its small contribution to
the FIT rate.

Fill Buffer

The Fill Buffer contains memory read data. This data is either cacheable reads to be
written to the L2, or non-allocating cacheable data forwarded to the I/O interface.
The buffer contains data and address (tag) entries. The data is protected by
SEC/DED ECC and ECC is checked on the way from Fill Buffer to L2 pipe. The tag
array is an eight entry CAM of 40 bits each. A false hit on a tag can result in data
corruption. A false miss can result in multiple fills for the same line outstanding,
reducing performance. OpenSPARC T1 does not protect the tags. OpenSPARC T2
also does not protect the tags due to its small contribution to the FIT rate.
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A correctable data ECC error is logged to a global ESR and, if enabled, generates a
disrupting trap request to the core identified in the ERRORSTEER field of the L2
Control Register. Hardware corrects the error before writing the data into the L2.

An uncorrectable data ECC error is logged to a global ESR, and, if enabled, generates
a disrupting trap request to the core identified in the ERRORSTEER field of the L2
Control Register.

Writeback Buffer

The Writeback Buffer contains modified evicted L2 data to be written back to
memory, The data portion is protected by SEC/DED ECC and ECC is checked on the
way from WBB to mcu. The tag is implemented as an eight entry CAM with 40 bits
per entry. OpenSPARC T1 does not protect the tag. OpenSPARC T2 does not protect
the tag due to its small contribution to overall FIT rate.

If a correctable ECC error occurs on the data, the error is logged, and, if enabled, a
disrupting trap request is generated to the core identified by the ASI _CMP _ERROR
_STEERING register. Hardware corrects the error before writing the data to memory.

If an uncorrectable ECC error occurs on the data, the error is logged, and, if enabled,
generates a disrupting trap request to the core identified by the ASI_ CMP_ ERROR_
STEERING register.

I/O Write Buffer

The I/O Write Buffer collects I/O write data prior to writing it to DRAM. The buffer
consists of tag and data sections. OpenSPARC T1 and OpenSPARC T2 protect the
data with SEC/DED ECC and ECC is checked on the way from IOWB to DRAM.
The tag is not protected.

If a correctable ECC error occurs on the data, the error is logged, and, if enabled, a
disrupting trap request is generated to the core identified by the ASI_ CMP_
ERROR_ STEERING register. Hardware corrects the error before writing the data to
memory.

If an uncorrectable ECC error occurs on the data, the error is logged, and, if enabled,
a disrupting trap request is generated to the core identified by the ASI_ CMP_
ERROR_STEERING register. Software could possibly retry the write operation
through the device driver.
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2.1.7.3 NotDATA in L2 (New Feature in OpenSPARC T2)

Uncorrectable errors are not necessarily unrecoverable. Program execution may or
may not be affected depending on the not be affected depending on the condition
under which the error occurs. In either case, HW must signal the occurrence of the
error when it detects it to the appropriate SW error handler. However the chances
for recovery are greatly enhanced if only the offended processor reports the error,
and the others do not.

To meet this high level goal, as part of a requirement from SPARC SWG RAS
working group to have UE from DRAM stored in L2/L3 caches as Notdata,
OpenSPARC T2 L2 would support a scheme for detecting Notdata on UE from
DRAM without using extra bits of storage.

The scheme involves flipping the computed ECC bits for the data with UE from
DRAM and storing it with the data. The idea is when a subsequent access happens
to the line in L2 that would do an ECC check, the generated ECC would be 1’s
complement of the stored ECC, resulting in check bits[6:0] being all 1’s. This would
indicate NotData.

System requires that NotData syndrome be protected from single bit errors (SBEs).
Single bit error correction is not required. However it is required that the error be
reported (even as UE), and that the error is never mistaken as valid data, or data
with correctable errors.

The ECC logic in L2 after detecting single bit error in the data or ECC portion of the
NotData packet will treat it as an uncorrectable error. A double bit error can be a
problem since the ECC logic would potentially treat it as valid data with CE. But the
chance of such failure is very remote and double bit error protection on NotData is
not a system requirement.

The following sections describe the mechanisms of detecting UE on FIll and storing
NotData in L2 and also L2 behavior on subsequent accesses to L2 from core, SIU,
scrubber and DRAM (eviction) finding NotData.

Detecting UE on a Fill & Storing NotData in L2:

If MCU detects UE on data return from DRAM, it will indicate UE to L2 on a 16 byte
quad-word boundary and also invert all ECC bits associated with the 16 bytes of
data. This data with inverted ECC bits will then get written to the Fill Buffer and
eventually get written to the L2 data array on the fill. Thus on the UE, MCU will
write data marked as Notdata itself into the L2 cache.
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However once the data is returned to L2, there are three possibilities:

1. Replayed load/ifetch/atomic reads from the Fill Buffer array before the fill
happens and detects UE.

In this case if an UE gets detected on the data read from the Fill Buffer, it would
return load/ifetch/atomic data to Core but mark the data as UE in the CPX packet.
Also the UE would be logged as DAU error in L2. The Core will take a precise trap.
Then the fill would happen and store NotData in the array. Subsequent accesses
would see Notdata in the L2.

2. Replayed load/ifetch/atomic reads from the Fill Buffer array before the fill
happens and does not detect UE but UE is another 16 byte chunk in the same line.

In that case the load/ifetch/atomic will complete as normal. Later on when the FIll
happens, if the UE is on another 16 Byte chunk for the same line (as indicated by a
UE bit stored in FIll Buffer from DRAM), the UE would be logged as DAU error in
L2 and assert a disrupting trap to CPU. The fill would store NotData in the array so
the subsequent accesses see NotData in L2.

3. Replayed load/ifetch/atomic reads from the data array itself after the fill.

In this case if there was UE detected during the fill, the UE would be logged as DAU
error in L2 and would cause a disrupting trap to the core. The fill would store
NotData in the array. Later on if the replayed load/ifetch/atomic reads the 16 Byte
chunk that has NotData in it, it will return data to Core but mark the data as
NotData in the CPX packet. This would cause a precise trap. All subsequent
accesses that hit would also see NotData.

If the FIll was for a store miss from CPU or SIU, UE would be logged as DAU error
in L2 and cause a disrupting trap. The fill would store NotData in the array so the
subsequent accesses see NotData in L2.

Detecting UE on a Scrub:

When the L2 data array scrubber detects UE in a line in the data array, it will log the
UE as LDSU bit in L2 and will issue a CPX Error packet to the core specified in the
ERRORSTEER field of the L2 Control Register.

L2 Behavior on Subsequent Accesses to L2 from Core, SIU, Scrubber and
DRAM (eviction) finding NotData.

1. Load/Ifetch/atomic hit from CPU in L2 encountering NotData:

When a load/ifetch/atomic hit detects NotData, it will set NDSP bit in L2 and report
NotData to the requesting core on the CPX packet.
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2. Partial store hit from CPU encountering Notdata:

When a partial store hit in L2 encounters NotData it will set NDSP bit in L2 and
issue a Error Indication packet to the core indicating NotData. A disrupting trap
would get issued. The store will not happen in L2.

3. 4/8 byte store from CPU:

The store would complete irrespective of the NotData in the data array. ALthough
NotData gets marked for all four byte chunks of a 16 Byte line segment, all four
NotData segments may get overwritten with 2/4 back to back stores and would
cause the NotData symptom to be lost. In that case, when the disrupting trap caused
by the UE on the related Fill gets the issued, the trap handler will just cause an
eviction of the dirty line to DRAM (without knowing whether it has Notdata or not).
L2 will detect Notdata on the data in the eviction path and if there is no trace of any
NotData, MCU will just write it out to DRAM without polluting the ECC on 16 byte
boundary. Otherwise L2 will signal UE to MCU and MCU will write it out to DRAM
polluting the ECC on 16 byte boundary.

4. SIU load hit in L2 encountering NotData:

SIU load hitting in L2 encountering NotData will return data marked with UE to SIU
which will get propagated to PCI_EX /BSC. NDDM bit will be set in L2 and a CPX
Error packet will be issued to core specified in the ERRORSTEER field of the L2
Control Register indicating NotData and a disrupting trap will be taken.

5. SIU partial store hit in L2 encountering NotData:

When a partial store from SIU in L2 encounters NotData in L2 it will set NDDM and
issue a Error Indication packet to the core specified in the ERRORSTEER field of the
L2 Control Register indicating NotData. The store will not happen in L2. A
disrupting trap will be taken.

6. 4/8 byte store from SIU:

The store would complete irrespective of the NotData in the data array. ALthough
NotData gets marked for all four byte chunks of a 16 Byte line segment, all four
NotData segments may get overwritten with 2/4 back to back stores and would
cause the NotData symptom to be lost. In that case, when the disrupting trap caused
by the UE on the related Fill gets the issued, the trap handler will just cause an
eviction of the dirty line to DRAM (without knowing whether it has UE or not). UE
will detect UE on the data in the eviction path and if there is no trace of any
NotData, it will just write it out to DRAM without polluting the parity. Otherwise it
will signal UE to MCU and MCU will write it out to DRAM polluting the data to
indicate multi-bit error.

7. Data Ram Scrubber encountering NotData in L2:

When Data Ram Scrubber in L2 detects NotData it will do nothing, and will keep the
data and ECC bits unchanged.
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8. Eviction from L2 encountering NotData:

When NotData is detected on evicted data from Write Back Data Buffer to DRAM,
L2 would indicate to MCU UE for each 16 byte chunk same as today, and the MCU
would write the data to DRAM after flipping multiple ECC bits according to Galois
Field Hemming code.

L2 Behavior on NotData Reported from Core

1. When uncorrectable errors occur on the store data in the store buffer, core would
indicate it to L2 by asserting INV bit (116) of the pcx packet to 1’b1. L2 would
then accept the store and do the write, but would mark the data as NotData.

2. To deal with UE on the compare data of a CASA instruction, LSU will assert the
INV bit (116) of the pcx packet for both the CAS1 and CAS2 packets. When the L2
sees this bit asserted, it will force the compare result to be "true" so that L2 will be
updated. Also instead of storing the swap data, it will write NotData.

2.1.7.4 Error Reporting by L2

L2 cache reports the different errors it detects to the cores through encoded ERR[1:0]
field on the CPX packets.

Loads, stream loads, mmu loads, prefetches, ifetches, atomics send back
UE/CE/Notdata error on the data read, on ERR[1:0] (139:138) bits of the Load
return, Stream Load Return, MMU Load return, Prefetch Return, Ifill Return 1, Ifill
Return 2, Swap/Ldstub return and CAS return packets respectively to the requesting
virtual core.

LDAU/LDAC/NDSP errors respectively get recorded in L2 Error Status registers
(Refer to OpenSPARC T2 Programmer’s Reference Manual) for UE/CE/Notdata Error
with R/W bit being a 0.

In case a UE/Notdata is detected on a CAS1 or swap/ld stub read pass, the store
does not happen in L2 in the CAS2 and swap/ldstub writes passes (leaving the data
and ECC unchanged). However in the CAS 2 ack packet and the swap/ldstub ack
packet, ERR[1:0] (bits 139:138) gets driven as valid to the requesting virtual core with
the encoding reflecting CE/UE/Notdata.

On a atomic miss, when the line is returned from DRAM, the fill always happens
first and then the load of the atomic is replayed from the Miss Buffer. Now if the line
has CE or UE in it, on the fill, an L2 Error indication packet will get sent to the core
indicating CE or UE. Note that CE here means that the line is already corrected and
error free on account of MCU cleaning it up when writing to L2. If it was a CE, the
error would not be visible in the L2 after the fill as the line is already corrected, and
the replayed load of the atomic will not see any error and will just return good data.
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The store that follows will just complete as normal without any errors. If it was a
UE, the error would be still persisting in the line when the fill happens and so the
replayed load will see Notdata and will indicate a Notdata on the load return packet
to the core. The store that follows will also see the error and indicate Notdata on the
store ack packet. The store will not happen in L2.

Stores, Stream Stores on detecting UE/CE/Notdata on the data do not report the
error on the ERR[1:0] (139:138) bits of the Store ack, Stream Store ack packets
respectively. However the errors get reported on bits 139:138 of Error Indication
packet later to the requesting virtual core after the occurrence of the next L2 fill. On
the detection of the error, LDAU/LDAC/NDSP errors respectively get recorded in
L2 Error Status registers (Refer to OpenSPARC T2 Programmer’s Reference Manual) for
UE/CE/Notdata Error with R/W bit being a 1. Stores do not happen to the L2 in
case of UE and Notdata errors leaving the data and ECC unchanged.

Directory parity (LRU) error and VUAD Uncorrectable Error (LVU) cause a fatal
error warm reset and does not get reported to the core on the Error Indication
Packet.

All other errors (LDWC, LDWU, LDRC, LDRU, LDSC, LDSU, DAC, DAU, DRC,
DRU, DSC, DSU, LTC, LVC, and NDDM) would get reported to the Virtual Core
specified in the L2_CONTROL_REG.ERRORSTEER field on bits [139:138] of Error
Indication packet of crossbar after the occurrence of the next L2 fill.

L2 would drive bit 137 of the CPX packet on an L2 Error indication CPX packet as 1
in case of LDRC error on a SIU RDD. This would indicate to the core that core
should take a SW_recoverable trap instead of a HW_corrected error trap. For all
other Correctable errors asserted by L2 on the Error Indication packet, this bit will be
0 indicating HW_corrected error. Also for other error types like UE and Notdata, this
bit would be driven as 0.

2.1.8 VDFT Features
The following DFT features are supported by L2 cache.

■ BIST

■ Full scan

■ Shadow can

2.1.9 Critical Path Analysis
Following are the critical paths in OpenSPARC T1 L2 cache:

■ VUAD access in C1: Memory Access(10g) + 1mm xmit (2g) + 4-1 mux(3.5g) + 4-1
mux(3.5g) + 2-1 mux(2g) = 21 gates.
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■ Way Sel Generation in C2: c2 compare logic(2g) + 2.32 mm xmit in the tag array
(4.7g) + 600U xmit to tagctl(1.2g) + waysel logic(5g) +3mm xmit to middle of the
bottom of l2d (6g) = 19 gates.

Transmit from l2t to l2d is based on the existing proposed full chip floor plan.

■ Arbitration in PX to tag access: Arb logic to sel PX addr (12g) + 2.7mm xmit to
VUAD (6g) + array setup (1g) = 19 gates

■ Data cache access in C4, C5 and C52.

■ Data return in C8. Xmit from deccdp to oqdp (2g) + 3-1 mux in oqdp (3g) + xmit
from oqdp to ccx (5g) + setup in the CCX (10g) = 20 gates.

2.1.10 Performance
The following are the L2 cache performance data for 1.4 Ghz cmp clk and 333 Mhz
DRAM clk:

■ Load-Use latency seen by core on L1 miss and L2 hit: 21 cmp clks = (0.714x20) =
14.994 nsec

W’ |PQ PA PX1 PX2 | C1 C2 C3 C4 C5 C52 C6 C7 C8 |

CQ CA CX1 CX2 | CX3 E M B W

[where the CPU related stages are as follows:

W’ - arb for pcx

PQ - send pcx request

PA - send pcx packet

CX3 - packet received from cpx

E - IFU signaled to restart thread

M - data written to L1 cache (if load was cacheable)

B - data sent to EXU/FGU

W - data written to register file or bypassed to dependent instruction in
E stage]

■ Load-Use latency seen by core on L1 miss and L2 miss: 93 cmp clks= (0.714 x 93)
= 66.4 nsec

W’ -> C1: 6 cmp clks

C2 -> Req to MCU: 10 cmp clks
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MCU -> DRAM address on memory bus: four cmp clks for ack sync + 2 DRAM
clks = 12.4 cmp clks

DRAM address -> first DRAM data (critical 16/32 B first) on pins: eight DRAM
clocks

= 33.6 cmp clks

MCU -> L2 first critical data: 3 DRAM clks = 12.6 cmp clks

L2 first critical data -> C2 stage of replayed Load: four cmp clks

C3 stage of replayed load -> return critical 16B to core: 9 cmp clks

Data seen by Core -> earliest it gets used in Core pipe = 5 cmp clks

■ Peak L2 load bandwidth with back to back hits in different sub-banks: 1.4 Ghz
x16 bytes = 22.4 GB/s

(16 bytes of data getting returned from L2 to core every cmp clock over Crossbar)

■ L2 store bandwidth with eight byte back to back stores that hit in L2 in different
sub-banks: 1.4 Ghz x 8 bytes = 11.2 GB/s

2.2 Appendix

2.2.1 Debug Mode/Initialization Mode
L2 cache comes out disabled after reset. One of the bits in the L2 cache control
registers have to be set in order to enable L2 cache. When L2 cache is disabled, there
are no accesses to L2 cache tag ram, data ram, VUAD arrays. All the instructions are
treated as a miss. However, diagnostic accesses to tag ram, data ram and VUAD
arrays are permitted.

The behavior of L2 cache when disabled is as follows:

In this mode the Miss Buffer operates to it’s full capacity. However, the Fill Buffer is
just one (line) deep. All the loads and stores issued to L2 cache gets recorded in Miss
Buffer (MB). Loads recorded in Miss Buffer gets issued to DRAM. The (load) data
returned from DRAM is recorded in the Fill Buffer (FB). The instruction gets
replayed from the Miss Buffer and data gets returned from the Fill Buffer.
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When a Store transaction is encountered in Miss Buffer (MB), the store data gets
transferred to the Fill Buffer and a read gets issued to DRAM to fetch the line. When
the read data is returned, the store transaction now gets replayed from the Miss
Buffer and does a data merge with the Fill data before getting written into the
Writeback Buffer (WBB). Stores are issued out of Writeback Buffer to DRAM.

2.2.2 Reset Sequence for L2 cache
In L2 cache, parity bits in the tag array, valid bits in VUAD array and the directories
should be initialized before L2 cache is enabled to guarantee coherency and correct
functionality.

The directory valid bits are cleared with flash reset during POR_. The reset block
drives the flash reset. When the valid bits are cleared (not valid) then the entries are
don’t care. Hence, the parity bits are not initialized to good parity. Clearing valid
bits in the directory informs the L2 cache that there are no valid lines in L1.

BISI or ASIs are used to initialize the VUAD arrays by clearing all the valid bits. This
informs L2 cache that there are no valid lines in L2.

BISI or ASIs are used to initialize the tag array with good parity. This eliminates the
possibility of any error cases from happening.
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CHAPTER 3

Memory Control Unit (MCU)

This chapter contains the following sections:

■ Overview

■ Terminology and Configuration

■ DDR2 FBD Usage

■ MCU-L2 Cache Interface

■ DDR2 SDRAM Transaction Timing

■ Memory Latencies

■ Multiple Clock Domains

■ Functional Description

■ SDRAM Power Reduction and Reduced-Configuration Operating Modes

■ RAS Features

■ Test Features

■ MCU Level I/O

■ MCU Level I/O

■ MCU Registers

■ Other Registers

3.1 Overview
The DRAM memory control unit (MCU) interfaces to external registered DDR2 FBDs
through a unidirectional high-speed link to service load and store requests from two
L2 cache banks of the on-chip L2 Cache unit. Each load and store request from a L2
cache bank has a data size of one cache line, 64 bytes. There are four physical
instantiations of MCU in the OpenSPARC T2 CPU.
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The features of the MCU are as follows:

■ Maximum memory of 128 GB per MCU branch using 8 GB DDR2 FBDs (assuming
2 Gb DRAM parts).

■ Supports DDR2 SDRAM clock frequencies up to 400 MHz (800 MHz double data
rate). Internally, the MCU runs at the DDR rate.

■ Supports up to 16 ranks of DDR2 FBDs per channel (eight pairs of double sided
FBDs).

■ Supports 128 bits of write data and 16 bits ECC per SDRAM cycle and 256 bits of
read data and 32 bits ECC per SDRAM cycle.

■ System peak memory bandwidths (4 branches) with 800 MHz DDR parts: 50
GB/s for reads, 25 GB/s for writes.

■ Uses 10-bit Southbound and 14-bit Northbound FBD channel protocols running at
12 times the SDRAM cycle rate.

■ Supports DDR2 SDRAM burst length of four with when using both FBD channels
in an MCU, burst length of eight when using one FBD channel.

■ ECC generation, check, correction.

■ Programmable DDR2 SDRAM power throttle control.

■ The FBD Hot Plug feature is not supported.

3.1.1 Changes from OpenSPARC T1 MCU design
■ Use higher DDR2 SDRAM frequency: 266MHz, 333 MHz and 400MHz instead of

166MHz to 200MHz.

■ Uses FBDIMM channels to access memories instead of direct DDR2 interface.

■ Interface to two L2 cache banks per MCU instead of one or two L2 Cache banks
interface per MCU.

■ Minimum configuration with one DIMM per MCU branch.

3.1.2 Changes to OpenSPARC T2 MCU to support FBD
■ Added new FBD controller with channel initialization, error detection, and frame

encode and decode logic.

■ Updated address decoding to support up to 16 ranks of DIMMs. Can support
either one or two channels per MCU.

■ Write data rate reduced to half DDR rate. Data is buffered in AMB to allow more
flexibility in issuing write commands.
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■ Read and write operations to different DIMMs can occur in parallel. Reads and
writes to a single FBD must be scheduled so that there are no data collisions on
the DIMM’s local DDR2 bus. However, since the Northbound and Southbound
channels are independent, read data from one DIMM can be returning to the host
at the same time that write data is being sent to different DIMM.

■ Have separate read and write schedulers that communicate with each other to
ensure there are no FBD bus data collisions.

■ No dead cycle when switching read or write commands between DIMMs;
however, this is still needed when switching access to the other sides of same
DIMM.

■ Include sync frame generation to AMBs in state machine, at least once every 42
frames.

■ Remove read DQS strobe placement support. OCD and ODT support will be
programmed through the AMBs.

■ Spread transactions over different DIMMs instead of staying in one DIMM as
long as possible to keep thermal dissipation better spread across DIMMs.

■ Support L0s power saving mode.
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FIGURE 3-1 OpenSPARC T2 System Overview
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3.2 Terminology and Configuration

3.2.1 DRAM Terminology
■ DIMM: Dual Inline Memory Module. Industry standard SDRAM module

package. A stick of memory.

■ Channel: Port connecting Processor chip to DIMM.

■ DRAM chip: single chip inside the DIMM. We differentiate the types by how
many bits it outputs and its capacity. (x4 means four bit output, x8 means 8 bit
output, x16, x32 etc. and 256Mbit or 512Mbit capacity). Most common ones are
the x4, x8 output.

■ Bank: Most DDR SDRAM chips are broken up into four or eight logical banks
internally to enable full pipelining of memory operations.

■ Rank: A group of data that can be accessed from a DIMM. Each DIMM has two
chip selects. When a DIMM has two ranks, each chip select accesses DRAMs on
one side of the DIMM independently. When a DIMM has one rank, both chip
selects must be asserted at the same time to access all DRAMs on the DIMM. For
x4 SDRAMs, single rank DIMMs have 18 devices and double rank DIMMs have
36 devices.

■ RAS/CAS: RAS stands for "Row Address Strobe." When this signal is asserted, a
particular bank is enabled. It is also often referred to as "ACTIVE" command. CAS
stands for "Column Address Strobe." When this signal is asserted, the column
address and Read/Write signals are transmitted.

■ Refresh: DRAM requires what is often referred to as "REFRESH" cycle. Every row
in the DRAM requires a "REFRESH" access every 15.6uS/7.8uS.

■ Single-channel Mode: This is a low-power configuration with one DIMM per
memory channel. Only 72 bits of the 144 external IO pins are used, and the
memory burst length is 8. While it is possible to support two DIMMs per channel
with this configuration, it is only expected to be used with one DIMM.

3.2.2 FBD Terminology
■ Advanced Memory Buffer (AMB) - The AMB buffers memory traffic between the

host and the SDRAMs. Requests are sent by the host to the AMB across a high
speed link, and the AMB drives the requests to the SDRAMs using the DDR2
protocol.

■ Bit Lane - A differential pair of signals in one direction.
Chapter 3 Memory Control Unit (MCU) 3-5



■ Cyclic Redundancy Code (CRC) - An error detection code sent with data across
the FBD link to protect the data from errors. When a CRC error is detected, the
faulty frame must be retransmitted.

■ DDR Branch - A minimum aggregation of DDR channels which operate in
lock-step to support error correction. A rank spans a branch. In OpenSPARC T2, a
branch will consist of one or two DDR channels.

■ DDR Channel - A DDR channel consists of a data channel with 72 bits of data and
an addr/cntrl channel.

■ DDR Data Channel - a DDR data channel consists of 72 bits of data divided into
18 data groups.

■ Frame - Groups of bits containing commands or data sent across the link over 12
cycles.

■ FBD - Fully Buffered DIMM.

■ Link - High-speed parallel differential point-to-point interface.

■ Linear Feedback Shift Register (LFSR) - A shift register where the data input to
the last register is a function of the outputs of other registers.

■ Northbound (NB) - the direction of signals running from the farthest DIMM
toward the host.

■ Slot - Socket for a DIMM.

■ Southbound (SB) - the direction of signals running from the host controller
toward the DIMMs.

■ Training Sequence (TS) - A sequence of bits sent per bit lane from the host to the
FBDs to initialize the channel operation.

■ Unit Interval (UI) - Average time interval between voltage transitions of a signal.
Approx. 200 ps for DIMMs running at 800 MHz.

3.2.3 DDR Branch Configuration
The following are key assumptions made during the design of this controller:

■ x4 and x8 DIMMs are supported.

■ DIMM capacity, configuration, and timing parameters cannot be different within
a memory branch.

■ Each DDR branch can have a different memory size and a different kind of DIMM
(e.g. a different number of ranks or different CAS latency). Software should not
use address space bigger than four times the lowest memory capacity in a branch
because the cache lines are interleaved across channels, and using different sized
memories can create holes in the address space.

■ DRAM banks are always closed after read or write command by issuing an
autoprecharge command.
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■ Burst length is four (BL=4) when using a two channels per DDR branch. Burst
length is eight (BL=8) when using a single channel per branch.

■ There is a fixed one dead cycle for switching commands from one rank on a
DIMM to the other rank on the same DIMM.

■ Reads, Writes, and Refreshes across DDR branches have no relationship to each
other. They are all independent.

There are four independent DDR branches per CPU chip, each controlled by a
separate MCU. Each branch can be configured with one or two channels. and
supports up to 16 ranks of DIMMs as shown in FIGURE 3-2. Each channel can be
populated with up to eight single- or dual-rank FBDs. When a branch is configured
with two channels, the two FBDs that share the same AMB_ID are accessed in
lock-step. Data is returned 144 bits per frame for eight frames in single channel
mode and 288 bits per frame for four frames in dual channel mode. In either mode,
the total data transfer size is 512 bits, or 64 bytes, the cache line size for the L2 cache.

FIGURE 3-2 DDR Branch Configuration

Each FBD contains four or eight internal banks that can be controlled independently.
These internal banks are controlled inside the SDRAM chips themselves. Accesses
can overlap between different internal banks. In a normal configuration, every Read
and Write operation to SDRAM will generate a burst length of four with 16 bytes of
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data transferred every half memory clock cycle. In single-channel mode, Reads and
Writes will have a burst length of eight with eight bytes of data transferred every
half memory cycle.

3.2.3.1 Physical Address Mapping

The 40-bit physical memory address PA[39:0] request from the eight L2 banks are
decoded and mapped to one of the four MCUs by address bits PA[8:7].

The L2 memory write requests are 64-byte aligned: PA[5:0] = 6’h00. A partial cache
line memory write is not supported by the MCU.

TABLE 3-1 Supported Memory Organization

DIMM Base Device Part Ranks # of Devices
Min. Memory
per Branch

Max. Memory
per Branch

512 MB 256 Mb x4 1 18 512 MB 8 GB

1 GB 512 Mb x4 1 18 1 GB 16 GB

1 GB 256 Mb x4 2 36 1 GB 16 GB

2 GB 1 Gb x4 1 18 2 GB 32 GB

2 GB 512 Mb x4 2 36 2 GB 32 GB

4 GB 2 Gb x4 1 18 4 GB 64 GB

4 GB 1 Gb x4 2 36 4 GB 64 GB

8 GB 2 Gb x4 2 36 8 GB 128 GB

512 MB 512 Mb x8 1 9 512 MB 8 GB

1 GB 512 Mb x8 2 18 1 GB 16 GB

1 GB 1 Gb x8 1 9 1 GB 16 GB

2 GB 1 Gb x8 2 18 2 GB 32 GB

2 GB 2 Gb x8 1 9 2 GB 32 GB

4 GB 2 Gb x8 2 18 4 GB 64 GB

39 - 9 8 - 6 5 - 4 3 - 1

DIMMs Memory Address L2 Bank Select L2 Cacheline
Sub-Address

16-byte Offset
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The L2 physical memory read address requests are 16-byte aligned: PA[3:0]=4’h0.
The read data returned will be in the following order based on the L2 cache line sub
address, PA[5:4] (PA[6:4] for single-channel mode).

The L2 cache bank select (PA[8:6]) is mapped to the four memory branches as shown
in FIGURE 3-3.

TABLE 3-2 Read Data Return Order for BL=8

L2 cacheline
sub- address, PA[5]

8-byte data return order

0 0,1,2,3,4,5,6,7

1 4,5,6,7,0,1,2,3

TABLE 3-3 Read Data Return Order for BL=4

L2 cacheline
sub- address, PA[5]

16-byte data return order

0 0,1,2,3

1 2,3,0,1
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FIGURE 3-3 L2 Cache Banks Memory Branch Mapping

3.2.4 FBD Channel Configuration
The FBD specification supports two southbound channel configurations and five
northbound channel configurations. OpenSPARC T2 will support both southbound
configurations - the 10-bit and 10-bit failover modes - and two of the northbound
configurations - the 14-bit and 14-bit failover modes. These modes support data
packets of 64 bits data and eight bits ECC. The 10-bit southbound mode provides 22
bits of CRC while the 10-bit failover mode has 10 bits of CRC. The 14-bit northbound
mode provides 24 bits of CRC on read data (12-bits per 72-bit data packet), and the
14-bit failover mode provides 12 bits of CRC (6 bits per 72-bit data packet).

During channel initialization, software will determine if a channel can be fully
utilized (10-bit southbound or 14-bit northbound mode) or if a failover mode must
be used in which one of the bit lanes is muxed out.

39                                   9 8                        6 5                                      4 3                           0

DIMMs memory address L2 bank select L2 cache line sub address 16-byte offset

MCU_0
(L2$ bank #0, #1)

MCU_1
(L2$ bank #2, #3)

MCU_2
(L2$ bank #4, #5)

MCU_3
(L2$ bank #6, #7)

DRAM Byte ADDR:
 0x000 – 0x07F
 0x200 – 0x27F
Etc.

DRAM Byte ADDR:
 0x080 – 0x0FF
 0x280 – 0x2FF
Etc.

DRAM Byte ADDR:
 0x100 – 0x17F
 0x300 – 0x37F
Etc.

DRAM Byte ADDR:
 0x180 – 0x1FF
 0x380 – 0x3FF
Etc.
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3.3 DDR2 FBD Usage
The following sections detail DDR2 FBD information specific to the OpenSPARC T2
MCU.

Note – The OpenSPARC T2 Memory Control Unit (MCU) implements a DDR2 FBD
design model that is based on various JEDEC-approved DDR2 SDRAM and
FBDIMM standards. JEDEC has received information that certain patents or patent
applications may be relevant to FBDIMM Advanced Memory Buffer standard
(JESD82-20) as well as other standards related to FBDIMM technology (JESD206).
For more information, see
http://www.jedec.org/download/search/FBDIMM/Patents.xls

Sun Microsystems does not provide any legal opinions as to the validity or relevancy
of such patents or patent applications. Sun Microsystems encourages prospective
users of the OpenSPARC T2 MCU design to review all information assembled by
JEDEC and develop their own independent conclusion.

3.3.1 FBD Channel Initialization
The FBD channels must be initialized through a software interface. This allows more
flexibility in the initialization over a dedicated hardware state machine.

Software must perform the following sequence of events in order to initialize an FBD
channel:

1. Drive Electrical Idle on the SB channel’s TX outputs by setting the Channel State
Register to ’Disable’. Channels must remain in Disable state for at least Disable
(51 frames) before transitioning to Calibrate state.

2. To transition to Calibrate state, set Channel State Register to ’Calibrate’ for longer
than twice tClkTrain time (42 frames). Once the AMBs are in the Calibrate state,
they must remain in this state for at least Calibrate time (480K frames).

3. Drive Electrical Idle on SB channel to transition AMBs to Disable state. Remain in
Disable state for at least Disable time (51 frames).

4. Set the Channel State Register to ’Training’ to begin driving TS0 patterns on the
SB channel to transition the AMBs to the Training state. The TS0 patterns are sent
to the last AMB until TS0 patterns are received on the northbound channel with
the AMB_ID from the last AMB. Software will use the Training State Loopback
registers to determine how many correct TS0 patterns have been received on the
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northbound channel. This training requires approx. 275 frames with eight DIMMs
per channel. After several correct TS0 patterns have been received on 13 of 14 of
the bit lanes, initialization can proceed to step five.

5. Set the Channel State Register to ’Testing’ to begin driving TS1 patterns on the SB
channel to transition the AMBs to the Testing state. The IBIST engine within the
MCU will take over after the TS1 header has been sent, and it will signal the MCU
upon its completion so the MCU can send the trailer and begin the next training
sequence. After several TS1 patterns with the AMB_ID of the last AMB have been
received correctly, and software/IBIST has determined that at least 9 southbound
and 13 northbound bit lanes are working, initialization can proceed to step six.

6. Set the Channel State Register to ’Polling’ to begin driving TS2 patterns on the SB
channel to transition the AMBs to the Polling state. Continue sending TS2
patterns to the last AMB until correct TS2 patterns are received on the NB
channel. This determines the read round trip delay for the channel. TS2 patterns
can be sent to intermediate AMBs to determine which channel protocols they
support and to check that they can properly merge their data into the NB data
stream. AMBs that are not able to merge their data into the NB data stream
correctly will assert their Data_Merge_Error status bit. Once initialization reaches
the L0 state, software can check these bits to determine how to adjust the
Command_to_Data_Incr registers in the AMBs.

7. Set the Channel State Register to ’Config’ to begin driving TS3 patterns on the SB
channel to transition the AMBs to the Config state. The TS3 patterns program the
configuration of the SB and NB channels (always 10 SB and 14 SB for OpenSPARC
T2) and which channel bits are muxed out if using a fail over mode. TS3 patterns
are issued until the patterns are correctly received on the NB channel.

8. Set the Channel State Register to ’L0’ to transition AMBs to L0 state. After four
consecutive NOPs have been sent on the SB channel, the channel is ready to
accept channel and DRAM commands.
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3.3.2 FBD Commands

TABLE 3-4 FBD DRAM Commands

DRAM Cmds 23 22 21
2
0

1
9

1
8 17

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Activate DS2 DS1 DS0 1 Addr RS DRAM Bank and Address

Write DS2 DS1 DS0 0 1 1 RS DRAM Bank and Address

Read DS2 DS1 DS0 0 1 0 RS DRAM Bank and Address

Precharge All DS2 DS1 DS0 0 0 1 RS X X X X 1 1 1 X X X X X X X X X X

Precharge
Single

DS2 DS1 DS0 0 RS DRAM Bank 1 1 0 X X X X X X X X X X

Auto Refresh DS2 DS1 DS0 0 RS X X X X 1 0 1 X X X X X X X X X X

Enter Self
Refresh

DS2 DS1 DS0 0 RS X X X X 1 0 0 X X X X X X X X X X

Exit Self
Refresh/Exit
Power Down

DS2 DS1 DS0 0 RS X X X X 0 1 1 X X X X X X X X X X

Enter Power
Down

DS2 DS1 DS0 0 RS X X X X 0 1 0 X X X X X X X X X X

reserved X X X X X X X X X X X 0 0 X X X X X X X X X X X

TABLE 3-5 FBD Channel Commands

Channel Cmds 23 22 21 [20:14] 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Debug: In-band
Events

E
V7

E
V6

E
V5

7’b0001111 1 EV
4

EV
3

EV
2

EV
1

EV
0

PV
7

PV
6

PV
5

PV
4

PV
3

PV
2

PV
1

PV
0

Debug: Relative
Timing

P
H
5

P
H
4

P
H
3

7’b0001111 0 PH
2

PH
1

PH
0

RT
9

RT
8

RT
7

RT
6

RT
5

RT
4

RT
3

RT
2

RT
1

RT
0

Debug: Exposed
Info

EX
16

EX
15

EX
14

7’b0001110 EX
13

EX
12

EX
11

EX
10

EX
9

EX
8

EX
7

EX
6

EX
5

EX
4

EX
3

EX
2

EX
1

EX
0

reserved X X X 7’b000110x X X X X X X X X X X X X X X

reserved 7’b000110xx X X X X X X X X X X X X X X
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3.3.2.1 FBD Frame Formats

Data is transmitted across the southbound and northbound channels in frames. For
the southbound channel, 10 bits of data are sent per cycle over 12 cycles. For the
northbound channel 14 bits of data are sent per cycle over 12 cycles. The next two
sections show the format of the frames.

Southbound Frame Formats

The southbound frame format consists of two sections, the "A" command section
and the "B"/"C" command or Data section. The 24-bit "A" command section is
contained in the first four cycles of the frame. The aC[23:0] bits in TABLE 3-6 shows
the location of the "A" command. Bits F[1:0] determines the format of the last eight
cycles of the frame as shown in TABLE 3-7. Bits aE[13:0] are the CRC value protecting
the aC[23:0] and F[1:0] fields.

The FE[21:0] bits in TABLE 3-6 are CRC bits protecting the 72 bits of command or data
in the remaining eight cycles. Bits FE[13:0] are exclusive-ORed with the aE[13:0] field
of the following frame.

DRAM CKE per
DIMM

D
S2

D
S1

D
S0

7’b0000111 BC X X X X X DE
7

DE
6

DE
5

DE
4

DE
3

DE
2

DE
1

DE
0

DRAM CKE per
RANK

D
S2

D
S1

D
S0

7’b0000110 BC X X X X X D3
R1

D3
R0

D2
R1

D2
R0

D1
R1

D1
R0

D0
R1

D0
R0

Write Config
Reg

D
S2

D
S1

D
S0

7’b0000101 DS
3

TI
D

X A1
0

A9 A8 A7 A6 A5 A4 A3 A2 0 0

Read Config Reg D
S2

D
S1

D
S0

7’b0000100 DS
3

X X A1
0

A9 A8 A7 A6 A5 A4 A3 A2 0 0

reserved X X X 7’b0000011 X X X X X X X X X X X X X X

Soft Channel
Reset

X X X 7’b0000010 X X X X X X X X X X X X X X

Sync X X X 7’b0000001 X SD
1

SD
0

X X X X IE
R

ER
C

EL
0s

X X R1 R0

Channel NOP X X X 7’b0000000 X X X X X X X X X X X X X X

TABLE 3-5 FBD Channel Commands (Continued)

Channel Cmds 23 22 21 [20:14] 13 12 11 10 9 8 7 6 5 4 3 2 1 0
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In failover mode, the data for bit 9 is neither transmitted nor used in CRC
calculations.

TABLE 3-6 Common Features of Normal Southbound Frames

Transfer

Bit

9 8 7 6 5 4 3 2 1 0

0 aE0 aE7 aE8 F0 aC20 aC16 aC12 aC8 aC4 aC0

1 aE1 aE6 aE9 F1 aC21 aC17 aC13 aC9 aC5 aC1

2 aE2 aE5 aE10 aE13 aC22 aC18 aC14 aC10 aC6 aC2

3 aE3 aE4 aE11 aE12 aC23 aC19 aC15 aC11 aC7 aC3

4 FE21

5 FE20

6 FE19

7 FE18

8 FE17

9 FE16

10 FE15

11 FE14

FE0 FE7 FE8

FE1 FE6 FE9

FE2 FE5 FE10 FE13

FE3 FE4 FE11 FE12

TABLE 3-7 Southbound Frame Type Encoding

Frame Format F1 F0 Comments

Command 0 0 Frame contains one or more commands plus optional data

reserved 0 1

Command +
Wdata

1 WSn Frame contains an "A" command plus 72 bits of Wdata
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Command Frame Format

TABLE 3-8 shows the format of a southbound frame with three commands, aC[23:0],
bC[23:0], and cC[23:0].

Command Frame with Data Format

TABLE 3-9 shows the southbound frame format where the "B" command has a 32-bit
data payload. The BE[3:0] bits are byte enables for the data. This format is used to
write to internal control registers of the AMB.

TABLE 3-8 Command Frame Format

Transfer
Bit

9 8 7 6 5 4 3 2 1 0

0 aE0 aE7 aE8 F0 aC20 aC16 aC12 aC8 aC4 aC0

1 aE1 aE6 aE9 F1 aC21 aC17 aC13 aC9 aC5 aC1

2 aE2 aE5 aE10 aE13 aC22 aC18 aC14 aC10 aC6 aC2

3 aE3 aE4 aE11 aE12 aC23 aC19 aC15 aC11 aC7 aC3

4 FE21 0 0 0 bC20 bC16 bC12 bC8 bC4 bC0

5 FE20 0 0 0 bC21 bC17 bC13 bC9 bC5 bC1

6 FE19 0 0 0 bC22 bC18 bC14 bC10 bC6 bC2

7 FE18 0 0 0 bC23 bC19 bC15 bC11 bC7 bC3

8 FE17 0 0 0 cC20 cC16 cC12 cC8 cC4 cC0

9 FE16 0 0 0 cC21 cC17 cC13 cC9 cC5 cC1

10 FE15 0 0 0 cC22 cC18 cC14 cC10 cC6 cC2

11 FE14 0 0 0 cC23 cC19 cC15 cC11 cC7 cC3

TABLE 3-9 Command Frame with Data Format

Transfer
Bit

9 8 7 6 5 4 3 2 1 0

0 aE0 aE7 aE8 F0 aC20 aC16 aC12 aC8 aC4 aC0

1 aE1 aE6 aE9 F1 aC21 aC17 aC13 aC9 aC5 aC1

2 aE2 aE5 aE10 aE13 aC22 aC18 aC14 aC10 aC6 aC2

3 aE3 aE4 aE11 aE12 aC23 aC19 aC15 aC11 aC7 aC3

4 FE21 0 0 0 bC20 bC16 bC12 bC8 bC4 bC0
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Command +WData Frame Format (4-bit Device)

Write data is sent in the southbound frame when F[1] is 1. Write data for a write
command is sent to an AMB over four cycles. TABLE 3-10 shows the format of the
F[1:0] field for these four frames. The WS[2:0] field identifies the target AMB. Each
AMB must speculatively store the write data in an accumulation buffer until it
determines that the data is for it. If the data is for that AMB, the data is stored in the
Write Data Buffer; otherwise, it is discarded.

TABLE 3-11 shows the format of the Command with Wdata frame.

5 FE20 0 0 0 bC21 bC17 bC13 bC9 bC5 bC1

6 FE19 0 0 0 bC22 bC18 bC14 bC10 bC6 bC2

7 FE18 0 0 0 bC23 bC19 bC15 bC11 bC7 bC3

8 FE17 BE0 D28 D24 D20 D16 D12 D8 D4 D0

9 FE16 BE1 D29 D25 D21 D17 D13 D9 D5 D1

10 FE15 BE2 D30 D26 D22 D18 D14 D10 D6 D2

11 FE14 BE3 D31 D27 D23 D19 D15 D11 D7 D3

TABLE 3-10 WData Address Delivery

Wdata Frame F1 F0

0 1 WS0

1 1 WS1

2 1 WS2

3 1 0

TABLE 3-11 Command+Wdata Frame Format (4-bit Device)

Transfer
Bit

9 8 7 6 5 4 3 2 1 0

0 aE0 aE7 aE8 F0 aC20 aC16 aC12 aC8 aC4 aC0

1 aE1 aE6 aE9 F1 aC21 aC17 aC13 aC9 aC5 aC1

2 aE2 aE5 aE10 aE13 aC22 aC18 aC14 aC10 aC6 aC2

TABLE 3-9 Command Frame with Data Format (Continued)

Transfer
Bit

9 8 7 6 5 4 3 2 1 0
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Northbound Frame Formats

Northbound frames return status information or read data. Alert Frames implicitly
tell if an error has occurred on the southbound channel. A Status Frame is an explicit
status response to a Sync Frame on the southbound channel. When no Status or
Read Data Frame is expected and no Alert Frame is detected on the northbound
channel, then an Idle frame is expected.

Bit 13 of the northbound frame is not transmitted or used in CRC calculations when
in failover mode.

Northbound Idle Frame Format

The Idle Frames are sent by the AMBs on the northbound channel to indicate that it
is still operating correctly. The bits within the frame are determined by a 12-bit LFSR
with polynomial x^12 + x^7 + x^4 + x^3 + 1. An example implementation is shown
in FIGURE 3-4.

3 aE3 aE4 aE11 aE12 aC23 aC19 aC15 aC11 aC7 aC3

4 FE21 C17D0 C15D0 C13D0 C11D0 C9D0 C7D0 C5D0 C3D0 C1D0

5 FE20 C17D1 C15D1 C13D1 C11D1 C9D1 C7D1 C5D1 C3D1 C1D1

6 FE19 C17D2 C15D2 C13D2 C11D2 C9D2 C7D2 C5D2 C3D2 C1D2

7 FE18 C17D3 C15D3 C13D3 C11D3 C9D3 C7D3 C5D3 C3D3 C1D3

8 FE17 C18D0 C16D0 C14D0 C12D0 C10D0 C8D0 C6D0 C4D0 C2D0

9 FE16 C18D1 C16D1 C14D1 C12D1 C10D1 C8D1 C6D1 C4D1 C2D1

10 FE15 C18D2 C16D2 C14D2 C12D2 C10D2 C8D2 C6D2 C4D2 C2D2

11 FE14 C18D3 C16D3 C14D3 C12D3 C10D3 C8D3 C6D3 C4D3 C2D3

TABLE 3-11 Command+Wdata Frame Format (4-bit Device) (Continued)

Transfer
Bit

9 8 7 6 5 4 3 2 1 0
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FIGURE 3-4 Idle Frame LFSR Counter

The initial value is 12’b000000000001, and the LFSR cycles through 2^12 - 1 states
before repeating. The pattern in the LFSR is mapped to the Idle Frame bit lanes, i.e.
X0 maps to bit lane 0, X1 to bit lane 1, etc. The 13th bit lane contains the value of X0
for the first 6 cycles of the frame and the inverse of X0 for the last 6 cycles. The 14th
bit lane contains the value of X0 for all 12 cycles of the frame. TABLE 3-13 shows the
format of the first Idle Frame.

TABLE 3-12 First Northbound Idle Frame Format

Transf
er

Bit Transf
er

Bit

0 1 1 0 0 0 0 0 0 0 0 0 0 0 1

1 1 1 0 0 0 0 0 0 0 0 0 0 0 1

2 1 1 0 0 0 0 0 0 0 0 0 0 0 1

3 1 1 0 0 0 0 0 0 0 0 0 0 0 1

4 1 1 0 0 0 0 0 0 0 0 0 0 0 1

5 1 1 0 0 0 0 0 0 0 0 0 0 0 1

6 1 0 0 0 0 0 0 0 0 0 0 0 0 1

7 1 0 0 0 0 0 0 0 0 0 0 0 0 1

8 1 0 0 0 0 0 0 0 0 0 0 0 0 1

9 1 0 0 0 0 0 0 0 0 0 0 0 0 1

10 1 0 0 0 0 0 0 0 0 0 0 0 0 1

11 1 0 0 0 0 0 0 0 0 0 0 0 0 1
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Alert Frame Format

An AMB will begin sending Alert Frames in place of Idle Frames on the northbound
channel whenever an error has been detected on the southbound channel and will
continue to do so until it receives a Soft Channel Reset command or a channel reset.
The Alert Frame format is the inverse of the corresponding Idle Frame. TABLE 3-13
shows the format of the Alert Frame that replaces the Second Idle Frame.

Data Frame Format

TABLE 3-14 shows the format of a Northbound Read Data Frame for x4 devices. It
contains two 72-bit data packets, each with 12-bit CRC protection.

TABLE 3-13 Alert Frame Replacing First Idle Frame

Xfer Bit

13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 1 1 1 1 1 1 1 1 1 0

1 0 0 1 1 1 1 1 1 1 1 1 1 1 0

2 0 0 1 1 1 1 1 1 1 1 1 1 1 0

3 0 0 1 1 1 1 1 1 1 1 1 1 1 0

4 0 0 1 1 1 1 1 1 1 1 1 1 1 0

5 0 0 1 1 1 1 1 1 1 1 1 1 1 0

6 0 1 1 1 1 1 1 1 1 1 1 1 1 0

7 0 1 1 1 1 1 1 1 1 1 1 1 1 0

8 0 1 1 1 1 1 1 1 1 1 1 1 1 0

9 0 1 1 1 1 1 1 1 1 1 1 1 1 0

10 0 1 1 1 1 1 1 1 1 1 1 1 1 0

11 0 1 1 1 1 1 1 1 1 1 1 1 1 0

TABLE 3-14 Northbound Data Frame Format

Xfer Bit

13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 E1.0 E1.11 C17.D2 C16D0 C14.D2 C13.D0 C11.D2 C10.D0 C8.D2 C7.D0 C5.D2 C4.D0 C2.D2 C1.D0

1 E1.1 E1.10 C17.D3 C16D1 C14.D3 C13.D1 C11.D3 C10.D1 C8.D3 C7.D1 C5.D3 C4.D1 C2.D3 C1.D1

2 E1.2 E1.9 C18.D0 C16D2 C15.D0 C13.D2 C12.D0 C10.D2 C9.D0 C7.D2 C6.D0 C4.D2 C3.D0 C1.D2

3 E1.3 E1.8 C18.D1 C16D3 C15.D1 C13.D3 C12.D1 C10.D3 C9.D1 C7.D3 C6.D1 C4.D3 C3.D1 C1.D3
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Northbound Register Data Frame Format

TABLE 3-15 shows the format for an AMB Register Read Data Frame.

4 E1.4 E1.7 C18.20 C17.D0 C15.D2 C14.D0 C12.D2 C11.D0 C9.D2 C8.D0 C6.D2 C5.D0 C3.D2 C2.D1

5 E1.5 E1.6 C18.D3 C17.D1 C15.D3 C14.D1 C12.D3 C11.D1 C9.D3 C8.D1 C6.D3 C5.D1 C3.D3 C2.D0

6 E2.0 E2.11 C17.D2 C16.D0 C14.D2 C13.D0 C11.D2 C10.D0 C8.D2 C7.D0 C5.D2 C4.D0 C2.D2 C1.D0

7 E2.1 E2.10 C17.D3 C16.D1 C14.D3 C13.D1 C11.D3 C10.D1 C8.D3 C7.D1 C5.D3 C4.D1 C2.D3 C1.D1

8 E2.2 E2.0 C18.D0 C16.D2 C15.D0 C13.D2 C10.D0 C10.D2 C9.D0 C7.D2 C6.D0 C4.D2 C3.D0 C1.D2

9 E2.3 E2.8 C18.D1 C16.D3 C15.D1 C13.D3 C10.D1 C10.D3 C9.D1 C7.D3 C6.D1 C4.D3 C3.D1 C1.D3

10 E2.4 E2.7 C18.D2 C17.D0 C15.D2 C14.D0 C12.D2 C11.D0 C9.D2 C8.D0 C6.D2 C5.D0 C3.D2 C2.D0

11 E2.5 E2.6 C18.D3 C17.D1 C15.D3 C14.D1 C12.D3 C11.D1 C9.D3 C8.D1 C6.D3 C5.D1 C3.D3 C2.D1

TABLE 3-15 Northbound Register Data Frame Format

Xfer Bit

13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 E1.0 E1.11 0 0 0 0 0 0 D30 D24 D18 D12 D6 D0

1 E1.1 E1.10 0 0 0 0 0 0 D31 D25 D19 D13 D7 D1

2 E1.2 E1.9 0 0 0 0 0 0 0 D26 D20 D14 D8 D2

3 E1.3 E1.8 0 0 0 0 0 0 0 D27 D21 D15 D9 D3

4 E1.4 E1.7 0 0 0 0 0 0 0 D28 D22 D16 D10 D4

5 E1.5 E1.6 0 0 0 0 0 0 0 D29 D23 D17 D11 D5

6 E2.0 B2.11 0 0 0 0 0 0 0 0 0 0 0 0

7 E2.1 E2.10 0 0 0 0 0 0 0 0 0 0 0 0

8 E2.2 E2.9 0 0 0 0 0 0 0 0 0 0 0 0

9 E2.3 E2.8 0 0 0 0 0 0 0 0 0 0 0 0

10 E2.4 E2.7 0 0 0 0 0 0 0 0 0 0 0 0

11 E2.5 E2.6 0 0 0 0 0 0 0 0 0 0 0 0

TABLE 3-14 Northbound Data Frame Format (Continued)

Xfer Bit
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Northbound Status Frame Format

TABLE 3-16 shows the format of the northbound Status Frame. The Status Frame is
sent in response to Sync Frame on the southbound channel. The Status Frame
returns at the time that the first Read Data Frame would return if a read were issued
at the time of Sync Frame plus an additional delay determined by the SD[1:0] field of
the Sync command. Each AMB sends its status back on the bit lane corresponding to
its AMB_ID. The S[3:0] bits are the status information from the configuration register
selected in the Sync command (TABLE 3-17). The SP bit is the odd parity of S[3:0].

TABLE 3-16 Status Frame Format

Xfer Bit

0 0 0 DBS0 DAS0 D9S0 D8S0 D7S0 D6S0 D5S0 D4S0 D3S0 D2S0 D1S0 D0S0

1 0 0 DBS1 DAS1 D9S1 D8S1 D7S1 D6S1 D5S1 D4S1 D3S1 D2S1 D1S1 D0S1

2 0 0 DBS2 DAS2 D9S2 D8S2 D7S2 D6S2 D5S2 D4S2 D3S2 D2S2 D1S2 D0S2

3 0 0 DBS3 DAS3 D9S3 D8S3 D7S3 D6S3 D5S3 D4S3 D3S3 D2S3 D1S3 D0S3

4 0 0 DBSP DASP D9SP D8SP D7SP D6SP D5SP D4SP D3SP D2SP D1SP D0SP

5 0 1 0 1 0 1 0 1 0 1 0 1 0 1

6 1 0 1 0 1 0 1 0 1 0 1 0 1 0

7 0 1 0 1 0 1 0 1 0 1 0 1 0 1

8 1 0 1 0 1 0 1 0 1 0 1 0 1 0

9 0 1 0 1 0 1 0 1 0 1 0 1 0 1

10 1 0 1 0 1 0 1 0 1 0 1 0 1 0

11 0 1 0 1 0 1 0 1 0 1 0 1 0 1

TABLE 3-17 Status Bit Description

Field Name Description

FBD Status 0

SP Parity Parity of S[3:0]

S3 NBDE Northbound Debug Event

S2:S1 Thermal_Trip AMB thermal information for thermal management

S0 Alert_Asserted An error has been detected by the AMB.

FBD Status 1

SP Parity Parity of S[3:0]
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3.3.3 SDRAM Initialization
The initialization sequence within the MCU for the SDRAMs will still follow the
same flow; however, the interface will be different. The MCU will have to initialize
the SDRAMs indirectly through registers in the AMBs. The MCU will issue a
command to the AMBs and then poll status registers to determine when the AMBs
have completed issuing the command to the SDRAMs.

After SDRAM initialization is complete, the MCU will begin scheduling commands
directly to the SDRAMs.

The DDR2 SDRAMs must be powered up and initialized in a predefined manner.
Operational procedures other than those specified may result in undefined
operation. TABLE 3-18 shows the sequence of steps required for POWER UP and
Initialization.

S[3:1] reserved reserved

S[0] Data_Merge_Error AMB cannot meet northbound data merge timing requirement.

FBD Status 2

SP Parity Parity of S[3:0]

S[3:0] reserved reserved

FBD Status 3

SP Parity Parity of S[3:0]

S[3:0] reserved reserved

TABLE 3-18 SDRAM Power Up and Initialization Sequence

Step Required Action

1. Apply power to VDD.

2. Apply power to VDDQ.

3. Apply power to VREF and to the system VTT.

4. Start clock and maintain stable condition for 200 s.

5. Apply No Operation or Deselect command and take CKE high.

6. Wait minimum of 400ns, then issue a Precharge-all command.

7. Issue Extended Mode Register 2 Set (EMRS(2)) command.

8. Issue Extended Mode Register 3 Set (EMRS(3)) command.

TABLE 3-17 Status Bit Description (Continued)

Field Name Description
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3.3.4 DDR2 SDRAM Commands
TABLE 3-19 shows the truth table for the commands supported by the DDR2
SDRAMs.

9. Issue Extended Mode Register 1 Set (EMRS(1)) command to enable DLL.

10. Issue Mode Register Set (MRS) command to reset DLL.

11. Issue Precharge-all command.

12. Issue two or more Auto-Refresh commands.

13. Issue MRS command with low on A8 to initialize device operation (i.e. to program operating
parameters without resetting the DLL).

14. At least 200 clocks after step 8, execute OCD Calibration (Off Chip Driver Impedance adjustment). If
OCD calibration is not used, EMRS OCD Default command (A9=A8=A7=1) followed by EMRS OCD
Calibration Mode Exit command (A9=A8=A7=0) must be issued with other parameters of EMRS.

15. The DDR2 SDRAM is now ready for normal operation.

TABLE 3-19 DDR2 SDRAM Command Truth Table

Function

CKE
Previous
Cycle

CKE
Current
Cycle CS# RAS# CAS# WE# Bank Address

Mode/Extended Mode
Register Set

H H L L L L BA Op-Code

Auto-Refresh H H L L L H X X

Self-Refresh Entry H L L L L H X X

Self-Refresh Exit L H H X X X X X

L H H H

Single Bank Precharge H H L L H L BA A10=L

Precharge All Banks H H L L H L X A10=H

Bank Activate H H L L H H BA Row
Address

Write Column
Address
A10=L

TABLE 3-18 SDRAM Power Up and Initialization Sequence (Continued)

Step Required Action
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3.3.4.1 Commands Supported by OpenSPARC T2
■ Mode/Extended Mode Register Set - program Mode or Extended Mode Register

which controls operation of SDRAM.

■ Auto-Refresh - Refresh all SDRAM banks.

■ Self-Refresh - Place SDRAM in refresh mode controlled by a timer within the
SDRAM.

■ Power Down - Place SDRAM in low power mode.

■ Single Bank Precharge - Deactivate row in a particular bank.

■ Precharge All Banks - Deactivate rows in all banks.

■ Bank Activate - Activate a row within a particular bank.

■ Write with Auto-Precharge - Perform a write operation and deactivate the bank
after completion.

■ Read with Auto-Precharge - Perform a read operation and deactivate the bank
after completion.

■ No Operation/Device Deselect - No operation.

Write with Auto-Precharge Column
Address
A10=H

Read Column
Address
A10=L

Read with Auto-Precharge H H L H L H BA Column
Address
A10=H

No Operation H X L H H H X X

Device Deselect H X H X X X X X

Power Down Entry H L H X X X X X

L H H H

Power Down Exit L H H X X X X X

L H H H

TABLE 3-19 DDR2 SDRAM Command Truth Table (Continued)

Function

CKE
Previous
Cycle

CKE
Current
Cycle CS# RAS# CAS# WE# Bank Address
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■ (Read and Write without Autoprecharge are not supported in OpenSPARC T2
since a bank is always closed after a transaction.)

3.4 MCU-L2 Cache Interface
An L2 cache bank can send one read or write request at a time to the MCU. Once it
sends a request it must wait for the appropriate acknowledge before sending the
next request. There is a delay of three cycles from the completion of a transaction
(acknowledge for a read, last data word for a write) until the next request can be
made. There can be a total of eight outstanding read requests and eight outstanding
write requests from each L2 cache bank at any time.
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FIGURE 3-5 MCU-L2 Cache Interface Signals

3.4.1 MCU Read Transaction
The L2 Cache makes a read request by asserting l2t_mcu_rd_req to the MCU at the
same time that l2t_mcu_addr[39:4] and l2t_mcu_rd_req_id[2:0], the index into the L2
cache’s fill buffer for returning data, are valid. The request is registered in the MCU
and held in the l2clk domain until l2if_cmp_ddr_sync_en is high.
(l2if_cmp_ddr_sync_en is a registered version of cmp_ddr_sync_en, the top-level
clock synchronization signal.) This signal is used to synchronize the signals crossing
from the l2clk (1.4 GHz) domain to the drl2clk (800 MHz) domain and indicates that
the request will be stored in the Read Request Queue on the next drl2clk cycle.
FIGURE 3-6 shows the timing of the read request and the internal acknowledge. There
is a two-deep FIFO on the read request port. When a read request comes in, it is
placed in the FIFO. An acknowledge for a transaction is sent to the L2 cache when
that transaction reaches the head of the FIFO, either when a transaction is placed
into an empty FIFO or when both entries are full and then an entry is dequeued.

No flow control is needed for the returning read data because the L2 cache will
guarantee space to receive the data. When mcu_l2t_data_vld_r0 signal is asserted,
the signals mcu_l2t_qword_id_r0[1:0] and mcu_l2t_read_req_id[2:0] are driven at the
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same time, and mcu_l2b_data_r3[127:0] and mcu_l2b_ecc_r3[27:0] are driven three
cycles later. Also, mcu_l2t_secc_err_r3 or mcu_l2t_mecc_err_r3 will be asserted at
the same time as the data if a correctable or uncorrectable error, respectively,
occurred in the corresponding data beat. The data is returned to the L2 cache over
several cycles because of the difference between l2clk and drl2clk. FIGURE 3-6 and
FIGURE 3-7 show an example of a six to one l2clk to drl2clk ratio for a read request.
The order in which the data beats are returned to the L2 cache depends on the bit
PA[5].

Since an L2 bank can only have eight outstanding read requests at a time, and the
MCU can handle eight outstanding reads per L2 bank, the MCU does not have to
keep track of the number of outstanding reads.

Reads are not necessarily serviced in the order they are received from the L2 cache.
Transactions are scheduled in order to limit the amount of dead data cycles on the
bus to the DIMMs.
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FIGURE 3-6 Read Request Timing

FIGURE 3-7 Read Data Return Timing

3.4.2 MCU Write Transaction
The L2 Cache makes a write request by asserting l2t_mcu_wr_req to the MCU at the
same time that l2t_mcu_addr[39:6] is valid. Once the transaction is placed into the
Write Request Queue, mcu_l2t_wr_ack is sent back to the L2 cache to indicate that it
can now send another write transaction. l2b_mcu_data_valid and the write data
l2b_mcu_wr_data_r5[63:0] are asserted five cycles after the acknowledge. The write
data is sent to the MCU over eight cycles for a total of 64 bytes of data.

mcu_l2b_data_r3[127:0]
d0 d1 d2

l2clk

d3

e0 e1 e2 e3mcu_l2b_ecc_r3[27:0]

mcu_l2b_qword_id_r0[1:0]

mcu_l2t_data_vld0_r0

o0 o1 o2 o3

ddr_cmp_sync_en

l2t_mcu_addr[39:5]

l2t_mcu_rd_req

l2if_mcu_rd_ack

l2clk

0 1 n n  1

cmp_ddr_sync_en

l2t_mcu_rd_req_id[2:0]

n – 1

l2if_cmp_ddr_sync_en

n – 2 n  2
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FIGURE 3-8 Write Request Timing

3.5 DDR2 SDRAM Transaction Timing

3.5.1 Memory Read
The MCU reads data from the external memory by:

■ Issuing a bank activate by assert RAS and driving the row address and the bank
select.

■ Issuing a Posted CAS Burst Read with AutoPrecharge command by asserting CAS
and driving the column address.

■ Waiting for a delay of AL (Additive Latency) + CL (CAS latency) before sampling
the read data.

■ Sampling data returning in a burst length of four in two drl2clk cycles.

A new Bank Activate command may be issued to the same bank if the following
conditions are satisfied:

■ The RAS precharge time (tRP) has been satisfied from the clock cycle at which the
AutoPrecharge begins.

■ The RAS cycle time (tRC) from the current Bank Activate has been satisfied.

l2b_mcu_wr_data_r5[63:0]
d0 d1 d2 d4 d5 d6d3 d7

l2clk

0 1 n - 1 n n  1

l2t_mcu_wr_req

l2t_mcu_addr[39:6]

l2if_cmp_ddr_sync_en

mcu_l2t_wr_ack

l2b_mcu_data_valid

n  2 n  3 n  4 n  5 n  12
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FIGURE 3-9 shows a single burst read of length four (BL=4) with AutoPrecharge,
followed by a reactivation of the same bank.

FIGURE 3-9 Memory Burst Read with AutoPrecharge, Same Bank Reactivated

For seamless back-to-back memory reads, a different bank (B) can be activated
during the memory read of bank (A). Bank (B) can start a burst read with
AutoPrecharge command after a delay of BL/2 = 2cycles from the bank (A) burst
read with AutoPrecharge command. FIGURE 3-10 shows a seamless burst read with
AutoPrecharge command of two different banks.
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FIGURE 3-10 Memory Burst Read with AutoPrecharge with Multiple Banks Activated

Note – There is an additional cycle delay when switching from one rank to a
different rank.

3.5.2 Memory Write
The MCU writes data to the external memory by:

■ Issuing a bank activate by asserting RAS and the row address and the bank
selects.

■ Issuing a Posted CAS Burst Write with AutoPrecharge command by asserting
CAS and driving the column address.

■ Waiting for delay of (AL + CL-2) cycles from the CAS assertion, deasserting the
data strobe (DQS/DQS_L) for one cycle.

■ Waiting for a delay of (AL + CL-1) cycles from the CAS cycle before driving the
data strobe and the write data.

The same bank can be reactivated after a total delay of (1 + AL + CL-1 + BL/2 + tWR
+ tRP) cycles for reactivating the same bank. FIGURE 3-11 shows a single burst write
with AutoPrecharge command.
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FIGURE 3-11 Memory Burst Write with AutoPrecharge and Same Bank Activate

For a seamless memory write, a different bank (B) can be activated during the
memory write of bank (A). The bank (B) burst write with AutoPrecharge command
after a delay of BL/2 from the bank (A) burst write with AutoPrecharge command.
FIGURE 3-12 shows a seamless burst write with AutoPrecharge command of two
different banks.

FIGURE 3-12 Memory Burst Write with AutoPrecharge and Multiple Banks Activated
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3.5.3 SERDES (I/O) Timing
The SERDES handles the physical layer of the FBD channel. The packets from MCU
are converted into frames of bits sent out on the serial link. On the northbound serial
lanes, the data returns from the memory link. Each frame going southbound is
divided into 10 bit lanes and 12 bit times or Unit Interval (UI). The maximum bit
lane frequency is 4.8GHz. Each frame going northbound is divided into 14 bit lanes
and 12 bit times. The DRAM clock is 1/12 the link’s frequency.
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FIGURE 3-13 Dual FBDIMM Channel Receiver

On the receive side, each SERDES macro recover its high speed clock, convert the
electrical signals into a bit stream of logical 1s and 0s, and outputs a group (1
symbol) of 12 bits every 400MHz max. There are three fundamental
microarchitectural issues for the host receiver:

■ Frame/symbol alignment logic (SAL) within a single bit lane
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■ Frame/lane alignment logic (LAL) across all 14 northbound lanes needed so MCU
data layer does not see the physical aspects of a single channel

■ Frame/channel alignment logic (CAL) across two northbound channels (across
potentially all 28 northbound lanes) needed so MCU data layer does not see the
physical aspects of two independent channels but sees instead dual channels
operating logically in lockstep.

To minimize the number of wires between MCU and the SERDES logic, especially
for supporting the dual channel case, half a frame is transferred every MCU’s drl2clk
clock cycle, which implies that drl2clk frequency must be at least 1/6 rather than
1/12 the link frequency.

3.5.3.1 Single Lane Symbol Alignment Logic

FIGURE 3-14 shows the SAL block needed if the macro doesn’t symbol lock. The bit
order for the 12 bit data is bit position 0 corresponds to oldest received bit on the
serial link.
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FIGURE 3-14 Symbol Alignment Logic

3.5.3.2 Frame Lane Alignment Logic across all 14 Northbound Lanes

Each bit lane has a static skew relative to another bit lane due to differences in
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Even when an AMB sends out the same symbol on all of the northbound lanes all
initially aligned, a symbol from one SAL instance is not guaranteed to arrive at the
same cycle as the same symbol from another SAL instance. A full frame must be
collected and all 14 northbound lanes must be aligned to meaningfully interpret the
original content. This lane alignment is done during link training. During training
state 0 (TS0), identical frames are repeated many times and all lanes carry the same
sequence of symbols. The header cycle of the frame is a uniquely identifiable symbol
compared to the rest of the symbols in the frame. During TS0, the Lane Alignment
Logic (LAL) queues up the symbols from each lane and search for the header cycle
symbol. Once the skew between lanes have been determined consistently across
multiple TS0 patterns, the LAL locks onto the wavefront and begins outputting
frame aligned data for the full channel.
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FIGURE 3-15 Lane Alignment Logic
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        if sal_locked[lane] {

           if sal_hc[lane] {

              if !fastest_found() {

/* assume lane is fastest */

/* set its rdptr to the deepest entry of the symbol fifo */

rdptr[lane] = N;

set_lockseen[lane] = 1;

start_master_offset_counter(); /* counter increments each
cycle */

start_master_TS0pattern_counter(); /* counter increments
every TS0 pattern */

set_fastest_found(lane);

}

               else if !relationship_exists_to_fastest() {

if (master_offset_counter_value()  > N) /* something is
wrong... */

    error_handle(SKEW_TOO_LARGE);

} else {

    rdptr[lane] =
rdptr[fastest_lane]-master_offset_counter_value();

    increment_lock_count();

}

                else if !same_relationship_to_fastest() {

    error_handle(DYNAMIC_SKEW_TO_FASTEST);

}

             } /* if sal_hc[lane]

        } else { /* sal_locked is false */

if (lockseen[lane]) {

   error_handle(SYMBOL_LOCK_UNLOCKED);

}
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         } /* foreach lane */

      } /* if lockcount < 13 */

      else {

zero_offset_to_slowest(); /* for all i {rdptr[i]=
rdptr[i]-rdptr[slowest]}

               }

} /* while TS0 state */

lal_locked = (lock_count>=13) && (master_TS0pattern_counter > 2);

lal_header_cycle = lal_locked && (symbol(fastest_found,
rdptr[fastest_found]) == TS0_HEADER);

lal_out[167:0] = concat( failsymbol(0, rdptr[0], rdptr[1]),
failsymbol(1, rdptr[1], rdptr[2]), ... , symbol13(1, rdptr[13]));

The Lane alignment state machine has direct control of the write pointers and read
pointers of 14 FIFOs. The SAL’s lock signal is the write and shift enable. The state
machine tracks the procession of each SAL’s header_cycle signal over many cycle to
determine the relative delays between the lanes. The first lane to have its SAL
header_cycle assert is declared the fastest lane. It’s symbol read pointer is set to the
deepest entry (N). Each time a header cycle is detected on a locked lane, its symbol
read pointer is set to the appropriate distance ’earlier’ from the fastest’s symbol read
pointer. Once 13 out of the 14 lanes (enough to support failover) have achieved lock,
the read pointer for all the lanes are subtracted such that the slowest lane’s symbol
read pointer is 0, while all the other lane remains the same distance away. This is for
latency purpose only. A separate counter makes sure lane lock is not declared until
multiple TS0 patterns have been elapsed with all 13 or 14 lanes locked.

For efficiency, each SAL’s header_cycle signal is accumulated using flops to allow for
arbitrary access for correlation purpose. Until lane alignment lock has occurred, the
168 bit data out is indeterministic. The lane alignment state machine also handles
masking out the failed lane during training state 3.

Architecturally Complete Implementation

Architecturally, FBDIMM allows for up to eight DIMMs and four logic analyzers on
a single FBDIMM channel. All intermediate DIMMs transmitter are allowed to
introduce 100ps + 2UI of skew. The last (southernmost) DIMM is allowed to
introduce a longer lane skew for its northbound driver (100ps + 3UI). All receiver
skew component have the same identical maximum (6UI).

Max lane-skew is
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= (# AMBs -1) x (L_txskew2 + L_rxskew) + (L_txskew1 + L_rxskew)

= (# AMBs - 1) x (100ps + 2UI + 6UI) + (100ps + 3UI + 6UI)

= 11 x (100ps + 8UI) + 100ps + 9UI

= 1200ps + 97UI

= Worse case UI max lane skew @ 4.8Gbps, 1UI=208ps

= ~6UI + 97UI = ~9 frames

= Worse case UI max lane skew @ 4.8Gbps, 1UI=208ps

= ~6UI + 97UI = ~9 frames

The TS0 pattern is 12 frames long, so with a 9 frame lane-skew, and 9 frame deep
buffer, there would not be an alias problem of erroneously locking one lane’s TS0
pattern to a prior or next TS0 pattern on another lane. IF ANY TS0 patterns were
dropped on any lanes by the designated AMB while it lane-deskews and the host
locks the northbound lanes prior to that AMB locking its southbound lanes, then the
true maximum allowable skew would be 6 frames long to prevent the situation of
the fastest lane aliasing into a slower lane. A more robust (but much more costly)
mechanism for the host would use TS1’s unique end delimiters for the n-3, n-2, n-1,
and n frames to correct any alias problem. After symbol lock, a budget of two or
three TS0 patterns should be sufficient to assert lane-locked. If lock is not acquired
after the total of 13 TSO patterns, the AMB_ID returned will be incorrect and MCU
will need to look at lane-locked signal. If not locked, then it’ll need to transition back
to EI and do TS0 again.

Nine frames of lane skew can tolerate approximately 22 to 34 ns of delay due to trace
mismatch. At about 61.5 ps/cm of trace velocity, that’s about a mismatch of 50+ cm.

Having a 9 deep x 12 bit wide FIFO per lane seems excessive for the type of board
design and blade system OpenSPARC T2 would go into. FBDIMM architecturally
allows for very inexpensive board design and board manufacturing costs - relaxed
board routing rules between lanes using cheap FR4 dielectric material - while
allowing for a long latency system topology with DIMMs plugged on riser card and
long chains.

PC Board/System Dependent OpenSPARC T2 Implementation

If a more realistic board design and system topology is available, the cost of the deep
buffer and logic to quickly search exhaustively through theoretically 914
permutation of ordering could be significantly reduced. A typical blade server does
not have that much cubic space of freedom nor expected to need to access more
memory on another blade via the backplane.
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A sample analysis from slides from Intel Spring’03 IDF FBDIMM and RawCard
simulation results suggests a better upper bound for the lane trace mismatch.

The short answer is:

1st order approximation of frames needed

frames = roundup (N * (7 * D + L)/40)

N = settling time (# of wave propagations) of a tx/rcr pair.

D = max trace mismatch between a pair of DIMMs, in cm

L = max trace mismatch between host and northernmost DIMM.

Intel’s "8 DIMM Layout" slide has the following:

- 0.4" DIMM to DIMM,

- shortest lead-in 1.2"

(southbound channel 0)

- Longest lead-in 7.3"

(northbound channel 3)

Using this as a recommended layout, .4" is practically 1cm.

Assuming OpenSPARC T2’s board has at least a 6 layer so there can be a clean back
current return path and sufficient shielding against radiation to the outside and
edges of the PCB; Assuming these critical’ signals avoid high impedance areas (vias,
gaps, and zones in ground planes) and takes the path of least inductance (like avoid
going vertical between planes as much as possible) and also assuming 45 degree
turns instead of 90 degree turns to avoid changing the ’w’ parameter of the wave
guide.

The FR4 board dielectric has a permittivity of 4.5 at 1MHz (number used for DIMM
card), but is 3.4 for the GHz operation in the channel (using a higher channel
impedance of 85 ohm)

Propagation delay calculation:

Assuming the simple stripline transmission line model where the
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inner metal traces are sandwiched by the pair of ground or VCC planes,

separated by a FR4 dielectric (er = ~3.4), wave velocity

ignoring the higher order effects of the full RLGC,

v = c/sqrt (er)

= 300um/ps/sqrt (3.4)

= 0.5423 * 300 um/ps

= 1627 um/ps (or 61.5 ps/cm)

Relative to the UI of 208ps (4.8GHz), v ~= 30% of a UI

I’m also going to assume a very slow driver to minimize the spike in driver-current
and ringing. FBDIMM does not explicitly specify a maximum slew rate but they’re
implied by the edge transition rate and eye diagrams. So setting N to be a simple 1.

1 * .3 UI/cm = 0.3 UI skew per cm of trace mismatch.

7 channels between the eight DIMMs @ 1 cm separate. It shouldn’t be too difficult to
lay out these 48 southbound traces on the OpenSPARC T2 board, all next to each
other in parallel, and the DIMM connectors minimally spaced for a field technician
to install the DIMMs. Bear in mind that requirement for each set of two differential
conductors have very stringent skew mismatch requirement to avoid the collapse of
the eye at the next receiver.

But let’s suppose it’s D=4 cm of trace mismatch each time we go from one DIMM to
the next DIMM. This allows for going through the connector, through the AMB
package pins to the actual transceivers and associated delay between the AMB
secondary northbound receiver and AMB primary northbound driver) =>

4 * 7 * 0.3 UI = 8.4 UI

Now, the long leg -- between the northernmost DIMM and the host-- contributes the
most skew. potentially 6" mismatch in Intel’s case (although they were from different
channels and opposite directions)
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Call it L=16 cm trace mismatch

16 * 0.3 UI = 4.8 UI

Add them up and we are 13.2 UI. This is two frames only.

1st order approximation of frames needed

frames = roundup (N * (7 * D + L)/40)

N = settling time (# of wave propagations) of a tx/rcr pair.

D = max trace mismatch between a pair of DIMMs, in cm

L = max trace mismatch between host and northernmost DIMM.

3.5.3.3 Channel Alignment Logic across all Two FBDIMM Channels.

The FBDIMM Link specification does not specify the skews between two different
channels, nor does it specify that the lane skew numbers are strictly for the same
channel. If it can be assumed that the numbers for lane deskewing applies also
regardless of number of channels as long as the host guarantees that it locks the two
southbound channels then deskewing across two northbound channels can be done
in two ways:

1. Expand the Lane alignment logic to support 28 simultaneous channels. This
approach introduces less memory latency and alignment buffers but makes the
search algorithm more complex (search within 928 permutations)

2. Use the two independent LAL outputs and add two sets of 9 deep FIFO and a
delay counter or set of flops to record the delay (maximum 9 cycles apart)
between one channel achieving lane lock and the other channel achieving lane
lock.

To minimize bus width for a dual channel option, rather than route 168x2 (334) data
bits per direction between the IO and MCU when both channels are used, a 168 bit
data bus per direction is used and MCU runs at 2x dram speed (800MHz max). In
both dual and single channel mode, fbd_mcu_data[83:0] always contain the primary
channel’s 1st half-frame the 1st cycle and the primary channel’s 2nd half-frame the
2nd cycle. In dual channel mode, fbd_mcu_data[167:84] always contain the
secondary channel’s 1st half-frame the 1st cycle and the secondary channel’s 2nd
half-frame the 2nd cycle. In single channel mode, fbd_mcu_data[167:84] will always
contain the 2nd half-frame on both cycles.
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3.6 Memory Latencies

3.6.1 Read Latency
TABLE 3-20 shows the stages in the memory read pipeline and their approximate
latencies for a 4-4-4 800 MHz DDR SDRAM with worst-case bit-lane deskewing.

The total latency does not include the time in the l2clk domain or the time to
synchronize the data between the l2clk and drl2clk domains (A and I). These
latencies assume that the MCU is idle when it receives the read request and that the
request is going to the last of eight FBDs in the channel.

The read requests from the L2 cache are placed in the Read Request Queue (RRQ)
which is checked every drl2clk for a transaction. When a transaction enters the RRQ,
there are two cycles for arbitration, two to issue the Activate command, and two to
issue the Read command. (two drl2clk cycles == one sdram cycle). The Activate and
Read commands are transmitted on successive cycles on the high-speed FBD channel
which runs at 12 times the sdram speed. The Activate and Read commands are

TABLE 3-20 Memory Read Pipeline and Latency

Stage Clock Domain Latency

A. L2 issues read request and MCU
acknowledges

l2clk (1.4 GHz)

B. MCU schedules read command drl2clk (800 MHz) 7.5 ns (6 cycles)

C. Read request transmitted on SB
FBD channel

fbdclk (4.8 GHz) 7.0 ns (1 ns per DIMM)

D. Bit-lane deskew sdram clock (drl2clk/2 ==
400 MHz)

22.5 ns (9 frames worst case)

E. Read command issued to
SDRAMs

sdram clock 22.5 ns (9 cycles: CL + AL + 1 for
frame alignment)

F. Read data returned to MCU on
NB FBD channel

fbdclk 7.0 ns (1 ns per DIMM)

G. Bit-lane deskew drl2clk 22.5 ns (9 frames worst case)

H. MCU checks for CRC and ECC
errors

drl2clk 3.75 ns (3 cycles)

I. Read data returned to L2 l2clk

Total 92.75 ns
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driven to the SDRAMs one cycle after each reaches the FBD. After the data returns
from the SDRAMs, the AMB places the data in the appropriate NB frame, 144 bits
per frame, to return to the MCU. Once the MCU receives the read data, it checks for
CRC errors in the frame and ECC errors in the data. If no errors are found, the data
is returned to the L2 cache 128 bits per drl2clk cycle.

3.6.2 Write Latency
TABLE 3-21 shows the stages latencies in the memory write pipeline. The total latency
does not include the time in the l2clk domain or the time to synchronize the data
between the l2clk and drl2clk domains (A and B). These latencies assume that the
MCU is idle when it receives the write request and that the request is going to the
last of eight FBDs in the channel.

When the L2 cache issues a write request, the MCU transfers the request from the
l2clk domain to the drl2clk domain, places it in the Write Request Queue (WRQ),
and sends an acknowledge back to the L2 cache. Once the L2 receives the
acknowledge, it transmits the write data to the MCU 64-bits per cycle over eight
cycles, and the MCU stores the write data in the Write Data Queue. The MCU sends
the write data and write command independently on the FBD channel; however, it
must ensure that the write data reaches the write data fifo within the AMB early

TABLE 3-21 Memory Write Pipeline and Latency

Stage Clock Domain Latency

A. L2 issues write request and MCU
acknowledges

l2clk (1.4 GHz)

B. L2 sends write data l2clk

C. MCU schedules write data and
write command

drl2clk (800 MHz) 7.5 ns (6 cycles)

D. Write data and command
transmitted on SB FBD channel

fbdclk (4.8 GHz) 7 ns (1 cycle per DIMM)

E. Bit-lane deskew sdram clock (drl2clk/2 ==
400 MHz)

22.5 ns (9 frames worst case)

F. Write command issued to
SDRAMs

sdram clock 2.5 ns (1 cycle)

G. AMB issues Idle frame on NB
FBD channel

fbdclk 7 ns (1 cycle per DIMM)

H. Bit-lane deskew drl2clk 22.5 ns (9 frames worst case)

I. MCU checks for Alert frame drl2clk 1.25 ns (1 cycle)

Total 70.25 ns
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enough that the AMB can write command the timing requirements to the SDRAMs.
If the write command and data are received with no CRC errors, an Idle frame (as
opposed to an Alert frame) is sent on the NB channel. Once the MCU sees there is no
Alert frame, and thus no error on the write, it can the release the WRQ entry for the
write.

3.7 Multiple Clock Domains
The MCU has three clock domains - l2clk, drl2clk, and iol2clk - and also interfaces to
high-speed SERDES IOs for the DDR channels. The l2clk is the main cpu clock
whose frequency is a multiple of the system clock, iol2clk. The l2clk and drl2clk are
synchronous but do not have an integer ratio between them. The drl2clk will run at
the same frequency as the SDRAM. The l2clk frequency target is 1.4 GHz, and the
system clock target is 350 MHz. The SERDES IOs have a data rate of 12x the DDR
rate - 3.2 GHz for 266 MHz DDR FBDs, 4.0 GHz for 333 MHz DDR FBDs, and 4.8
GHz for 400 MHz FBDs. The SERDES must run at one of these rates within +/- 5%.

The clock inputs to MCU are from the Clock Control Unit (CCU). The transmitting
(l2if_cmp_ddr_sync_en, l2if_cmp_io_sync_en) and receiving (l2if_ddr_cmp_sync_en,
l2if_io_cmp_sync_en) synchronization pulses are delayed versions of outputs from
the CCU which act as clock enable for synchronizing signals between two clock
domains. The CCU will generate one of each of these enable pulses per MCU clock
cycle.

Example waveforms for two clock ratios and the synchronizing signals across two
clock domains are shown in FIGURE 3-16, FIGURE 3-17, and FIGURE 3-18. More detail on
clock domain synchronization and the supported clock ratios can be found in the
CCU specification.
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FIGURE 3-16 Odd Ratio (13:2) Clock from the On-chip PLL Block

FIGURE 3-17 Even Ratio (12:2) Clock from the On-chip PLL Block
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FIGURE 3-18 Example of Synchronizing between l2clk and iol2cls

3.8 Functional Description
The MCU top level block diagram consists of the control logic and the datapaths to
interface to the two L2 banks and the external DDR2 memory channel. The top level
block diagram of the MCU is shown in FIGURE 3-19 with its three clock domains.

In FIGURE 3-18, requests come from the L2 cache banks to the L2 Cache Interface
Control (L2IF_CTL) block. The incoming physical addresses are converted into
DIMM addresses and stored in the Address Datapath (ADR_DP) block. For write
requests, write data is stored in the Write Data Queue Datapath (WDQ_DP). The
DRAM Request Queue Control (DRQ_CTL) block determines the order in which
read and write transactions will go out to the DIMMs. The transactions are
forwarded to the DRAM Interface Control (DRIF_CTL) block which generates the
control signals for the transactions going out to the DIMMs. The DRAM Write
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ECC for the data before it is returned to the L2 cache. The Unit Control Block (UCB)
logic unit provides the CSR interface for the MCU. Details of each of these blocks in
given in the following sections.
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FIGURE 3-19 MCU Block Diagram
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system. The converted addresses are queued in the read request address queue or
the write request address queue. These queues participate in arbitration for the
Activate command cycle.

The block diagram of the request address datapath for the two L2 banks is shown
FIGURE 3-20:

FIGURE 3-20 MCU Request Address Queue Datapath
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Inputs to the block are the physical address and the MCU configuration registers
which give the number of row and column address bits, number of ranks, number of
internal banks, and whether the rank selects should come from upper or lower
physical address bits. All of the address information is stored in the Read or Write
Request Address Queue, and the rank and internal bank information will also be
sent to the MCU Request Queue Control (drq_ctl) module.

The converted DIMM address consists of the following 36 bits:

■ RAS address (15b)

■ CAS address (14b)

■ SDRAM internal bank address (3b)

■ DIMM rank select (2b)

■ Request address error (1b)

■ Address parity (1b)

Refer to DDR2 Address Generation (ADRGEN_DP) for a description of how SDRAM
address is converted from the physical address.

Read and Write Request Address Queues (ADRQ_DP)

The Read and Write Request Address Queues store the converted DIMM addresses
of the MCU memory requests. Each queue has eight entries of 36 bits. The 36 bits are
the same as the converted DIMM address bits described in DDR2 Address
Generation (ADRGEN_DP).

3.8.1.2 Read and Write Data Datapaths

The MCU read and write data datapaths block diagram is shown in FIGURE 3-21.
These datapaths queue write data from the L2 cache to the DIMMs and read data
returning from the DIMMs to the L2 cache.

The MCU read and write data datapath between the two L2 banks and the external
memory channel consists of a write data queue per L2 bank (WDQ_DP), the write
data datapath to the DRAM (WRDP_DP), and the read data return datapath to the
L2 banks (READDP_DP). The MCU read and write data datapath supports two
databus size interface modes to external memory - full size memory databus (128
bits data and 16 bits ECC), and half size memory databus (64 bits data and eight bits
ECC).
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FIGURE 3-21 Read and Write Datapaths Block Diagram
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Write Data Queue Datapath (WDQ_DP)

The Write Data Queue stores the L2 write data to be written to the external memory.
There are two Write Data Queues in each MCU module, one for each L2 cache bank
that it communicates with. Each queue is composed of two dual port 1R/1W register
files, each of which is 32 entries by 66 bits wide.

The L2 Cache Interface Control (L2IF_CTL) module controls write access to the
WDQ_DP. The L2 write data is written to the write data queue at the rate of
64bits/cycle for eight l2clk cycles to complete one L2 cache line (64 bytes). Write
enables are used to enable writing to one register file at a time.

Read access to the WDQ is controlled by the DRAM Interface Control (DRIF_CTL)
module in the drl2clk domain. The output ports of the register files are concatenated
and read as a single 128-bit bus.

Write Data Datapath (WRDP_DP)

The Write Data datapath block sends write data to the IO pads. A multiplexer
controlled by the DRIF_CTRL module selects between the two Write Data Queues
and scrubbed data coming from the Read Data Return datapath.

16 bits of ECC is generated for each 128 bits of data, and 144 bits of data and ECC
are sent to the SDRAM for four cycles in the normal configuration. In single-channel
mode, the 144 bits data are multiplexed into two 72-bit data packets and sent to the
SDRAM over eight cycles.

Read Data Datapath (READDP_DP)

The 128 bits of data and 16 bits of ECC from the SDRAM are flopped in the drl2clk
domain for ECC error detection and correction. In the single-channel mode, two
64-bit data packets are combined before ECC error detection and correction.

ECC is regenerated based on the 128 bits of data read from the SDRAMs and is
compared with the ECC bits read from the SDRAMs. If a single bit error is detected,
it is corrected in the data correction logic; however, if multiple errors are detected,
no correction is done. The data are transferred from the dr2clk domain to the l2clk
domain upon the assertion of the ddr_cmp_sync_en signal, or if the data is from a
scrubbing request, it is sent to the Write Data datapath module.

All ECC errors on L2 cache reads and scrubbing reads are signaled to the L2 cache
(mcu_l2t_scb_secc_err, mcu_l2t_scb_mecc_err, mcu_l2t_secc_err_r2, and
mcu_l2t_mecc_err_r2) as well as being flagged in the MCU Error Status Register.
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In the l2clk domain, the L2 cache ECC is generated on the 128 bits received from the
drl2clk domain. The L2 cache uses a 7-bit Hamming code for to protect each 32-bit
word, allowing single-bit error correction and double-bit error detection per 32 bits.
After ECC is generated, the 128 bits of data and 28 ECC bits are then sent back to the
L2 cache.

3.8.1.3 FBD Write and Read Datapaths (FBDWR_DP, FBDRD_DP)

The datapath portion of the FBD Controller will stage write data or the B and C
command portions of the frame and generate all of the CRC values. There are six
CRC generators required for each FBD channel, four in the FBDWR_DP and two in
the FBDRD_DP.

FIGURE 3-22 shows the FBD Write Datapath and the following four CRC generation
blocks:

1. CRC[13:0] for command A portion of 10-bit mode SB frame, generated from 26
bits of data.

2. CRC[9:0] for command A portion of 10-bit failover mode SB frame, generated
from 26 bits of data.

3. CRC[21:0] for command BC/data portion of 10-bit mode SB frame, generated
from 72 bits of data.

4. CRC[9:0] for command BC/data portion of 10-bit failover mode SB frame,
generated from 72 bits of data.
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FIGURE 3-22 FBD Write Datapath

FIGURE 3-23 shows the FBD Read Datapath and the following two CRC generation
blocks:

1. CRC[11:0] for read data of 14-bit mode NB frame, generated from 72-bits of data,
compared to transmitted CRC.

2. CRC[5:0] for read data of 14-bit failover mode NB frame, generated from 72-bits
of data, compared to transmitted CRC.

If there is a CRC error on a read frame, the FBDRD_DP signals the DRIF_CTL and
FBDIF_CTL blocks for error reporting and to try to recover from the error.
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FIGURE 3-23 FBD Read Datapath
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FIGURE 3-24 FBD Cross Domain Logic
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external memory channel. The MCU control logic block diagram is shown in
FIGURE 3-25:
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FIGURE 3-25 MCU Control Logic Block Diagram
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the L2 cache or scrubbed data back to the SDRAMs. MCU-L2 Cache Interface
discusses the protocol the MCU uses for communicating with the L2 cache.

When a read request comes in from the L2 cache, it is held in a staging register in the
L2IF_CTL block and loaded with the signal l2if_cmp_ddr_sync_en. The
acknowledge is always sent back one cycle after l2if_cmp_ddr_sync_en, and the
request information is moved to the MCU Request Queue Control block at the rising
edge of the next drl2clk.

Write requests are handled similarly except that the L2 cache does not limit the
number of write requests it issues, so the MCU must handle this. The L2IF_CTL
block receives information from the DRQ_CTL block telling how many Write
Request Queue entries are free. If all eight entries are used, the ninth request is held
in the L2IF_CTL block until one frees up, at which time the write request
information is passed to the DRQ_CTL. Once the acknowledge is sent to the L2
cache, the L2 cache will start sending the write data 64 bits at a time, and the
L2IF_CTL will control the loading of data into the Write Data Queue.

3.8.2.2 MCU Request Queue Control (DRQ_CTL)

Upon receiving a read or write request from an L2 bank, the MCU Request Queue
Control (DRQ_CTL) logic generates the write enables to enqueue the incoming
request in the read or write request address queue. The information required for
request arbitration is stored in the read or write request queue within the DRQ_CTL
block. Every drl2clk cycle, the arbitration logic must look at all entries in the read
and write request queues in parallel to determine the next request to be scheduled.
A request’s entry in the read or write request queue will be invalidated upon the
completion of the memory access.

The Read and Write Request Queues are implemented in registers as collapsing
queues. The newest entry is placed at the tail of the queue; however, the oldest entry
is not necessarily the first to be removed. The arbitration algorithm decides which
entry to select, and when it is removed, the remaining queue entries which entered
after it collapse to fill the empty entry.

Read Request Queue (RRQ)

The following information from the incoming L2 read request is stored in the 8-entry
read request queue:

1. L2 read request valid - 1b

2. Index of DIMM address in the read request address queue - 3b

3. DIMM rank select - 2b

4. DIMM internal bank select - 3
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This information is used by the arbitration logic for request scheduling.

Write Request Queue (WRQ)

The following information from the incoming L2 write request is stored in the
8-entry write request queue:

1. L2 write request valid - 1b

2. Index of DIMM address in the write request address and write data queues - 3b

3. DIMM rank select - 2b

4. DIMM bank select - 3b

This information is used by the arbitration logic for request scheduling.

3.8.2.3 Write Ordering Queue (WOQ)

The Write Ordering Queue controls the issuing of write data to the FBDs. The WOQ
uses round-robin arbitration to choose between the two write request queues when
selecting a request to issue. Within a WRQ, the WOQ looks for a transaction going to
a different FBD than where the previous two transactions were issued. (This helps
the MCU be able to schedule multiple write requests later.) If a transaction for a
different FBD is not found, the first request in the WRQ is selected. The data
corresponding to the selected request is sent to be buffered in the AMB and the
request is placed in the WOQ. This ensures that write requests will be sent to the
FBDs in the same order that the write data was sent.

When a write request is issued to an FBD, the read pointer for the WOQ is
incremented; however, the information for the request remains in the WOQ data
structure. Another pointer (the outstanding write transaction (OWT) pointer) points
to the head of all requests that have been sent to the FBDs but have not been verified
as having completed. When a write is issued, the MCU waits that time that a read
would take. Once this time elapses, the OWT pointer is incremented; however, the
transaction is not considered complete until an Idle Frame or a Status Frame has
been seen after this point. A third pointer, the WOQ error pointer, points to the head
of requests that should have completed but for which the MCU has not yet seen an
Idle or Status Frame. If an error occurs, all writes from this WOQ error pointer to the
tail of the WOQ will be reissued. If no error occurs, the WOQ error pointer is
updated to the location of the OWT pointer once an Idle or Status Frame is received.

The WOQ has 16 entries and holds the same information as the WRQ; however, each
entry has an additional bit that points to the source L2 bank.
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3.8.2.4 MCU - DDR2 Interface Control (DRIF_CTL)

The MCU arbitrates among three memory access request sources - memory refresh
requests, memory scrubbing requests, and L2 cache memory access requests. The
priority among the three request types is as follows:

1. Memory refresh

2. Memory scrubbing requests

3. L2 cache read and write requests

Memory Refresh Request

DDR2 SDRAMs require a refresh of all rows within the memory every 7.8s. The
MCU has a programmable refresh counter, clocked with drl2clk, to keep track of the
refresh time interval. At every refresh interval, a memory refresh request is issued
successively to each rank present.

With a drl2clk of 400 MHz, the programmable refresh counter value is calculated as
follows:

refresh counter value = 7.8s/2.5ns = 3120 (0xC30)

Memory Scrubbing Request

At intervals defined by the DRAM Scrub Frequency Register, scrub read requests are
issued to the SDRAMs. The purpose of these requests is to detect and correct
transient memory errors. More detail on the scrubbing procedure is given in RAS
Features.

First-level Write Request Arbitration

Because write data is buffered in the AMBs on the FBDs, it is advantageous to send
the write data to the DIMMs early and arbitrate for the write requests later. When
write requests are available in the write request queue, the write scheduler will issue
the write data in frames to the FBDs whenever free time slots are available. When a
write request is selected, its data is sent out to the FBDs, and the request is placed in
the Write Ordering Queue for the second level of arbitration. When the write
commands are eventually issued, the ordering of write transactions to a given FBD
must be maintained; however, write transactions to different FBDs can bypass each
other.
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First-level Read Arbitration

Each Request Queue Control block (DRQ_CTL) sends read memory requests to the
DRIF_CTL arbiter, and the Write Ordering Queue within the DRIF_CTL provides
write requests to the arbiter. The DRIF_CTL uses a first-come-first-served algorithm
at the first level of arbitration for reads, selecting the oldest read request in the Read
Request Queue whose bank is available.

Second-level Read and Write Arbitration

At the second level of arbitration, the DRQ_CTL does a round-robin selection of
requests from the two DRQ_CTL read request queues. Reads have highest priority
and will be scheduled when ready. A maximum of one read per frame can be
scheduled. One or two write requests from the write ordering queue can be
scheduled simultaneously with the read if they target different FBDs than the read.
If there are no read requests ready, up to three write requests can be scheduled if
they all target different FBDs.

Each read or write transaction must be issued over two consecutive cycles. On the
first cycle, an Activate command is issued to activate a bank and row within an FBD.
On the following cycle, the read or write command is issued with the bank and
column addresses. The MCU uses the DDR2 SDRAM Posted CAS feature, so the
read or write commands are delayed internal to the SDRAMs by the Additive
Latency (AL) value programmed in the SDRAMs’ extended mode register.

An Auto-Refresh command is issued when the MCU state machine transitions to the
refresh state. Transactions to the rank being refreshed are blocked until the refresh
completes.

Requests issued to the DIMMs are arbitrated every drl2clk cycle and are prioritized
as follows, in order of descending priority:

Command slot A:

1. Scrub Read Activate requests

2. Read Activate requests from read request queues

3. Write Activate requests from write ordering queue

Command Slot B:

1. Auto refresh

2. Write data

3. Write Activate request

Command Slot C:
Chapter 3 Memory Control Unit (MCU) 3-65



1. Power Down mode exit

2. Power Down mode enter

3. Write data

4. Write Activate request

Write Starvation Prevention

A write starvation counter ensures that writes do not get starved out. There is a
separate write starvation counter in each DRQ_CTL block. Initially, reads have
priority, and each write starvation counter is incremented whenever there are eight
pending write requests total (between the DRQ and the WOQ). It is reset whenever
there are less than eight pending writes or when a write request is issued from the
WOQ. If either starvation counter reaches 64 (meaning there has been eight pending
writes for 64 consecutive cycles), then starvation mode is entered. Once in starvation
mode, write activation requests from the write ordering queue are given priority
over read activate requests (i.e. the priorities of 2 and 3 for Command Slot A above
are reversed). During starvation mode, the starvation counter that reached 64 is
decremented each cycle, and once it reaches 0, starvation mode is exited, and reads
are again given priority.

Scheduling Writes in Command Slots B and C

When there are no higher priority requests for command slots B and C, write
requests can be sent out. These write requests can only be sent to DIMMs whose
read-to-write delay has been satisfied, and they must be scheduled so that no write
data collisions occur on the FBD data buses. Also, in order to simplify scheduling,
these requests cannot be selected on the same cycle as a read or write in command
slot A.

Read-after-Write Hazards

It is possible for the MCU to receive a read request to a physical address that
matches the address of a write request pending in the write request queue. If this
occurs, the MCU must ensure that the write completes first. (Whenever there is an
address match between a read and a write, it is guaranteed that the write has
preceded the read. Write-after-read hazards are handled by the L2 cache itself.)

When a read transaction wins arbitration, its address is compared against all of the
valid entries in the write request queue for the L2 bank from which the read request
came. If there is a match, the read request is not sent out, and the write request
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queue entry that matches the read is flagged. Writes are given priority until the
flagged write request queue entry is issued to the FBDs. After the write request is
issued, reads are given priority.

Scheduling State Machines

In a fully populated FBD channel, there can be eight dual rank dimms for a total of
16 ranks. Each rank supports DIMMs with up to eight banks. Thus, there can be 128
banks per channel.

There are 16 state machines to keep track of available banks. Each is dedicated to a
set of DRAM banks depending on the configuration. The equations below show
which state machine will be used for a given address:

4-bank DRAMs, double-sided DIMMs: state_machine = {dimm[0], rank, bank[1:0]};

4-bank DRAMs, single-sided DIMMs: state_machine = {dimm[1:0], bank[1:0]};

8-bank DRAMs, double-sided DIMMs: state_machine = {rank, bank[2:0]};

8-bank DRAMs, single-sided DIMMs: state_machine = {dimm[0], bank[2:0]};

ECC Error Handling

The DRIF_CTL block handles errors that have occurred. Information on the read
request that caused the error is received from the RDPCTL_CTL block and stored in
a register FIFO. The FIFO has eight entries to hold all outstanding reads that may
generate ECC errors. Once an error is detected, the DRIF_CTL stops issuing
requests, and after all outstanding requests have completed, it begins retrying each
transaction from the error FIFO. Refer to ECC Error Handling for an explanation of
the error handling scheme.

3.8.2.5 FBD Interface Control (FBDIC_CTL)

The FBD Interface Control block is responsible for FBD channel initialization,
channel error detection, and frame encoding and decoding. All of the channel
configuration registers also reside in this block.

At power-on, software is responsible for sequencing the FBD controller through the
initialization sequence. The FBD channel initialization sequence is described in FBD
Channel Initialization.

After initialization is complete and the AMBs are in the L0 state, software must
program various registers in the AMBs using channel commands, and when it is
ready to accept SDRAM commands, the FBDIC_CTL signals the DRIF_CTL. The
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FBDIC_CTL will encode the channel and SDRAM commands using the frame
formats described in SDRAM Initialization using the CRC data provided by the
FBD_DP block. This information is sent to the FBD SERDES IO block to be
transmitted to the FBDs.

The Latency Queue (LATQ) informs the FBDIC_CTL when read data is returning.
When a request is issued, a timestamp is placed in the LATQ (current time plus
channel latency). When the current time matches the timestamp at the head of the
LATQ, the read data (or other response, such as a Status Frame) is expected. If a
CRC error occurs or an Alert or Idle Frame is detected, the DRIF_CTL is signaled so
that it can retry the read. If an error is detected on the second read, the FBDIC_CTL
module tries to recover with a Soft Channel Reset or a Fast Reset, if necessary. If
neither of these revives the FBD channel, software is signalled to handle the
recovery.

If a Status Frame shows an error has occurred or if an Alert Frame is received on the
NB channel, this indicates an error has occurred on the SB channel. Again, a Soft
Channel Reset, and possibly a Fast Reset, will be issued, after which software will
signal if the condition persists.

3.8.2.6 MCU Read Datapath Control (RDPCTL_CTL)

The Read Data Path Control module controls the portion of the READDP_DP within
the drl2clk domain and prepares the data valid and error signals to be returned to
the L2 cache banks. Error logging is also performed in this block.

The following information is received from the DRIF_CTL block to keep track of the
read requests outstanding to the FBDs:

■ L2 bank - 1 bit

■ Read/write - 1 bit

■ Starting quadword - 2 bits

■ Read request id - 3 bits

■ Location in read or write request queue - 3 bits

■ Out-of-bound address error on read - 1 bit

The information is stored in a FIFO implemented in registers. The FIFO depth is 16
and only holds outstanding reads. Reads are freed from this FIFO when a read
transaction’s data returns correctly.

If a CRC error occurs on the Southbound channel, all transactions in the
RDPCTL_CTL FIFO must be retried in their original order after the channel is reset.
If a CRC or ECC error occurs on the Northbound channel, only the transaction with
an error must be retried.
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If a CRC error occurs on the Southbound channel, all transactions in the
RDPCTL_CTL FIFO must be retried in their original order after the channel is reset.
If a CRC or ECC error occurs on the Northbound channel, only the transaction with
an error must be retried.

3.8.2.7 MCU Read Data Control (RDATA_CTL)

The Read Data Control block sends the data valid, qword id and read request id
signals to the L2 cache banks, and responds to the L2 cache dummy read requests. It
also generates the address generation control signals for the ADRGEN_DP blocks in
the Address Datapath block and acts as a bridge between the IO and MCU clock
domains for CSR reads and writes.

3.8.3 Unit Control Block (UCB) Configuration Status
Register (CSR) Interface
The Unit Control Block (UCB) provides the Configuration Status Register (CSR)
interface to the MCU. The NCU communicates with the UCB module through a 4-bit
bus. For register writes, the UCB assembles the 4-bit packets received into a 32-bit
address and a 64-bit data word, and conversely for reads, breaks the 64-bit read data
into 4-bit packets to send back to the NCU.

3.8.4 Interconnect Built-In Self Test (IBIST) Engine
The FBDIMM standard requires an IBIST engine within the MCU that will stress the
FBDIMM channel electrical connections. When the FBDIMM channel initialization
reaches the Testing stage.

The IBIST engine will take control of the channel after the TS1 header is issued.

The following registers are implemented by the MCU:

SBFIBPORTCTL: 0x84_0000_0E80

Since the MCU will always be a master on the southbound port, bit 1 and bits 6
through 23 of this register are not used by the MCU and will be read only. Bit [1] will
be 1’b1, and bits [23:6] will be 18’h00000.

SBFIBPGCTL: 0x84_0000_0E84

SBFIBPATTBUF1: 0x84_0000_0E88

SBFIBTXMSK: 0x84_0000_0E8C
Chapter 3 Memory Control Unit (MCU) 3-69



SBFIBTXSHFT: 0x84_0000_0E94

SBFIBPATTBUF2: 0x84_0000_0EA0

SBFIBPATT2EN: 0x84_0000_0EA4

SBFIBINIT: 0x84_0000_0EB0

SBIBISTMISC: 0x84_0000_0EB4

NBFIBPORTCTL: 0x84_0000_0EC0

Since the MCU will always be a slave on the northbound port, Bits 0, 1, 22, and 23
will not be used by the MCU and will be read only. Bit [1] will be 1’b0, and bits
[23:22] will be 2’h0.

NBFIBPGCTL: 0x84_0000_0EC4

NBFIBPATTBUF1: 0x84_0000_0EC8

NBFIBRXMSK: 0x84_0000_0ED0

NBFIBRXSHFT: 0x84_0000_0ED8

NBFIBRXLNERR: 0x84_0000_0EDC

NBFIBPATTBUF2: 0x84_0000_0EE0

NBFIBPATT2EN: 0x84_0000_0EE4

The following registers are not implemented:

SBFIBRXMSK

SBFIBRXSHFT

SBFIBRXLNERR

NBFIBTXMSK

NBFIBTXSHFT

NBFIBINIT

NBIBISTMISC
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3.9 SDRAM Power Reduction and
Reduced-Configuration Operating
Modes
The SDRAMs in a system consume a large portion of the power budget and ways to
limit the power consumption in certain configurations or at certain times. A
single-channel mode is available that allows one DIMM per MCU channel, power
throttling limits the number of SDRAM transactions over a period of time, and the
SDRAMs can also be put in self refresh modes.

3.9.1 Single Channel Mode
Normally, the memory will be configured in dual-channel mode. In order to reduce
system power, a single-channel mode has been added which supports one DIMM
per channel. In this mode, 72 bits of data and ECC are driven externally per memory
cycle. The burst length for this mode is eight to maintain the 64-byte cache line size
per memory transaction.

To enable single channel mode, the single channel mode register, address
0x84_0000_0148 must be set to 1. Also, for proper operation, the Trrd
(0x84_0000_0080) and Trc (0x84_0000_0080) must be increased by 2.

3.9.2 MCU Programmable Power Throttle
There are two registers per controller that control power throttling. The DRAM Open
Bank Max Register designates the maximum number of DRAM bank openings that
can occur in a time period. The time period is determined by the DRAM
Programmable Time Counter Register whose value is a count of DRAM clock cycles.
There is a counter that counts the number of DRAM banks that are opened. If this
counter exceeds the maximum number of open banks, the DRAM controller is
blocked from issuing anymore DRAM accesses until the counter is reset. A second
counter counts DRAM clock cycles. When this counter is greater than or equal to the
programmable time counter value, both this counter and the DRAM open bank
counter are reset to zero.

The registers in the four controllers should be programmed to the same values. The
chip will still operate correctly if they are programmed differently, but there may
performance penalties (e.g. if one controller stops much earlier than the others) and
power may not be as effectively controlled. Also, a mechanism is needed to ensure
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that all of the controllers are working with in the same time window of DRAM clock
cycles. This will ensure that all controllers stop and start at approximately the same
time. When any of the Programmable Time Counter Registers is written, a reset
signal will be sent to the other three controllers to reset their DRAM clock cycle
counters.

3.9.3 SDRAM Self-Refresh Mode
The DDR2 SDRAMs support Self-Refresh mode allows the OpenSPARC T2 MCU to
be reset without data loss in the SDRAMs.

For Self-Refresh mode, when the clock control unit signals the MCU to enter this
mode, the MCU waits until all requests have completed and then issues a
Self-Refresh Entry command to the FBDs. In order to leave this mode, the clock and
other external control must be stable for at least one clock cycle. The MCU issues a
Self-Refresh Exit command and waits 200 cycles before returning to normal
operation.

3.9.4 FBD L0s State
Some AMBs provide a low-power state. When an AMB receives a Sync frame with
the ’Enter L0s’ bit set, it transitions to the L0s state for a time period determined by
its L0s_Duration register. This register value is between 32 and 42, and must be less
than the minimum interval between Sync frames defined in the AMB’s Sync Train
Interval register. Once the timer for the L0s state expires, the AMB transitions back
to the L0 state. After exiting the L0s state, the first command that the host must issue
is another Sync frame in order to ensure that the AMB clocks remain locked. With
this Sync frame, it is also possible to put the AMBs back into the L0s state for
another low-power interval.

The MCU must be programmed to decide when to transition to this state. This is
enabled by setting bit [6] of the L0s Duration Register. When this mode is enabled
and there are no pending transactions when a Sync frame is being sent out, the el0s
bit will be set in the Sync frame.

There is Thermal_Trip information returned in NB status frames which indicates that
a thermal threshold has been exceeded and that power throttling may be required.
This information is held in the Thermal Trip Status Register that software can check
to decide when to enable L0s mode.
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3.9.5 Power Down Mode
Power Down mode is a low power mode for the DRAMs. The MCU can optionally
use this mode. When a transaction enters the MCU, a counter for the destination
DIMM is incremented. When the transaction completes, DIMM counter is
decremented. When any counter goes from 0 to 1, an Exit Power Down command
will be sent to the corresponding DIMM. When a counter goes from 1 to 0, an Enter
Power Down command will be sent to the DIMM.

3.9.6 Partial Bank Mode
Partial bank mode is a mode where less than eight L2 banks are used in the system.
In four-bank mode, two MCUs are used and in two-bank mode, one MCU is used. In
these modes, the addressing to the DIMMs is changed. In four-bank mode, the MCU
left-shifts address bits [39:7] by one bit before applying the normal address
decoding. In two-bank mode, the MCU left-shifts address bits [39:7] by two bits
before applying the normal address decoding.

When in partial bank mode, the MCU will detect out-of-bound errors on a smaller
address range for a given configuration as compared to a system with all MCUs
enabled. In four-bank mode, the system will have half of the memory of a full
system with the same configuration and one-fourth the memory when in two-bank
mode. The MCUs must be configured with twice the memory in four-bank mode
and four times the memory in two-bank mode to provide the same address space as
a full system. If the full system uses the maximum memory configuration, then the
tests must reside in the lower half or quarter of memory in order to execute properly
in a four-bank or two-bank configured system, respectively.

3.10 RAS Features

3.10.1 SDRAM ECC
The data sent to the DRAMs is protected by SEC-DED error correction. Galois field
multiplication techniques are used to generate 16 bits of ECC in this block for each
128 bits of data.
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3.10.2 Memory Scrubbing
Memory scrubbing refers to the regeneration of ECC for data in memory and the
correction of single-bit errors and detection of double-bit errors. When scrubbing is
enabled, at the end of the time interval defined by the DRAM Scrub Frequency
Register, a memory scrub request is issued to the DIMMs. The scrubbing requests
have priority over L2 cache requests. First, a scrubbing read request is issued to the
DIMMs. When the scrubbing read data returns, the error detection and correction
logic is used on the data. ECC is regenerated and compared with the ECC data read
from memory. If an error is detected, a single-bit and double-bit error is flagged in
the DRAM Error Status Register as well as being signalled to the L2 cache; then the
MCU generates additional requests to the SDRAMs to collect more information on
the error which is detailed in the following section. After the scrubbing transaction
completes, the L2 cache requests are able to proceed.

Once a scrubbing request is sent, the time interval counter is reset and begins
counting down again, and the scrub address is incremented to the next memory
location.

3.10.3 Data Poisoning
Data poisoning involves marking known corrupt data in memory with bad ECC so
that any later access will get an ECC error. MCU memory poisoning is performed by
flipping ECC check bits 15, 9, 5 and 0. This will generate a failing syndrome of
0x8221 which, when encountered on a read, will most likely indicate poisoned data.
The L2 cache asserts l2b_mcu_data_mecc which causes the MCU to corrupt the ECC
for the corresponding 64-bit data word.

3.10.4 ECC Error Handling
When an error occurs on a scrub read or an L2 cache read request, the MCU will flag
the error and then try to determine if the error is a hard error or a transient error.
After the error occurs, the MCU will first perform another Read and log its ECC
status. If the second read does not have an uncorrectable error, the corrected read
data is written back to the SDRAM, and a third read is issued, and its status is also
logged. Only the status from the first read will be sent to the L2 cache bank. One of
the cores must perform a register read to check the status of the subsequent reads.
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3.10.5 FBD Channel Errors
There are several ways that errors may be detected on the SB or NB channels. Alerts
and Status Frames show when CRC errors have occurred on the SB channel. CRC
errors on data frames and corrupted Idle or Status Frames show errors on the NB
channel. When a channel error occurs on the SB channel, all transactions not
guaranteed to have completed before the problem was detected must be reissued.
When an error occurs on the NB channel, only the transaction with an error must be
reissued.

1. Alert Frame: The MCU will stop issuing transactions and will issue a Soft
Channel Reset (SCR) frame to attempt to reset the state of the AMBs and try to
determine which AMB has detected an error. If errors persist, the MCU will issue
a Fast Reset. If errors still persist after the Fast Reset, the MCU will log an
Unrecoverable error in the MCU ESR, log an Alert Frame error in the MCU
Syndrome Register and assert mcu_l2t0_scb_mecc_err to the L2. If at any point in
the error processing the MCU is able to recover from the error condition, the
MCU will instead assert mcu_l2t0_scb_secc_err to the L2 and set the Recoverable
error bit in the ESR. Any outstanding reads or subsequent reads must still be
returned to the L2 after the error processing is completed. If the channels are not
working, these reads will be seen as Unrecoverable CRC errors.

2. Status Frame with Alert asserted: This indicates that the asserting AMB has
detected an error on the SB channel. If this is the only error detected, the MCU
will wait for the next Status Frame. If no other error occurs before or in the next
Status Frame, the MCU will flag an Alert Asserted error in the syndrome register,
set the Recoverable error bit in the MCU ESR, and assert mcu_l2t0_scb_secc_err to
the L2. If any other error type occurs before or in the next Status Frame,
processing proceeds as for that error condition.

3. Status Frame Parity Error: If there is a parity error in a Status Frame, the MCU
will wait for the next Status frame. If the error persists, the MCU will attempt a
Soft Channel Reset and if necessary, a Fast Reset. If the error persists the MCU
will flag a Status Frame Error in the syndrome register, log a Status Parity error in
the MCU Syndrome Register and assert mcu_l2t0_scb_mecc_err to the L2. If at
any point in the error processing the MCU is able to recover from the error
condition, the MCU will instead assert mcu_l2t0_scb_secc_err to the L2 and set
the Recoverable error bit in the ESR. Any outstanding reads or subsequent reads
must still be returned to the L2 after the error processing is completed. If the
channels are not working, these reads will be seen as Unrecoverable CRC errors.

4. CRC Error on Read Data: The MCU will discard the data and retry the
transaction. If it fails again, the MCU will issue a Fast Reset of the FBD channel. If
the error persists after the Fast Reset, the MCU will flag an Unrecoverable error in
the ESR, flag a CRC error in the Syndrome register and assert
mcu_l2t_mecc_err_r3 to the L2 along with the bad data. If there is no CRC error
on any of the retries, the MCU will flag a Recoverable Error in the ESR and assert
mcu_l2t0_scb_secc_err once to the L2 and then send the correct read data.
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When a Soft Channel Reset command is issued to the FBDIMMs, it will be followed
by a CKE command (to enable all CKEs) and a precharge all command to put the
DRAMs in a legal operating state. In order for the CKE commands to be issued
correctly, the FBD Per Rank CKE Register must be set correctly and the CKE bit in
the DIMM Initialization Register must be set.

When two channels are operating in lock-step, the MCU will perform error handling
as if the same error occurred on both channels.

3.10.6 Interrupts
The MCU has two interrupt types that it can send to the NCU based on certain MCU
errors. The error types are Correctable ECC Error Count and Recoverable FBD
Channel Error Count. When one of these errors is generated, the MCU will send a
single cycle pulse to the NCU in the iol2clk domain. Either of FBD errors will also
generate a syndrome which is stored in the MCU Syndrome register if no other FBD
error is pending.

The NCU also has a mechanism for generating these error types and an
Unrecoverable FBD Channel Error. When one of these signals is asserted, the MCU
will inject that type of error within its logic to verify that the error detection and
reporting logic is operating correctly.

3.10.6.1 Correctable ECC Error Count Interrupt

When the MCU Error Count Register reaches zero, the MCU will generate an
interrupt on mcu_ncu_ecc, asserting it for one iol2clk cycle. No syndrome is
reported, and no more of this type of interrupt will be generated until the software
writes to the Error Count Register to enable interrupt generation.

If ncu_mcu_ecci is asserted, the MCU will inject a single correctable error on the
lowest ECC bit on the next read packet. If the Error Count Register is already zero,
nothing happens. Otherwise, the error count will be decrement by one. If the MCU
Error Count Register goes to zero, then the Correctable ECC Error Interrupt will be
generated. This ECC error should also be reported to the L2 regardless of the value
of the Error Count Register.
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3.10.6.2 Recoverable FBD Channel Error Count Interrupt

A Recoverable FBD Channel Error Interrupt will be generated whenever the
Recoverable FBD Channel Error Count Register reaches zero. The MCU will assert
mcu_ncu_fbr to the NCU for one iol2clk cycle. Once the count value is zero, no more
interrupts of this type will be generated until software writes a non-zero value to the
count register.

If ncu_mcu_fbri is asserted from the NCU to the MCU, the MCU will inject an error
within the FBD channel. The source of the error will be determined by the Injected
Error Source Register. The MCU will handle the error as if it had actually occurred in
hardware. If the Recoverable FBD Channel Error Count Register reaches zero, then
mcu_ncu_fbr will be asserted to the NCU.

3.10.6.3 Unrecoverable FBD Channel Error Interrupt Injection

There is no error generated to the NCU for Unrecoverable FBD Channel Errors.
These types of errors will only be indicated through the L2 cache.

If ncu_mcu_fbui is asserted from the NCU to the MCU, the MCU will inject an error
within the FBD channel. The source of the error will be determined by the Injected
Error Source Register. The MCU will handle the error as if it had actually occurred in
hardware.

3.11 Test Features

3.11.1 DFT Features

3.11.1.1 Debug Reset

During Debug Reset, the MCU needs to keep the FBD links active so that runs can
be reproducible. By keeping them active, the channel latencies and the SERDES to
MCU asynchronous crossings will not change between test runs.

In order to achieve this, a small part of the MCU must be protected from warm reset,
and the clock to it needs to remain active during reset. For each MCU, there is an
additional clock stop signal, tcu_mcu*_fbd_clk_stop, and a common test mode
signal, tcu_mcu_testmode. The subblock mcu_fdout_ctl contains the logic that
remains active during the Debug Reset. Its clock is taken directly from dr_gclk, not
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from the output of a cluster header. The tcu_mcu*_fbd_clk_stop signal goes directly
to the L1 headers in mcu_fdout_ctl, and these clock stop signals are not asserted
during the Debug Reset. The tcu_mcu_testmode signal is used to qualify the scan
and reset signals. tcu_scan_en, tcu_aclk and tcu_bclk are ANDed with
tcu_mcu_testmode in mcu_fdout_ctl. tcu_mcu_testmode is asserted for Power-On
Reset and for a normal Warm Reset, but not for Debug Reset. tcu_mcu_testmode is
also used to control a mux which bypasses the protected flops on the scan chain
when it is not asserted but includes them when not asserted.

3.11.2 Deterministic Test Mode (DTM)
Deterministic Test Mode is a mode in which all of the IO units operate at the same
speed so that test runs may be reproducible on a tester. The mode is entered when
the ccu_serdes_dtm is set to 1’b1. In this mode different data will be sent by the
MCU to the debug bus. Also, since the tester will be "sourcing" transactions, the
MCU will act as a slave device during channel initialization and must respond to
transactions on the NB channel in order to enter a predictable state.

3.11.2.1 Debug Signals

For DTM, the MCU will provide CRC data from the southbound FBD frames to the
Debug unit. Each frame contains 22 bits of CRC, so since there are two channels per
MCU, there will be 44 bits of CRC data per MCU. The MCU will take the CRC from
the two channels and XOR them; however, either channel’s CRC can be masked off
before the XOR by setting the appropriate bit in the Debug Trigger Enable Register.
This data will then be sent to the UCB module to be multiplexed with the
normal-mode debug signals. One additional bit needs to be sent to the Debug unit
since the current debug bus signal count is 21 bits. The MCU will use the
ccu_serdes_dtm signal to select the CRC data for sending to the Debug unit.

These debug signals will be taken from the drl2clk domain to the iol2clk domain;
however, they will not need to be synchronized since they will only be used for
DTM where the drl2clk and iol2clk will be driven from the same source.

3.11.2.2 Initialization for Testing

When in DTM mode, the northbound FBD channel still needs to be initialized by
northbound TS0 patterns. Therefore, the tester must send enough TS0 patterns to
achieve bit lock, frame lock and lane deskew within the MCU. After these are
achieved, the tester must then cause the MCU to transition to the L0 state in order to
enable southbound transactions and to enable recognition of northbound
transactions.
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After reset, the MCU’s FBD initialization state machine will be in the Disable state,
and the DTM state machine will begin in the IDLE state. The MCU’s initialization
state machine must be in the Disable state before DTM testing begins. The tester will
send TS0 patterns to train the northbound link. The DTM state machine will
transition to the TS0 state once it sees the TS0 patterns on the NB channel. This will
also cause the MCU state machine to transition to the TS0 state, and the MCU will
begin sending southbound TS0 patterns. Once in the TS0 state, the DTM state
machine will wait until it sees at least four northbound frames containing all 0’s. At
this point, the MCU’s unitization state machine will be transitioned to the L0 state,
and the DTM state machine will return to IDLE. Once the MCU enters the L0 state,
operation will proceed as in normal system mode.

Since the Polling state will be bypassed during the initialization for DTM, the
channel latency register must be programmed to match the channel latency used for
generating the test vectors.

In order to achieve operating rates that the tester can support, the RXTX_RATE field
of the SERDES Configuration Bus Register must be set to Half Rate (2’b01) or
Quarter Rate (2’b10) as required. The required link rates for supported operating
frequencies are given in SERDES Deterministic Test Mode (DTM).

3.11.3 SERDES Blunt-End Loopback
SERDES Blunt-End Loopback within the MCU is controlled by the Loopback Mode
Control Register. This register controls both links within an MCU. When bit 1 is set,
data received on a northbound FBD channel will be placed on the corresponding
southbound channel. Since there are 14 northbound lanes and only 10 southbound
lanes, bit 0 selects which northbound lanes map to which southbound lanes. If bit 0
is 1’b0, then northbound lanes 0 through 9 are mapped to the southbound lanes. If
bit 0 is 1’b1, then northbound lanes four through 13 are mapped to the southbound
lanes.

Since the data on the northbound channel must be synchronized from the recovered
clock domain into the MCU’s drl2clk domain, TS0 patterns must be sent on the
northbound channel in order to achieve frame lock. Once frame lock is achieved, the
cross domain FIFO will be enabled, and data will be forwarded from the northbound
channel to the southbound channel.

This increase in size would change the MCU’s Y dimension to about 1750?m due to
the addition of the FBDWR_DP and FBDRD_DP. (The size of the MCU as of June 10,
2004 is 1744?m x 847?m.) The X dimension would have to be reduced and the aspect
ratios of the control blocks would have to change in order to use up any whitespace
created.

A break down of the area changes per block is given in the following sections.
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3.12 MCU Level I/O
TABLE 3-22 MCU Level I/O

Signal Name I/O Description

Clocks, Reset, Etc.

iol2clk I System bus clock

drl2clk I DRAM clock

l2clk I CPU domain clock

mcu_ce I DRAM module clock enable

ccu_mcu_ddr_cmp_sync_en I Dram to Cmp clock synchronization

ccu_mcu_cmp_ddr_sync_en I Cmp to Dram clock synchronization

ccu_mcu_io_cmp_sync_en I Sys to Cmp clock synchronization

ccu_mcu_cmp_io_sync_en I Cmp to Sys clock synchronization

clspine_mcu_selfrsh I Enter hardware self-refresh mode

rst_por_ I Power-on reset signal

rst_wmr_ I Warm reset signal

mcu_pt_sync_in0 mcu_pt_sync_in1
mcu_pt_sync_in2

I Incoming power throttling counter synchronizing signals

mcu_pt_sync_out O Outgoing power throttling counter synchronizing signal

mcu_id[1:0] I MCU ID for error reporting

mcu_clk_en I Clock enable to synchronize MCU clock domain to external
DRAM clock

Test

scan_in I Scan in

scan_out O Scan out

tcu_aclk I

tcu_bclk I

tcu_soc_cmp_clk_stop I Clock stop signal for l2clk domain

tcu_soc5dr_clk_stop I Clock stop signal for drl2clk domain

tcu_soc6io_clk_stop I Clock stop signal for iol2clk domain

tcu_pce_ov I Clock enable override signal
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tcu_dectest I

tcu_scan_en I Scan enable

tcu_se_scancollar_in I Scan enable for memory input flops

tcu_se_scancollar_out I Scan enable for memory output flops

tcu_array_wr_inhibit I Inhibit memory array updates

tcu_array_bypass I Bypass memory array

tcu_mbist_bisi_en I Enable MBIST engine

tcu_mcu_mbist_start I Start MBIST sequence

mcu_tcu_mbist_done O MBIST done

mcu_tcu_mbist_fail O MBIST fail

tcu_mcu_mbist_scan_in I MBIST module scan in

mcu_tcu_mbist_scan_out O MBIST module scan

Debug

mcu_dbg1_rd_req_in_0[3:0] O Read request received from L2 bank 0

mcu_dbg1_rd_req_in_1[3:0] O Read request received from L2 bank 1

mcu_dbg1_rd_req_out[4:0] O Read data returned to L2 bank

mcu_dbg1_wr_req_in_0 O Write request received from L2 bank 0

mcu_dbg1_wr_req_in_1 O Write request received from L2 bank 1

mcu_dbg1_wr_req_out[1:0] O Number of writes retired

mcu_dbg1_mecc_err O Multiple nibble ECC error

mcu_dbg1_secc_err O Single nibble ECC error

mcu_dbg1_fbd_err O FBD channel error

mcu_dbg1_err_mode O MCU in error processing mode

mcu_dbg1_err_event O Debug error event when debug trigger is enabled

NCU Interface

ncu_mcu_data[3:0] I NCU to MCU module CSR bus

ncu_mcu_stall I Stall signal from NCU for outgoing transactions

ncu_mcu_vld I Incoming CSR data valid

ncu_mcu_ecci I Inject Correctable Error Count

ncu_mcu_fbri I Inject FBDIMM Channel Recoverable Error

TABLE 3-22 MCU Level I/O (Continued)

Signal Name I/O Description
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ncu_mcu_fbui I Inject FBDIMM Channel Unrecoverable Error

mcu_ncu_data[3:0] O MCU module to NCU CSR bus

mcu_ncu_stall O Stall incoming transactions

mcu_ncu_vld O Outgoing CSR data valid

mcu_ncu_ecc O Correctable Error Count Interrupt

mcu_ncu_fbr O FBDIMM Channel Recoverable Error Interrupt

ncu_mcu_pm I Enables partial-bank mode

ncu_mcu_ba01 I L2 banks 0 and 1 are enabled in partial-bank mode

ncu_mcu_ba23 I L2 banks 2 and 3 are enabled in partial-bank mode

ncu_mcu_ba45 I L2 banks 4 and 5 are enabled in partial-bank mode

ncu_mcu_ba67 I L2 banks 6 and 7 are enabled in partial-bank mode

MCU-L2 Interface

l2b0_mcu_data_mecc_r5
l2b1_mcu_data_mecc_r5

I Signal to inject ECC errors in write data

l2b0_mcu_data_vld_r5
l2b1_mcu_data_vld_r5

I Data valid signal from L2 cache

l2b0_mcu_wr_data_r5[63:0]
l2b1_mcu_wr_data_r5[63:0]

I Data from L2 cache

l2t0_mcu_addr_39to9[39:7]
l2t0_mcu_addr_5
l2t1_mcu_addr_39to9[39:7]
l2t1_mcu_addr_5

I L2 cache transaction address

l2t0_mcu_rd_dummy_req
l2t1_mcu_rd_dummy_req

I Dummy read request from L2

l2t0_mcu_rd_req l2t1_mcu_rd_req I L2 cache read request signal

l2t0_mcu_rd_req_id[2:0]
l2t1_mcu_rd_req_id[2:0]

I L2 cache read request ID

l2t0_mcu_wr_req l2t1_mcu_wr_req I L2 cache write request signal

mcu_l2t0_data_vld_r0
mcu_l2t1_data_vld_r0

O L2 cache read data valid signal

mcu_l2t0_rd_ack mcu_l2t1_rd_ack O Read request acknowledge signal to L2 cache

mcu_l2t0_scb_mecc_err
mcu_l2t1_scb_mecc_err

O MCU scrub multiple ECC error indication to L2 cache

TABLE 3-22 MCU Level I/O (Continued)

Signal Name I/O Description
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mcu_l2t0_scb_secc_err
mcu_l2t1_scb_secc_err

O MCU scrub single ECC error indication to L2 cache

mcu_l2t0_wr_ack mcu_l2t1_wr_ack O Write request acknowledge signal to L2 cache

mcu_l2t0_wr_addr_err
mcu_l2t1_wr_addr_err

O Write address error signal to L2 cache

mcu_l2t0_qword_id[1:0]
mcu_l2t1_qword_id[1:0]

O Quadword of data being returned from MCU

mcu_l2t0_mecc_err_r3
mcu_l2t1_mecc_err_r3

O MCU multiple ECC error indication to L2 cache

mcu_l2t0_rd_req_id_r0[2:0]
mcu_l2t1_rd_req_id_r0[2:0]

O Read request ID for L2 cache read data

mcu_l2t0_secc_err_r3
mcu_l2t1_secc_err_r3

O DRAM single ECC error indication to L2 cache

mcu_l2b_data_r3[127:0] O Read data to L2 cache

mcu_l2b_ecc_r3[27:0] O ECC data for read data to L2 cache

MCU-FBD IO Interface

mcu_fsr0_data[119:0]
mcu_fsr1_data[119:0]

O Southbound FBD Channel Data

mcu_fsr0_cfgpll_enpll
mcu_fsr1_cfgpll_enpll

O Enable PLLs for FBD Channels

mcu_fsr01_cfgpll_lb[1:0] O PLL Loopback for Channels 0 and 1

mcu_fsr01_cfgpll_mpy[3:0] O PLL Multiplier for Channels 0 and 1

mcu_fsr0_cfgrx_enrx
mcu_fsr1_cfgrx_enrx

O Enable SERDES receivers

mcu_fsr0_cfgrx_align
mcu_fsr1_cfgrx_align

O Enable Alignment detection for FBD SERDES

mcu_fsr0_cfgrx_los[1:0]
mcu_fsr1_cfgrx_los[1:0]

O Enable Loss-of-Signal (Electrical Idle) detection

mcu_fsr0_cfgrx_invpair[13:0]
mcu_fsr0_cfgrx_invpair[13:0]

O Invert RXP and RXN per bit

mcu_fsr01_cfgrx_eq[3:0] O Enable and configure adaptive equalizer

mcu_fsr01_cfgrx_cdr[2:0] O Configure clock/data recovery algorithm

mcu_fsr01_cfgrx_term[2:0] O Set input termination

mcu_fsr0_cfgtx_entx
mcu_fsr1_cfgtx_entx

O Enable SERDES transmitters

TABLE 3-22 MCU Level I/O (Continued)

Signal Name I/O Description
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3.13 MCU Registers
MCU register definitions are detailed in the OpenSPARC T2 Programmer’s Reference
Manual. This document will only provide a list of registers.

mcu_fsr0_cfgtx_enidl
mcu_fsr1_cfgtx_enidl

O Enable Electrical Idle on Transmitter

mcu_fsr0_cfgtx_invpair[9:0]
mcu_fsr1_cfgtx_invpair[9:0]

O Invert TXP and TXN per bit

mcu_fsr01_cfgtx_enftp O Enable fixed phose on TXBCLKIN

mcu_fsr01_cfgtx_de[3:0] O Set transmitter output de-emphasis

mcu_fsr01_cfgtx_swing[2:0] O Set transmitter output swing

mcu_fsr01_cfgtx_cm O Adjust common mode.

fsr0_mcu_rxbclk[13:0]
fsr1_mcu_rxbclk[13:0]

I Clocks for Northbound FBD Channels

fsr0_mcu_data[167:0]
fsr1_mcu_data[167:0]

I Northbound FBD Channel Data

fsr0_mcu_stspll_lock
fsr1_mcu_stspll_lock

I SERDES PLLs are locked

fsr0_mcu_stsrx_sync[13:0]
fsr1_mcu_stsrx_sync[13:0]

I Header alignment signal from SERDES Receivers

fsr0_mcu_stsrx_losdtct[13:0]
fsr1_mcu_stsrx_losdtct[13:0]

I Electrical Idle signal from SERDES Receivers

TABLE 3-22 MCU Level I/O (Continued)

Signal Name I/O Description
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3.13.1 Control and Status Registers (CSR)

TABLE 3-23 Control and Status Registers

Register Offset Register Name

0x00000000 CAS Address Width Register

0x00000008 RAS Address Width Register

0x00000010 CAS Latency Register

0x00000018 Scrub Frequency Register

0x00000020 Refresh Frequency Register

0x00000038 Refresh Counter Register

0x00000040 Scrub Enable Register

0x00000080 RAS to RAS Different Bank Delay Register

0x00000088 RAS to RAS Same Bank Delay Register

0x00000090 RAS to CAS Delay Register

0x00000098 Write to Read CAS Delay Register

0x000000A0 Read to Write CAS Delay Register

0x000000A8 Internal Read to Precharge Delay Register

0x000000B0 Active to Precharge Delay Register

0x000000B8 Precharge Command Period Register

0x000000C0 Write Recovery Period Register

0x000000C8 Auto refresh to Active Period Register

0x000000D0 Mode Register Set Command Period Register

0x000000E0 Internal Write to Read Command Delay Register

0x000000E8 Precharge Wait Register During Power Up

0x00000108 DIMM Stacked Register

0x00000110 Extended Mode 2 Register

0x00000118 Extended Mode 1 Register

0x00000120 Extended Mode 3 Register

0x00000128 8 Bank Mode Register

0x00000138 Branch Disabled Register

0x00000140 Select Low Order Address Bits Register

0x000001A0 DIMM Initialization Register
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3.13.1.1 Changes to DIMM Initialization Register- 0x84_0000_01A0

The DIMM Initialization Register for OpenSPARC T2 has the following format:

0x00000208 Mode Register Write Status Register

0x00000210 Initialization Status Register

0x00000218 DIMMs Present Register

0x00000220 Fail-Over Status Register

0x00000228 Fail-Over Mask Register

TABLE 3-24 DRAM Initialization Register

Field Bit position Initial value R/W Description

RSVD [62:2] 0x0 RO Reserved

CKE [1] 0x0 RW Enabled CKE to DIMMs

INIT [0] 0x1 RW Set to 1 during software initialization of DRAMs;
cleared by software when done.

TABLE 3-23 Control and Status Registers (Continued)

Register Offset Register Name
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3.13.1.2 Single Channel Mode Register - 0x84_0000_0148

3.13.1.3 Four Activate Window Register

3.13.2 Error Registers

TABLE 3-25 Single Channel Mode Register

Field Bit position Initial value R/W Description

RSVD [62:1] 0x0 RO Reserved

MODE [0] 0x0 RW Enable use of one FBD channel for memory
transactions. Burst length becomes 8.

TABLE 3-26 Four Activate Window Register

Field Bit position Initial value R/W Description

RSVD [62:5] 0x0 RO Reserved

MODE [4:0] 0xA RW tFAW. Number of cycles in which activate commands may
be issued to a DIMM. Preserved on warm reset.

TABLE 3-27 Error Registers

Register Offset Register Name

0x00000280 Error Status Register

0x00000288 Error Address Register

0x00000290 Error Injection Register

0x00000298 Error Counter Register

0x000002A0 Error Location Register
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3.13.2.1 Changes to Error Status Register - 0x84_0000_0280

The MCU Error Status Register has three additional bits:

3.13.2.2 Error Retry Register - 0x84_0000_02a8

TABLE 3-28 MCU Error Status Register

Field Bit Position Initial Value R/W Description

MEB [56] 0x0 R/W1C Multiple Out-of-Bound Errors

FBU [55] 0x0 R/W1C FBDIMM Channel Unrecoverable Error

FBR [54] 0x0 R/W1C FBDIMM Channel Recoverable Error

TABLE 3-29 Error Entry Register

Field Bit Position
Initial
Value R/W Description

VALID [63] 0x0 RW Error Retry Register is valid

RSVD [62:50] 0x0 RO Reserved

SYNDROME2 [49:34] 0x0 RW Syndrome from second retry read

TYPE2 [33:32] 0x0 RW Result of second retry read

RSVD [31:18] 0x0 RO Reserved

SYNDROME1 [17:2] 0x0 RW Syndrome from second retry read

TYPE1 [1:0] 0x0 RW Result of second retry read:
00: No read
01: No error
10: Correctable Error
11: Uncorrectable Error
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3.13.3 Power Management Registers

3.13.3.1 Power Down Mode Register - 0x84_0000_0238

This register enables the use of Power Down mode for power savings. When
enabled, an FBD will be placed in Power Down mode when there are no pending or
outstanding transactions to that FBD.

TABLE 3-30 Power Management Registers

Register Offset Register Name

0x00000028 Open Bank Max Register

0x00000048 Programmable Time Counter Register

TABLE 3-31 Power Down Mode Register

Field Bit Position Initial Value R/W Description

RSVD [63:1] 0x0 RO Reserved

ENABLE [0] 0x0 RW Enable use of Power Down mode if 1.
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3.13.4 Performance Registers

3.13.5 Changes to Debug Trigger Enable Register

3.13.6 State Registers for FBD Branch
FBD controller register address space will be a subset of the MCU’s address space,
differentiated by some upper bits.

TABLE 3-32 Performance Registers

Register Offset Register Name

0x00000400 Performance Control Register

0x00000408 Performance Counter Register

TABLE 3-33 Debug Trigger Enable Register

Field Bit Position
Initial
Value R/W Description

RSVD [63:6] 0x0 RO Reserved

DTM_ATSPEED [5] 0x0 RW If set, Debug bus sends normal mode data in DTM mode

DTM_MASK1 [4] 0x0 RW If set, mask off CRC data from Channel 1 going to Debug
bus

DTM_MASK0 [3] 0x0 RW If set, mask off CRC data from Channel 0 going to Debug
bus

DBG_EN [2] 0x0 RW Enable error events to Debug unit

MASK_ERR [1] 0x0 RW Mask LFSR related errors on NB FBD links

KP_LNK_UP [0] 0x0 RW Keep FBD links up during Warm Reset
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3.13.6.1 Channel State Register - 0x84_0000_0800

3.13.6.2 Fast Reset Flag - 0x84_0000_0808

TABLE 3-34 Channel State Register

Field Bit Position
Initial
Value R/W Description

RSVD [63:8] 0x0 RO Reserved

MDISABLE [7] 0x0 RW Disable AMB data merging for TS2 patterns

AMBID [6:3] 0x0 RW Target AMB for training sequences

STATE [2:0] 0x0 RW State in initialization sequence
0x0 = Disable, 0x1 = Calibrate,
0x2 = Training, 0x3 = Testing,
0x4 = Polling, 0x5 = Config,
0x6 = L0

TABLE 3-35 Fast Reset Flag

Field Bit Position
Initial
Value R/W Description

RSVD [63:4] 0x0 RO Reserved

SYNC_IER [3] 0x0 RW Enables use of IER bit in Sync command. IER will be issued
in last Sync frame before a Channel Reset.

SYNC_R [2:1] 0x0 RW Indicates which status register will be received from AMBs

FASTRESET [0] 0x0 RW Causes MCU to enter use Fast Reset sequence for channel
initialization
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3.13.6.3 Channel Reset (Initialization) Flag - 0x84_0000_0810

3.13.6.4 TS1 Southbound to Northbound Mapping Register -
0x84_0000_0818

3.13.6.5 TS1 Test Parameter Register - 0x84_0000_0820

TABLE 3-36 Channel Reset (Initialization) Flag

Field Bit Position Initial Value R/W Description

RSVD [63:2] 0x0 RO Reserved

FBDINITERR [1] 0x0 RW Set to 1 if an error occurred during the FBD
Channel initialization.

FBDINIT [0] 0x0 RW Causes FBD Channel to be initialized. Uses fast
reset sequence if Fast Reset Flag is set,
otherwise performs full initialization
(including Calibration). Reset to 0 when
initialization is complete.

TABLE 3-37 TS1 Southbound to Northbound Mapping Register

Field Bit Position Initial Value R/W Description

RSVD [63:4] 0x0 RO Reserved

IBRX_CHNL [3] 0x0 RW Selects which NB channel will be checked by
the IBIST Receive engine

MAPPING [2:0] 0x0 RW Determines how targeted AMB maps data
from SB bit lanes to NB bit lanes

TABLE 3-38 TS1 Test Parameter Register

Field Bit Position Initial Value R/W Description

RSVD [63:24] 0x0 RO Reserved

PARAM [23:0] 0x0 RW AMB test parameters for TS1 sequence
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3.13.6.6 TS3 Failover Configuration Register - 0x84_0000_0828

3.13.6.7 Electrical Idle Detected Register - 0x84_0000_0830

3.13.6.8 Disable State Period Register - 0x84_0000_0838

TABLE 3-39 TS3 Failover Configuration Registers

Field Bit Position
Initial
Value R/W Description

RSVD [63:16] 0x0 RO Reserved

SBCONFIG1 [15:12] 0xF RW Indicates which southbound lanes for channel 1 will be used.

NBCONFIG1 [11:8] 0xF RW Indicates which northbound lanes for channel 1 will be used.

SBCONFIG0 [7:4] 0xF RW Indicates which southbound lanes for channel 0 will be used.

NBCONFIG0 [3:0] 0xF RW Indicates which northbound lanes for channel 0 will be used.

TABLE 3-40 Electrical Idle Detected Registers

Field Bit Position Initial Value R/W Description

RSVD [63:28] 0x0 RO Reserved

ELECTIDLE1 [27:14] 0x3ff RO Electrical Idle detected from bit lanes

ELECTIDLE0 [13:0] 0x3ff RO Electrical Idle detected from bit lanes

TABLE 3-41 Disable State Period Registers

Field Bit Position
Initial
Value R/W Description

RSVD [63:10] 0x0 RO Reserved

COUNT [9:0] 0xFF RW Counter value for Disable state. Once Disable state is
entered, a counter will count to this value. Once it
reaches it, the Disable_Done bit in the Disable State
Period Done Register will be set.
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3.13.6.9 Disable State Period Done Register - 0x84_0000_0840

3.13.6.10 Calibrate State Period Register - 0x84_0000_0848

3.13.6.11 Calibrate State Period Done Register - 0x84_0000_0850

3.13.6.12 Training State Minimum Time Register - 0x84_0000_0858

TABLE 3-42 Disable State Period Done Registers

Field Bit Position
Initial
Value R/W Description

RSVD [63:1] 0x0 RO Reserved

DONE [0] 0x0 RW Indicates that counter for Disable state period has completed
counting.

TABLE 3-43 Calibrate State Period Registers

Field Bit Position
Initial
Value R/W Description

RSVD [63:20] 0x0 RO Reserved

COUNT [19:0] 0x0 RW Counter value for Calibrate state. Once Calibrate state is
entered, a counter will count to this value. Once it reaches it,
the Calibrate_Done bit in the FBD Status Register will be set.

TABLE 3-44 Calibrate State Period Done Registers

Field Bit Position
Initial
Value R/W Description

RSVD [63:1] 0x0 RO Reserved

DONE [0] 0x0 RW Indicates that counter for Disable state period has completed
counting.

TABLE 3-45 Training State Minimum Time Registers

Field Bit Position Initial Value R/W Description

RSVD [63:16] 0x0 RO Reserved

COUNT [15:0] 0xFF RW Minimum number of frames for Training state before starting to
check for Done.
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3.13.6.13 Training State Done Register - 0x84_0000_0860

3.13.6.14 Training State Timeout Register - 0x84_0000_0868

3.13.6.15 Testing State Done Register - 0x84_0000_0870

3.13.6.16 Testing State Timeout Register - 0x84_0000_0878

TABLE 3-46 Training State Done Registers

Field Bit Position Initial Value R/W Description

RSVD [63:2] 0x0 RO Reserved

TIMEOUT [1] 0x0 RW Set when timeout period has elapsed before Done has been
asserted.

DONE [0] 0x0 RW Set when Training state has completed.

TABLE 3-47 Training State Timeout Registers

Field Bit Position Initial Value R/W Description

RSVD [63:8] 0x0 RO Reserved

PERIOD [7:0] 0xFF RW Number of frames for Training state to complete after minimum
number of frames have elapsed.

TABLE 3-48 Testing State Done Registers

Field Bit Position Initial Value R/W Description

RSVD [63:2] 0x0 RO Reserved

TIMEOUT [1] 0x0 RW Set when timeout period has elapsed before Done has been
asserted.

DONE [0] 0x0 RW Set when Testing state has completed.

TABLE 3-49 Testing State Timeout Registers

Field Bit Position Initial Value R/W Description

RSVD [63:8] 0x0 RO Reserved

PERIOD [7:0] 0xFF RW Number of frames for Testing state to complete.
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3.13.6.17 Polling State Done Register - 0x84_0000_0880

3.13.6.18 Polling State Timeout Register - 0x84_0000_0888

3.13.6.19 Config State Done Register - 0x84_0000_0890

3.13.6.20 Config State Timeout Period Register - 0x84_0000_0898

TABLE 3-50 Polling State Done Registers

Field Bit Position Initial Value R/W Description

RSVD [63:2] 0x0 RO Reserved

TIMEOUT [1] 0x0 RW Set when timeout period has elapsed before Done has
been asserted.

DONE [0] 0x0 RW Set when Polling state has completed.

TABLE 3-51 Polling State Timeout Registers

Field Bit Position Initial Value R/W Description

RSVD [63:8] 0x0 RO Reserved

PERIOD [7:0] 0xFF RW Number of frames for Polling state to complete.

TABLE 3-52 Config State Done Registers

Field Bit Position Initial Value R/W Description

RSVD [63:2] 0x0 RO Reserved

TIMEOUT [1] 0x0 RW Set when timeout period has elapsed before Done has
been asserted.

DONE [0] 0x0 RW Set when Config state has completed.

TABLE 3-53 Config State Timeout Period Registers

Field Bit Position Initial Value R/W Description

RSVD [63:8] 0x0 RO Reserved

PERIOD [7:0] 0xFF RW Number of frames for Config state to complete.
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3.13.6.21 Per Rank CKE Register - 0x84_0000_08A0

Writing this register or the CKE bit of register 0x84_0000_01A0 sends a CKE
command to the FBDIMMs. Each bit corresponds to a rank in a fully populated
FBDIMM system. Bit 0 is for DIMM0, rank0; bit one is for DIMM0, rank1; etc. The
enable bits are qualified by the number of DIMMs and whether they are stacked
before the CKE command is issued to the DIMMs.

TABLE 3-54 Per Rank CKE Registers

Field Bit Position Initial Value R/W Description

RSVD [63:16] 0x0 RO Reserved

D7R1 [15] 0x1 RW CKE enable for DIMM 7 Rank 1

D7R0 [14] 0x1 RW CKE enable for DIMM 7 Rank 0

D6R1 [13] 0x1 RW CKE enable for DIMM 6 Rank 1

D6R0 [12] 0x1 RW CKE enable for DIMM 6 Rank 0

D5R1 [11] 0x1 RW CKE enable for DIMM 5 Rank 1

D5R0 [10] 0x1 RW CKE enable for DIMM 5 Rank 0

D4R1 [9] 0x1 RW CKE enable for DIMM 4 Rank 1

D4R0 [8] 0x1 RW CKE enable for DIMM 4 Rank 0

D3R1 [7] 0x1 RW CKE enable for DIMM 3 Rank 1

D3R0 [6] 0x1 RW CKE enable for DIMM 3 Rank 0

D2R1 [5] 0x1 RW CKE enable for DIMM 2 Rank 1

D2R0 [4] 0x1 RW CKE enable for DIMM 2 Rank 0

D1R1 [3] 0x1 RW CKE enable for DIMM 1 Rank 1

D1R0 [2] 0x1 RW CKE enable for DIMM 1 Rank 0

D0R1 [1] 0x1 RW CKE enable for DIMM 0 Rank 1

D0R0 [0] 0x1 RW CKE enable for DIMM 0 Rank 0
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3.13.6.22 L0s Duration - 0x84_0000_08A8

3.13.6.23 Sync Frame Frequency Register - 0x84_0000_08B0

TABLE 3-55 L0s Duration

Field Bit Position Initial Value R/W Description

RSVD [63:7] 0x0 RO Reserved

ENABLE [6] 0x0 RW Enables use of L0s
mode when MCU is
idle.

COUNT [5:0] 0x2A RW Determines the
number of frames
that the branch will
be in the L0s state.
Legal values are
0x20 to 0x2A. Values
below 0x20 will be
treated as 0x20 and
values above 0x2A
will be treated as
0x2A.

TABLE 3-56 Sync Frame Frequency Registers

Field Bit Position Initial Value R/W Description

RSVD [63:6] 0x0 RO Reserved

FREQ [5:0] 0x2A RW Frequency at which
sync frames are
issued on the
FBDIMM channels
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3.13.6.24 Channel Read Latency Register - 0x84_0000_08B8

3.13.6.25 Channel Capability Register - 0x84_0000_08C0

3.13.6.26 Loopback Mode Control Register - 0x84_0000_08C8

TABLE 3-57 Channel Read Latency Registers

Field Bit Position Initial Value R/W Description

RSVD [63:16] 0x0 RO Reserved

LATENCY1 [15:8] 0xFF RW Read latency for channel 1. Determined during Polling
state.

LATENCY0 [7:0] 0xFF RW Read latency for channel 0. Determined during Polling
state.

TABLE 3-58 Channel Capability Registers

Field Bit Position Initial Value R/W Description

RSVD [63:10] 0x0 RO Reserved

CAPABIL1 [9:5] 0x0 RO Channel capabilities for selected AMB in channel
1. Only valid during Polling state.

CAPABIL0 [4:0] 0x0 RO Channel capabilities for selected AMB in channel
0. Only valid during Polling state.

TABLE 3-59 Loopback Mode Control Registers

Field Bit Position Initial Value R/W Description

RSVD [63:2] 0x0 RO Reserved

MODE [1:0] 0x0 RW Loopback Mode:
0x: Loopback Mode disabled
10: Place low-order NB data on SB bus
11: Place high-order NB data on SB bus
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3.13.6.27 SERDES Configuration Bus Register - 0x84_0000_08D0

3.13.6.28 SERDES Transmitter and Receiver Differential Pair Inversion
Register - 0x84_0000_08D8

TABLE 3-60 SERDES Configuration Bus Registers

Field Bit Position
Initial
Value R/W Description

RSVD [63:25] 0x0 RO Reserved

RXTX_RATE [29:28] 0x0 RW Receiver/Transmitter Operating Rate

TX_CM [27] 0x0 RW Transmitter Common Mode

TX_SWING [26:24] 0x1 RW Transmitter Output Swing

TX_DE [23:20] 0x0 RW Transmitter De-emphasis

TX_ENFTP [19] 0x0 RW Transmitter Enable

RX_TERM [18:16] 0x0 RW Receiver Termination

RSVD [15] 0x0 RO Reserved

RX_CDR [14:12] 0x0 RW Receiver Clock/Data Recovery Algorithm

RX_EQ [11:8] 0x0 RW Receiver Adaptive Equalizer Configuration

RSVD [7:6] 0x0 RO Reserved

PLL_MPY [5:2] 0x0 RW PLL Multiplier

PLL_LB [1:0] 0x0 RW Loop bandwidth

TABLE 3-61 SERDES Transmitter and Receiver Differential Pair Inversion Registers

Field Bit Position Initial Value R/W Description

RSVD [63:48] 0x0 RO Reserved

TX1_INVPAIR [47:38] 0x0 RW Invert Channel 1 TXPi/TXNi if bit is 1.

TX0_INVPAIR [37:28] 0x0 RW Invert Channel 0 TXPi/TXNi if bit is 1.

RX1_INVPAIR [27:14] 0x0 RW Invert Channel 1 RXPi/RXNi if bit is 1.

RX0_INVPAIR [13:0] 0x0 RW Invert Channel 0 RXPi/RXNi if bit is 1.
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3.13.6.29 SERDES Test Configuration Bus Register - 0x84_0000_08E0

TABLE 3-62 SERDES Test Configuration Bus Registers

Field Bit Position
Initial
Value R/W Description

RSVD [63:32] 0x0 RO Reserved

FSR1_TX_ENTEST [31] 0x0 RW Enable testing of FSR1 Transmit ports

FSR0_TX_ENTEST [30] 0x0 RW Enable testing of FSR0 Transmit ports

FSR1_RX_ENTEST [29] 0x0 RW Enable testing of FSR1 Receive ports

FSR0_RX_ENTEST [28] 0x0 RW Enable testing of FSR0 Receive ports

FSR1_INVPATT [27] 0x0 RW FSR1 Invert Polarity

FSR1_RATE [26:25] 0x0 RW FSR1 Operating Rate

FSR1_ENBSPLS [24] 0x0 RW FSR1 Receiver pulse boundary scan

FSR1_ENBSRX [23] 0x0 RW FSR1 Receiver boundary scan

FSR1_ENBSTX [22] 0x0 RW FSR1 Transmitter boundary scan

FSR1_LOOPBACK [21:20] 0x0 RW FSR1 Loopback

FSR1_CLKBYP [19:18] 0x0 RW FSR1 Clock bypass

FSR1_ENRXPATT [17] 0x0 RW FSR1 Enable Rx patterns

FSR1_ENTXPATT [16] 0x0 RW FSR1 Enable Tx patterns

FSR1_TESTPATT [15:14] 0x0 RW FSR1 Test pattern

FSR0_INVPATT [13] 0x0 RW FSR0 Invert Polarity

FSR0_RATE [12:11] 0x0 RW FSR0 Operating Rate

FSR0_ENBSPLS [10] 0x0 RW FSR0 Receiver pulse boundary scan

FSR0_ENBSRX [9] 0x0 RW FSR0 Receiver boundary scan

FSR0_ENBSTX [8] 0x0 RW FSR0 Transmitter boundary scan

FSR0_LOOPBACK [7:6] 0x0 RW FSR0 Loopback

FSR0_CLKBYP [5:4] 0x0 RW FSR0 Clock bypass

FSR0_ENRXPATT [3] 0x0 RW FSR0 Enable Rx patterns

FSR0_ENRXPATT [2] 0x0 RW FSR0 Enable Tx patterns

FSR0_TESTPATT [1:0] 0x3 RW FSR0 Test pattern
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3.13.6.30 SERDES PLL Status Register - 0x84_0000_08E8

3.13.6.31 SERDES Test Status Register - 0x84_0000_08F0

3.13.6.32 Configuration Register Access Address Register -
0x84_0000_0900

TABLE 3-63 SERDES PLL Status Registers

Field Bit Position Initial Value R/W Description

RSVD [63:6] 0x0 RO Reserved

FSR1_STSPLL [5:3] 0x0 RO PLL Lock Status for FSR1 macros

FSR0_STSPLL [2:0] 0x0 RO PLL Lock Status for FSR0 macros

TABLE 3-64 SERDES Test Status Registers

Field Bit Position Initial Value R/W Description

RSVD [63:48] 0x0 RO Reserved

FSR1_TX_TESTFAIL [47:38] 0x0 RO Test Status for FSR1 Transmit ports

FSR0_TX_TESTFAIL [37:28] 0x0 RO Test Status for FSR0 Transmit ports

FSR1_RX_TESTFAIL [27:14] 0x0 RO Test Status for FSR1 Receive ports

FSR0_RX_TESTFAIL [13:0] 0x0 RO Test Status for FSR0 Receive ports

TABLE 3-65 Configuration Register Access Address Registers

Field Bit Position Initial Value R/W Description

RSVD [63:16] 0x0 RO Reserved

CHANNE
L

[15] 0x0 RW Channel of Configuration Register Access.

AMB [14:11] 0x0 RW AMB ID of Configuration Register Access.

DATA [10:2] 0x0 RW Address for Configuration Register read or write.

RSVD [1:0] 0x0 RO Reserved
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3.13.6.33 Configuration Register Access Data Register - 0x84_0000_0908

3.13.6.34 FBD Thermal Trip Status Register - 0x84_0000_0A00

TABLE 3-66 Configuration Register Access Data Registers

Field Bit Position Initial Value R/W Description

RSVD [63:32] 0x0 RO Reserved

DATA [31:0] 0x0 RW Data for Configuration Register read or write. Writing
to this register generates a Configuration Register
Write on the FBD Channel; reading from this register
generates a Configuration Register Read on the FBD
Channel.

TABLE 3-67 FBD Thermal Trip Status Registers

Field Bit Position
Initial
Value R/W Description

RSVD [63:48] 0x0 RO Reserved

TTRIP1_11 [47:46] 0x0 RO Thermal Trip information for AMB 11, Channel 1

TTRIP1_10 [45:44] 0x0 RO Thermal Trip information for AMB 10, Channel 1

TTRIP1_9 [43:42] 0x0 RO Thermal Trip information for AMB 9, Channel 1

TTRIP1_8 [41:40] 0x0 RO Thermal Trip information for AMB 8, Channel 1

TTRIP1_7 [39:38] 0x0 RO Thermal Trip information for AMB 7, Channel 1

TTRIP1_6 [37:36] 0x0 RO Thermal Trip information for AMB 6, Channel 1

TTRIP1_5 [35:34] 0x0 RO Thermal Trip information for AMB 5, Channel 1

TTRIP1_4 [33:32] 0x0 RO Thermal Trip information for AMB 4, Channel 1

TTRIP1_3 [31:30] 0x0 RO Thermal Trip information for AMB 3, Channel 1

TTRIP1_2 [29:28] 0x0 RO Thermal Trip information for AMB 2, Channel 1

TTRIP1_1 [27:26] 0x0 RO Thermal Trip information for AMB 1, Channel 1

TTRIP1_0 [25:24] 0x0 RO Thermal Trip information for AMB 0, Channel 1

TTRIP0_11 [23:22] 0x0 RO Thermal Trip information for AMB 11, Channel 0

TTRIP0_10 [21:20] 0x0 RO Thermal Trip information for AMB 10, Channel 0

TTRIP0_9 [19:18] 0x0 RO Thermal Trip information for AMB 9, Channel 0

TTRIP0_8 [17:16] 0x0 RO Thermal Trip information for AMB 8, Channel 0

TTRIP0_7 [15:14] 0x0 RO Thermal Trip information for AMB 7, Channel 0
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TTRIP0_6 [13:12] 0x0 RO Thermal Trip information for AMB 6, Channel 0

TTRIP0_5 [11:10] 0x0 RO Thermal Trip information for AMB 5, Channel 0

TTRIP0_4 [9:8] 0x0 RO Thermal Trip information for AMB 4, Channel 0

TTRIP0_3 [7:6] 0x0 RO Thermal Trip information for AMB 3, Channel 0

TTRIP0_2 [5:4] 0x0 RO Thermal Trip information for AMB 2, Channel 0

TTRIP0_1 [3:2] 0x0 RO Thermal Trip information for AMB 1, Channel 0

TTRIP0_0 [1:0] 0x0 RO Thermal Trip information for AMB 0, Channel 0

TABLE 3-67 FBD Thermal Trip Status Registers (Continued)

Field Bit Position
Initial
Value R/W Description
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3.13.6.35 MCU Syndrome Register - 0x84_0000_0C0

3.13.6.36 Injected Error Source Register - 0x84_0000_0C08

TABLE 3-68 MCU Syndrome Registers

Field Bit Position
Initial
Value R/W Description

VALID [63] 0x0 RW Error Status is Valid

RSVD [62:30] 0x0 RO Reserved

ALERT1 [29:18] 0x0 RW AMB’s on Channel 1 with Status Alert Asserted

ALERT0 [17:6] 0x0 RW AMB’s on Channel 0 with Status Alert Asserted

SOFTRESET [5] 0x0 RW Soft Channel Reset Performed on Channel

FASTRESET [4] 0x0 RW Fast Reset Performed on Channel

SOURCE [3:0] 0x0 RW Source(s) of error (multiple may be asserted:
0xXXX1: CRC Error
0xXX1X: Alert Frame
0xX1XX: Status Alert Asserted
0x1XXX: Status Frame Parity Error

TABLE 3-69 Injected Error Source Registers

Field Bit Position Initial Value R/W Description

RSVD [63:2] 0x0 RO Reserved

SOURCE [1:0] 0x0 RW Source for Injected Error:
0x0 - CRC Error
0x1 - Alert Frame
0x2 - Status Alert Asserted
0x3 - Status Frame Parity Error
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3.13.6.37 MCU FBR Count Register - 0x84_0000_0C10

3.14 Other Registers

3.14.1 Self-Refresh Registers
The Clock Control Register in the Clock Control Unit (CCU), described in the
OpenSPARC T2 Programmer’s Reference Manual, controls self-refresh mode for the
MCU upon assertion of warm reset.

TABLE 3-70 MCU FBR Count Registers

Field Bit Position Initial Value R/W Description

RSVD [63:17] 0x0 RO Reserved

COUNTONE [16] 0x0 RW Hardware behaves as if count was always one, i.e.
it will always generate an interrupt

COUNT [15:0] 0x0 RW Number of recoverable errors before a recoverable
error interrupt will be sent to NCU
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CHAPTER 4

Test Control Unit (TCU)

This document defines the architecture for the Test Control Unit (TCU) for
OpenSPARC T2. It is intended for RTL design engineers of other OpenSPARC T2
blocks, verification engineers, and DFT engineers. The document contains the
functional description, and some level of implementation detail for the TCU, test
control unit.

This chapter contains the following sections:

■ Introduction

■ Joint Action Test Group (JTAG)

■ UCB Interface

■ L2 Access via SIU

■ Scan

■ Clock Stop

■ Transition Testing

■ Boundary Scan

■ TCU Debug Interface to SPC Cores

■ TCU Debug Interface to SOC Logic

■ TCU Debug Registers

■ Memory BIST Control

■ Logic BIST Control

■ Shadow Scan

■ Array Guidelines to Support Scan Test

■ Reset Sequencing

■ EFuse

■ TCU Local CSR Assignments
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4.1 Introduction
The TCU is the OpenSPARC T2 Test Control Unit and provides access to the chip
test logic. It also participates in Reset, eFuse programming, clock stop/start
sequencing, and chip debug. The TCU including Joint Test Action Group (JTAG) is
completely stuck-fault testable via Automatic Test Pattern Generation (ATPG)
manufacturing scan.

4.1.1 Features
The features available for debug or test, implemented in OpenSPARC T2 and
supported by the TCU are as follows:

■ ATPG or Manufacturing scan for stuck-fault testing.

■ TAP and Boundary Scan (JTAG) - support for IEEE 1149.1 and 1149.6

■ JTAG scan for scan chain loading and unloading.

■ JTAG shadow scan - allows for inspection of specific registers while part is
running in system.

■ Support for Macrotest.

■ JTAG UCB - Allows CREG access via instructions sent to the NCU which will
then intermix the transaction with normal requests. The NCU will then take the
results and pass them back to the TCU which can then send out TDO.

■ eFuse - Control and programming

■ Transition fault testing - This is done on the tester while PLLs are locked; slower
domains may be driven via pins directly.

■ MBIST - Memory Built-in Self Test; tests Array bit cells and write/read
mechanisms. BISI (Built-in Self Initialization) allows arrays to be initialized.

■ LBIST - Logic BIST, implemented in cores.

■ Reset - Handshaking with RST unit to control scan flop reset and clock stop/start
sequencing.

■ L2 Access - via JTAG through the SIU.

■ Debug Support.

■ Support for SERDES - ATPG, STCI, boundary scan
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4.2 Joint Action Test Group (JTAG)
The JTAG block resides in the TCU. This interface will be used to access not only
standard JTAG services but also implementation of specific debug features. The
JTAG architecture is designed to be compliant with the IEEE 1149.1 Standard.

JTAG provides these features:

1. Access to JTAG ID code

2. Implementation of JTAG public instructions (see Note)

3. Ability to load/unload chip scan chains as a single chain, or individually

4. Initiation and control of Shadow scan

5. Initiation and control of Boundary scan

6. Control of MBIST or BISI

7. Control of LBIST

8. Interface to Chip UCB

9. Interface to E-Fuse Unit

10. Interface to various debug features

11. Control of clock domains (starting, stopping)

12. Write/read access to L2

The following JTAG pins are implemented for OpenSPARC T2:

■ TDI

■ TDO

■ TMS

■ TRST_L

■ TCK

Note – The JTAG unit implements all instructions specified as mandatory in the
1149.1 and 1149.6 standards along with a number of private instructions that help
the debugger to access specific debug features. However, not all I/O on OpenSPARC
T2 support the HIGHZ and SAMPLE instructions. HIGHZ and SAMPLE are not
supported on SERDES I/O. In addition, some non-SERDES I/O do not implement
HIGHZ correctly.
Chapter 4 Test Control Unit (TCU) 4-3



4.2.1 Instruction Register
The instruction register provides eight bits to access up to 256 instructions. On the
rising edge of TCK in the capture-IR state, the instruction register shift portion is
updated to the IDCODE instruction. The instruction register update portion loads
the IDCODE instruction on the falling edge of TCK in the reset state, or when
TRST_L goes low.

4.2.2 Reset State and TRST_L
The TRST_L pin provides an asynchronous reset for the JTAG state machine and
associated registers. When TRST_L is activated (low), the TMS pin should be held
high and it is recommended that TCK be held off. When TRST_L goes low:

■ The TAP state machine is put in the test-logic-reset state.

■ The Instruction Register is set to the IDCODE instruction.

■ All data registers internal to the JTAG block are reset to their default states.

After TRST_L is deasserted it is recommended to keep TCK off until JTAG is to be
used, and then allow TCK to run with TMS be held high for a few cycles to allow the
reset state inside JTAG to stabilize before entering the Run-Test-Idle state.

Synchronous resetting of the TAP is done by entering the test-logic-reset state via
control of TMS and TCK. This does not necessarily reset private data registers to
their default states.

4.2.3 Instruction Summary
Unimplemented or undefined instructions will default to the BYPASS instruction.

TABLE 4-1 JTAG Instruction Register

Instruction Decode Value on Reset

7:0 IDCODE Instr: 8b 0000 0001

TABLE 4-2 JTAG Public Instructions

Instruction Encoding Description

TAP_BYPASS 0xFF Mandatory; selects BYPASS REGISTER

TAP_EXTEST 0x00 Mandatory; selects BOUNDARY SCAN REGISTER

TAP_IDCODE 0x01 Optional per standard; selects IDCODE DR
4-4 OpenSPARC T2 SoC Microarchitecture Specification Part 1 of 2 • May 2008



TAP_CLAMP 0x04 Optional per standard

TAP_EXTEST_PULSE 0x05 Mandatory for 1149.6

TAP_EXTEST_TRAIN 0x06 Mandatory for 1149.6

TABLE 4-3 JTAG Private Instructions

Instruction Encoding Description

TAP_SAMPLE_PRELOAD 0x02 Mandatory; shared encoding allowed per standard; selects
BOUNDARY SCAN REGISTER - SERDES I/O do not support
SAMPLE part of this instruction

TAP_HIGHZ 0x03 Optional per standard - SERDES I/O do not support HIGHZ,
and some DBG_DQ I/O have weak pullup/down resistors.

UNDEFINED 0x07 --

TAP_CREG_ADDR 0x08 Stores address to be used for system access to control reg
(ASI/IO mapped)

TAP_CREG_WDATA 0x09 Stores data to be used for system access to control reg

TAP_CREG_RDATA 0x0A Captures data from system access

UNDEFINED 0x0B --

TAP_NCU_WRITE 0x0C Initiates write to system control register

TAP_NCU_READ 0x0D Initiates read from system control register

TAP_NCU_WADDR 0x0E Combination of TAP_CREG_ADDR and TAP_NCU_WRITE

TAP_NCU_WDATA 0x0F Combination of TAP_CREG_WDATA and TAP_NCU_WRITE

TAP_NCU_RADDR 0x10 Combination of TAP_CREG_ADDR and TAP_NCU_READ

UNDEFINED 0x11-0x12 --

TAP_MBIST_CLKSTPEN 0x13 Enables clock stop for mbist via cycle counter

TAP_MBIST_BYPASS 0x14 Select engines to by excluded from MBIST operation; using
mbist_bypass data register

TAP_MBIST_MODE 0x15 Specify serial/parallel, diag. mode or bist/bisi modes via
mbist_mode data reg

TAP_MBIST_START 0x16 Initiate MBIST

UNDEFINED 0x17 --

TAP_MBIST_RESULT 0x18 Query 2-bit done/fail register: and/or of all MBIST engines

TAP_MBIST_DIAG 0x19 Run MBIST on one array; MBIST engine & arrays are data reg

TAP_MBIST_GETDONE 0x1A Query 48-bit done data register, one bit per MBIST engine

TABLE 4-2 JTAG Public Instructions (Continued)

Instruction Encoding Description
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TAP_MBIST_GETFAIL 0x1B Query 48-bit fail data register, one bit per MBIST engine

TAP_DMO_ACCESS 0x1C Set DMO Mode - enables DMO logic and package pins

TAP_DMO_CLEAR 0x1D Clears DMO Mode

TAP_DMO_CONFIG 0x1E Access 48-bit DMO configuration register

TAP_MBIST_ABORT 0x1F Stop any MBIST activity and reset MBIST controls

UNDEFINED 0x20-0x27 --

TAP_FUSE_READ 0x28 Shift out 32 bits selected by ROW_ADDR; selects EFUSE DR

TAP_FUSE_BYPASS_DATA 0x29 Provides user-data directly to EFU; selects EFUSE DR

TAP_FUSE_BYPASS 0x2A Starts EFU control using bypass data provided by user

TAP_FUSE_ROW_ADDR 0x2B Shift in 7-bit row address for EFU access; selects EFU ROW
ADDRESS DR

TAP_FUSE_COL_ADDR 0x2C Shift in 5-bit column address for EFU programming; selects
EFU COLUMN ADDRESS DR

TAP_FUSE_READ_MODE 0x2D Configures EFU with three bits for EFU access; selects EFU
READ MODE DR

TAP_FUSE_DEST_SAMPLE 0x2E Samples EFU destination redundancy value from the
destination specified

TAP_FUSE_RVCLR 0x2F Access 7-bit redundancy value clear register

TAP_SPCTHR0_SHSCAN 0x30 Samples thread 0 for all available cores

TAP_SPCTHR1_SHSCAN 0x31 Samples thread 1 for all available cores

TAP_SPCTHR2_SHSCAN 0x32 Samples thread 2 for all available cores

TAP_SPCTHR3_SHSCAN 0x33 Samples thread 3 for all available cores

TAP_SPCTHR4_SHSCAN 0x34 Samples thread 4 for all available cores

TAP_SPCTHR5_SHSCAN 0x35 Samples thread 5 for all available cores

TAP_SPCTHR6_SHSCAN 0x36 Samples thread 6 for all available cores

TAP_SPCTHR7_SHSCAN 0x37 Samples thread 7 for all available cores

TAP_L2T_SHSCAN 0x38 Samples specified error registers in the eight L2 Tags

UNDEFINED 0x39-0x3F --

TAP_CLOCK_SSTOP 0x40 Soft Stop of clocks; cores only

TAP_CLOCK_HSTOP 0x41 Hard Stop of clocks

TAP_CLOCK_START 0x42 Start clocks

TAP_CLOCK_DOMAIN 0x43 Specify entry clock domain for stopping/starting clocks

TABLE 4-3 JTAG Private Instructions (Continued)

Instruction Encoding Description
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TAP_CLOCK_STATUS 0x44 2-bit status indicating if clock stop/start routine finished

TAP_CLKSTP_DELAY 0x45 7-bits; Specify up to 128 cycle delay between successive
clk_stop signals

TAP_CORE_SEL 0x46 8-bit register to specify target SPC cores for clock operations.

UNDEFINED 0x47 --

TAP_DE_COUNT 0x48 Access 32-bit Debug Event Counter

TAP_CYCLE_COUNT 0x49 Access 64-bit Reset/Cycle Counter

TAP_TCU_DCR 0x4A Access 4-bit TCU Debug (event) Control Register

UNDEFINED 0x4B --

TAP_CORE_RUN_STATUS 0x4C Access 64-bit CMP core-running-status reg.

TAP_DOSS_ENABLE 0x4D Access 64-bit disable overlap/single step mode enable register

TAP_DOSS_MODE 0x4E Specify either disable overlap or single step mode; [1]=enable,
[0]=single step if set to ‘1’, disable overlap if set to ‘0’

TAP_SS_REQUEST 0x4F Pulse single step request signal; need to go through update-dr

TAP_DOSS_STATUS 0x50 8-bit status for disable overlap or single step completion

TAP_CS_MODE 0x51 Specify cycle-step mode. 1-bit register. set to ‘1’ to enable; uses
Cycle Counter for cycle-step operation.

TAP_CS_STATUS 0x52 Read 1-bit status indicating cycle stepping has completed.

UNDEFINED 0x53-0x57 --

TAP_L2_ADDR 0x58 Load L2 Address (to be written to or read from)

TAP_L2_WRDATA 0x59 Load L2 Write Data

TAP_L2_WR 0x5A Initiate write to L2: WRDATA to ADDR

TAP_L2_RD 0x5B Initiate read from L2 at ADDR and receive L2 data

UNDEFINED 0x5C-0x5F --

TAP_LBIST_START 0x60 Initiate Logic BIST

TAP_LBIST_BYPASS 0x61 Bypass Logic BIST for specified cores; 1 bit per core

TAP_LBIST_MODE 0x62 Control program mode; parallel/serial modes

TAP_LBIST_ACCESS 0x63 Place one Logic BIST controller between TDI-TDO

TAP_LBIST_GETDONE 0x64 Determine if Logic BIST is done across all selected cores

TAP_LBIST_ABORT 0x65 Abort any Logic BIST currently in progress

UNDEFINED 0x66-0x7F --

TABLE 4-3 JTAG Private Instructions (Continued)

Instruction Encoding Description
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TAP_SERSCAN 0x80 Access internal scan chains; selects INTERNAL SCAN FLOPS
as DATA REGISTER

TAP_CHAINSEL 0x81 Select all or one of 32 chains for serial scan mode using CHAIN
SELECT DR

TAP_MT_ACCESS 0x82 Enables Macro Test mode for JTAG Scan

TAP_MT_CLEAR 0x83 Clears Macro Test mode

TAP_MT_SCAN 0x84 Similar to TAP_SERSCAN but drives TCK onto clock tree for
capture pulses during RTI state

UNDEFINED 0x85-0x87 --

TAP_TP_ACCESS 0x88 Enables Test Protect mode to block inputs to TCU and other
blocks such as RST, CCU, and DMU

TAP_TP_CLEAR 0x89 Clears Test Protect mode

UNDEFINED 0x8A-0x8F --

TAP_STCI_ACCESS 0x90 Enables STCI mode for SERDES Test Configuration Interface
Bus

TAP_STCI_CLEAR 0x91 Clears STCI mode for SERDES Test Configuration Interface Bus

UNDEFINED 0x92-0x9F --

TAP_JTPOR_ACCESS 0xA0 Enables JTAG access window during POR sequence

TAP_JTPOR_CLEAR 0xA1 Clears JTAG access window during POR sequence

TAP_JTPOR_STATUS 0xA2 JTAG access window status: returns ‘1’ if window is active

TAP_SCKBYP_ACCESS 0xA3 Enables Bypass for SCK counter in NCU

TAP_SCKBYP_CLEAR 0xA4 Clears Bypass for SCK counter in NCU

UNDEFINED 0xA5-0xFE --

TABLE 4-3 JTAG Private Instructions (Continued)

Instruction Encoding Description
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4.2.4 Data Registers
The data registers accessible via JTAG are listed in TABLE 4-4. The least significant bit
(lsb: bit 0, the rightmost bit) is always closest to tdo.

TABLE 4-4 JTAG Data Registers

Data Register Width Capture Update Description & JTAG Instructions

Boundary Scan ~ 3 x I/Os Yes Yes I/O pin boundary scan cells; see private instructions

Bypass 1 Yes No Selected via bypass instr. or any undefined instr.

ID Code 32 Yes No See following section; TAP_IDCODE

Chain Select 6 No Yes Active during JTAG Serial Scan; TAP_CHAINSEL

Serial (Internal) Scan ~1200K No via scan Chip scan chains; TAP_SERSCAN, TAP_MT_SCAN

Macrotest Enable 1 No Yes Enables write/read control of arrays during serial
scan; set with TAP_MT_ACCESS, clear with
TAP_MT_CLEAR

Test Protect Enable 1 No Yes Enables Test Protect mode; set with
TAP_TP_ACCESS, clear with TAP_TP_CLEAR

EFUSE 32 Yes No Contents of 1 row in eFuse array, per Row Addr.;
TAP_FUSE_READ

EFUSE Bypass_Data 32 No Yes Data for BYPASSING eFuse Array;
TAP_FUSE_BYPASS_DATA

EFUSE Row_Address 7 Yes Yes Select one row in the eFuse array;
TAP_FUSE_ROW_ADDR

EFUSE Column_Address 5 Yes Yes eFuse Column, only for programming;
TAP_FUSE_COL_ADDR

EFUSE Read_Mode 3 Yes Yes See eFuse document; TAP_FUSE_READ_MODE

EFUSE Dest_Sample 32 Yes No See eFuse Document; TAP_FUSE_DEST_SAMPLE

EFUSE RVCLEAR 7 No Yes TAP_FUSE_RVCLR bit[6]=enable; bits[5:0]=RV_ID

MBIST Result 2 Yes (1) No Bit 1=1 when MBIST Done, Bit 0=1 if MBIST failed;
TAP_MBIST_RESULT

MBIST Bypass 48 Yes Yes MBIST: Specify engines to bypass during MBIST;
TAP_MBIST_BYPASS

MBIST Done 48 Yes (1) No MBIST engine Done status bits;
TAP_MBIST_GETDONE

MBIST Fail 48 Yes (1) No MBIST engine Fail status bits;
TAP_MBIST_GETFAIL

MBIST Diag Variable No via scan All registers in an MBIST engine. Updated via scan
only. TAP_MBIST_DIAG
Chapter 4 Test Control Unit (TCU) 4-9



MBIST Mode 4 No via scan Select serial or parallel modes; bisi; user mode
TAP_MBIST_MODE

CREG Address 40 No Yes 40-bit address for system control register;
TAP_CREG_ADDR, TAP_NCU_WADDR,
TAP_NCU_RADDR

CREG Write_Data 64 No Yes 64-bit data to be written to system control register;
TAP_CREG_WDATA, TAP_NCU_WDATA

CREG Read_Data 65 Yes No 65-bit data read from system control register;
TAP_CREG_RDATA; due to sentinel bit, scan-out
data is blocked to TDO during shiftDR

Core Shadow_Scan 8*len Yes via scan Shadow scan for all available cores concatenated,
spc0 to spc7;
TAP_SPCTHR0_SHSCAN-TAP_SPCTHR7_SHSCA
N

L2TAG Shadow_Scan 8*len Yes via scan Shadow scan for all l2 tags concatenated, l2t0 to
l2t7; TAP_L2T_SHSCAN

Clock Domain 32 Yes (1) Yes Specify starting points for turning clocks on or off;
TAP_CLOCK_DOMAIN; bits [31:24] reserved,
should be loaded to zeros.

Clock Status 2 Yes (1) No TAP_CLOCK_STATUS
bits = 00 --> clock sequencer is running
bits = 01 --> clock sequencer has started all clocks
bits = 10 --> clock sequencer has stopped all clocks
bits = 11 --> should not happen; indeterminate

Clock Stop Delay 7 Yes (1) Yes Delay between successive clk_stop’s to clk domains;
TAP_CLKSTP_DELAY

Core Select 8 Yes (1) Yes Enables clock stop to target cores; TAP_CORE_SEL

Debug Event Counter 32 Yes (2) Yes Decrementing counter to delay debug action by
counting debug events; TAP_DE_COUNT

Cycle Counter 64 Yes (2) Yes Decrementing counter triggered by debug event;
upper word is Reset Counter; TAP_CYCLE_COUNT

TCU Debug Control 4 Yes (1) Yes Control reg. for TCU debug events; TAP_TCU_DCR

(CMP) Core Run Status 64 Yes (1) No Thread (CMP) running status register;
TAP_CORE_RUN_STATUS

DOSS Enable 64 Yes Yes Disable Overlap (do) and Single Step (ss) enable
bits, per thread; TAP_DOSS_ENABLE

DOSS Mode 2 Yes Yes Controls disable overlap or single step modes;
TAP_DOSS_MODE

TABLE 4-4 JTAG Data Registers (Continued)

Data Register Width Capture Update Description & JTAG Instructions
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An update of “Yes” means there is an update register loaded during UpdateDR; an
update of “via scan” means there is no separate update register.

For Notes (1) and (2) in the Capture field of TABLE 4-4, see JTAG Errata.

Note (3): L2_Addr and L2_Write_Data registers cannot be observed during shiftDR
due to a bug in the RTL - see errata for details.

DOSS Status 8 Yes (1) No Indicates completion of disable overlap or single
step per SPC; TAP_DOSS_STATUS

Cycle Step Enable 1 Yes (1) Yes Enable cycle step mode; TAP_CS_MODE

Cycle Step Status 1 Yes (1) No Indicates cycle step is complete; TAP_CS_STATUS

L2_Addr 65 No
(3)

Yes 64-bit address to L2 for write or read; bit 0 ignored;
TAP_L2_ADDR

L2_Write_Data 65 No
(3)

Yes 64-bit data to write to L2; bit 0 ignored;
TAP_L2_WRDATA

L2_Read_Data 65 Yes (1) No 64-bit data received from L2 per ADDR; bit 0
indicates data is valid, bits 64:1 are data;
TAP_L2_RD

LBIST Bypass 8 Yes Yes One bit per core, to bypass an engine set to ‘1’;
TAP_LBIST_BYPASS

LBIST Mode 2 No via Scan bit[1]: enable user (program) mode
bit[0]: 0=serial, 1=parallel
TAP_LBIST_MODE

LBIST Access tbd No via Scan Place one Logic BIST controller between TDI-TDO;
TAP_LBIST_ACCESS

LBIST Done 8 Yes (1) No Read status of all enabled Logic BIST controllers;
TAP_LBIST_GETDONE

DMO Config 48 Yes (2) Yes Access 48-bit DMO Configuration register;
TAP_DMO_CONFIG

JTAG POR Status 1 Yes (1) No Access 1-bit status for JTAG POR Access;
TAP_JTPOR_STATUS

TABLE 4-4 JTAG Data Registers (Continued)

Data Register Width Capture Update Description & JTAG Instructions
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4.2.4.1 Boundary Scan

The boundary scan data register is selected by EXTEST, SAMPLE/PRELOAD,
HIGHZ and CLAMP and is defined by the BSDL (Boundary Scan Description
Language) file for OpenSPARC T2. It is also selected by the 1149.6 instructions
TAP_EXTEST_TRAIN and TAP_EXTEST_PULSE and is part of the internal scan
register when selected by manufacturing scan.

The HIGHZ instruction is not supported by the SERDES I/O, and also some of the
DBG_DQ pins have weak pullup or pulldown resistors. So the HIGHZ instruction is
not fully supported by OpenSPARC T2. See JTAG Errata for details.

The SAMPLE instruction (encoded with PRELOAD) is not supported by the SERDES
I/O, but the PRELOAD instruction is supported.

4.2.4.2 Bypass Register

This is a one-bit register. The bypass register loads "0" on the rising edge of TCK in
the capture-DR state when the bypass register is selected. All non-specified
instructions cause the bypass register to be selected, so that it is placed between TDI
and TDO.

4.2.4.3 ID Code Register

The ID Code register is a 32-bit read-only register defined as:

The ID Code register is always placed between TDI and TDO when the select-DR
state is reached directly after the test-logic-reset state with no intervening instruction
register programming. The lsb is closest to the TDO as required by the standard.

4.2.4.4 CMP Data Registers

Access for all CMP registers will be via UCB (TAP_CREG_ and TAP_NCU_
instructions).

TABLE 4-5 ID Code Register

Version Field Part Number Field Manufacturing
ID Field

lsb

[31:28] [27:12] [11:1] [0]

Initially 0x0; updated per BSDL change 0x2aaa 0x03e 1
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Threads in each core are virtual cores; for those CMP registers specifying physical
cores each physical core is assigned eight bits in a 64-bit register; allowed values are
8’b11111111 and 8’b00000000 The assigned eight bits are [63:56] = core 7; [55:48] =
core 6; [47:40] = core 5; [39:32] = core 4; [31:24] = core 3; [23:16] = core 2; [15:8] = core
1; [7:0] = core 0.

4.2.5 JTAG SCK Bypass
To get around the SSI lock loss issue in OpenSPARC T2 (see bug 97461), NCU
implements a down counter that would decrement to zero starting from the first
iol2clk after flush reset completion (part of POR and Warm resets). After this counter
expires (reaches 0 count), NCU will send out the first fetch on SSI interface by
asserting SSI_MOSI. By this time the FPGA would have relocked against the
SSI_SCK coming from OpenSPARC T2.

To remove this 5-6 msec wait on the tester, TCU supports a bit that is programmable
through JTAG on the tester between deassertion of TRST_L and assertion of POR2
by the reset block. This bit preserves its value on POR2 and WARM resets and is sent
by the TCU to the NCU as a signal tcu_sck_bypass. When this signal is a 1, (bit
programmed to 1’b1 for the tester), the NCU bypasses the counter to assert
SSI_MOSI (thereby eliminating the 5-6 msec wait time on the tester). If this signal is
a 0, (POR1 reset state of the bit in TCU) then the NCU honors the counter and waits
till the counter expires before asserting SSI_MOSI. This would be the configuration
in the system.

The TAP_SCKBYP_ACCESS and TAP_SCKBYP_CLEAR instructions are used to set
and reset, respectively, the tcu_sck_bypass signal sent from TCU to NCU.

4.2.6 JTAG Access to SERDES STCI
JTAG provides access to the SERDES STCI bus. There are four inputs, STCICLK,
STCICFG[1:0], and STCID, and one output STCIQ. To enable JTAG access to STCI,
the JTAG instruction TAP_STCI_ACCESS should be executed. During STCI JTAG
Access, STCICLK and STCICFG are driven as shown in FIGURE 4-1, while STCID is
connected to TDI and STCIQ to TDO. To clear JTAG access to STCI, use
TAP_STCI_CLEAR or reset the TAP state machine. The updateDR, clockDR and
shiftDR are as specified in the IEEE 1149.1 spec., while capture_dr_state is active
during the Capture DR TAP state.
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FIGURE 4-1 SERDES STCI Bus Control

4.2.7 JTAG Errata

4.2.7.1 JTAG Accesses to some Registers in CMP Clock Domain may
result in Erratic Read Values.

Symptom: JTAG reads of some registers which exist in CMP clock domain may
result in erratic read data, if the registers are being updated when the read occurs.

Description: There are several JTAG instructions that can sample data from registers
contained in the CMP clock domain. These are sampled with TCK in the JTAG block
without synchronization. Consequently, if those registers are changing in the cmp
domain, the read results will be indeterminate. The indeterminism results from the
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asynchronous nature of TCK with respect to the CMP clock. It is permissible to read
these registers directly after they are written with JTAG, before their corresponding
activity is initiated, to verify contents were correctly written.

For the first class of registers the data will generally be stable when reading, or at
least changing very infrequently. Thus, it is recommended that when reading these
registers, back to back reads be performed so that the contents can be compared; if
the same, then the read is successful.

JTAG Registers in this class are indicated with a (1) in the Capture column of
TABLE 4-4:

■ Clock Domain[31:0]

■ Core Run Status[63:0]

■ MBIST Done[47:0]

■ MBIST Fail[47:0]

■ MBIST Result[1:0]

■ LBIST Done[7:0]

■ L2_Read_Data[64:0]

■ Clock Stop Delay[6:0]

■ Clock Status[1:0]

■ Core Select[7:0]

■ TCU Debug Control[3:0]

■ DOSS Status[7:0]

■ Cycle Step Enable[0]

■ Cycle Step Status[0]

■ JTAG POR Status[0]

For the second class of registers, the data may be changing every cycle. In this case it
is recommended that the user refrain from reading these until the contents are stable
- this can be determined by examination of the associated status registers.

Registers in this class are indicated with a (2) in the Capture column of TABLE 4-4

■ Debug Event Counter[31:0]

■ Cycle Counter[63:0]

■ DMO Config[47:0]

Workaround: JTAG users should either 1) read the registers in the first group
multiple times until two stable values are obtained, or 2) read the status registers
associated with the registers in the second group to make sure hardware is not
updating them.
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4.2.7.2 JTAG View of some CSR Registers is Not Correct

Symptom: When accessing certain JTAG registers that are also accessible via SW as
CSRs, there is a possibility that the JTAG view of the register can be inconsistent
with the SW view. The SW view will always be correct, but the JTAG view may be
incorrect.

Description: The TCU does not properly synchronize the update signal for writes to
certain JTAG registers when written by SW. There are two copies of certain JTAG
registers, one in the TCK clock domain inside JTAG, and one in the IO clock domain
which services UCB access by SW. These registers are supposed to be coherent, but if
SW writes to one of these registers it may be possible for the JTAG register to miss
the data and be incoherent, or even to update with indeterminate data.

The registers affected by this condition (with their bit positions relative to JTAG) are:

■ MBIST Mode[3:0]

■ MBIST Bypass[47:0]

■ MBIST Abort[0]

■ LBIST Mode[1:0]

■ LBIST Bypass[7:0]

One way that these registers can become incoherent is when SW writes its copy, the
logic in JTAG also tries to write the same data into the JTAG register. But, the write
pulse is not synchronized and may be missed depending on the relative frequencies
of TCK and the IO clock. Hence, it is possible that the JTAG register will not be
updated, or it may be updated (corrupted) with indeterminate data.

A second way that these registers can become incoherent is if the TCK is not
running. In order to maintain coherency, the TCK clock must be running. However,
the JTAG clock - TCK - is not required to run for functional operation, so there is no
guarantee that TCK is even active when SW writes its register. So the JTAG version
of the register is not updated.

Workaround: Given these problems, and since it is always the JTAG view which
may be incorrect, the JTAG user should be aware that if SW writes these registers
then the JTAG view may be incorrect.

4.2.7.3 HIGH-Z Boundary Scan Instruction is Not Supported

Symptom: Pins associated with DBG_DQ bus in the MIO have weak pullups or
pulldowns, and thus do not go to a high-z state when instructed to do so. In
addition, SERDES pins do not support the high-z state.

Description: The JTAG TAP_HIGHZ instruction is intended to put all output pins in
a high-z state (tristate) and is typically used during manufacturing board test to
prevent overdriving signals. Due to the use of SERDES macros which do not support
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the high-z capability, and the use of pullups and pulldowns in the DBG_DQ bus
pins, many of the OpenSPARC T2 output pins can not go to a high-z state even
when instructed to do so by the TCU.

Workaround: Do not use the TAP_HIGHZ instruction. Support for the JTAG
TAP_HIGHZ instruction has been moved from the public to the private section of
the boundary scan description language file (BSDL); this is legal since HIGHZ is
optional per the IEEE 1149.1 standard. The actual JTAG instruction, TAP_HIGHZ,
has been kept in place but is now a private instruction. This was done since the RTL
still supports the TAP_HIGHZ instruction. Moving it to private means it is not a
supported public instruction and should not be used.

4.3 UCB Interface
The Unit Control Bus interface is a protocol for transmission of packets via the NCU
between units. It is implemented inside the TCU and allows access via JTAG to IO
mapped registers, and some ASI registers. A register’s address and data in the case
of writes are loaded via JTAG into holding registers in the TCU. The TCU then uses
its UCB interface to communicate to the NCU which puts the new transaction
(packet) into the data flow. The interface allows both reading and writing. On
OpenSPARC T2, UCB access through the crossbar to the l2 and cores is not available
so access to the L2 is done via a separate interace between the TCU and the SIU.

For a WRITE, a 40-bit address and 64 bits of data must be provided by JTAG to the
UCB. For a READ, a 40-bit address is needed, with the data received from the NCU
captured into a register in the TCU. To implement a READ, a sentinel bit is used
since the exact timing of the read return is not deterministic. The system is only
allowed to have one read outstanding at one time. There is no protection built in
against this, adherence is left to the user.
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4.3.1 UCB Simple Block Diagram

FIGURE 4-2 UCB Interface Inside the TCU

4.3.2 JTAG Instructions used to Access the UCB
The following descriptions are excerpts from the OpenSPARC T1 DFT Specification
and the OpenSPARC T1 DFT User’s Guide but have been ported to OpenSPARC T2.

TAP_CREG_ADDR

Load System Address: Causes a 40-bit address register to become accessible from TDI.
The target system address is loaded during shift-DR. On Update-DR a transfer
occurs from the TCK domain to a 40-bit holding register in the IO CLK domain.
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4.3.2.1 TAP_CREG_WDATA

Load System Write Data: Causes a 64-bit data register to become accessible from TDI,
into which the data for the specified system address is loaded during shift-DR. On
Update-DR a transfer occurs from the TCK domain to a 64-bit holding register in the
IO CLK domain.

4.3.2.2 TAP_CREG_RDATA

Load System Read Data: Causes a 65-bit data register to become accessible from TDO.
The 65th bit is used as a sentinel to allow driver software to synchronize with the
read operation. While the read is outstanding the sentinel bit remains zero. Once the
NCU has returned valid data then the read is complete and the sentinel bit is set to
one. To use this, the JTAG is kept in ShiftDR and TCK is clocked until the TDO reads
a “1”, this indicates the sentinel bit has been set. When the sentinel bit becomes one,
the next 64 bits shifted out are the valid read data.

The TCU can only issue a single access at a given time to the NCU. The user is
responsible for ensuring that this is the case. Note too that the TCU does not report
erroneous reads made to the NCU. Therefore, the driver software should time out on
a read, assuming an error if this occurs.

4.3.2.3 TAP_NCU_WRITE

Initiate Write Transaction: Causes a write transaction to be initiated on Update-IR.

4.3.2.4 TAP_NCU_READ

Initiate Read Transaction: Causes a read transaction to be initiated on Update-IR

4.3.2.5 TAP_NCU_WADDR

Load System Address and Initiate Write Transaction: Causes a 40-bit address register to
become accessible from TDI. The target system address is loaded during shift-DR.
On Update-DR a transfer occurs from the TCK domain to a 40-bit holding register in
the IO_CLK domain. In the cycle after the transfer is complete the contents of the
address register is forwarded to the UCB interface and a write transaction is
initiated. This instruction is a combination of TAP_CREG_ADDR and
TAP_NCU_WRITE.
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4.3.2.6 TAP_NCU_WDATA

Load Write Data and Initiate Write Transaction: Causes a 64-bit data register to become
accessible from TDI, into which the data for the specified system address is loaded
during shift-DR. On Update-DR a transfer occurs from the TCK domain to a 64-bit
holding register in the IO_CLK domain. In the cycle after the transfer is complete the
contents of the address register and data register are forwarded to the UCB interface
to initiate a write transaction. This instruction is a combination of
TAP_CREG_WDATA and TAP_NCU_WRITE.

4.3.2.7 TAP_NCU_RADDR

Load System Address and Initiate Read Transaction: Causes a 40-bit address register to
become accessible from TDI. The target system address is loaded during shift-DR.
On Update-DR a transfer occurs from the TCK domain to a 40-bit holding register in
the IO_CLK domain. In the cycle after the transfer is complete the contents of the
address register is forwarded to the UCB interface and a read transaction is initiated.
This instruction is a combination of TAP_CREG_ADDR and TAP_NCU_READ.

4.3.3 Expected Data and Address Format
The data to be written is 64 bits in length. A 40 bit address is also loaded into the ucb
address register.

4.3.4 TCU as a Slave for UCB
The OpenSPARC T1 implementation provided only that TCU be a master for UCB
interactions. To support debug requirements for OpenSPARC T2, the TCU will also
act as a slave for UCB. The interface remains the same, the only changes will be in
the TCU. For joint access between JTAG and UCB the result is indeterminate. The list
of registers accessible via SW inside the TCU is provided in TCU Local CSR
Assignments.

Reading local TCU CSRs via JTAG UCB protocol is not supported; local TCU CSRs
should be accessed directly via the appropriate JTAG instructions. Note that the
register bit ordering may not be consistent between both methods.

TCU is not designed to handle burst read requests, that is, a read request cannot be
followed immediately by another read request, otherwise the second one may be
dropped and no read data will be returned and the thread issuing the second request
may hang. Users should program the second read request after the data for the first
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one has returned. In the case of multiple threads accessing TCU CSR registers, some
mechanism (such as a semaphore lock) should be used to guarantee only one thread
accesses any TCU CSR register at a given time. See UCB Erratum.

Note – Read requests to internal non-existent TCU CSRs (base address
85_0000_0000) cause TCU to respond with a READ_ACK instead of a READ_NACK.
This means that TCU responds with garbage data. The requesting thread doesn’t
hang. Writes to undefined CSR addresses within TCU appear to complete but do not
write to any real TCU registers; this is expected behavior. Reads appear to complete
also but the READ_ACK is not correct behavior since TCU should respond with a
READ_NACK. This behavior will not be fixed. A workaround is to never allow
software to request data from undefined TCU CSRs. Software should take care to
access only valid TCU register addresses.

4.3.5 UCB Erratum

4.3.5.1 TCU UCB Hangs on Reads from SPARC Core

Symptom: A thread hangs while reading a TCU CSR.

Description: Multiple threads can access CSRs inside the TCU and cause the NCU to
send back-to-back reads to the TCU. As the TCU sends data back in response to
these requests, the NCU may become overloaded and stall the TCU. If the stall lasts
for more than one cycle, this will cause the TCU to drop any request that the NCU is
sending at the time of the stall.

The TCU is not designed to handle burst read requests where the NCU has to stall
the TCU for more than one cycle to receive the data the TCU is returning.

The problem is that the TCU does not provide a buffer for catching incoming
requests when stalled, and drops the incoming request. The TCU does not hang, but
the thread that issued the request will hang since its request is not serviced by TCU.

This issue only appears with multiple threads. A single thread cannot issue
back-to-back read requests since it will always wait for return data before issuing the
next request. Only multiple threads can send read requests which appear
back-to-back to the NCU and TCU.

Also, this issue requires several back-to-back reads to cause enough activity for the
NCU to stall the TCU. Simulation shows that for four back-to-back reads, the NCU
stalls the TCU on the third request. Consequently, the TCU drops the fourth request.
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Workaround: Users should program the second TCU CSR read request to wait until
after the data for the first read request has returned. In the case of multiple threads
accessing TCU CSR registers, some mechanism (such as a semaphore lock) should be
used to guarantee only one thread accesses any TCU CSR register at a given time.

4.4 L2 Access via SIU

4.4.1 JTAG L2 Access Registers
It is possible to write and read the L2 addresses while the chip is running using
JTAG.

The L2_Addr register is accessed via TAP_L2_ADDR; the L2_Write_Data register is
accessed via TAP_L2_WRDATA; and the L2_Read_Data register is accessed via
TAP_L2_RD. The L2_Write_data and L2_Read_Data registers are the same physical
register.

The TCU to L2 interface thru SIU is 4B aligned. The SIU will force bit 2 = 0.

4.4.2 Write
To write the L2 an address and data must be loaded via JTAG using TAP_L2_ADDR
and TAP_L2_WRDATA, followed by TAP_L2_WR. When the TAP_L2_WR
instruction is active, the run-test-idle state (0xC) of the TAP state machine is used to
transfer the address and data to the L2 and at least 128 TCK clocks must be cycled

TABLE 4-6 L2 Access Registers

Register JTAG Instr. Bits[64:1] Bit[0]

L2_Addr[64:0] TAP_L2_ADDR bit[64]=1: JTAG access
bits[63:57] = 000 0001 for read request
bits[63:57] = 000 0010 for write request
bits[56:41] = Unused
bits[40:1] = Physical address (8 byte boundary)

Ignored

L2_Write_Data[64:0] TAP_L2_WRDATA bits[64:1] = 8-bytes of Data to write to L2a Ignored

L2_Read_Data[64:0] TAP_L2_RD bits[64:1] = 8-bytes of Data returned from L2 1 = Data Valid
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while in RTI state for the transfer to complete. The RTI state should be avoided
except for the actual transfer of data, and once entered should not be reentered
during the write operation.

4.4.3 Read
A Read is accomplished by loading an address using TAP_L2_ADDR followed by a
TAP_L2_RD. When the TAP_L2_RD instruction is active, only 64 TCK clocks need be
cycled while in RTI to transfer the address to the L2. Then, repeated passes through
capture-DR and shift-DR should be used to retrieve the data returned by the L2.
Valid data is indicated during TAP_L2_RD at TDO in the shift-DR state by the
presence of a leading ‘1’ (bit[0] of the 65-bit L2_Read_Data register), otherwise
another pass through capture-DR should be implemented, without intervening visits
to run-test-idle. Note: bit 0 is not the same as the “sentinel bit” of the creg access.
Note: The RTI state should be avoided except for the actual transfer of data, and
once entered should not be reentered during the read operation.

Only one write or read may be outstanding at any time. Also, since non-JTAG logic
is used the POR reset sequence should be performed before using this feature (or at
least the POR1 section of the reset sequence).

4.4.4 Diagram
The signals used between TCU and SIU are:

■ tcu_sii_data - Sends L2_Addr[64:1] as address followed by L2_Write_Data[64:1] as
data to SIU (Data only present for Write, absent for Read). Bit 1 is sent first for
both address and data. Output from TCU.

■ tcu_sii_vld - Pulsed when bit 1 of L2_Addr or L2_Write_Data goes onto
tcu_sii_data. Output from TCU.

■ sio_tcu_data - Input to TCU containing data returned from a Read request, bit 0
first.

■ sio_tcu_vld - Input to TCU, pulsed when bit 0 is on sio_tcu_data
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FIGURE 4-3 TCU Interface with SIU

A sample waveform is shown in FIGURE 4-4.
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FIGURE 4-4 JTAG Write to L2 via SIU - Waveform
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4.5 Scan

4.5.1 Manufacturing Scan
There are 32 scan chains in the chip available in parallel during manufacturing
(automatic test pattern generation (ATPG) scan mode. In manufacturing scan mode
they will be accessed through the 32 scan in and 32 scan out pins. These 64 pins will
be shared with functional pins; the dedicated testmode pin is used to configure the
pins as scan inputs and scan outputs.

Clocks in this mode are provided by the tester (the PLL is not used) but will be
multiplexed onto the clock domain trees outside of the TCU, under control of the
pll_bypass and testmode pins. In order to allow tester control of clock domains
individually during ATPG test, most clock domains will have separate pin control.
SERDES is a special issue; the SERDES logic will have some of their configuration
signals sourced from the pins. Also, even though the TCU might provide a scan
clock the SERDES will still need two test clocks from the pins for transmit and
receive timing information in the manufacturing test modes that TI requires.

TCU participates passively in manufacturing scan; during manufacturing scan the
JTAG logic and the TCU itself is included in one of the 32 scan chains and is testable
via ATPG patterns.

TABLE 4-7 Manufacturing Parallel Scan Chains

Chain Contents TCU Input TCU Output

0 SPC 0 internal chain 0 spc0_tcu_scan_in[0] tcu_spc0_scan_out[0]

1 SPC 0 internal chain 1 spc0_tcu_scan_in[1] tcu_spc0_scan_out[1]

2 SPC 1 internal chain 0 spc1_tcu_scan_in[0] tcu_spc1_scan_out[0]

3 SPC 1 internal chain 1 spc1_tcu_scan_in[1] tcu_spc1_scan_out[1]

4 SPC 2 internal chain 0 spc2_tcu_scan_in[0] tcu_spc2_scan_out[0]

5 SPC 2 internal chain 1 spc2_tcu_scan_in[1] tcu_spc2_scan_out[1]

6 SPC 3 internal chain 0 spc3_tcu_scan_in[0] tcu_spc3_scan_out[0]

7 SPC 3 internal chain 1 spc3_tcu_scan_in[1] tcu_spc3_scan_out[1]

8 SPC 4 internal chain 0 spc4_tcu_scan_in[0] tcu_spc4_scan_out[0]

9 SPC 4 internal chain 1 spc4_tcu_scan_in[1] tcu_spc4_scan_out[1]

10 SPC 5 internal chain 0 spc5_tcu_scan_in[0] tcu_spc5_scan_out[0]
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Clusters are ordered as shown with scan-in feeding the left-most block. Boundary
scan cells inside the MIO and MCU clusters are included in chain 30. The BScan
(boundary scan) chain is ordered from scan-in (TDI) to scan-out (TDO) as
MCU0-MCU1-MCU3-MCU2-MIO.

4.5.2 MacroTest Scan
MacroTest on OpenSPARC T2 is primarily a subset of manufacturing scan. During
MacroTest mode, control of the array write inhibit signal, scan enables for scan collar
input (sesci) flops for arrays, and the array_bypass signals is different than
non-macrotest scan. This additional control allows arrays to be accessed and written
to or read from via scan. To enable MacroTest mode, a control flop for array write
inhibit, sesci and array_bypass must be set. For manufacturing scan this may be
controlled with cell constraints.

11 SPC 5 internal chain 1 spc5_tcu_scan_in[1] tcu_spc5_scan_out[1]

12 SPC 6 internal chain 0 spc6_tcu_scan_in[0] tcu_spc6_scan_out[0]

13 SPC 6 internal chain 1 spc6_tcu_scan_in[1] tcu_sp6_scan_out[1]

14 SPC 7 internal chain 0 spc7_tcu_scan_in[0] tcu_spc7_scan_out[0]

15 SPC 7 internal chain 1 spc7_tcu_scan_in[1] tcu_spc7_scan_out[1]

16 CCX[0], SII soca_tcu_scan_in tcu_soca_scan_out

17 CCX[1], MCU0 socb_tcu_scan_in tcu_socb_scan_out

18 MCU 1:2, SIO socc_tcu_scan_in tcu_socc_scan_out

19 DMU socd_tcu_scan_in tcu_socd_scan_out

22 NCU, MCU3 socg_tcu_scan_in tcu_socg_scan_out

23 L2B 0:7 soch_tcu_scan_in tcu_soch_scan_out

24 L2T 0:1, L2D 0:1 soc0_tcu_scan_in tcu_soc0_scan_out

25 L2T 2:3, L2D 2:3 soc1_tcu_scan_in tcu_soc1_scan_out

26 L2T 4:5, L2D 4:5 soc2_tcu_scan_in tcu_soc2_scan_out

27 L2T 6:7, L2D 6:7 soc3_tcu_scan_in tcu_soc3_scan_out

30 TCU, DB1, DB0, MIO, EFU, RST,
CCU, BScan

soc6_tcu_scan_in tcu_soc6_scan_out

31 SERDES Macros srd_tcu_atpgq tcu_srd_atpgd

TABLE 4-7 Manufacturing Parallel Scan Chains (Continued)

Chain Contents TCU Input TCU Output
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MacroTest on OpenSPARC T2 is also be a subset of serial (JTAG) scan. To set JTAG
MacroTest mode, the instruction TAP_MT_ACCESS should be programmed; this will
set the MacroTest enable flop (default is off). The instruction TAP_MT_SCAN can
then be used to perform MacroTest scan accesses. To clear the MacroTest enable flop,
use TAP_MT_CLEAR. This mode exists solely to satisfy debug requirements for scan
access to arrays.

FIGURE 4-5 Signals Controlled for Macrotest (in TCU)

JTAG MacroTest is used extensively in debug to access the arrays, and to allow
control using JTAG. The PLL is bypassed to allow TCK to be placed onto the clock
tree during MacroTest mode. Before entering JTAG MacroTest mode the clocks to the
chip should be stopped via a hard stop since TCK will need to be routed onto the
gclk distribution. JTAG MacroTest will access all clock domains, there is no user
control over individual domains.

4.5.2.1 Procedure for Entering JTAG MacroTest

Because the JTAG MacroTest must be run with the PLL locked, a special sequence is
used to enter this mode. This sequence puts the chip in JTAG MacroTest mode while
not disrupting the CCU (PLL), TCU or RST blocks.

JTAG

1

0

tcu_*array_wr_inhibit

testmode

1

0 io_scan_en

testmode
jtag_scan_enjtag_mt_mode

MT
=1

MacroTest
Enable Flop

1

0

sesci
io_scan_en

testmode

jtag_scan_en

array_bypass

(se_scancollar_in)
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1. Lock PLL: POR sequence (optional; can run in pll bypass mode with slow clock)

2. Run Diag (optional)

3. Stop Clocks: TAP_CLOCK_HSTOP or via Debug Event

4. Set Test Protect: TAP_TP_ACCESS

5. Set Macro Test Mode: TAP_MT_ACCESS

6. Set Chain Select if desired: TAP_CHAINSEL

7. Perform JTAG SCAN: TAP_MT_SCAN

4.5.3 Serial Scan
Serial scan refers to concatenating the 32 internal scan chains into a single chain
primarily for observation during debug. Serial scan is initiated via JTAG
instructions, where the scan chains are configured into a single long chain and
placed between TDI and TDO.

Two JTAG instructions are available to control serial scan; the TAP_SERSCAN
instruction places all 32 scan chains between TDI and TDO excluding the TCU, CCU
and RST blocks. The chains will be concatenated in the order specified in TABLE 4-7.
One of the 32 scan chains may also be selected via TAP_CHAINSEL;

During serial scan the scan clocks (aclk, bclk) are generated from the leading and
trailing edges of TCK during ShiftDR. The scan enable signal drives the l1clk to ‘1’;
prior to unloading a scan chain with JTAG the clock should be stopped to that
chain’s clock domain(s) using the JTAG clock stop instructions. The PLL is locked
and running typically during serial scan but serial scan does not rely on the PLL.
There is no ability to perform capture clocks during serial scan. A sample waveform
is shown in FIGURE 4-6.
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FIGURE 4-6 JTAG Serial Scan Sample Waveform
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4.5.3.1 Chain Select Register

In order to observe and update the state of OpenSPARC T2, parallel scan chains 0 to
31 can be put between TDI and TDO by programming the TAP_SERSCAN
instruction. The behavior is qualified by the Chain Select register. The internal scan
register consists of the chains specified in Table 6-1 on page 22. This is a 6-bit register
selected via the TAP_CHAINSEL instruction. It is only recognized when the
TAP_SERSCAN (or TAP_MT_SCAN) instruction is programmed and allows one of
32 scan chains in OpenSPARC T2 to be selected with all others bypassed if the msb
is set to ‘1’. If the msb (bit 5) is 0 then the chain selection field is ignored and chains
0 to 30 are concatenated during the serial scan operation.

This register has no effect on chain 31 which is reserved for SERDES scan flops,
which means that chain 31 is not accessible via JTAG serial scan. Scan chains for
Boundary Scan, TCU, CCU and RST units are not accessible via JTAG serial scan;
when chain_sel[4:0]=30 only the peu, mio, efu, db0 and db1 scan flops will be
returned.

The Chain Select register is reset with TRST_L or entering TLR. The chain selection
field is directly decoded to specify a chain from 0 to 30. Chain 31 is not selectable.
Selecting either chain in a SPC core will result in both SPC scan chains being
concatenated. The MBIST and shadow scan chains in each SPC will be concatenated
to that SPC’s chain[0] and chain[1], respectively.

Note – The length of the scan chain during JTAG serial scan will change between
POR1/POR2 and WMR1/2. The chain will be longer during POR1/POR2 due to
inclusion of MCU logic as shown in the next subsection “Logic Included in JTAG
Serial Scan”. Use of JTAG POR (See JTAG Access During POR) pauses the POR
sequence during POR2 and the MCU logic will be included during JTAG serial scan.
A subsequent warm reset will move the chip out of POR2 and cause the MCU FBD
logic to be excluded from JTAG serial scan.

Note – Unpredictable behavior will result if a JTAG (tap) reset is initiated after
scandumping any of the soc chains (this includes the “all chain” scan dump mode)
since the TAP_TP_ACCESS command will be reset (See Protecting TCU During
Serial Scan: Test Protect Mode). This will expose the logic protected by
TAP_TP_ACCESS to any random data scanned during the SOC scan process, with
indeterminate results.
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TABLE 4-8 Chain Select Register

Enable Bit Chain Selection Field

bit [5] bits [4:0]

Enables the chain selection
field when set to ‘1’

0

1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

If enabled, specifies one of 31 chains to be placed between TDI and TDO

x_xxxx -> Selects chains 0-30 concatenated

0_0000 -> Selects chain 0 & 1 of SPC0
0_0001 -> Selects chain 0 & 1 of SPC0
0_0010 -> Selects chain 0 & 1 of SPC1
0_0011 -> Selects chain 0 & 1 of SPC1
0_0100 -> Selects chain 0 & 1 of SPC2
0_0101 -> Selects chain 0 & 1 of SPC2
0_0110 -> Selects chain 0 & 1 of SPC3
0_0111 -> Selects chain 0 & 1 of SPC3
0_1000 -> Selects chain 0 & 1 of SPC4
0_1001 -> Selects chain 0 & 1 of SPC4
0_1010 -> Selects chain 0 & 1 of SPC5
0_1011 -> Selects chain 0 & 1 of SPC5
0_1100 -> Selects chain 0 & 1 of SPC6
0_1101 -> Selects chain 0 & 1 of SPC6
0_1110 -> Selects chain 0 & 1 of SPC7
0_1111 -> Selects chain 0 & 1 of SPC7

1_0000 -> Selects chain 16
1_0001 -> Selects chain 17
1_0010 -> Selects chain 18
1_0011 -> Selects chain 19
1_0100 -> Selects chain 20
1_0101 -> Selects chain 21
1_0110 -> Selects chain 22
1_0111 -> Selects chain 23
1_1000 -> Selects chain 24
1_1001 -> Selects chain 25
1_1010 -> Selects chain 26
1_1011 -> Selects chain 27
1_1100 -> Selects chain 28
1_1101 -> Selects chain 29
1_1110 -> Selects chain 30
1_1111 -> Ignored
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4.5.3.2 Logic Included in JTAG Serial Scan

During JTAG serial scan this logic is included:

■ MBIST engines

■ MCU FBD logic (during JT POR access in POR2)

■ Shadow scan - both spc & l2t

■ Unavailable SPC cores and Banks

This logic is NOT included during JTAG serial scan:

■ Cluster headers

■ MCU FBD logic (when not in POR2 - i.e., during diag scan dumps)

■ Boundary scan flops

■ Any flops non-scannable for manufacturing scan

■ CCU, RST and TCU

■ SERDES (chain 31)

4.5.3.3 Protecting TCU During Serial Scan: Test Protect Mode

When JTAG serial scan is performed, random signals can be generated to TCU
inputs. If the TCU responds to these they can disrupt the JTAG serial scan; for
example random debug requests from a SPC while it is being scanned can disrupt
the TCU JTAG scan process. To protect against this it is up to the user to tell TCU to
protect itself. Two JTAG instructions are available for this: TAP_TP_ACCESS to set
the Test Protect mode, and TAP_TP_CLEAR to clear it. Setting the Test Protect mode
will cause TCU to assert a signal tcu_test_protect which will block incoming SPC
debug requests and incoming UCB requests. This signal also goes to RST and CCU
and other blocks which need to block random UCB requests which may occur when
scanning the SOC blocks (specifically NCU). This mode is also needed during MBIST
scan operations, and possibly LBIST scan operations. The expected usage is to set the
Test Protect mode before performing the test operations, and then clear it when
done. For Transition Test and Macro Test the mode should be set via scan operations
if needed.

Setting Test Protect mode should not interfere with PLL lock, but it may interfere
with diags trying to change clock frequency or generate resets.

Note – When accessing any scan chains via JTAG mode, the TAP_TP_ACCESS
protocol should be followed. This includes TAP_MBIST_DIAG and
TAP_LBIST_ACCESS.instructions as well as variations of TAP_SERSCAN or
TAP_MT_SCAN.
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4.5.4 SERDES Scan
TCU supports scan for SERDES by connecting the SERDES macros onto chain 31.
Package pin SCAN_IN31 becomes tcu_srd_atpgd and connects to ATPGD of fsr0,
and then ATPGQ and ATPGD are connected to daisy-chain the SERDES macros,
with ATPGQ of fsr4 connecting through TCU tsrd_tcu_atpgq to SCAN_OUT31. The
scan-enable signal for SERDES is tcu_srd_atpgse and is driven by TCU from package
pin io_scan_en. The following outlines the mode under which SERDES operates; bits
[1:0] are accessible only via scan and bit [2] is driven directly from io_test_mode. The
ATPG mode bus tcu_srd_atpgmode[2:0] ultimately connects to the TESTCFG[18:16]
of the SERDES macros.

■ tcu_srd_atpgmode[2:0]

■ 000: for normal operation

■ 001, 010, 011: reserved

■ 100: for stuck-at ATPG

■ 101: to select 2-clock transition test

■ 110: to select 3-clock transition test

■ 111: to select 4-clock transition test

4.6 Clock Stop
On OpenSPARC T2 the ability to stop clocks to various sections of the chip is
provided via the TCU. Clocks can be stopped via JTAG directly or as a result of a
debug or other event. Clocks are also stopped before any flush reset and then
restarted after the flush reset is finished.

There are two modes of clock stops: a hard clock stop and a soft clock stop. The
purpose of the hard clock stop is to stop as fast as possible, without waiting for the
chip to become quiet. The 2nd method, soft clock stop, only applies to the cores and
upon receiving a request the TCU will wait for the requesting core to settle into a
quiescent state (via the core_running register) before stopping the clock to that core.
Multiple cores may also be stopped this way. This allows the core(s) the possibility
to restart after clocks are restarted. Clocks for the chip can be stopped either in
parallel or serially across clock domains. After a clock stop, data can then be shifted
out for debug via JTAG which allows the user to determine the state of the chip.
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4.6.1 Serial and Parallel Clock Stop Modes
Stopping all clock domains in parallel may not be advisable due to excessive current
fluctuations across the chip. Because of these di/dt concerns there is a serial clock
stop mode where the clocks are stopped over several predefined clock domains with
128 cpu clock cycles between each clock stop activation. Stopping the clocks in such
a staggered fashion with intervening delays is expected to lessen the di/dt concern.
In the serial mode, via JTAG or software the user can update a clock domain register
to specify which clock domain should be stopped first. Subsequent domains will
then be stopped in a predetermined order, but the order is fixed.

During a parallel clock stop, the clocks will all be stopped relative to the same cpu
clock cycle from the TCU. For both the serial and parallel clock stop methods, due to
division ratios between the cpu and other clock domains, the actual cpu clock cycle
at which a non cpu clock domain stops may vary between those domains, although
it should be repeatable. To specify a parallel stop, all bits in the clock domain
register should be set to 1, signifying they should all stop first.

Specification of serial or parallel is controlled by setting the 32-bit Clock Domain
register with JTAG TAP_CLOCK_DOMAIN instruction, ordered as specified
TABLE 4-9 (bit == stop number). Setting only one bit indicates the starting point for
serial stopping. If serial and parallel clock stop modes are mixed, that is multiple
bits are set in the clock_domain register, the clocks will stop in both serial and
parallel across the specified bit fields. Originally tcu only supported either
sequential or parallel without mixed modes but flexibility was given to allow the
modes to work together. This results in a mixed behavior, with all bits set to’1’
stopping in parallel, but with sequential stop behavior across the remaining fields
of’0’ bits. The user should consider this when programming mixed serial and
parallel clock stopping.

Because the ability to stop selected domains in parallel would mainly be used for
scan dump purposes, it doesn’t matter if the remaining bits stop sequentially as
described since the object of the scan dump should be in the domains that are set to
stop in parallel.

4.6.2 Hard Clock Stop
A hard clock stop request will result in the clocks being stopped without waiting for
the chip to acquiesce. The clocks may be stopped either in serial or parallel mode. In
all cases the clocks will be stopped over all the chip as specified by the Clock
Domain register, except the RST, CCU and TCU clocks will not be stopped.

A hard clock stop may be initiated in response to a flush request, a specific JTAG
request via TAP_CLOCK_HSTOP, or in response to a debug event. A status register
can be polled via TAP_CLOCK_STATUS to determine the state of the clock
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sequencer. When the status indicates clocks are stopped, a scan dump via
TAP_SERSCAN can be done. To restart clocks, the JTAG TAP_CLOCK_START is
used.

4.6.3 Soft Clock Stop
A soft clock stop request will not be serviced until the core requesting the soft clock
stop is acquiesced. The cores are the only clusters that can request a soft clock stop,
and only the clocks to the target cores will be stopped by any soft stop request. A
soft clock stop may be initiated in response to a JTAG request via
TAP_CLOCK_SSTOP or in response to a debug event. Via JTAG, multiple cores can
be soft-stopped. A debug event can only stop a single core as a default, however,
setting bit 3 of the TCU DCR causes the TCU to soft stop all enabled SPCs if any
requests a soft stop; See TCU Debug Control Register.

To request a soft clock stop via JTAG the target core(s) should first be parked with
UCB access to the 64-bit Core Run register; the user is responsible for setting all
eight bits per each core to be parked to ‘0’. When status is indicated via
TAP_CORE_RUN_STATUS that the target threads are parked (64-bits), the clocks
may be stopped via TAP_CLOCK_SSTOP.

For example, to acquiesce and stop SPC cores two and 5 only, first check with
TAP_CORE_RUN_STATUS and then set the Core Run register to 64’hkkkk 00kk
kk00 kkkk. This sets bits 23:16 for core 2, and 47:40 for core 5 to all 0’s; ‘k’ means
keep previous value read with TAP_CORE_RUN_STATUS. Check that the target
threads are parked with TAP_CORE_RUN_STATUS. Set the target cores that should
respond to a clock stop using TAP_CORE_SEL (in this case, cores two and 5) to set
the core select register; any subsequent TAP_CLOCK_SSTOP will only stop clocks to
cores two and 5. Note that TAP_CLOCK_START will clear the core select register.

In response to a debug event the requesting core’s clock will be stopped similarly.

When the clocks are stopped a status register is set indicating the clocks are stopped.
Polling of this status register can be done with TAP_CLOCK_STATUS to determine
when it is safe to do a subsequent scan dump of the stopped cores. To restart the
clock to the target core, the JTAG TAP_CLOCK_START is used.

The TAP_CORE_SEL instruction allows the user to enable cores to respond to a soft
clock stop JTAG request using TAP_CLOCK_SSTOP and assumes all cores were
already acquiesced. If it is used without acquiescing the cores you will get in effect a
hard stop across only the cores. See Cycle Step Mode for usage of TAP_CORE_SEL.

When using the soft stop mode, the Clock Domain register should be all 0s if TCU
DCR bit [2] is ‘1’. This applies to JTAG TAP_CLOCK_SSTOP and a request for Soft
Stop by spc debug event when tcu_dcr[3] is set to 1 to stop all cores. In general, TCU
DCR bit [2] should be ‘0’ if any Soft Stop is used, otherwise the interaction between
the Clock Domain and Core Select registers is complex.
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The TCU clock sequencer - described in the next section - is controlled directly by
the Clock Domain register. The Core Select register has no effect on the clock
sequencer inside TCU, it will sequence independently of Core Select. The sequencer
always runs through all 24 clock domains.

In soft stop mode, only the eight outputs associated with the spc cores are allowed
to propagate. When Core Select is set and TAP_CLOCK_SSTOP issues, this begins
the clock sequencer and it should be in a default mode starting with spc0 - this is
either with Clock Domain all zeros or 24’b1. If the Clock Domain is something else,
then it will tell the clock sequencer to begin at a different starting point, or if
multiple bits are set the sequencer will stop clocks in parallel for those bits. The
cores will still be stopped, but in an unexpected order.

For example, if clock_domain = 24’h000003 then spc 1 and spc 2 will be stopped in
parallel and spc2 will be the starting point of the sequence - so spc0 will be stopped
last. If clock_domain = 24’h000083, then spc7, spc1 and spc2 will stop in parallel.

4.6.4 Stop Domains
Clock domains are partitioned so that control is achieved for disabling sections of
the chip with respect to the L2 and Core Enable/Available registers, and to minimize
di/dt. The sequence of stopping the clocks serially will always be the same given a
specific start point and defaults to the order given in TABLE 4-9. The user can
program the starting point, but then the domains will stop in the predetermined
order and wrap around until reaching the first domain stopped. For instance,
stopping with spc1 first will result in spc0 being stopped last.
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FIGURE 4-7 TCU Clock Sequencer

A seven-bit Clock Stop Delay counter (programmable via TAP_CLKSTP_DELAY)
provides a delay of up to 128 (default) cmp clock cycles between generation of
successive clock stop signals from the TCU. Setting this value to zero results in a
one-cmp clock cycle delay between clock stop signals. This may be bypassed by
setting bits [23:0] in the Clock Domain register via JTAG, so that all clocks stop in
parallel.

The general structure of the clock sequencer control logic in the TCU is shown in
FIGURE 4-7. To stop clocks starting with spc0, bit 0 of Clock Domain register is set to
‘1’ with the remaining bits all to ‘0’. The clock sequencer state machine is in an initial
state because clk_stop is low ‘0’, then the clk_stop signal is activated and held to ‘1’
to begin the sequence. When the Clock Stop Delay counter reaches 0xFF the
tcu_spc0_clk_stop is set to ‘1’ and held; when the counter next reaches 0xFF the
tcu_spc1_clk_stop is set to ‘1’ and the machine continues this sequence until all clock
domains are disabled. When the clk_stop signal is driven to ‘0’ the clk_stop signals
are sequenced off starting with the domain specified in Clock Domain register.

counter

== 0x7F

1

0
clk_stop

clock_domain_reg

0

soc3_clk_stop_int

1

0

1

FF

spc0_clk_stop_int

FF
tcu_spc0_clk_stop

FF FF
tcu_spc1_clk_stop

spc1_clk_stop_int

1

0

23

FF

(synch)

FF
tcu_soc3_clk_stop

soc3_clk_stop_int

soc2_clk_stop_int
Note: synchronization may occur
in destination units

(bits 31:24 reserved)
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The Clock Domain register is shown in TABLE 4-9.

All clock stop control logic in the TCU is in the cmp clock domain. The outgoing
signals, tcu_*_clk_stop, are sent from the cmp clock domain and are staged at the
cpu level before reaching the cluster headers. The cluster header synchronizes the
clk_stop into the corresponding clock domain. For clusters with io or io2x clock
domains, the tcu_*_clk_stop is synchronized to the io clock domain before leaving
TCU. This is done to provide transition test the capability of controlling the clock
stop relative to the target domain. The dr clock domain clock stops are synchronized
into the dr clock domain before leaving TCU, to mesh with the top-level dr staging
flops.

Most clusters with both cmp and io clock domains have separate clock stop signals
from TCU, one for each domain. In some cases clusters with multiple clock domains
share a single clock stop. The DB0 and DB1 clusters have both cmp and io domains,
but share a clock stop synchronized to the io clock domain. The same holds for MIO.
The RDP, RTX and TDP clusters have both io and io2x but share a clock stop
synchronized to the io clock domain. The effect of this is that for clock stopping, the
logic in these clusters will stop at different clock cycles. For example, in MIO during
a clock stop the cmp logic will stop 3 (cmp) cycles later than other cmp logic.

■ tcu_db0_clk_stop and tcu_db1_clk_stop => each is connected to cmp and io
headers

TABLE 4-9 Clock Domain Register

Stop
Number

Clock Domain Controlled Stop
Number

Clock Domain Controlled

0 SPC 0: cmp clock domain 12 Bank 4: L2 T, D, B: cmp clock domain

1 SPC 1: cmp clock domain 13 Bank 5: L2 T, D, B: cmp clock domain

2 SPC 2: cmp clock domain 14 Bank 6: L2 T, D, B: cmp clock domain

3 SPC 3: cmp clock domain 15 Bank 7: L2 T, D, B: cmp clock domain

4 SPC 4: cmp clock domain 16 MCU 0: cmp and io clock domains

5 SPC 5: cmp clock domain 17 MCU 1: cmp and io clock domains

6 SPC 6: cmp clock domain 18 MCU 2: cmp and io clock domains

7 SPC 7: cmp clock domain 19 MCU 3: cmp and io clock domains

8 Bank 0: L2 T, D, B: cmp clock domain 20 SOC0: sii, sio, ncu, efu: cmp and io clock
domains. ccx; cmp clock domain. db0,
db1, mio: io clock domain

9 Bank 1: L2 T, D, B: cmp clock domain 21 SOC1: rdp, mac, rtx, tds io and io2x clock
domains

10 Bank 2: L2 T, D, B: cmp clock domain 22 SOC2: dmu: io clock domain

11 Bank 3: L2 T, D, B: cmp clock domain 23 SOC3: peu: io and pc clock domains
Chapter 4 Test Control Unit (TCU) 4-39



■ tcu_rdp/rtx/tdp_io_clk_stop => each is connected to io and io2x headers

■ tcu_mio_clk_stop => connected to four cmp headers and one IO header

Clocks are restarted by turning off clk_stop signals. When started serially, the 128
cmp cycle delay is used again to reduce di/dt concerns.
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FIGURE 4-8 Clock Stop Sequencing through Clock Domains
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4.6.5 FBD Logic in MCU
The FBD logic in the MCUs is handled differently from other SOC logic. A separate
clock stop signal is provided to each MCU, tcu_mcu[0123]_fbd_clk_stop, which is
activated only during POR1 and POR2 (to facilitate flush reset of the FBD logic) or if
the MCU is disabled via bank available or bank enable. During JTAG serial scan, the
FBD logic is bypassed and left running. This is achieved with a second shared signal
to all four MCUs, tcu_mcu_testmode, which is ‘1’ only during POR1, POR2, or
manufacturing ATPG testing.

If JTAG serial scan is performed while in POR2 then the MCU FBD logic will be
included, so during the JTPOR access window (See JTAG Access During POR) the
JTAG serial scan length will be longer than after POR2 completes.

4.6.6 Clock Stopping and Core/L2 Available and
Disable Controls

4.6.6.1 Core and L2 Available Control

SPC cores are made unavailable if these signals are not asserted after transfer from
EFU after POR1 or POR2:

■ ncu_spc0_core_available

■ ncu_spc1_core_available

■ ncu_spc2_core_available

■ ncu_spc3_core_available

■ ncu_spc4_core_available

■ ncu_spc5_core_available

■ ncu_spc6_core_available

■ ncu_spc7_core_available

L2 Logic (L2 Tag, L2 Data, L2 Buffer) can be made unavailable if the corresponding
bits in this bus are not asserted after transfer from EFU after POR1 or POR2. Note
that the L2 Tags will not have their clocks stopped even if listed as unavailable or
disabled.

■ ncu_tcu_bank_avail[7:0]
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4.6.6.2 Core and L2 Disabling Control

SPC Cores can be disabled via Software after a warm reset with these signals:

■ ncu_spc0_core_enable_status

■ ncu_spc1_core_enable_status

■ ncu_spc2_core_enable_status

■ ncu_spc3_core_enable_status

■ ncu_spc4_core_enable_status

■ ncu_spc5_core_enable_status

■ ncu_spc6_core_enable_status

■ ncu_spc7_core_enable_status

L2 Banks (Two L2 Data and L2 Buffers along with associated MCU) can be disabled
via Software after a warm reset with these signals:

■ ncu_spc_pm

■ ncu_spc_ba01

■ ncu_spc_ba23

■ ncu_spc_ba45

■ ncu_spc_ba67

There are certain legal combinations for the signals controlling disabling of SPCs and
L2 Banks, for details refer to the OpenSPARC T2 Programmer’s Reference Manual. Also,
JTAG can be used to overwrite these values in certain cases such as using the JTAG
POR access window or via JTAG UCB access. TCU looks at the available signals after
POR1 or POR2 and deasserts clocks to any unavailable SPC or L2 (except L2 Tag
clocks are not stopped since they contain top-level staging flops). This is shown in
FIGURE 4-22. The disabling signals are observed by TCU after any WMR2, and clocks
will be deasserted by TCU for any disabled SPC core or L2 bank and associated
MCU (except for L2 Tags).

4.7 Transition Testing
Transition test on OpenSPARC T2 is designed to be run with the PLL locked to allow
testing of the clock domains for transition faults. The patterns will be generated via
the ATPG tools and applied on the wafer and chip testers. The testmode pin and
ac_testmode pins must both be driven to ‘1’ by the tester to enable transition test
mode. The AC_TESTTRIG pin is used to tell the internal logic to allow a
programmed number of l1clk cycles to reach the target flops.
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FIGURE 4-9 Transition Test Sample Vector
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4.7.1 Operation and Constraints During Transition Test
The transition test logic inside TCU is programmed via scan with a setup routine, or
via cell constraints. A counter specifies how many system clock pulses are issued.
This counter is based on the clock for the domain that is under test and is loaded
with the number of clock pulses that will be issued to the functional logic. Only one
clock domain may be active at one time since transition test across clock domains
introduces non-determinism, and only the cmp and io clock domains are supported.
During transition test the array_wr_inhibit signal from TCU is driven high into the
clusters and overrides the write inhibit generated by the cluster headers from clock
stop transitions.

When the mio_tcu_io_ac_testtrig input to TCU (package pin AC_TESTTRIG) is
driven to ‘1’ by the tester it is synchronized and used to enable the clock stop
counter. The clk_stop signal to the target clock domain and cluster(s) is generated by
TCU and pipelined out to the target cluster headers, and held to ‘0’ for the
programmed number of clock cycles. The counter is 8-bits and allows up to 255 clock
pulses to be issued. The transition test control bit used to select the clock domain
(cmp or IO) is one bit.

■ tcusig_ttclksel_reg

■ 0 => selects cmp clock domain (default)

■ 1 => selects io clock domain

The control register, the 8-bit counter, and the flops driving the clock_stop signals all
must be set to the appropriate values before each transition test capture cycle. The
8-bit counter values are true binary representations for cmp clock domain, and
should be set to a multiple of four for the io clock domain. So to get two io clock
cycles during the capture phase, the counter should be set to binary 0000_1000. The
counter will start counting aligned to the io sync enable pulses during both cmp and
io clock domain testing to achieve accurate clock counting during the io clock
domain tests. A counter value of zero is not supported for transition test.

To set the clock stop flops in the tcu, the user should scan in values of zero to all
clock stop flops, except set a one to flop _0 of all targeted domains. The values are
inverted onto the clock stop signals. There are 24 clock domains as shown in
TABLE 4-9. Bit 0 is closest to scan-in. Each clock domain has two flops associated with
it and MCU and SOC have extra flops for io and dr clock domains. Flops that can be
set to activate clock pulses to a domain are indicated. To select an io clock domain,
set the corresponding _0 flop and also set the transition test control bit to ‘1’.

■ sync_ff_clk_stop_spc0_0Set to ‘1’ for SPC0 cmp clock domain

■ sync_ff_clk_stop_spc0_1

■ ...

■ sync_ff_clk_stop_spc7_0Set to ‘1’ for SPC7 cmp clock domain

■ sync_ff_clk_stop_spc7_1
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■ sync_ff_clk_stop_bnk0_0Set to ‘1’ for BNK0 cmp clock domain

■ sync_ff_clk_stop_bnk0_1

■ sync_ff_clk_stop_l2t0_0Set to ‘1’ for L2T0 cmp clock domain

■ sync_ff_clk_stop_l2t0_1

■ ...

■ sync_ff_clk_stop_bnk7_0Set to ‘1’ for BNK7 cmp clock domain

■ sync_ff_clk_stop_bnk7_1

■ sync_ff_clk_stop_l2t7_0Set to ‘1’ for L2T7 cmp clock domain

■ sync_ff_clk_stop_l2t7_1

■ sync_ff_clk_stop_mcu0_0Set to ‘1’ for MCU0 cmp or io clock domain

■ sync_ff_clk_stop_mcu0_1

■ sync_ff_ioclk_stop_mcu0_1

■ sync_ff_drclk_stop_mcu0_1

■ ...

■ sync_ff_clk_stop_mcu3_0Set to ‘1’ for MCU3 cmp or io clock domain

■ sync_ff_clk_stop_mcu3_1

■ sync_ff_ioclk_stop_mcu3_1

■ sync_ff_drclk_stop_mcu3_1

■ sync_ff_clk_stop_soc0_0Set to ‘1’ for SOC0 cmp or io clock domain

■ sync_ff_clk_stop_soc0_1

■ sync_ff_ioclk_stop_soc0_1

■ sync_ff_clk_stop_soc1_0Set to ‘1’ for SOC1 io clock domain

■ sync_ff_ioclk_stop_soc1_1

■ sync_ff_clk_stop_soc2_0Set to ‘1’ for SOC2 io clock domain

■ sync_ff_ioclk_stop_soc2_1

■ sync_ff_clk_stop_soc3_0Set to ‘1’ for SOC3 io clock domain

■ sync_ff_clk_stop_soc3_1(cmp goes to pc clock domain, not supported)

■ sync_ff_ioclk_stop_soc3_1

The transition test counter flops are:

■ tcuregs_ttcounter_reg[7:0]Set to binary count as described above

In addition, these synchronizer flops should be scanned to ‘00’ so that they do not
interfere with the clock stop logic when in transition test mode.

■ cpu.tcu.sigmux_ctl.tap_spc7_mb_cs_sync_reg

■ ...
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■ cpu.tcu.sigmux_ctl.jtag_l2t0_ss_cs_sync_reg

These flops should be scanned to 0 also. They are the first stage of pipeline flops on
the clock stop signals as they leave TCU.

■ cpu.tcu.clkstp_ctl.clkstp_spc0stop_reg

■ cpu.tcu.clkstp_ctl.clkstp_spc1stop_reg

■ cpu.tcu.clkstp_ctl.clkstp_spc2stop_reg

■ cpu.tcu.clkstp_ctl.clkstp_spc3stop_reg

■ cpu.tcu.clkstp_ctl.clkstp_spc4stop_reg

■ cpu.tcu.clkstp_ctl.clkstp_spc5stop_reg

■ cpu.tcu.clkstp_ctl.clkstp_spc6stop_reg

■ cpu.tcu.clkstp_ctl.clkstp_spc7stop_reg

■ cpu.tcu.clkstp_ctl.clkstp_bnkstop_reg

■ cpu.tcu.clkstp_ctl.clkstp_l2tstop_reg

■ cpu.tcu.clkstp_ctl.clkstp_mcustop_reg

■ cpu.tcu.clkstp_ctl.clkstp_mcuiostop_reg

■ cpu.tcu.clkstp_ctl.clkstp_mcudrstop_reg

■ cpu.tcu.clkstp_ctl.clkstp_mcufbdstop_reg

■ cpu.tcu.clkstp_ctl.clkstp_soc0stop_reg

■ cpu.tcu.clkstp_ctl.clkstp_soc0iostop_reg

■ cpu.tcu.clkstp_ctl.clkstp_soc1iostop_reg

■ cpu.tcu.clkstp_ctl.clkstp_soc2iostop_reg

■ cpu.tcu.clkstp_ctl.clkstp_soc3stop_reg

■ cpu.tcu.clkstp_ctl.clkstp_soc3iostop_reg

Note – This listing of flops is intended to be used as a guide only and may not
include all flops necessary to implement all variations of transition test.

For IO clock domain, the counter should be set to reflect the desired io clock pulses.
For example, to get two io clock pulses the counter should be set to eight, for three
io clock pulses the counter should be set to 12, etc. One or more CMP clock domains
can be tested with transition test at the same time; the same is true for IO clock
domains. However, CMP and IO clock domains cannot be tested together during
transition test, one or the other must be specified. Finally, the dr clock domain
cannot be tested with transition test since the dr clock is asynchronous to the logic in
TCU.
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In mio, db0 and db1 there are both cmp and IO clock domains but a single clock stop
is sent as soc0_io_clk_stop, so in transition test these blocks cannot be tested since
they use the same clock stop for both cmp and IO cluster headers.

4.7.2 Procedure for Entering Transition Test
Because the transition test must be run with the PLL locked, a special sequence is
used to enter the transition test mode. This sequence makes use of the dedicated TDI
package pin to put the chip in transition test mode while not disrupting the CCU
(PLL), TCU, or RST blocks.

1. Lock PLL: POR sequence

2. Stop Clocks: TAP_CLOCK_HSTOP

3. Set Test Protect: TAP_TP_ACCESS

4. Drive TDI to’1’

5. Drive TEST_MODE to’1’

6. Drive AC_TEST_MODE to’1’ (active)

7. SCAN_EN to’0’ (inactive)

8. ACLK to’0’ (inactive)

9. BCLK to’0’ (active)

10. AC_TESTTRIG to’0’ (inactive)

11. Drive TDI to’0’ and hold it

- This allows (6) signals to propagate but with values unchanged

12. Enter ATPG sequence - scan_en, aclk, bclk, shifting, etc.

- Hold TCK low and load JTAG_CTL with safe (all 0) state

Before entering TT mode, test_protect is asserted with TAP_TP_ACCESS so that it
doesn’t change when AC_TEST_MODE goes high. Test_protect is OR’d with
AC_TEST_MODE so that it is always high during TT, even during shifting, to
prevent external signals from affecting TCU, RST and CCU during TT.
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4.8 Boundary Scan
The TCU has logic to support boundary scan testing, through the use of JTAG
instructions. The interface will provide the following JTAG instructions:
Sample/Preload, Extest, HighZ, and Clamp for 1149.1 support in the MIO and some
SERDES, and Extest_Pulse and Extest_Train for 1149.6 support for SERDES. The
boundary scan cells have also been designed such that they will be included as part
of the scan chain.

Timing for boundary scan will be similar to JTAG serial scan as shown in FIGURE 4-6
with an additional update clock occurring in the Update-DR state. During
manufacturing scan the boundary scan control signals will be driven from the
package pins through multiplexors.
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FIGURE 4-10 TCU to Boundary Scan Interface

SERDES boundary scan signals are indicated with _sbs_ in the signal name and
connect to the clusters which interface to the SERDES macros since the SERDES
boundary scan cells are located in the MCU clusters.

mio_tcu_bs_scan_out

TCU

tcu_mio_bs_aclk

tcu_mio_bs_bclk

tcu_mio_bs_scan_en

tcu_mio_bs_uclk

tcu_mio_bs_clk

tcu_mio_bs_modectl

tcu_mio_bs_scan_in

tcu_sbs_enbstx

tcu_sbs_enbsrx

tcu_sbs_aclk

tcu_sbs_bclk

tcu_sbs_scan_en

tcu_sbs_uclk

tcu_sbs_aclk

tcu_sbs_acmode

tcu_sbs_bsinitclk

tcu_sbs_actestsignal

tcu_sbs_enbspt

tcu_sbs_scan_insbs_tcu_scan_out
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4.9 TCU Debug Interface to SPC Cores
The TCU interfaces with the SPC Cores to support debug as shown in FIGURE 4-11

FIGURE 4-11 TCU to SPC Core Interface

4.9.1 Clock Interface
The TCU provides a clock stop signal to the flop headers in the core, and drives this
signal active when the core is unavailable.

tcu_spc_clk_stop

core_enabled

core_available

core_running[7:0]

scan_enable

scan_in

shadow_scan_cntrl[n:0]

tcu_shscan_scan_in

tcu_do_mode

tcu_ss_mode

tcu_ss_request

SPC Core

spc_softstop_request

spc_hardstop_request

core_running_status[7:0]

spc_trigger_pulse

scan_out

tcu_shscan_scan_out

spc_ss_complete
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4.9.1.1 Tcu_spc_clk_stop

This signal is deasserted to allow the OpenSPARC T2 Cores’ clocks to run. This is the
main signal the TCU uses to control the OpenSPARC T2 Cores’ clocks. This signal
can be set to’1’ at any time to stop the OpenSPARC T2 Cores’ clocks. Sourced from
TCU as tcu_spc7_clk_stop... tcu_spc0_clk_stop.

4.9.1.2 Core_available & Core_enabled

Core_available is set via eFuse at manufacturing time and determines whether the
physical core can be used in normal operation. It serves as a clock gate and if’0’ will
result in the clk_stop being asserted to the core (this happens in the TCU).
Core_enabled is driven from the ASI_CMP_CORE_ENABLED register.

4.9.1.3 Core_running & Core_running_status

The core_running bus is an input from the NCU by which the TCU requests the core
to perform a soft-stop. When the core sees the core_running signals transition from
a’1’ to a’0’, it will stop issuing instructions, and wait for all pending core and SPU
operations to complete. Once all core-initiated memory operations have been
globally performed, the core will raise the Soft_stop_req signal to allow the TCU to
stop the clocks to the core and also raise the core_running_status bus to indicate to
the CMP logic that the core is parked. When the soft_stop_req is a’1’, the
OpenSPARC T2 Core will not issue instructions or initiate any activity, until the TCU
drives core_running to a’1’.

4.9.1.4 Scan_enable

Besides configuring the scan chains for scanning, this signal also gates off
OpenSPARC T2 Core’s interface signals so that other SOC units do not respond to
spurious OpenSPARC T2 Core interface activity during scanning. At least the
crossbar PCX interface is protected in this way.

4.9.1.5 Hardstop_request & Softstop_request

These signals are outputs to the TCU which indicates that the core has reached either
a hard-stop or a soft-stop condition and wants to request service from TCU. When a
hardstop_request is received, the TCU should disable the clocks to the core using the
TCU_spc_clk_stop signal. When the softstop is received, the TCU should request a
soft-stop of the entire core via the core_running bus and upon receiving the
softstop_request acknowledgement from all eight threads in the core, the TCU will
then stop the clocks via TCU_spc_clk_stop. In both cases, the TCU should begin
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decrementing the Cycle Counter when the stop_request is received; when the Cycle
Counter reaches zero, the clock_stopping sequence is initiated by the TCU. Note that
the type of stop (hard vs. soft) is determined either by the Soft_stop_req signal, or
which configured event in the DECR has occurred.

Setting bit three of the TCU DCR causes the TCU to soft stop all enabled SPCs if any
requests a soft stop; See TCU Debug Control Register

These debug event requests will be honored when the Cycle Counter and Debug
Event counters reach zero, and the Reset Counter is not enabled.

4.9.2 Debug Event Interface
This group of core outputs signals that either an error or a debug trigger event has
occurred. These debug event requests will be honored when the Cycle Counter and
Debug Event counters reach zero, and the Reset Counter is not enabled.

4.9.2.1 Trigger_event

This is a signal from the core to TCU. If the OpenSPARC T2 Core is configured to
trigger on an event in the DECR, and the associated event occurs, this signal
transitions from a’0’ to a’1’. It then transitions back to’0’, unless another enabled
DECR trigger event occurred that cycle. The TCU will pass this signal to a package
pin as the OR of the (64) bits from all cores. The trigger_event signal will be
synchronized to the I/O clock frequency.

4.9.3 Scan Interface
Not all signals relevant to the scan interface are detailed here (e.g., not all the scan
clocks and controls are listed).

4.9.3.1 Scan_in & Scan_out

There are three scan chains in each core. All flops on this scan string are reset both at
POR and during warm reset unless protected via use of the
“warm_reset_flop_header”.

There are three external scan-out signals per core; each corresponds to a scan-in
signal. During JTAG access via scan an entire physical core may be scanned; in this
mode the TCU will concatenate the three scan chains in the core, in addition to any
JTAG private scan chains such as for shadow scan or memory bist.
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4.9.3.2 Shadow_scan_in

This is the scan-in for the shadow-scan string.

4.9.3.3 Shadow_scan_cntrl[n:0]

This bus controls shadow scan operation and identifies which thread’s state will be
sampled to the shadow scan string.

When the TCU wants to do a shadow scan on a particular core, it first sends the
command to the OpenSPARC T2 Core on this bus. At some time later, OpenSPARC
T2 Core will capture the state requested by the TCU on the internal shadow scan
flops. At that point the TCU can scan out the state by accessing the shadow scan
scan string. For details of operation See Shadow Scan Operation.

The signals included in this bus are:

■ tcu_shscanid[2:0]: selects one of eight threads

■ tcu_shscan_pce_ov: provides a capture signal to the shadow scan reg.

■ tcu_shscan_clk_stop: stops the clock to the shadow scan register to allow it to be
scanned via JTAG

■ tcu_shscan_aclk & tcu_shscan_bclk: shift clocks to perform the scan operation

■ tcu_shscan_scan_en: a separate scan_enable for the shadow scan register

4.9.3.4 Shadow_scan_out

This is the scan-out of the core’s shadow-scan string.

4.9.4 Single Step Mode
Individual threads can be placed in single step mode via JTAG. To place threads in
single step mode the following sequence is used. The user must keep one physical
core (SPC) in functional mode.

1. Specify which threads to be in single step mode via TAP_DOSS_ENABLE by
setting the corresponding bits in the 64-bit disable overlap/single step enable
register.

2. Park all threads by deasserting core_running[7:0] to the target SPCs via the
TAP_CREG_ or TAP_NCU_ instructions and accessing the corresponding 8-bit
fields in the 64-bit core run register. For any SPC to be operated in single-step
mode, all of its threads should first be parked (turned off in core run register).
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3. Wait until all threads from the targeted SPCs indicate they are parked via
core_running_status[7:0]. This is done by reading the 64-bit core run status
register via TAP_CORE_RUN_STATUS. Each bit corresponds to a thread.

4. When all targeted cores are parked, set the DOSS_MODE register to ‘11’ using
TAP_DOSS_MODE. Bit [0] indicates single step mode and bit [1] enables the
mode. At this stage, the tcu_ss_mode signal is asserted to the targeted physical
cores.

5. Assert core_running to the threads that will be single-stepped, via TAP_CREG or
TAP_NCU; these threads should correspond to those set in DOSS_ENABLE to
maintain compatibility with future enhancements.

6. Pulse the tcu_ss_request signal by executing a TAP_SS_REQUEST (the pulse is
generated by going through the update-DR tap state); each running thread in a
physical core enabled with tcu_ss_mode will fetch/execute a single instruction.

7. When a SPC’s threads have all finished the single-step operation, then that SPC
will pulse spc_ss_complete. The TAP_DOSS_STATUS is used to check the
spc_ss_complete bit and returns eight bits, one for each SPC. The status is held
until the next TAP_SS_REQUEST. When all SPC’s indicate they have completed,
another single-step can be requested via TAP_SS_REQUEST.

8. Steps six and seven can be repeated to execute a string of ‘n’ instructions.

9. To exit single step mode, park all threads in the SPCs being single-stepped using
TAP_CREG_ or TAP_NCU_. After TAP_CORE_RUN_STATUS indicates all
threads are parked, disable the mode using TAP_DOSS_MODE to set the mode to
‘00’. The DOSS_ENABLE register should also be cleared. Then unpark the desired
threads by asserting the respective bits in the core run register using TAP_CREG_
or TAP_NCU_.

Note – Single stepping for multiple threads can be executed independently by
control of the targeted threads’ respective bits in core_running[7:0] in the above
actions.

4.9.5 Disable Overlap Mode
Placing a SPC in disable overlap mode is similar to that for single step mode:

1. Specify which threads to be in disable overlap mode via TAP_DOSS_ENABLE by
setting the corresponding bits in the 64-bit disable overlap/single step enable
register.
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2. Park all threads by deasserting core_running[7:0] to the target SPCs via the
TAP_CREG_ or TAP_NCU_ instructions and accessing the corresponding 8-bit
fields in the 64-bit core run register. For any SPC to be operated in disable-overlap
mode, all of its threads should first be parked (turned off in core run register).

3. Wait until all threads from the targeted SPCs indicate they are parked via
core_running_status[7:0]. This is done by reading the 64-bit core run status
register via TAP_CORE_RUN_STATUS. Each bit corresponds to a thread.

4. Set the number of cycles to run during disable overlap mode using
TAP_CYCLE_COUNT to set the cycle counter.

5. When all targeted cores are parked, set the DOSS_MODE register to ‘10’ using
TAP_DOSS_MODE. Bit [0] indicates single step mode and bit [1] enables the
mode. At this stage, the TCU will automatically:

6. Assert tcu_do_mode to the target SPCs

7. Unpark the targeted threads

8. Start counting down the cycle counter, waiting until it reaches zero

9. Park the targeted SPCs

10. Set the DOSS_STATUS register

11. Status can be checked with TAP_DOSS_STATUS; bits will be set corresponding to
the SPCs which have completed running in disable overlap and are parked.

12. To exit disable overlap mode, park all threads in the target SPCs using
TAP_CREG_ or TAP_NCU_. After TAP_CORE_RUN_STATUS indicates all
threads are parked, disable the mode using TAP_DOSS_MODE to set the mode to
‘00’. The DOSS_ENABLE register should also be cleared. Then unpark the desired
threads by asserting the respective bits in the core run register using TAP_CREG_
or TAP_NCU_.

Note – The latency of parking and unparking the threads via UCB should be
considered when setting the cycle counter.

4.9.6 Cycle Step Mode
Cycle step refers to stopping the clocks to a SPC and then stepping a number of
clock cycles to that SPC. Individual SPC cores can be placed in cycle step mode via
JTAG. In this mode, a SPC core is stopped via a hard clock stop, then a predefined
number of clock pulses is allowed through. After this, the SPC flop contents can be
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examined. In this mode the clock domains must be controlled since the clocks are
stopped to the target SPCs; this is done by performing a hard stop across only the
target SPCs, not the entire chip as in the default hard clock stop.

1. Use TAP_CORE_SEL to set the corresponding bits of the SPCs targeted for cycle
stepping.

2. Use TAP_CLOCK_SSTOP to stop the clocks to the SPCs - note this will perform a
hard stop on the target SPCs since the TAP_CORE_SEL is active. No SPCs will be
parked.

3. Program the Cycle Counter using TAP_CYCLE_COUNT; this can be done before
steps one and two also.

4. Verify that the clocks are stopped via TAP_CLOCK_STATUS, the value should be
‘10’ indicating the clock stop operation is finished.

5. Issue a cycle step command via TAP_CS_MODE and loading a ‘1’. This begins the
Cycle Counter operation and allows the number of clocks specified in the Cycle
Counter to be sent to the target cores. When the Cycle Counter reaches zero, the
clocks will again be stopped to the target SPCs.

6. Check status using TAP_CS_STATUS. This returns a 1-bit value that will be set
when the Cycle Counter has finished. It does not indicate if the clocks have yet
been stopped, the TAP_CLOCK_STATUS must be used for this.

7. When the status indicates the cycle step has completed, further actions may be
taken such as dumping the core contents.

8. To turn the clocks to the SPCs back on, use TAP_CLOCK_START to turn clocks on
to the target cores. Note it is impractical to expect the cores to resume operation
as a hard stop was in effect.

4.9.7 JTAG Priority for Debug
In general, any JTAG instructions related to core debug will take priority over other
debug functionality in the TCU. This means that TCU responses to debug events
could be blocked if another JTAG instruction is active. Results for JTAG debug
operations concurrent with SPC debug service requests are unpredictable.
Chapter 4 Test Control Unit (TCU) 4-57



4.10 TCU Debug Interface to SOC Logic
The TCU interfaces with the SOC logic via the DBG unit as shown in FIGURE 4-12.

FIGURE 4-12 TCU to SPC Core Debug Interface

4.10.1 Clock Interface

4.10.1.1 Hardstop_request

The DBG unit drives a signal dbg_tcu_soc_hard_stop to request a hard stop of the
clocks to the chip. This signal is pulsed in io clock domain and when received, TCU
will count down the cycle_counter and then begin stopping the chip’s clocks. The
manner in which the clocks are stopped - serial or parallel - is determined by the
contents of the clock_domain register. There is no soft-clock-stop for the SOC logic.
The TRIGIN pin is treated as an SOC hard stop request.

DBG

dbg_tcu_soc_hard_stop

dbg_tcu_soc_asrt_trigout
TCU
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4.10.2 Debug Event Interface

4.10.2.1 Trigger_event

To send a watchpoint to the external trig_out pin, the DBG unit pulses
dbg_tcu_soc_asrt_trigout high (‘1’) for one io clock cycle. TCU will pass this out to
the I/O pins.

4.11 TCU Debug Registers
The TCU handles debug events requests from the SPC cores directly, or from the
SOC via the DBG unit, as described in Clock Stop, TCU Debug Interface to SPC
Cores and TCU Debug Interface to SOC Logic. The response to these requests is to
stop the clocks (hard or soft) or pass the watchpoint signal to the I/O pins. A set of
registers is provided in the TCU to assist in control of these responses to debug
event requests.

4.11.1 Cycle Counter
This is a 64-bit counter that can delay the response to a debug event. For example, if
the TCU receives a hard-stop request the Cycle Counter will begin counting down
with each cmp clock cycle and when it reaches zero then the hard-stop will be
performed. All debug event requests from the SPC cores or a hard-stop request from
SOC logic will be delayed by the Cycle Counter. The Clock Domain register is
ignored in this mode: an SOC hard stop will start with clock domain [8]; a SPC hard
stop will start with the requesting SPC, and a SPC soft stop will start with SPC0 or
all SPCs in parallel if TCU_DCR[3] = 1 (also see Soft Clock Stop).

These actions are only valid when TCU_DCR[2] = 0. For behavior when
TCU_DCR[2] = 1, see TCU Debug Control Register. The Cycle Counter is loaded
with JTAG instruction TAP_CYCLE_COUNT; default is zero.

4.11.2 TCU Debug Event Counter
This ia a 32-bit counter that must be zero before the Cycle Counter is enabled. If it is
non-zero, then each debug event request received at the TCU will decrement it and
when zero is reached, the Cycle Counter will begin decrementing with the next
debug event request. No differentiation is made regarding debug event requests, so
Chapter 4 Test Control Unit (TCU) 4-59



it is up to the user to insure only one type of debug event is enabled when using the
Debug Event Counter. Debug event requests consist of these requests from SPC:
spc_softstop_request, spc_hardstop_request, spc_trigger_pulse, or these requests
from SOC: dbg_tcu_soc_hard_stop, dbg_tcu_soc_arst_trigout, and the trigin package
pin. The events are counted per cmp clock cycle.

The Debug Event Counter is only recognized when TCU_DCR[2] = 0. When
TCU_DCR[2] = 1, the Debug Event Counter is disabled. The Debug Event Counter is
accessed with JTAG instruction TAP_DE_COUNT; default is zero.

4.11.3 TCU Debug Control Register
The TCU has a 4-bit register to control responses to debug events, the TCU DCR
(Debug Control Register). When bit two of TCU DCR is ‘0’ the Cycle Counter and
Debug Event Counters perform as described TCU Debug Event Counter.

When bit two of the TCU DCR is set to ‘1’ the lower 32 bits of the Cycle Counter are
treated as a Reset Counter. In this mode, the Reset Counter begins decrementing
with each cmp clock cycle after the Power-on Reset (POR) sequence ends (when
tcu_rst_flush_stop_ack goes high at the end of flush reset sequencing in WMR2, see
WMR2. Once zero is reached either a watchpoint, a hard clock stop or a clock stretch
can be performed, or the upper 32-bits of the Cycle Counter can then be used. In this
mode (bit two of TCU DCR = 1) the Debug Event counter will be ignored.

The behavior of the Debug Event and Cycle Counters is determined by the values in
the TCU DCR as specified in the following table. The TCU DCR is loaded with JTAG
instruction TAP_TCU_DCR; default is zero (‘0000’).

The following actions are valid when bit two of the TCU DCR is set to ‘1’:

TABLE 4-10 TCU Debug Control Register Field Definitions

Soft Stop [3] Enable [2] [1:0] Description

0/1 0 xx Debug Event and Cycle Counter recognize SPC debug events

x 1 00 Watchpoint pulsed

x 1 01 Hard Stop and Watchpoint Pulsed

x 1 10 Clock Stretch and Watchpoint Pulsed

x 1 11 Clock Stretch and Watchpoint, followed by Hard Stop and
second Watchpoint
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4.11.3.1 Watchpoint

If the TCU DCR is set to ‘100’, then a single pulse of an external chip pin (TRIGOUT)
will occur when the Reset Counter reaches zero. The pulse will be synchronized to
the io clock domain. The upper 32-bits of the Cycle Counter are ignored.

4.11.3.2 Hard Stop

A hard clock stop will be performed if the TCU DCR is set to ‘101’, as specified in
“Hard Clock Stop” on page 220, and a watchpoint pulse generated, when the Reset
Counter reaches zero. The upper 32-bits of the Cycle Counter are ignored.

4.11.3.3 Clock Stretch

If the TCU DCR is set to ‘110’, then a clock-stretch signal will be pulsed out of the
TCU when the Reset Counter reaches zero, and a watchpoint pulse will also be
generated. The upper 32-bits of the Cycle Counter are ignored.

4.11.3.4 Clock Stretch then Hard Stop

If the TCU DCR is set to ‘111’, when the Reset Counter reaches zero a clock stretch
will be triggered and a watchpoint pulse will also be generated, and then the upper
32-bits of the Cycle Counter will be allowed to count down to trigger a clock hard
stop and a second watchpoint will also be generated.

Note – The Soft Stop bit 3 when set will cause TCU to Soft Stop across all enabled SPCs
when any SPC requests a soft stop. It should only be active when Enable bit two is ‘0’; if
Soft Stop bit 3 is set when Enable bit two is set, the Clock Domain and Core Select
registers will interact with each other - see Soft Clock Stop for details.

For JTAG access to the clock stop logic, the TCU DCR should be in a reset condition so
that bits 3 and two are both inactive (0). If either of these bits is set, the interaction
between JTAG and the TCU DCR can become unpredictable.

4.11.4 TRIGOUT (Watchpoint) Events
A watchpoint is also referred to as a Trigout event and pulses the TRIGOUT package
pin. Watchpoints can be generated by the SPC cores, the SOC logic, SW, or as
defined when TCU DCR bit [2] is set, see TABLE 4-10.
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TCU will forward a trigout request from SOC or SPC when the cycle counter and
debug events counters are zero, but it will only forward that one request. For clock
stop/scan dump usage where a trigout is used, TCU generates the trigout based
upon the debug event.

For clock stop/scan dump, one trigout may be sufficient. For soc/spc generated
trigout requests, it may be desirable to have the ability for TCU to send out every
one it receives. However, TCU was designed to only forward/create out one trigout.
Two questions came up in regard to this:

1. After the first trigout request is recognized by TCU and forwarded, how do we
reset TCU to forward the next trigout request?

2. How do we get multiple trigout events forwarded by TCU to the output pin?

For (1), this was not intended usage. A work-around is to wait until the first debug
event has initiated a TRIGOUT request, and then to re-program the debug_event
counter (the count does not matter, should be non-zero) and upon the next trigout
request the TCU will forward it, and then block subsequent trigout requests.
Re-programming the debug_event_counter can be done via SW, no JTAG is needed.

Alternatively, after the initial debug event, programming a TAP_CLOCK_START
and then putting JTAG in test-logic-reset will allow TCU to recognize the next
TRIGOUT request.

For (2), again this was not the intended usage. A work-around is to wait until the
initial debug event occurs and the first TRIGOUT is forwarded by TCU. Then,
program the TAP_CLOCK_START and keep it active - do not go to test-logic-reset,
instead go to run-test-idle state. Then, all trigout requests received by TCU will be
forwarded to the package TRIGOUT pin as long as the TAP_CLOCK_START is
active.

4.12 Memory BIST Control

4.12.1 Overview
The memory BIST or MBIST engines for OpenSPARC T2 are based on the engine
used in OpenSPARC T1. The general organization between TCU/JTAG, a single
MBIST engine in SPC0, and its associated arrays is shown in FIGURE 4-13. In
OpenSPARC T2 there are 80 MBIST engines: three per core (24 total) and 56
distributed throughout the SOC logic. Each MBIST engine will therefore test several
arrays. Note that even though there are 80 engines, only 48 are visible from the TCU
MBIST controller as explained in MBIST Engine Ordering.
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FIGURE 4-13 Overview of MBIST Control via TCU/JTAG

The MBIST operation may be controlled by the TCU during reset sequencing via the
JTAG interface or as invoked via SW. The MBIST engines can either be operated in a
serial mode, a parallel mode or a diagnostic mode for memory bit-fail mapping.
Both the serial and parallel modes run MBIST in a pass/fail mode, where the only
information available is whether MBIST passed all of its arrays, or failed at least one
of them.

4.12.2 Memory BIST Operation
TCU controls operation of MBIST through an MBIST controller which can be
programmed either via JTAG or SW. Operation of the MBIST controller is described
in the following sections.
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The signal mbist_parallel tells a sequencer in the TCU to begin either serial
activation of the start signals if low, or parallel activation if high, based on the
contents of the mbist_bypass register. The signal run_default_mbist is activated if
enabled during the reset sequence to perform MBIST over all the arrays. The signal
run_default_bisi activates BISI on all arrays, in which case the sequencer would set
tcu_mbist_bisi_en which goes to all arrays, along with sequencing start signals
either serially or in parallel. To run BISI on a given array, the TAP_MBIST_DIAG
instruction must be used to program a given MBIST engine’s config bits. Selection of
BISI or MBIST is done by setting the corresponding bit in the MBIST config register
of the MBIST engines, or by setting the BISI bit in the mbist_mode register.

FIGURE 4-14 Conceptual Look at TCU/JTAG MBIST Control

When the serial or parallel MBIST is determined to be finished (via
polling/examination of the done/fail register, or a timeout), all that is known is that
either all arrays passed, or at least one of them failed. To get information on which
MBIST engine finished, the TAP_MBIST_GETDONE instruction must be used. This
allows capture of 48 done bits which may then be observed at TDO; the
TAP_MBIST_GETFAIL similarly captures 48 fail bits. If detailed information as to
which array failed within a given MBIST engine is needed, then the
TAP_MBIST_DIAG instruction must be used to retrieve the contents of the specific
MBIST engine that indicated a fail.
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4.12.3 Serial Mode
JTAG will typically be used to run MBIST in the serial mode. When activated in
serial mode, the MBIST engines will be started sequentially in the following order.

Serial MBIST ordering:

■ SPC0: MBIST 0, 1, 2

■ SPC1: MBIST 0, 1, 2

■ ...

■ SPC7: MBIST 0, 1, 2

■ SII: MBIST 0

■ ...

To enable the serial MBIST mode via JTAG the instruction TAP_MBIST_BYPASS
must be used to specify which of the 48 MBIST engines to bypass, if any, via the
mbist_bypass register. Next, the TAP_MBIST_MODE is used to clear the parallel
mode bit in the mbist_mode register. The TAP_MBIST_START instruction is then
programmed into JTAG; when JTAG enters the run-test-idle state, the MBIST
operation will be started; it is not necessary to remain in the rti state. It is up to the
user to wait a predetermined number of cycles for the MBIST operation for all arrays
to finish. Status can be checked using the TAP_MBIST_RESULT instruction and
capturing the mbist_result register (2 bits) in the CaptureDR state and examining
them; this can be done repeatedly for polling (via captureDR, without staying in
run-test-idle). This allows early truncation of the test (via the TAP_MBIST_ABORT
instruction) if the fail bit becomes active before the MBIST operation is done. The
done bit must be set to validate a fail bit of 0 indicating a passing condition. A done
bit set to 1 and a fail bit set to 0 indicates all arrays for the selected mbist engines
passed MBIST.

The default operation is to run BISI instead of MBIST. To run BISI the instruction
TAP_MBIST_DIAG may be used to access the MBIST engine specified via the
mbist_bypass register, and setting the bisi/bist bit to 1 in the config register if
provided in the BIST engine. Another option for running BISI is to set the BISI bit in
the TAP_MBIST_MODE register. Optionally, the memory BIST can be run in the
serial mode without programming JTAG; this is done via the run_default_mbist
signal.

4.12.4 Parallel Mode
JTAG must be used to run MBIST in the parallel mode. When activated in parallel
mode, the MBIST engines will be started in parallel, while the arrays controlled by
each individual MBIST engine will test their arrays sequentially. Operation of MBIST
parallel mode via JTAG is similar to the serial mode, except that the parallel mode
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bit of the mbist_mode register must instead be set, using the TAP_MBIST_MODE
instruction. There is no non-JTAG default method of running MBIST in parallel
mode.

4.12.5 Diagnostic Mode
In one method to perform bit-fail mapping, the TAP_MBIST_DIAG instruction is
used to access the MBIST engine as the target JTAG data register. In this diagnostic
mode only one MBIST engine should be selected, by setting the appropriate bits in
the mbist_bypass register via the TAP_MBIST_BYPASS instruction; it is up to the
user to bypass all but one MBIST engine. Only one array controlled by the selected
MBIST engine may be active; this is specified by scanning in (loading) the target
MBIST engine registers. After both the MBIST engine and array are specified, the
TAP_MBIST_START is programmed, and entering run-test-idle will start the MBIST
operation on the selected array. After an appropriate wait time the test should finish.
Polling via TAP_MBIST_RESULT can be used to inspect the done/fail JTAG data
register, or the TAP_MBIST_GETDONE and TAP_MBIST_GETFAIL can be used to
determine the MBIST test results.

To get the detailed information on the target array, the TAP_MBIST_DIAG
instruction must be used. This allows the contents of the targeted MBIST engine to
be scanned as the mbist_diag register via TDO. This architecture is depicted in the
following figure for spc0 where all three MBIST engines in the core are on the same
chain. Similarly, an individual scan chain is provided for each spc and soc cluster as
listed in TABLE 4-11.

4.12.6 Abort Mode
To abort any MBIST activity the TAP_MBIST_ABORT instruction should be used.
This will cause all MBIST start signals to be deasserted, and any internal JTAG states
to be reset. A separate instruction is useful since the JTAG MBIST instructions have
memory. Use of TAP_MBIST_ABORT does not clear any of the JTAG data registers
used for or during MBIST, only the control states and signals, and does not clear the
MBIST engine flops; this allows the TAP_MBIST_DIAG to be used to get data on the
failing arrays. Note: Entering test-logic-reset state does not stop MBIST.
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4.12.7 MBIST Engine Ordering
The MBIST engines are ordered as in TABLE 4-11 for the 48-bit JTAG done, fail and
bypass registers:.

There are 80 MBIST engines in OpenSPARC T2 but from a JTAG perspective only 48
are visible. Three engines in each SPC are visible as one engine by JTAG, and
similarly for the L2 Tags. Since there are eight SPCs and eight L2Ts, this is a
reduction of 32 (24 to eight for SPCs, 24 to eight for L2Ts) for a total reduction of
80-32=48 engines visible by JTAG.

TABLE 4-11 MBIST Engine Ordering

Cluster # of Engines JTAG Reg. Cluster # of Engines JTAG Reg.

SPC0 3 bits[0] L2B_2 1 bit[20]

SPC1 3 bit[1] L2B_3 1 bit[21]

SPC2 3 bit[2] L2B_4 1 bit[22]

SPC3 3 bit[3] L2B_5 1 bit[23]

SPC4 3 bit[4] L2B_6 1 bit[24]

SPC5 3 bit[5] L2B_7 1 bit[25]

SPC6 3 bit[6] L2T_0 3 bit[26]

SPC7 3 bit[7] L2T_1 3 bit[27]

SII 2 bits[9:8] L2T_2 3 bit[28]

SIO 2 bits[11:10] L2T_3 3 bit[29]

NCU 2 bits[13:12] L2T_4 3 bit[30]

MCU0 1 bit[14] L2T_5 3 bit[31]

MCU1 1 bit[15] L2T_6 3 bit[32]

MCU2 1 bit[16] L2T_7 3 bit[33]

MCU3 1 bit[17] DMU 2 bits[35:34]

L2B_0 1 bit[18]

L2B_1 1 bit[19]
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4.12.8 Notes
The TCU sources the MBIST engine register scan controls over the scan controls for
the holding cluster/core. When an MBIST engine is accessed via a JTAG MBIST
instruction the other scan chains in the cluster will also scan, but the data will be lost
in those chains.

To use TAP_MBIST_DIAG, the user must bypass all engines (using
TAP_MBIST_BYPASS) except the one desired, else the result is indeterminate.

All three core MBIST engines and associated array information (if any) selected via
the JTAG instructions are placed in that core’s first scan chain for ATPG test mode.

JTAG instructions to support MBIST:

TAP_MBIST_BYPASS 48-bit mbist_bypass register

TAP_MBIST_MODE4-bit mbist_mode register

TAP_MBIST_STARTno user data register

TAP_MBIST_RESULT2-bit mbist_result register

TAP_MGIST_DIAGx-bit mbist_diag Reg: Engine + array flops

TAP_MBIST_GETDONE48-bit mbist_done register

TAP_MBIST_GETFAIL48-bit mbist_fail register

TAP_MBIST_ABORTno user data register

TAP_MBIST_CLKSTPENno user dr; enables clock stop via cycle counter

4.12.9 JTAG MBIST Data Registers
JTAG accessible registers for MBIST are presented in TABLE 4-12.

TABLE 4-12 JTAG MBIST Registers

Register JTAG Instr. Fields

Result[1:0] TAP_MBIST_RESULT bit[1]: 1 when all 80 mbist engines are done
bit[0]: 1 if any of 80 mbist engines reports a fail

Bypass[47:0] TAP_MBIST_BYPASS One bit per mbist engine; to bypass an engine during MBIST
testing set its bit to 1

Done[47:0] TAP_MBIST_GETDONE One bit per mbist engine; a 1 indicates the corresponding engine
is done; same order as mbist_bypass register
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4.12.10 MBIST Clock Stop and Scan Dump
The Cycle Counter may be used in conjunction with MBIST to stop clocks and
perform a scan dump. The instruction TAP_MBIST_CLKSTPEN must be
programmed to enable the Cycle Counter for MBIST. If enabled, the Cycle Counter
will begin decrementing when the MBIST controller begins operation. When the
Cycle Counter reaches zero, a hard clock stop will be issued to the clock sequencer.

All relevant registers - such as clock domain and clock stop delay - will be
recognized in this mode to allow control of the clock stop sequence. The clock stop
status may be checked with TAP_CLOCK_STATUS, and when stopped the scan
chains can be dumped via TAP_SERSCAN.

Using this feature and repeatedly running MBIST with successively greater cycle
count values allows another method of bit-fail mapping arrays. This is sometimes
referred to as MBIST Plus. Since the start of MBIST and when the Cycle Counter
begins decrementing is coordinated and synchronized to the same cmp clock cycle,
the entire process should be repeatable and cycle accurate.

4.12.11 MBIST DMO - Direct Memory Observe
The basic operation as implemented in TCU is described here. There are three JTAG
instructions, TAP_DMO_ACCESS, TAP_DMO_CLEAR and TAP_DMO_CONFIG, as
described in TABLE 4-3. The TAP_DMO_ACCESS puts the chip in DMO mode, so that
read data from L2 Tags and some SPC or NIU arrays will be observable at package
pins during MBIST operation, in addition to done and fail information.

Fail[47:0] TAP_MBIST_GETFAIL One bit per mbist engine; a 1 indicates the corresponding engine
failed MBIST for one of its arrays

Diag[k:0] TAP_MBIST_DIAG Includes targeted MBIST engines in a cluster; variable length

Mode[3:0] TAP_MBIST_MODE bit[3]: user loop mode
bit[2]: user mode
bit[1]: bisi mode if 1, bist mode if 0
bit[0]: parallel mode if 1, serial mode if 0

None TAP_MBIST_CLKSTPEN Enables mbist controller to begin Cycle Counter; reset with TLR
or TAP_CLOCK_START

TABLE 4-12 JTAG MBIST Registers (Continued)

Register JTAG Instr. Fields
Chapter 4 Test Control Unit (TCU) 4-69



TAP_DMO_CLEAR clears this mode. To access and program the dmo control logic
inside TCU the TAP_DMO_CONFIG should be used to set the 48-bits as desired.

TAP_MBIST_ABORT does not clear DMO mode.

TABLE 4-13 JTAG DMO Configuration Register accessed via TAP_DMO_CONFIG

Register Field Description

DMO_Config[47:0] [47:16] 32-bit shift register; bit 47 is used to sample dmo data

[15] 1 selects CMP clock domain (SPC/L2T)
0 selects IO clock domain

[14:13] 00 selects dmo path to cores 4, 5, 1 or 0
01 selects dmo path to cores 6, 7, 3 or 2
10 selects dmo path to L2 tags 4, 5, 1 or 0
11 selects dmo path to L2 tags 6, 7, 3 or 2

[12:11] Not defined

[10:8] Not defined

[7] selects SPC data cache upper/lower word

[6] 1 selects SPC instr. cache and L2 Tag output
0 selects SPC data cache and L2 Data output

[14:13] & [5:0] [14:13] [5:3][2:0] ==> Cluster Selected

00 xx0 xxx ==> CORE4
10 xx0 xxx ==> L2T4
00 x01 xxx ==> CORE5
10 x01 xxx ==> L2T5
00 011 xxx ==> CORE1
10 011 xxx ==> L2T1
00 111 xxx ==> CORE0
10 111 xxx ==> L2T0
01 xxx xx0 ==> CORE6
11 xxx xx0 ==> L2T6
01 xxx x01 ==> CORE7
11 xxx x01 ==> L2T7
01 xxx 011 ==> CORE3
11 xxx 011 ==> L2T3
01 xxx 111 ==> CORE2
11 xxx 111 ==> L2T2
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Note – As in most single-access JTAG instructions in OpenSPARC T2, reading the
dmo config register using TAP_DMO_CONFIG is done via the capture-DR state and
is always followed by writing the register when update-DR is passed through. Thus,
the dmo config register should not be accessed while dmo is actively running as the
shift register contents will be disturbed during update-DR.

In DMO mode, TCU will pass the data, done and fail information for the mbist array
under test to the package pins, along with a synchronization pulse.

4.12.11.1 MBIST Done and Fail Observe Ability at Pins

The capability exists to have any MBIST engine pass its done and fail signals to the
package pins and is enabled with TAP_DMO_ACCESS. Due to synchronization it is
not guaranteed that all fail pulses will be seen at the package pin. The done and fail
information is intended to be observed only in user mode with one array selected. In
non-user mode the fail pin is indeterminate if failures occur (if no failures occur, the
fail pin will pulse only at MBIST sequencer initiation).

When the MBIST sequencer is initiated, TCU will pulse the mbist done and fail pins
for one io2x clock cycle. While MBIST is running TCU will pass the fail information
received from the MBIST engine which is running to the pins in user mode only
(non-user mode is indeterminate). When the MBIST sequencer finishes, TCU will
assert done to the pins and assert fail to the pins if there was any failure recorded
from MBIST. This means that there will be at least one pulse generated by TCU on
the fail pin even if no fail occurred.

Upon initiation of the MBIST sequencer the pulses on the done and fail pins will be
coincident. The reason for the initial pulses on the done and fail pins is so the user
can determine that the MBIST controller in TCU has started and the pins are capable
of toggling. The done and fail will only be pulsed upon MBIST start when the
MBIST controller begins operation. This means that the done and fail will not pulse
each time a successive MBIST engine is started if more than one engine is left in
non-bypass mode.
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FIGURE 4-15 Sample: MBIST DMO Data coming from CMP Clock Domain

FIGURE 4-15 is representative only, and shows 1/4 sampling (32-bit shift register set to
32’b00010001000100010001000100010001) and sampling at 1/8 (32-bit shift register
set to 32’b00000001000000010000000100000001). Note that the msb (bit 47 of the dmo
config register, bit 31 of the shift register inside the dmo config register) is used to
sample the dmo data.
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4.12.12 Scanning of MBIST Engines via JTAG
When scanning MBIST engines using the TAP_MBIST_DIAG instruction or
TAP_SERSCAN it may be that flops outside the targeted scan chain may be
disturbed. The effects for SPC and SOC engines are different.

When scanning a SPC MBIST engine the controls from TCU will not be seen by any
logic outside the target SPC. However, if TAP_MBIST_DIAG is used to obtain a short
chain between TDI and TDO the flops outside this chain in the target SPC will be
affected by aclk, bclk and scan enable. It may be advantageous to use
TAP_SERSCAN with only the targeted SPC selected so that all values in the SPC
scan chain can be controlled.

When scanning an SOC MBIST engine there is no individual scan control. So all SOC
logic except for RST, TCU and CCU will be affected by the scanning of any SOC
MBIST engine.

Also see Protecting TCU During Serial Scan: Test Protect Mode for proper use of
TAP_TP_ACCESS during MBIST serial scanning.

4.12.13 Effect of Unavailable or Disabled Cores and Banks
The MBIST sequencer in TCU observes the available and disabling signals as
described in Clock Stopping and Core/L2 Available and Disable Controls. When
either BIST or BISI is run the MBIST sequencer in TCU will automatically bypass any
MBIST engines in an unavailable or disabled SPC or L2 array including MCU and
the associated L2 Tag. If only one MBIST engine is selected, with all others bypassed,
and that MBIST engine is in an unavailable or disabled SPC or L2/MCU, the MBIST
sequencer will bypass it and effectively do no MBIST testing. This is an illegal state
and MBIST sequencer operation is not deterministic.

4.12.14 BIST During Reset
During the POR sequence as described in the chapter on reset see Reset Sequencing.
TCU will run a BISI sequence after POR1 and optionally either run BISI or BIST
between WMR1 and WMR2. The BISI run after POR1 is in parallel mode by default
and has a timeout counter of 32 bits. The signal tcu_rst_bisx_done will be asserted
when all non-bypassed engines return their done signals to TCU or the timeout
counter expires. BISI will use the bypass register to select which engines to run and
will not expect done signals from bypassed engines. The BIST mode register is not
applicable except for changing from parallel to serial mode since the BISI run is
"hard-coded" to run after POR1.
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An optional BIST or BISI run is available if programmed by Software and will be
recognized by TCU after the next WMR1 and will be serviced between WMR1 and
WMR2. This optional run will recognize the bypass and mode registers.

Both the POR1 BISI and the optional Software-requested BIST/BISI will obey the
SPC and L2 available and disable criteria as specified in Effect of Unavailable or
Disabled Cores and Banks. Note, the BISI enable is written by logic during the
power-on reset sequence, and once written it will remain high until it is
programmed otherwise.

4.13 Logic BIST Control
The Logic BIST test function is only applied to the SPC cores in OpenSPARC T2, and
one engine is instantiated per core. The control of the Logic BIST engines comes from
the TCU either via SW or JTAG.

The control logic allows the Logic BIST engines to be run in parallel or in series, and
gathers the done signals for JTAG to query. There is no pass/fail indication that
comes from the Logic BIST engines, so the engine must be scanned to determine the
result.
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FIGURE 4-16 Conceptual Look at TCU/JTAG Logic BIST Control

To start a single Logic BIST engine, the TCU will drive the lbist_start signal high and
hold it until the lbist_done signal is received. TCU will also source a test_mode
signal to all Logic BIST engines to control them during manufacturing scan. In
parallel mode, the non-bypassed engines will be sent lbist_start signals in the same
cycle. In serial mode, the first non-bypassed engine (counting from 0) will be sent an
lbist_start indication, then when its lbist_done is received the next non-bypassed
engine will be sent an lbist_start indication. All lbist_start signals will be held until
the sequencer has received done indications from all engines.
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4.13.1 JTAG Logic BIST Instructions
The instruction TAP_LBIST_START can be used to begin Logic BIST sequencing, and
TAP_LBIST_ABORT can be used to stop sequencing. The JTAG accessible registers
for Logic BIST are:

4.13.2 Accessing Pass/Fail Signature
To determine if the Logic BIST engine passed or failed, the signature must be
scanned out via JTAG using TAP_LBIST_ACCESS. The signature must be compared
against a known-good value. Alternatively, Software may access the signature. This
mechanism will be implemented in the SPC core.

Also see Protecting TCU During Serial Scan: Test Protect Mode for proper use of
TAP_TP_ACCESS during LBIST serial scanning with TAP_LBIST_ACCESS.

TABLE 4-14 JTAG Logic BIST Registers

Register JTAG Instr. Fields

Bypass[7:0] TAP_LBIST_BYPASS One bit per Logic BIST engine; to bypass an engine during testing
set its bit to 1

Mode[1:0] TAP_LBIST_MODE bit[1]: program access mode selected
bit[0]: parallel mode if 1, serial mode if 0

Lbist[k:0] TAP_LBIST_ACCESS Includes targeted Logic BIST engines across cores

Done[7:0] TAP_LBIST_GETDONE One bit per mbist engine; a 1 indicates the corresponding engine is
done; same order as Logic BIST bypass register
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4.13.3 Logic BIST Interface

FIGURE 4-17 Logic BIST Controller Interface with TCU

4.14 Shadow Scan

4.14.1 Core Shadow Scan
Shadow scan for the cores is controlled via JTAG. The architecture is shown
FIGURE 4-18; the header is a conceptual view of both the cluster and flop headers
combined. Each core shadow scan will be contained in a separate scan chain, with its
own clock headers and controls coming from the TCU. The contents to be captured
in the shadow scan are in the OpenSPARC T2 Programmer’s Reference Manual. If a core
is disabled then its shadow scan contents will be excluded and the number of TCK
clocks should be reduced to reflect the unavailable core(s).

scan_out

Logic
BIST
Controller

mbist_so

scan_in

aclk

bclk

lbist_done

scan_en

se_scancollar_in

se_scancollar_out

clk_stop

test_mode

lbist_start

lbist_pgm

mbist_si
Chapter 4 Test Control Unit (TCU) 4-77



FIGURE 4-18 Core Shadow Scan Architecture

4.14.2 SOC Shadow Scan
Shadow scan for the SOC consists solely of L2Tag error registers, and is controlled
via JTAG. The architecture is shown in FIGURE 4-19; the header is a conceptual view
of both the cluster and flop headers combined. Each L2 Tag shadow scan will be
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contained in a separate scan chain, with its own clock headers and controls coming
from the TCU. The contents to be captured in the shadow scan are in the OpenSPARC
T2 Programmer’s Reference Manual.

FIGURE 4-19 L2 Tag Shadow Scan Architecture

4.14.3 Shadow Scan Operation
During a shadow-scan operation, the PLL is running and JTAG is used to capture
the desired values into the shadow scan register. The contents are then scanned-out
via TDO. Both the core and L2 tag shadow scan registers can only be read; any value

TABLE 4-15 Shadow Scan Registers

siisyn_data[61] “000001
”

“000001” “000001” “000001” “000001” “000001”

Etag[2:0] “001” “111” “101” “000” “100” “110”
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scanned into them will be overwritten. Because TCK is specified to be at a much
slower frequency than any cpu clock, any cpu clock cycles required for
synchronization from TCK to cpu clock domains will not cause overlapping.

FIGURE 4-20 JTAG Shadow Scan Sample Waveform

NOTES:

1. All eight core shadow scans are scanned serially as one chain, with core 0 closest
to TDI and core 7 closest to TDO.

2. Assignment of shadow scan contents is in the OpenSPARC T2 Programmer’s
Reference Manual.

3. Any core marked unavailable in the CMP core_available register will not be
included when scanned via TDI to TDO.

4. The shadow scan chain for a given core is placed in that core’s second scan chain
during ATPG test mode; they are accessible via JTAG shadow scan instructions
and during JTAG serial scan.

5. All eight L2 Tag shadow scan contents are captured at the same time, and are
available at TDO with L2T0 first and L2T7 last (closest to TDO).

6. JTAG instructions to support Core Shadow Scan:

■ TAP_SPCTHR0_SHSCAN Thread 0 contents for all available cores

scan_en
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SelDR CapDR ShiftDR Exit1DR PauseDR Exit2DR ShiftDR Exit1DR UpdDR
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aclk
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Three scan shifts are shown across two ShiftDR cycles.
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■ TAP_SPCTHR1_SHSCAN Thread 1 contents for all available cores

■ TAP_SPCTHR2_SHSCAN Thread 2 contents for all available cores

■ TAP_SPCTHR3_SHSCAN Thread 3 contents for all available cores

■ TAP_SPCTHR4_SHSCAN Thread 4 contents for all available cores

■ TAP_SPCTHR5_SHSCAN Thread 5 contents for all available cores

■ TAP_SPCTHR6_SHSCAN Thread 6 contents for all available cores

■ TAP_SPCTHR7_SHSCAN Thread 7 contents for all available cores

7. JTAG instructions to support L2 Tag Shadow Scan

■ TAP_L2T_SHSCAN

4.15 Array Guidelines to Support Scan Test
To facilitate scan test the arrays should be configured so that they can be inhibited
during scan load and unload, and surrounded with scan collars. There are several
different scan modes used on OpenSPARC T2 and this section outlines the use and
requirements for the scan mode control signals. The different scan modes consist of
Manufacturing or pin-based scan, also known as ATPG scan, MacroTest, Logic BIST
(LBIST), Transition Test, JTAG scan, and Flush scan.

The TCU sources four signals for scan control specifically related to arrays:

■ tcu_se_scancollar_in - connect to “se” port of flop headers for memory “input”
flops

■ tcu_se_scancollar_out - connect to “se” port of flop headers for memory “output”
flops

■ tcu_array_wr_inhibit

■ tcu_array_bypass

4.15.1 Flop (Clock) Headers
To control the clocks to arrays during the various scan modes, clock headers are
needed with specific se (scan enable) signals. The se signals from TCU to arrays are
tcu_se_scancollar_in and tcu_se_scancollar_out.

For any input flops including write address/data, read address/data, write/read
enable, and inputs related to lookup for CAMS, the flop headers for these flops
should use tcu_se_scancollar_in. For any output flops, such as read data, a second
flop header is required and should use tcu_se_scancollar_out. The various flop
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headers in an array should share the tcu_pce_ov and tcu_clk_stop signals and all flops
can share tcu_aclk and tcu_bclk. If the “se” port of a flop header is tied low, then
during scan operations the l1clk will track the l2clk - this is sometimes referred to as
making the l1clk free-running. If the power-savings function of a flop header is not
needed then the “l1en” (ce) can be tied high.

4.15.1.1 Write Inhibit and Bypass

To inhibit writing to the arrays the TCU generates a signal tcu_array_wr_inhibit.
When active, this signal should protect the array from updates and can also be used
to turn off read logic and CAM compare logic if desired. If it is determined by test
coverage analysis that there is logic not tested, such as shadow logic, a bypass mux
may be needed. In general it is expected that most arrays will not need a bypass
mux; this decision will be made for each array individually. The bypass mux will be
controlled via tcu_array_bypass. Plan-of-record for OpenSPARC T2 arrays is to place
the bypass mux outside the custom memory boundary (in RTL logic), except for
CAMS that have already placed bypass muxes in the custom memory.
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FIGURE 4-21 Array Flop Header Guidelines

Note – If WR_Clk and RD_Clk are different clock domains then separate stop
signals should be used as provided by the TCU.
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4.15.2 Scan Modes
The values for the various test control signals and the clocks are given in the
following table for the different scan modes (tcu_clk_stop=0 and tcu_pce_ov=1). The
value of l1clk_free tracks l2clk.

4.15.3 Scan Cell Ordering Guidelines
Scan Cell Ordering: There is no specific requirement for ordering of scan cells in the
scan chain, although it is desirable for all flops of the same function to be grouped in
the chain to facilitate macrotest pattern development. Lockup latches are not needed
since the scan clocks are always non-overlapping.

It is required that the ordering of scan cells in the circuit match that in the RTL.

4.15.4 Reset
During portions of the power-on-reset sequence, such as before the PLLs lock or
during flush scan, tcu_array_wr_inhibit will be driven active to protect the arrays.

ASIC arrays do not participate in flush scan, so aclk/bclk would be inhibited during
this time to those arrays.

TABLE 4-16 Array Control Signals During Scan Modes

Scan Mode Phase l2clk se_scancollar
_in

se_scancollar
_out

array_wr_inhibit l1clk

ATPG
Scan Shift Tester drives to 1 1 1 1 1

Capture Tester toggles 0 0 1 l2clk

MacroTest
Scan Shift Tester drives to 1 1 1 1 1

Capture Tester toggles 1 0 0 in: 1
out: l2clk

Logic BIST
Scan Shift PLL Locked 1 1 1 1

Capture PLL Locked 0 1 1 in: l2clk
out: 1

Trans. Test
Scan Shift PLL Locked 1 1 1 1

Capture PLL Locked 0 0 1 l2clk

JTAG Scan Shift PLL Locked 1 1 1 1

Flush Scan Shift PLL Locked 1 1 1 1
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4.16 Reset Sequencing
The TCU participates in Power-On Reset by interfacing with the RST unit and
providing flush reset. The waveforms with respect to TCU during power-on reset are
shown FIGURE 4-22.
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FIGURE 4-22 Power-On Reset Sequence
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There are four phases to the Power-On Reset sequence:

Two Power-On Resets - POR1 and POR2 - and two Warm Resets - WMR1 and
WMR2.

4.16.1 POR1
At time zero, PWR_ON_RST_L is driven to ‘0’; the TCU sees this and then asserts all
clk_stop signals and resets itself and all chip logic (except for JTAG, RST, CCU, and
DMU which get their own reset signals) via flush reset.

The TCU is released from reset and becomes active when the PWR_ON_RST_L has
deasserted (goes to ‘1’) and the RST block drives rst_tcu_asicflush_stop_req high.
Once the TCU is active it will wait for rst_tcu_flush_stop_req before ending the flush
state and starting the clocks by turning off clk_stops to the 24 clock domains. Note
that this does not apply to the ASICs as described in ASIC Reset. When it has turned
on all clock domains, it will drive tcu_rst_flush_stop_ack to ‘1’ and then assert
tcu_efu_rvclr after a delay of 32 cmp clock cycles, hold tcu_rvclr for eight cmp clock
cycles, deassert and wait eight cmp clock cycles, then pulse tcu_efu_read_start for
eight cmp clock cycles. The hold times and delays allow the eFuse signals to be
synchronized into the io clock domain.

After the EFU is done, the TCU will start the default BISI sequence. This will
complete before POR2 is entered. From a TCU perspective, POR1 ends when POR2
begins.

Note – Since the PLL is locking during POR1 reset, the flush will be held until the
PLL is stable before exiting flush_POR1. This is controlled by the RST unit.

Note – The clocks to unavailable SPC cores and L2 Banks will be stopped; for
details. See Clock Stop.

4.16.2 POR2
The POR2 state is recognized by TCU when the rst_tcu_flush_init_req goes to ‘1’ and
the rst_wmr_protect is low. The TCU responds by stopping all clocks, and drives
tcu_rst_flush_init_ack high when it begins to flush the scan chains after clocks have
been stopped.
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When the rst_tcu_flush_stop_req is received the TCU will cease flushing the scan
chains, and turn all clock domains back on, followed by driving
tcu_rst_flush_stop_ack high to tell RST the clocks are running. TCU also pulses
tcu_efu_read_start to again signal the EFU to begin operation. The timing of the
eFuse handshaking is the same as in POR1.

The DMU is excluded from flush resets and clock stopping (the RST, CCU and TCU
are excluded from POR2). The start of WMR1 indicates the end of POR2 from a TCU
perspective.

4.16.3 WMR1
The WMR1 state is recognized by rst_wmr_protect being active during the receipt of
rst_tcu_flush_init_req to begin this phase. The actions are similar to POR2 between
TCU and RST as shown, except no eFuse start is sent by TCU. When TCU drives the
tcu_rst_flush_stop_ack high this indicates the end of WMR1 from a TCU
perspective.

Before leaving WMR1 TCU will start any pending BIST/BISI sequence which may
have been requested via SW; this will be allowed to complete before WMR2 is
entered.

4.16.4 WMR2
The WMR2 state is recognized only after WMR1 has occurred by rst_wmr_protect
being active during the receipt of rst_tcu_flush_init_req; TCU responds as in WMR1.
At the end of WMR2, though, the Reset Counter will be allowed to decrement as
specified in the section on debug. See TCU Debug Registers. The Reset Counter
should be programmed before WMR2 ends.

When TCU drives the tcu_rst_flush_stop_ack high this indicates the end of WMR2
from a TCU perspective.

4.16.5 JTAG Access During POR
JTAG is operational after TRST_L goes inactive during POR1; however, to access
registers that are outside of JTAG the clocks must be running and the targeted areas
should be capable of receiving the JTAG actions. During the POR sequence there are
specific times when such access via JTAG is possible. To insure the user performs
JTAG accesses during a safe period in the POR sequence, three JTAG instructions
have been provided that create a window in the POR sequence so that JTAG
instructions can be safely performed. By executing TAP_JTPOR_ACCESS a signal
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inside TCU will be set that will cause TCU to pause after eFuse two transfer
completes by delaying activation of the tcu_rst_efu_done signal. The user should
execute TAP_JTPOR_ACCESS after releasing TRST_L in the POR sequence. The
status of TCU can then be checked with TAP_JTPOR_STATUS; when the status is ‘1’
this indicates that the TCU is paused and the JTAG programming window is active.
Clocks will be running and JTAG instructions can be executed during this window.
To continue with POR the user should execute TAP_JTPOR_CLEAR, which will
cause TCU to continue with the POR sequence.

Note that when setting the JT POR access via TAP_JTPOR_ACCESS, it is possible to
hold the chip input pin PWRON_RST_L low to allow enough time for the JTAG
programming to be completed. The sequence then would be to begin the POR
sequence, release TRST_L but hold PWRON_RST_L low, complete the
TAP_JTPOR_ACCESS programming, and then release PWRON_RST_L to allow the
reset sequence to continue.

To shorten the bisi sequence in POR1 the JTAG TAP_MBIST_ABORT can be used.
The execution of this instruction would need to be controlled by counting sys clock
pulses and choosing the appropriate cycle to abort. If the BISI sequencer in TCU
receives an MBIST-Abort request it will simulate a BISI timeout and the sequence
will continue as if an actual timeout had occurred. This is useful during testing on
ATE to shorten the POR sequence. It is up to the user to determine when to execute
the TAP_MBIST_ABORT, and this does not require using TAP_JTPOR_ACCESS as
the abort needs to occur before the JTPOR pause occurs.

One of the primary uses of JTAG access during POR is to bypass the eFuse. One
important point to keep in mind is that anything that has already happened in the
POR sequence before the pause won’t see the bypassed eFuse values. In particular,
BISI will have already completed during POR1 using data from the first eFuse
transfer. Thus, if a bank available row in the eFuse array is bypassed during JTPOR
to make an unavailable bank available, the bank that was marked as unavailable
during POR1 will not have been initialized by BISI and will contain garbage data. It
is up to software to tolerate this.

4.16.6 ASIC Reset
The ASIC blocks in OpenSPARC T2 DMU are treated differently from other clusters
during the reset sequence and warm or debug resets.

During POR1 the DMU has its clocks stopped until the RST unit tells TCU to release
them with rst_tcu_asicflush_stop_req; this signal comes earlier than
rst_tcu_flush_stop_req. When the asicflush_stop_req is received, TCU releases itself
from its own flush reset and turns off the clock stops to the ASICs and deasserts
tcu_asic_scan_en. The tcu_asic_aclk is not asserted at all during POR1, preventing a
flush state to the ASICs. During subsequent resets (WMR1, WMR2) the ASIC clock
stops are allowed to activate in the normal clock stop sequence but the ASICs are not
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flushed. During debug resets (DBR) the signal rst_tcu_dbr_gen is active and TCU
does not activate the clock stops to the ASICs to allow them to continue running.
During JTAG clock stop operations, these blocks behave as other SOC blocks. During
POR2 the ASIC clock stops will be held deasserted.

4.17 EFuse
The interface between the TCU and the E-Fuse Unit (EFU) is similar to that from
OpenSPARC T1. This section only describes the TCU to EFU interface including the
JTAG instructions used. For information about the EFU refer to OpenSPARC T2 SoC
Microarchitecture Specification, Part 2 of 2.

There are five modes of operation which the TCU recognizes for interfacing with the
TCU. All except the POR mode require JTAG instructions and user intervention. The
POR mode is handled directly by the TCU during the power-on reset sequence.

Note – Bypass data register is in EFU, and has reversed bit ordering from other
JTAG registers (msb is closest to TDO). Bit ordering may also apply to other EFU
register values as interpreted by the EFU.

4.17.1 POR Mode
During the power-on reset sequence the EFU needs to send data to the chip. It does
this when activated by a signal from TCU called tcu_efu_read_start (ioclk domain).
This signal is pulsed and released to start the EFU, and may be activated multiple
times during the POR sequence.

4.17.2 JTAG Read Access
This allows the user to read each row of the E-fuse Array (EFA) inside the EFU. The
EFA is 64 rows by 32 columns. The JTAG instructions in the suggested order of
application are:

■ TAP_FUSE_READ_MODE Set the mode bits

■ TAP_FUSE_ROW_ADDR Specify the row address

■ TAP_FUSE_READ Read the specified row
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4.17.3 Program Mode
This allows the user to program the EFA one bit at a time in conjunction with proper
application of the package pins required for EFA programming (fct_efa_prog_en).
The JTAG instructions in the suggested order of application are:

■ TAP_FUSE_ROW_ADDR Specify the row address

■ TAP_FUSE_COL_ADDR Specify the column address

■ Assert appropriate package pins per TI specifications

These steps may be repeated; the addresses will remain active until changed so once
a row address is set it need not be changed until all columns have been traversed.

4.17.4 Bypass Mode
This allows the user to bypass the EFA, so that the EFU will treat user-supplied data
as if it came from the EFA. This is useful for sending user data to SRAM redundancy
registers to verify repairability. The JTAG instructions in the suggested order of
application are:

■ TAP_FUSE_BYPASS_DATA Send the data to EFU that will be used in place of
EFA

■ TAP_FUSE_BYPASS Tell the EFU to use the bypass_data and send it
out

4.17.5 Sample Mode
This allows the user to sample a redundancy value from an array. The JTAG
instructions in the suggested order of application are:

■ TAP_FUSE_BYPASS_DATA Specify register to be sampled

■ TAP_FUSE_DEST_SAMPLE Request EFU to get data and return it to JTAG
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4.17.6 Redundancy Value Clear
To provide a means of clearing redundancy values, the TAP_ FUSE_RVCLR
instruction is provided. This allows the user to clear all or specific redundancy
values via the eFuse unit. The same mechanism is used by TCU to tell eFuse to clear
all redundancy values before initiating an eFuse start sequence during POR.

4.18 TCU Local CSR Assignments
The base address for TCU is 0x85_0000_0000.

Devices can access the following registers in TCU via the UCB protocol with the
offset addresses listed.

In the case of the MBIST Mode and Bypass registers the default value is over-written
by logic during the power on reset sequence: the BISI enable bit 1 of the MBIST
mode register is written by logic during the power-on reset sequence, and once
written it will remain high until it is programmed otherwise. The value of the MBIST
Bypass register will depend on the core and bank available fuse values after POR1; if
there is no partial mode, then the MBIST Bypass register will be all 1’s in bits 47:0.

4.18.1 Memory BIST Registers
These registers are protected during warm resets unless modified via JTAG.

TABLE 4-17 eFuse Redundancy Value Clear Register

Register JTAG Instr. Fields

efu_rvclr[6:0] TAP_FUSE_RVCLR efu_rvclr[6] = 1 enables a clear
efu_rvclr[5:0] = block_id per eFuse spec.; selects Redundancy
Value to clear
efu_rvclr[5:0] = 11_1111 will tell eFuse to clear all RVs

TABLE 4-18 MBIST Mode Register (0x00)

Bits Name Initial Value R/W Description

[63:4] Reserved X RW Reserved

[3] Loop 0 RW Loop mode if ‘1’
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[2] User 0 RW Diagnostic (user) mode if ‘1’

[1] BISI 0 (1 - note 1) RW BISI if ‘1’, BIST if ‘0’

[0] Parallel 0 RW Parallel mode if ‘1’

TABLE 4-19 MBIST Bypass Register (0x08)

Bits Name Initial Value R/W Description

[63:48] Reserved X RW Reserved

[47:0] Bypass 0
(48’hFFFFFFFFFFF
F - note 1)

RW MBIST Bypass

TABLE 4-20 MBIST Start Register (0x10)

Bits Name Initial Value R/W Description

[63:1] Reserved X W Reserved

[0] Start 0 W Starts MBIST Sequence when written
to ‘1’

TABLE 4-21 MBIST Abort Register (0x18)

Bits Name Initial Value R/W Description

[63:1] Reserved X W Reserved

[0] Abort 0 W Aborts MBIST Sequence when written
to ‘1’

TABLE 4-18 MBIST Mode Register (0x00) (Continued)

Bits Name Initial Value R/W Description
Chapter 4 Test Control Unit (TCU) 4-93



TABLE 4-22 MBIST Result Register (0x20)

Bits Name Initial Value R/W Description

[63:2] Reserved X R Reserved

[1] Result 0 R MBIST Done (bit 1)

[0] Result 0 R MBIST Fail (bit 0)

TABLE 4-23 MBIST Done Register (0x28)

Bits Name Initial Value R/W Description

[63:48] Reserved X R Reserved

[47:0] Done 0 R MBIST Done

TABLE 4-24 MBIST Fail Register (0x30)

Bits Name Initial Value R/W Description

[63:48] Reserved X R Reserved

[47:0] Fail 0 R MBIST Fail

TABLE 4-25 MBIST Start WMR Register (0x38)

Bits Name Initial Value R/W Description

[63:1] Reserved X W Reserved

[0] Start 0 W Starts MBIST Sequence when written
to ‘1’, but delayed until after the next
warm reset occurs
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4.18.2 Logic BIST Registers
These registers are protected during warm resets unless modified via JTAG.

TABLE 4-26 LBIST Mode Register (0x40)

Bits Name Initial Value R/W Description

[63:2] Reserved X RW Reserved

[1] Program 0 RW Program mode if ‘1’

[0] Parallel 0 RW Parallel mode if ‘1’

TABLE 4-27 LBIST Bypass Register (0x48)

Bits Name Initial Value R/W Description

[63:8] Reserved X R/W Reserved

[7:0] Bypass 0 R/W LBIST Bypass

TABLE 4-28 LBIST Start Register (0x50)

Bits Name Initial Value R/W Description

[63:1] Reserved X W Reserved

[0] Start 0 W Starts LBIST Sequence when written to
‘1’

TABLE 4-29 LBIST Done Register (0x60)

Bits Name Initial Value R/W Description

[63:8] Reserved X R Reserved

[7:0] Done 0 R LBIST Done Status
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4.18.3 Debug Control Register
This register can operate during warm resets if enabled by TCU DCR.

TABLE 4-30 Cycle Counter Register (0x100)

Bits Name Initial Value R/W Description

[63:0] Cycle Counter 0 RW See “Cycle Counter” on page 244
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CHAPTER 5

Clock Control Unit (CCU)

This chapter contains the following sections:

■ Overview

■ CCU Ports List

■ Clock and Reset Inside CCU

■ Sync Pulses

■ RNG Description

■ CSR Block

■ CCU Testability

■ Full Chip Testability

■ Appendix A.1 – Sync Pulse Design Procedure

■ Appendix A.2 – Sync Pulse Timing Analysis

5.1 Overview
This is the microarchitecture specification for the CCU block. It encompasses the
following functionality

■ PLL to drive the core and memory clocks

■ Interfacing with random number generator

■ UCB interface for programming the PLLs/MG and reading RMG data

■ Provide sync pulses for deterministic clock domain crossing

■ Clock stretch and other test clocking mechanisms such as SERDES testing (via
DTM) for OpenSPARC T2
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5.1.1 System Block Diagram

FIGURE 5-1 System Block Diagram
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5.1.2 CCU Block Diagram and Description

FIGURE 5-2 CCU Block Diagram

Currently, the PLL is the only hard-macro in the CCU. The PLL generates clocks and
also performs clock stretching. This is described in Clock and Reset Inside CCU and
Sync Pulses, they also includes information on the clock dividers, global clock tree
and staging flops.

Interfacing with the RNG block involves an LFSR that can be accessed as a CSR
register. Details are given in RNG Description.

UCB interface for programming CSRs is reused from the RST cluster. Its protocol is
described in System Block Diagram.

The actual registers resides in the CSR block. It also includes logic for interfacing to
the other side of UCB, as described in the UCB interface document. Register
addresses and fields are defined in CSR Block.

Sync pulse generation is described in Sync Pulses, with the detailed analysis in the
appendices.
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5.2 CCU Ports List
TABLE 5-1 CCU Ports List.

Name Dir Width Domain Description

CLK Input/Outputs

gclk I 1 N/A Input to CCU cluster headers from global clk tree

dr_pll_clk O 1 N/A Connect to global clock tree input

cmp_pll_clk O 1 N/A Connect to global clock tree input

CCU-NCU Interface

ccu_ncu_stall O 1 io UCB interface between CCU <-> NCU

ncu_ccu_vld I 1 io UCB interface between CCU <-> NCU

ncu_ccu_data I [3:0] io UCB interface between CCU <-> NCU

ncu_ccu_stall I 1 io UCB interface between CCU <-> NCU

ccu_ncu_vld O 1 io UCB interface between CCU <-> NCU

ccu_ncu_data O [3:0] io UCB interface between CCU <-> NCU

PLL-Bump Interface

pll_sys_clk_p I 1 N/A Differential input reference to PLL

pll_sys_clk_n I 1 N/A Differential input reference to PLL

pll_vdd I 1 static PLL VDD – static tie high

mio_ccu_pll_char_in I 1 async Direct bump input to PLL – selects internal PLL signal
during characterization active when mio_pll_testmode==
1. Also CSR programmable

CCU-RNG Interface

rng_arst_l O 1 async Asynchronous reset of rng, also used to precharge
voltage of large caps of the RC filters

rng_data I 1 async Input bit stream of random data (combined from up to
three noise cells). Loaded into LFSR which is accessible via
CSR address RNG_DAT

rng_bypass O 1 async Relates to generation of entropy in noise cells
vco control voltage = (bypass) ? output of bias generator : output
of feedback amplifier -- CSR programmable

rng_vcoctrl_sel O [1:0] async PMOS diode D/A setting bus -- CSR programmable
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rng_ch_sel O [1:0] async Channel select for using entropy from 1,2 or 3 noise cells --
CSR programmable

rng_anlg_sel O [1:0] async Selects internal analog signal for characterization -- CSR
programmable

SCAN/Test Related

scan_in I 1 aclk Scan chain input – (currently hooked up to DMU scan_out
output)

tcu_scan_en I 1 async Scan enable from TCU

tcu_aclk I 1 N/A aclk input to clkgen module. Connect to TCU

tcu_bclk I 1 N/A bclk input to clkgen module. Connect to TCU

scan_out O 1 aclk Scan chain output – (currently drives RST scan_in port)

tcu_atpg_mode I 1 async Puts the CCU in test mode for ATPG testing. Unless this
signal is asserted, aclk, bclk and scan inputs into the CCU
are all held low, and the scan chain is shorted.

ccu_dbg1_serdes_dtm O 1 io Sets DBG1 mux controls for DTM

ccu_mio_serdes_dtm O 1 io Sets MIO mux controls for DTM

Global Clock Tree Interface

ccu_cmp_io_sync_en O 1 cmp Sync pulse for cmp -> io clk domain

ccu_io_cmp_sync_en O 1 cmp Sync pulse for io -> cmp clk domain

ccu_dr_sync_en O 1 cmp Sync pulse for cmp -> dr clk domain

ccu_io2x_sync_en O 1 cmp Sync pulse for cmp -> io2x clk domain

ccu_io2x_out O 1 cmp Divider phase signal output – rate of CMP clk. Connect to
ccu_div_ph of clkgen module in other clusters as needed

ccu_io_out O 1 cmp Divider phase signal output – rate of CMP clk. Connect to
ccu_div_ph of clkgen module in other clusters as needed

gl_ccu_io_out I 1 cmp Divider phase input; similar to ccu_io_out inputs for other
clusters.

ccu_vco_aligned O 1 vco Align signal tightly coupled to PLL clock domain

gclk_aligned I 1 cmp Align signal tightly coupled to (cmp) gclk domain

ccu_serdes_dtm O 1 async Places chip in DTM mode where dr_clk == io_clk, and
cmp, dr, io clock phases are deterministic. Currently
unused in cluster headers.

TABLE 5-1 CCU Ports List. (Continued)

Name Dir Width Domain Description
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CCU-MIO Interface

mio_pll_testmode I 1 async Dedicated. Input from external IO through MIO – Used to
place PLL in test mode (active high)

ccu_mio_pll_char_out O [1:0] async Dedicated. Digital characterization output of PLL. Connect
to external IO through MIO. Valid when
mio_pll_testmode==1

mio_ccu_vreg_selbg_l I 1 static Dedicated. Input from external IO through MIO – controls
VREG input of PLL and RNG

mio_ccu_pll_clamp_fltr I 1 static Shared. Input from external IO through MIO – Used to
control clamp filter input of PLL in test mode
(mio_pll_testmode==1)

mio_ccu_pll_div2 I [5:0] async Shared. Input from external IO through MIO – Used to
program D2 of PLL in test mode (mio_pll_testmode==1)

mio_ccu_pll_div4 I [7:0] async Shared. Input from external IO through MIO – Used to
program D4 of PLL in test mode (mio_pll_testmode==1)

mio_ccu_pll_trst_l I 1 async Shared. Input from external IO through MIO – Used to
reset PLL in test mode (mio_pll_testmode==1)

CCU-TCU Interface

gl_ccu_clk_stop I 1 cmp Clock stop for cmp domain (provisional signal. as of now,
no application for it)

gl_ccu_io_clk_stop I 1 cmp Clock stop for io domain (provisional signal. as of now, no
application for it)

tcu_pce_ov I 1 async Overrides clock stop assertion (provisional signal. as of
now, no application for it)

tcu_ccu_mux_sel I [1:0] cmp Controls PLL muxes from TCU – one of four signals to gclk
tree inputs: PLL VCO, sysclk, bypass clock, or stretched
clock.

tcu_ccu_ext_cmp_clk I 1 N/A Bypass clock input for CMP clk (muxed with TCK) from
TCU

tcu_ccu_ext_dr_clk I 1 N/A Bypass clock input for DR clk (muxed with TCK) from
TCU

tcu_ccu_clk_stretch I 1 cmp Controls clock stretch in PLL

CCU-RST Interface

rst_ccu_pll_ I 1 sys Active low PLL reset – once de-asserted, PLL will start to
lock

rst_ccu_ I 1 sys Active low reset for CCU logic – staggered with respect to
rst_ccu_pll_

TABLE 5-1 CCU Ports List. (Continued)

Name Dir Width Domain Description
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5.2.1 Clock Generation and Distribution

5.2.1.1 Generation

There is one PLL in the CCU for generating both core and memory clocks. The
SPARC Cores, CCX and L2 cache operate at the cmp frequency. Parts of the chip are
on the io and io2x domains, both of them derived directly from the cmp clock. The
other clock that goes into the MCU for interfacing with FBDIMMs is the dr clock.

The same system reference clock is pll_sys_clk_p/n. This is a differential input that
is fed from the bumps directly into the core pll. There are two independent dividers
that generate cmp and dr clocks, which are rational multiples of each other. Hence,
they are ratioed synchronous. FIGURE 5-3 gives a simplistic representation of how the
PLL generates these clocks.

ccu_sys_cmp_sync_en O 1 cmp Special sync pulse for sys -> cmp clk domain – ONLY for
RST cluster

ccu_cmp_sys_sync_en O 1 cmp Special sync pulse for cmp -> sys clk domain – ONLY for
RST cluster

ccu_rst_sys_clk O 1 N/A Provides buffered version of sysclk that the PLL is running
off

ccu_rst_sync_stable O 1 cmp When asserted after PLL has finished locking, indicates to
RST block that all clocks and sync pulses are stable

ccu_rst_change O 1 io When asserted, indicates to the RST block that the pll
divider values WILL change.
NOTE. CCU does NOT PERFORM an actual check of old
and new divider values. It relies solely on the value of
CHANGE field in PLL_REG for the RST to determine if
PLL lock required

rst_wmr_protect I 1 async Prepares CCU for a warm reset

cluster_arst_l I 1 async Holds cluster header output clock low

TABLE 5-1 CCU Ports List. (Continued)

Name Dir Width Domain Description
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FIGURE 5-3 PLL Clock Generation during Mission Mode

The other clocks, io_clk and io2x_clk, are derived from the cmp clock, by generating
divided down (by four and two respectively), phase signals. They are distributed as
clocks from cluster header outputs. The distribution is discussed in more detail in
Distribution.

Note that the PLL feedback loop is entirely self-contained within the PLL. Thus there
is arbitrary phase difference between the rising edge of a sys_clk cycle and a rising
edge of a clock into the CLK input of a flop in any cluster.

5.2.2 PLL Programming
The PLL is programmed through a combination of registers (CSR fields), direct
chip-level pin control and combinational logic. The CSR based controls are covered
in CSR Block. External pin-level control is applicable typically in test mode, and is
covered in CCU Testability. This sub-section focuses on divider configuration (CSR
programmable) and combinational mux controls from the TCU.
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Dividers D1, D2 and D3 perform integer division. D4 has fractional divide capability
in discrete increments of 0.5 by using both phases of the VCO clock. The divider
configurations allow cmp_pll_clk to run at different multiples of pll_sys_clk, but
dr_pll_clk is always twice as fast as pll_sys_clk. The DR clock output may not have
50/50 duty cycle, but should be within +/-10%. This is not an issue within
OpenSPARC T2 since there is no operation on the low phase.

The divider values are summarized in TABLE 5-2 with information on both effective
and actual bits.

Even though all four dividers can be programmed via CSR writes, there is a subset
of values that are valid. D3, for example, needs to be set to divide by two. Putting a
divide by three or higher will result in a non 50/50 duty cycle cmp clock. dr_pll_clk
may not be produced correctly since it uses both phases of the VCO clock.
Acceptable values for normal operating or mission mode with corresponding clock
frequencies are given in TABLE 5-3.

The clock frequency multiplication equations with respect to the external oscillator
output (sys_clk) are shown.

fvco = (D2 X D3 /D1) fsys

fcmp = (1 /D3) fvco = (D2 /D1) fsys

fdr  = (1 /D4) fvco = (D2 X D3 )/(D1 X D4 ) fsys

fio    =  fcmp = (D2 /4D1) fsys

fio2x =  fcmp = (D2 /2D1) fsys

TABLE 5-2 PLL Divider Program for Mission Mode

Div Bits (Effective) Valid Range Binary Encoded Values Comments

D1 6 2 00_0001 Binary value = Effective value – 1

D2 6 8 — 21 00_0111 – 01_0100 Binary value = Effective value – 1

D3 6 2 00_0001 Binary value = Effective value – 1

D4 7 4.0 — 10.5 00_0100_0 – 00_1010_1 Binary value [6:1] = Effective value;
bit [0] = 0 for integer effective, and 1

for effective x.5
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The first row in any of the three sets in TABLE 5-3 holds the default divider ratio
during power-on-reset. The rows in blue (14, 10 and 7) of the three sets refer to the
targeted operating frequencies.

TABLE 5-3 Clock Frequency Table in Mission Mode

No. sys_clk
(MHz)

D1 D2 D3 D4 D2*D3 VCO
(MHz)

cmp_clk
(MHz)

io_clk
(MHz)

io2x_clk
(MHz)

r_clk
(MHz)

cmp:dr
(ratio)

1 133.33 2 8 2 4.00 16.00 1066.67 533.33 133.33 266.67 266.67 2.00

2 133.33 2 9 2 4.50 18.00 1200.00 600.00 150.00 300.00 266.67 2.25

3 133.33 2 10 2 5.00 20.00 1333.33 666.67 166.67 333.33 266.67 2.50

4 133.33 2 11 2 5.50 22.00 1466.67 733.33 183.33 366.67 266.67 2.75

6 133.33 2 12 2 6.00 24.00 1600.00 800.00 200.00 400.00 266.67 3.00

6 133.33 2 13 2 6.50 26.00 1733.33 866.67 216.67 433.33 266.67 3.25

7 133.33 2 14 2 7.00 28.00 1866.67 933.33 233.33 466.67 266.67 3.50

8 133.33 2 15 2 7.50 30.00 2000.00 1000.00 250.00 500.00 266.67 3.75

8 133.33 2 16 2 8.00 32.00 2133.33 1066.67 266.67 533.33 266.67 4.00

10 133.33 2 17 2 8.50 34.00 2266.67 1133.33 283.33 566.67 266.67 4.25

11 133.33 2 18 2 9.00 36.00 2400.00 1200.00 300.00 600.00 266.67 4.50

12 133.33 2 19 2 9.50 38.00 2533.33 1266.67 316.67 633.33 266.67 4.75

13 133.33 2 20 2 10.00 40.00 2666.67 1333.33 333.33 666.67 266.67 5.00

14 133.33 2 21 2 10.50 42.00 2800.00 1400.00 350.00 700.00 266.67 5.25

1 166.67 2 8 2 4.00 16.00 1333.33 666.67 166.67 333.33 333.33 2.00

2 166.67 2 9 2 4.50 18.00 1500.00 750.00 187.50 375.00 333.33 2.25

3 166.67 2 10 2 5.00 20.00 1666.67 833.33 208.33 416.67 333.33 2.50

4 166.67 2 11 2 5.50 22.00 1833.33 916.67 229.17 458.33 333.33 2.75

6 166.67 2 12 2 6.00 24.00 2000.00 1000.00 250.00 500.00 333.33 3.00

6 166.67 2 13 2 6.50 26.00 2166.67 1083.33 270.83 541.67 333.33 3.25

7 166.67 2 14 2 7.00 28.00 2333.33 1166.67 291.67 583.33 333.33 3.50

8 166.67 2 15 2 7.50 30.00 2500.00 1250.00 312.50 625.00 333.33 3.75

8 166.67 2 16 2 8.00 32.00 2666.67 1333.33 333.33 666.67 333.33 4.00

10 166.67 2 17 2 8.50 34.00 2833.33 1416.67 354.17 708.33 333.33 4.25

11 166.67 2 18 2 9.00 36.00 3000.00 1500.00 375.00 750.00 333.33 4.50

12 166.67 2 19 2 9.50 38.00 3166.67 1583.33 395.83 791.67 333.33 4.75
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PLL output clock behavior with respect to its reset signals and sys_clk are shown.
They are produced independently of the PLL specification. The example FIGURE 5-4
assumes D1 and D3 are left in their default states (effective value of two for both).

13 166.67 2 20 2 10.00 40.00 3333.33 1666.67 416.67 833.33 333.33 5.00

14 166.67 2 21 2 10.50 42.00 3500.00 1750.00 437.50 875.00 333.33 5.25

1 200 2 8 2 4.00 16.00 1600.00 800.00 200.00 400.00 400 2.00

2 200 2 9 2 4.50 18.00 1800.00 900.00 225.00 450.00 400 2.25

3 200 2 10 2 5.00 20.00 2000.00 1000.00 250.00 500.00 400 2.50

4 200 2 11 2 5.50 22.00 2200.00 1100.00 275.00 550.00 400 2.75

6 200 2 12 2 6.00 24.00 2400.00 1200.00 300.00 600.00 400 3.00

6 200 2 13 2 6.50 26.00 2600.00 1300.00 325.00 650.00 400 3.25

7 200 2 14 2 7.00 28.00 2800.00 1400.00 350.00 700.00 400 3.50

8 200 2 15 2 7.50 30.00 3000.00 1500.00 375.00 750.00 400 3.75

8 200 2 16 2 8.00 32.00 3200.00 1600.00 400.00 800.00 400 4.00

10 200 2 17 2 8.50 34.00 3400.00 1700.00 425.00 850.00 400 4.25

11 200 2 18 2 9.00 36.00 3600.00 1800.00 450.00 900.00 400 4.50

12 200 2 19 2 9.50 38.00 3800.00 1900.00 475.00 950.00 400 4.75

13 200 2 20 2 10.00 40.00 4000.00 2000.00 500.00 1000.00 400 5.00

TABLE 5-3 Clock Frequency Table in Mission Mode (Continued)

No. sys_clk
(MHz)

D1 D2 D3 D4 D2*D3 VCO
(MHz)

cmp_clk
(MHz)

io_clk
(MHz)

io2x_clk
(MHz)

r_clk
(MHz)

cmp:dr
(ratio)
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FIGURE 5-4 PLL Clocking Waveforms

5.2.3 PLL Mux Control
All functional clock muxing in OpenSPARC T2 is performed in custom blocks – the
PLL, cluster headers and specialized L1 headers. However, the PLL clock mux
control logic is divided between the CCU and the PLL hard macro, with the CCU
often exercising additional constraints.
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The combination of CCU inputs, and equivalent mappings to PLL inputs are
tabulated in TABLE 5-4. For actual usage related to various modes of operation, refer
to CCU Testability of this MAS.

FIGURE 5-3 and FIGURE 5-19 complement the information in the table. Note that the
PLL input and output signals above will be allowed to change based on any
sequential logic within the CCU or PLL. For example, if DTM 1 or 2 mode is
programmed into the CSRs, during PLL reset, pll_bypass will be held high to avoid
internal PLL clock mux contention, and then set to 0 upon reset release. Under all
other conditions, pll_bypass will simply be assigned to tcu_ccu_mux_sel[1].

5.2.4 Distribution
As shown in FIGURE 5-2, cmp_clk and dr_clk are distributed via a global clock tree to
gclk inputs of various clusters. Each cluster receives the same phase of gclk. The
CCU also sends out a few control signals that are distributed closely with gclks and
pipelined on various tap points of the global clock tree. A high level diagram is
shown in FIGURE 5-5.

TABLE 5-4 CCU and PLL Mapping

CCU or CSR inputs PLL inputs PLL outputs

Mode dtm[
1,2]

atpg
_mo
de

m
ux
_se

l

pll_arst_l pll_b
ypas

s

pll_sel_a pll_dt
m

dr_sel
_a

pll_clk_out dr_clk_out

Func 0 0 00 rst_ccu_pll_ 0 00 0 00 sys_clk x N sys_clk x M

Str 0 0 01 rst_ccu_pll_ 0 01 0 01 sys_clk x N
(str)

sys_clk x M
(str)

ATPG 0 1 10 0 1 10 1 10 ext_cmp_clk ext_dr_clk

Byp 0 1 11 0 1 11 1 11 sys_clk_p sys_clk_p

DTM 1 0 00 rst_ccu_pll_ 0 00 1 11 sys_clk x N sys_clk_p

MTest 0 0 11 0 1 10 1 10 ext_cmp_clk ext_dr_clk
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FIGURE 5-5 Simplified Global Distribution of CMP Clock

There are a set of other global signals from the CCU such as the divider phase
signals, and sync pulses that are staged in the global clock tree, along with reset lines
from the RST and clock stops from the TCU. All these staged signals are sent out on
the CMP domain, or in some cases on the DR domain. Synchronization to the clock
outputs is performed in the cluster header, as described in the Usage document.

For completeness and references to it in other sections, DR distribution is shown in
FIGURE 5-6.
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FIGURE 5-6 Global Distribution of the DR Clock

5.3 Clock and Reset Inside CCU

5.3.1 Clock Domains
There are three clock domains within the CCU: L2, IOL2, and CMP_PLL. There is a
distinction between CMP_PLL and L2 domains. The L2 domain is synchronous to all
other clusters. CMP_PLL domain is the result of using the PLL output clock at CMP
rate prior to distributing the clock through the GCLK macro. L2 clock is a phase
shifted version of CMP_PLL clock; the phase shift due to distribution can vary from
process to process from 0.5 to ~1.5 CMP periods.
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Note – There is temporarily a fourth clock domain (SYSCLK) to work around
missing latch models in the std cell library. Once the latch becomes available,
SYSCLK domain will be removed.

A breakdown of the CCU by clock domain and approximate functionality appears in
FIGURE 5-7. FIGURE 5-8 details the clock align detection logic since it uses
non-conventional clocking and has a few special constraints:

The first pair of flops act as synchronizers should the negative edge of the reference
clock be sampled by the flops (the outcome of the align detection is immaterial since
it is zero in this case).

There is a half-cycle, or 2X clocking path where data from negative clocked flops
gets transferred to positive edge-triggered flops.

5.3.2 Reset Scheme
The CCU relies on the RST block for explicit reset signals, and does not operate via
flush reset. Also, it needs to be released from reset before all other blocks on the
chip. One reset is solely for the PLL, and the other for the remaining CCU logic,
loosely speaking. The CCU itself needs to generate one or two staggered resets.
These resets work in a domino like fashion to ultimately provide a signal to the RST
unit that indicates the CCU is done with initialization, and that the RST block may
release the rest of the chip from reset. This signal is ccu_rst_sync_stable. When the
signal goes high, all clocks from the CCU are valid, at the correct frequency, and all
sync pulses are operating in their proper positions.

Depending on whether clocks may be stable or not, the CCU needs to use either
asynchronous or synchronous reset. However, all resets within the CCU are released
synchronously. Emphasis has been placed on determinism and repeatability, so even
where brute-force synchronization is used, additional signals ensure determinism.

There is only one CSR register in the CCU that is warm reset protected. All clock
generating and pll programmation bits are warm reset protected. The rest are not.

5.3.3 Initialization Sequence
The Power-On-Reset scheme in the CCU is highlighted by the waveforms in
FIGURE 5-9. For functional operation, the CCU is activated in a very simple manner.
There are two resets to the CCU, ccu_rst_pll_ and ccu_rst_ that need to be applied
in a sequence. Testmode, and divider_bypass pins need to be held low.
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An explanation of the various numbered parameters is given in TABLE 5-5.

TABLE 5-5 Key Parameters in Initialization Sequence

Parm # Description Duration

1 Time taken for first rising edge of refclk to appear from release of rst_ccu_pll_ <1 sys_clk cycle

2 Deassertion of rst_ccu_pll_ to rising edge of stable CMP PLL clock output LOCK TIME

3 Clock distribution delay of global clock tree from PLL output to gclk input of
cluster header

~0.5 – ~1.3 CMP
cycle

4 Deassertion of rst_ccu_ to gclk_rst_n (requires use of brute force synchronizer) 1 to 2 CMP cycles

5 Rising edge of refclk to assertion of aligned_shift pulse. 3 CMP cycles

6 Shift of aligned_shift pulse to create VCO aligned 4 to 17 CMP
cycles depending
on pll_div2[5:0]

7 Transfer of aligned signal from CMP PLL domain to CMP_GCLK domain. Tracks parameter
#3

8 From first aligned pulse to aligned_rst_n signal for internal CCU blocks for
coherent reset release.

1 CMP cycle

9 Deassertion of aligned_rst_n to first rising edge of ccu_io2x_out 2 CMP cycles

10 Deassertion of aligned_rst_n to first rising edge of ccu_io_out 4 CMP cycles

11 Time when aligned == 1 to deassertion of divider for generating DR clock
within PLL

2-3 CMP cycles
depending on
pll_div4[6:0]

12 Deassertion of dft_a_rst_l to first rising edge of dr_clk 5-6 CMP cycles
depending on
pll_div4[6:0]
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FIGURE 5-7 CCU Clock Domains and Function
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FIGURE 5-8 Align Detection Circuitry

FIGURE 5-9 Initialization Sequence for CCU Clocks
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5.4 Sync Pulses
The main application of generating synchronization pulses in OpenSPARC T2 is to
allow low latency, deterministic data transfer between ratioed synchronous clock
domains. The key requirements for this scheme to work are:

A single reference clock source.

PLLs that have similar behavior, in particular a known input-output phase
relationship.

The clock frequencies need to be rational multiples of each other, or ratioed
synchronous

Jitter, skew, and other PVT mismatches are taken into account to ensure setup and
hold requirements are met during domain crossing.

Clock domains that are of primary concern are the CMP and DR domains.
Synchronization between cmp and IO, or IO2X domains is a simpler problem, but
handled similarly.

5.4.1 Proposed Scheme
The following circuit shows the proposed scheme for clock domain transfers.

FIGURE 5-10 CMP to DR Synchronization
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FIGURE 5-11 DR to CMP Synchronization

It has been borrowed from past designs and modified. All it does is allow data to
cross one domain to another during a safe interval, avoiding setup and hold
problems. The mechanism for operation for fast clock (e.g., cmp) to slow clock (e.g.,
dr) domain is as follows:

Mux enable to launch flip-flop is generated on cmp_clk.

Next cmp rising edge, data is launched.

Data is captured on dr_clk.

For slow clock to fast clock transfers, the procedure is:

Data is launched on rising edge of dr_clk.

Mux enable to capture flip-flop is generated on cmp_clk.

Next cmp rising edge, data is captured.

In both cases, the rate of communication is limited by the slower clock frequency, so
the enable is generated once every slow clock cycle. The main challenge is to
determine the ideal intervals between pulse generation for robust operation. For a
discussion on determining the positions, refer to Appendix A.1 – Sync Pulse Design
Procedure.
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5.4.2 Sync Pulse Distribution

FIGURE 5-12 Logical Representation of Sync Pulse Global Distribution

Sync pulses will be generated in the CCU on the cmp_gclk domain, and be
distributed (along with other control signals) in five stages of pipeline in
mini-clusters to each cluster header. In the cluster headers, there will be one more
stage of latching the data on the gclk domain. From there, each cluster will flop the
enables on the l2clk domains before local distribution. In effect, there will be seven
stages of cmp_cycle before sync pulses are output from cluster headers, and then
flopped one last time within clusters.
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5.4.3 CMP to IO/IO2X Waveforms
Domain crossing between CMP and IO/IO2X domains is a special, and simpler case
of CMP to DR communication because cmp_clk is an integer multiple of io_clk and
io2x_clk, and both io_clk and io2x_clk are directly derived from cmp_clk

FIGURE 5-13 shows the actual usage, i.e., the final sync_en output (refer to FIGURE 5-9).

FIGURE 5-13 Actual Usage of Sync Pulses at Enable Pin of Transfer Flops

Note – Since cmp_io2x_sync_en and io2x_cmp_sync_en are shown at the point of
usage; however, they would both be driven by a single source – cluster
header->io2x_sync_en ->flop output.
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For clarity, the outputs of cluster headers are also shown. These are, as expected
from FIGURE 5-9, one l2clk cycle early.

FIGURE 5-14 Sync Enable Positions at the Outputs of Cluster Headers prior to being latched.

5.4.4 CMP/DR Pulses
CMP to DR pulse positions are determined by the amount of uncertainty that can
exist between cmp_clk and dr_clks. A discussion on the procedure of determining
the positions appears in the AAppendix A.1 – Sync Pulse Design Procedure. There
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are several documents detailing the sync pulse schemes and timing budgets that
have been created to ensure robustness. An example of the positions of the dr sync
pulses is shown in FIGURE 5-15.

FIGURE 5-15 Sync Pulse Example for fCMP:fDR = 11:4

The convention is to describe the sync pulse position in terms of cmp clk phases,
with phase 0 being set to the nominal alignment of cmp and dr clocks. The sync
pulse positions at the point of domain crossing are given in TABLE 5-6.

TABLE 5-6 DR<->CMP Sync Pulse Positions

CMP<->DR Transfer Edge Transfer phase
(normalized for four dr=2pi)

K - > clk cycles K - > clk cycles

N M Meff N/M 0 1 2 3 0 1 2 3

8 4 1 2.00 1 1 1 1 1 3 5 7

9 4 4 2.25 1 3 6 8 1 3 6 8

10 4 2 2.50 1 4 1 4 1 4 6 9

11 4 4 2.75 1 4 7 10 1 4 7 10

12 4 1 3.00 1 1 1 1 1 4 7 10

13 4 4 3.25 2 5 8 11 2 5 8 11

14 4 2 3.50 2 5 2 5 2 5 9 12

15 4 4 3.75 2 6 9 13 2 6 9 13

16 4 1 4.00 2 2 2 2 2 6 10 14

17 4 4 4.25 2 6 11 15 2 6 11 15

18 4 2 4.50 2 7 2 7 2 7 11 16
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5.4.5 CMP/SYS Pulses
There are a pair of sync pulses between CMP and SYS_CLK strictly for the RST unit.
These pulses are not staged on the global clock tree, and not taken in through cluster
headers. However, to account for fanout, the signals are flopped twice inside the
RST cluster. The scheme relies on the RST block being placed close to the CCU; there
is tolerance built in for skew between the CMP and SYS_CLK up to a couple of CMP
cycles.

The active position of the sync pulse (“1” on rising edge of cmp_clk) will be on
phase two of l2clk. This will provide ample margin, > 1 fast cmp cycle for setup or
hold. Illustrations of data transfers in both directions are shown in FIGURE 5-16. For
quantification of the amount of margin available, refer to Appendix A.1 – Sync Pulse
Design Procedure.

19 4 4 4.75 2 7 12 17 2 7 12 17

20 4 1 5.00 2 2 2 2 2 7 12 17

21 4 4 5.25 3 8 13 18 3 8 13 18

TABLE 5-6 DR<->CMP Sync Pulse Positions (Continued)

CMP<->DR Transfer Edge Transfer phase
(normalized for four dr=2pi)

K - > clk cycles K - > clk cycles
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FIGURE 5-16 Domain Crossing using Sync Pulses in RST

5.5 RNG Description
The random number generator (RNG) generates random numbers from three noise
cells. There is one RNG block (and LFSR) to be shared amongst the eight processor
cores. Only one of the cells may be active at a time, all three may be active, or none
of them may be active. Any other combination defaults to selecting all three noise
cells. The following encoding applies:

TABLE 5-7 Encoding for Noise Cell Selection

CTL3 CTL2 CTL1 Effect

0 0 0 Deselect all noise cells (feeds 0 into LFSR)

0 0 1 Select noise cell 1
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Every clock cycle, the XOR of the outputs of the selected noise cells is fed into a
64-bit register. Under functional mode, the register generates data by implementing
the CRC-polynomial

P(x) = x64 + x61 + x57 + x56 + x52 + x51 + x50 + x48 + x47 + x46 +
x43 + x42 + x41 + x39 + x38 + x37 + x35 + x32 + x28 + x25 + x22 + x21

+ x17 + x15 + x13 + x12 + x11 + x7 + x5 + x + 1

After each read request, it is important to not maintain any correlation with the past
generated values, so the LFSR will be flushed after every read acknowledge. The
register will be flushed with a non-zero state 0xFFFF_FFFF_FFFF_FFFF. Also,
multiple requests for rng_data are automatically separated by N+2 cycles, where N
can be programmed by writing to the 16-bit field rng_wait_cnt in the CSR register.

0 1 0 Select noise cell 2

1 0 0 Select noise cell3

011, 101, 110, 111 Select all 3 noise cells

TABLE 5-7 Encoding for Noise Cell Selection (Continued)

CTL3 CTL2 CTL1 Effect
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FIGURE 5-17 Read Access Operation of rng_data via Memory Mapped Address

In diagnostic mode (CTL4 = 0), the LFSR acts as a simple shift register capturing the
noise cell output directly, determined independently by CTL1 CTL2 and CTL3 as per
encoding. The additional constraint in this mode is that successive read requests for
the rng_data will be delayed by 64 iol2clk cycles. Also, flushing the LFSR after every
read will be disabled in this mode.

The nominal frequency of the oscillator in each noise cell can be set independently
by programming the rng_vco_ctrl[1:0] field. There are four settings that correspond
to four different frequencies; however, each cell must be programmed one at a time.
As an example, consider the following desired configuration: noise cell1 -> 00
setting, cell2 -> 10 setting, cell 3 --> 01 setting, and observe all three cells. One would
proceed as follows:

1. Set CTL3,CTL2,CTL1 = 001 and set RNG_VCO_CTRL = 00

2. Set CTL3,CTL2,CTL1 = 010 and set RNG_VCO_CTRL = 10

3. Set CTL3,CTL2,CTL1 = 100 and set RNG_VCO_CTRL = 01
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FIGURE 5-18 Entropy Generator Design

5.6 CSR Block
The CSR block consists of registers that can be used for programming other CCU
blocks, and for accessing information. This includes both functional and test related
data. The other part of the CSR block communicates with the standard UCB
interface.
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Note that values written into the PLL_CTL register will not take effect immediately
(even though reading them back will show the new values). A warm reset needs to
be applied to affect clocks.
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5.6.1 PLL_CTL (0x83_0000_0000)

TABLE 5-8 PLL Control Register

Field Name Bits Default WMR Protected R/W Description

Reserved 63:37 0x0 N/A R Reserved

pll_clamp_fltr 36 0x0 YES R/W PLL clamp filter setting

st_delay_dr 34:35 0x0 YES R/W DR stretch delay setting (40ps intervals) 00 –>
40 , 01 -> 80 , 10 -> 120 , 11 -> 160

pll_char_in 33 0x0 YES R/W PLL characterization test input

change 32 0x1 YES R/W PLL frequency to be changed

align_shift 30:31 0x0 YES R/W Shift align detect point by [-1:1] cmp cycle.
Affects dr_sync pulse generation. All other
sync pulses unchanged. 00 -> no shift , 01 ->
+1 cycle, 10 -> -1 cycle, 11 -> no shift.

serdes_dtm2 29 0x0 YES R/W Mode 2 – causes ccu_serdes_dtm to be
asserted during reset. io, io2x set to DR rate.
Used by DBG1/MIO for selecting setting mux
controls.

serdes_dtm1 28 0x0 YES R/W Mode 1 – causes ccu_serdes_dtm to be
asserted during reset. io, io2x set to DR rate.
Used by DBG1/MIO for selecting setting mux
controls.

st_delay_cmp 27:26 0x0 YES R/W CMP stretch delay setting (40ps intervals) 00
–> 40 , 01 -> 80 , 10 -> 120 , 11 -> 160

st_phase_hi 25 0x0 YES R/W High or low phase of clk to be stretched 0
indicates low phase.

pll_div4 24:18 0x8 YES R/W PLL VCO divider (D4) for dr. Refer to PLL
Programming section.

pll_div3 17:12 0x1 YES R/W PLL VCO divider (D3) for cmp. Refer to PLL
Programming section.

pll_div2 11:6 0x7 YES R/W PLL feedback divider (D2). Refer to PLL
Programming section.

pll_div1 5:0 0x1 YES R/W PLL pre-scalar (D1). Refer to PLL
Programming section.
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5.6.2 RNG_CTL (0x83_0000_0020)

5.6.3 RN
G_DATA (0x83_0000_0030)

TABLE 5-9 RNG Control Register

Field Name Bits Default WMR Protected R/W Description

Reserved 63:25 0x0 N/A R Reserved

rng_wait_cnt 24:9 0x003E NO R/W Minimum wait time before successive RNG
data is sent

rng_bypass 8 0x0 NO R/W rng_bypass=0 sets noise cell vco control
voltage = output of feedback amplifier
rng_bypass=1, sets noise cell vco control
voltage = output of bias generator

rng_vcoctrl_sel 7:6 0x0 NO R/W pmos diode D/A setting bus. Controls VCO
rate for each noise cell. Refer to RNG
Description for programming.

rng_anlg_sel 5:4 0x0 NO R/W Analog mux select for characterization

rng_ctl4 3 0x1 NO R/W Enables using LFSR or plain shift register. Set
to LFSR mode by default.

rng_ctl3 2 0x1 NO R/W Control for using noise cell 3. Refer to RNG
Description for programming.

rng_ctl2 1 0x1 NO R/W Control for using noise cell 2. Refer to RNG
Description for programming.

rng_ctl1 0 0x1 NO R/W Control for using noise cell 1. Refer to RNG
Description for programming.

TABLE 5-10 RNG Data Register

Field Name Bits Default WMR Protected R/W Description

rng_data 63:0 x N/A R 64 bits of rng data
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5.7 CCU Testability
This section deals with the testability of the CCU logic and the PLL.

5.7.1 CCU ATPG
The CCU logic is scannable only during ATPG testing. In mission mode, the scan
chain input to the CCU is short-circuited to scan_out, and the following signals are
set to zero: tcu_aclk, tcu_bclk, tcu_scan_en.

When testmode is set to 1, the TCU gets full control of the CCU, and treats the CCU
just like any other logic on the chip being scanned. The TCU also controls the clock
muxes within the PLL via tcu_ccu_mux_sel (refer to FIGURE 5-15). When
tcu_ccu_mux_sel == 2b'10, the external clocks tcu_ccu_ext_cmp_clk and
tcu_ccu_ext_dr_clk are muxed into the cmp_gclk and dr_gclk buffer trees
respectively. These external clocks in turn are muxed inside the TCU with TCK, such
that TCK can be forced onto both lines, or be controlled by the tester independently.

The only portion of the CCU that is not scannable is logic that does not run on the
regular l2clk or iol2clk. This results in about a dozen flops that are kept out of the
scan chain at all times.

The CCU PLL may be put in testmode, asserting the signal mio_pll_testmode via an
external pin. This signal is independent of the testmode signal used for ATPG.
However, tcu_atpg_mode has higher priority than mio_pll_testmode. For example,
when both are asserted, ccu_pll. pll_arst_l will be set to 0.

With pll_testmode == 1, the CCU provides access to the PLL directly through the
following signals from the MIO:

mio_ccu_vreg_selbg_l

mio_ccu_pll_clamp_fltr

mio_ccu_pll_div2

mio_ccu_pll_div4

mio_ccu_pll_trst_l

mio_ccu_pll_char_in

Likewise, it is possible to observe the internal signals from the PLL through a pair of
muxed (internal to PLL) outputs ccu_mio_pll_char_out.[1:0].
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When pll_testmode is active, rst_ccu_pll_ has no effect on resetting the PLL, and the
CSR values for PLL control are overridden. The exception is the pll_char_in signal
which is OR'ed with the pll_reg bit 33 output.

5.8 Full Chip Testability
Clock Control Unit (CCU) describes the role of the CCU, and its features for
supporting full chip testability.

5.8.1 Full Chip ATPG
The support provided by the CCU for full chip ATPG is no different from setting the
CCU itself in ATPG mode. The same procedure for setting the CCU for ATPG mode
is followed, while the CCU becomes merely a conduit for forwarding clocks.

The custom global clock tree does not perform any clock gating, so test clocks
injected onto the main line are never blocked. Within the cluster header, in testmode,
the clock stop signal is permanently disabled, ensuring that the test clocks into any
cluster are free running with direct tester control. In addition, parts of the cluster
header are fully scannable, while tcu_clk_stop and ccu_div_ph inputs of the header
are observable.

Note that the sync pulses between all ratio'ed synchronous domains in each cluster
would have to be set to a logic 1 to allow scan capture to take place consistently. This
control is outside the scope of the CCU.

5.8.2 Transition Fault Test
During transition fault testing, the CCU needs to be fully functional, as do the
cluster headers, since it would not be possible to apply at-speed scan capture pulses
through the external clock ports from the tester.

They will be kept out of the scan chain by ensuring the external signal testmode = 0.
The operation of tcu_clock_stop will be critical in ensuring t-fault testing is
programmable to provide two or more high-speed pulses. The staging flops in the
global clock tree macro, of course will be free running on gclk, and have no scope of
blocking clock stop. TCU will have full control of the cluster and domain that will be
tested.
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5.8.3 Clock Stretch

5.8.3.1 Clock Stretch Requirements

OpenSPARC T2 clock stretch operates within the following guidelines and
requirements as defined by SPTE.

■ Clock period stretch is needed only on the “cmp” domain.

■ Frequency modulation due to stretch is restricted to one cycle.

■ The amount of shift is in the interval (0, Tvco/2)

■ This actual shift is implemented using an RC delay line with reasonable
granularity.

■ Assertion of clock stretch is controlled by test registers programmed through the
JTAG interface. These registers also control the amount of shift in RC delay line.

■ There is no latency requirement, measured from the time clock stretch is asserted
to the time clock shift occurs.

■ Core clocks can then be stopped and state element values can be shifted out via
scan chains.

5.8.3.2 PLL Support for Pulse Stretching

Clock stretching capability is built into the PLL because of the analog RC delay line.
The mechanism for shifting the positive or negative edge is simple. The VCO output
is muxed with a delayed version of itself as shown in the simplified FIGURE 5-19.
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FIGURE 5-19 Clock Stretching Capability in PLL

Ports on the CCU that are relevant to clock stretch are tcu_ccu_mux_sel[1:0]. It
determines which leg of the mux in the PLL is selected for output. 2'b11will select
the leg for clock stretch.

The amount of pulse shift (st_delay_a), and the phase to be stretched (st_phase_hi),
are programmed in the CSR prior to the actual clock stretch event. The other two
inputs to the CCU activate the stretch mux.

These signals can be asynchronous to the cmp_clk domain. They are synchronized
appropriately in the PLL, depending on whether the high phase or the low phase is
stretched. Stretching on the low phase (shifting the positive clock edge) requires
synchronizing the mux selects to the negative edge of VCO clock. Conversely,
stretching on the high phase requires changing the mux selects on the positive edge
of VCO clock. This is illustrated in the next section.

5.8.3.3 Timing Diagram

FIGURE 5-20 illustrate the operation of the pulse stretching circuitry for shift during
the low phase (i.e., rising edge).
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FIGURE 5-20 Clock Stretch Timing Events

Note the synchronization of cl_stretch internally to generate the inputs to sel_a[1:0]
on the falling edge of cmp_clk. This ensures the select lines to the mux change in the
low phase.

The approach is similar for st_phase_hi = 1, the main difference being that sel_a[1:0]
inputs are generated on the rising edge of cmp_clk.

5.8.3.4 Programmability

In PLL_REG, five bits can be programmed for the following clock stretch fields.

TABLE 5-11 Clock Stretch Fields in CSR Block

CSR Field Bits Description

st_phase_hi 25 Stretches high phase if true, else stretches low phase

st_delay_cmp 27:26 cmp clock stretch delay settings [00, 01, 10, 11] => [40, 80, 120, 160] ps
under nominal PVT

st_delay_dr 35:34 dr clock stretch delay settings [00, 01, 10, 11] => [40, 80, 120, 160] ps under
nominal PVT
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5.8.4 SERDES Deterministic Test Mode (DTM)

5.8.4.1 Basic Requirements

DTM is a strategy for running tests for SERDES in a repeatable, deterministic
manner. It allows testers to sweep the SPARC Core clock frequencies without
breaking PLL lock, and perform traditional functional testing using the serial link
interface.

In a nutshell, the tester goes through an initialization process to calibrate the RX
lanes, and place data such that the outcomes on the blunt side are known and
controllable. However, the TX data cannot be observed deterministically, so a
workaround is to observe this TX data via the debug interface. The basic
requirements are:

■ All reference clocks to PLL inputs should come from the same source

■ This applies to the core PLL, PSR, and FSR. ESR is excluded from DTM testing

■ Convert clock domains from mission mode as follows:

■ IO -> DR

■ PC -> DR

■ CMP and DR domains unchanged

■ Sync pulses between IO <-> CMP now are equivalent to DR <-> CMP

■ Clock rates changed as follows

■ ref1 = ref2 = ~75-100 MHz

■ cmp = ~600-1500 MHz

■ dr = io = pc = ~75-100 MHz

■ cmp:dr ratio = 1:8, 1:11 or 1:15

5.8.4.2 Supported Clock Frequencies

The ideal scenario is to be able to perform a schmoo of OpenSPARC T2 across the
entire operating range of core frequencies, i.e., from 600 Mhz – 1.5 Ghz. However,
because of PLL characteristics, no single divider setting will allow this, and a
minimum of three gear ratios is needed.

A gear ratio corresponds to the CCU core divider configuration (in this scheme,
affected only by one divider, D2). Link rate for serial links indicates the data transfer
rate which may be equal to or fractional multiples of internal clock speeds.
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5.8.4.3 Clocking Scheme

FIGURE 5-21 CCU PLL Configuration for DTM

FIGURE 5-21 shows how the CCU PLL would be configured for DTM. Note that the
muxes are not shown. They will configured such that the mux for the cmp clock
output would be in functional mode whereas the mux for the dr clock would be in
bypass mode.

As shown in FIGURE 5-21 and FIGURE 5-22, clusters that will get IO, IO2X, and PC
clocks will operate at DR rate by dividing down from the cmp clock. This is different
from the actual DR clock from the distribution tree. The former is dubbed virtual dr
clock as opposed to the real dr. The ramification of this approach is simplification of
cluster header muxing controls, easier gclk distribution, and more robust timing
since there are no new timing paths for analysis. However, the real dr clock will
have a 50-50 duty cycle, while the virtual dr clock will have a duty cycle of 50/50,
55/45 and 53/47 respectively for D2=8, 11, and 15. This is not expected to be an
issue.

Even though PC, IO, IO2X and DR clocks operate at the same frequency albeit with
perhaps different duty cycles during DTM, direct data crossing between these clocks
needs to be handled with care due to high possibility of hold-time violations. In
normal mode, there is no direct communication between the four domains, or is
handled via asynchronous fifos, so these paths are false. The min-time issues
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encountered in DR<->IO crossings are addressed by using lock-up latches in the
MCU, while for PC<->IO they are preemptively addressed by inverting the phase of
PC clock (inside the cluster header) with respect to the IO clock in the PEU.

Sync pulse positions for domain transfers between CMP<->IO, CMP<->IO2X, and
CMP<->DR are shown in FIGURE 5-23. They depend on the divider value D2. The
sync pulse pairs, sys_cmp and cmp_sys are unchanged. However, all other sync
pulses appear in different positions depending on the value of D2.

FIGURE 5-22 Chip Level DTM Clocking Scheme
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5.8.4.4 Programmation and Sequencing

After power on reset, the pll_reg has to be programmed to set either of the DTM bits
to '1', and set the PLL divider values to match one of the three acceptable gear ratios.
The "CHANGE" field in PLL_REG should also be set to indicate frequency will
change. (Depending on whether DTM1 or DTM2 is selected, DBG and MIO mux
controls will be affected. However, from the CCU's perspective, it is only one mode.
The only check CCU will perform that if both DTM1 and 2 will are asserted, mode 1
will be considered active).

The RST block will see the "ccu_rst_change" signal asserted and issue a warm reset.

The PLL will load the divider values upon de-assertion of reset and begin to lock for
DTM to provide new clock frequencies (cmp and dr).

During reset active, the cluster header will see a change on the ccu_serdes_dtm
signal which will be used to disable PC clock select. All other clockgen modules will
require no connectivity change as a result of DTM; the process of generating a
different clock frequency will be handled transparently by the CCU and cluster
header. Everything will function normally here on.
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FIGURE 5-23 New Sync Pulse Positions for DTM

All locations are at final destination after being flopped once in cluster

5.9 Appendix A.1 – Sync Pulse Design
Procedure
This appendix focuses on the design methodology for sync pulses between CMP and
DR domains which are non-integer multiples of one another. Consider the near ideal
scenario for synchronizing between two such domains. We make the following
assumptions:
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■ There is no jitter, skew, or PVT mismatches.

■ At some point in time, both positive clock edges are perfectly aligned.

■ There is zero phase offset between the PLL input reference and output.

■ The setup and hold requirements on flip-flops are small.

■ Propagation delay is experienced only by data (through wires, and clock-Q).

No matter which direction data is crossing domains, it makes sense to maximize the
amount of time available between data launch and capture. This is illustrated in
FIGURE 5-24 and FIGURE 5-25.

For cmp_clk to dr_clk transfers, the launch edge should be the first positive edge of
cmp_clk after a dr_clk sampling point. The enable control generation would then
occur a cmp cycle before launch.

On the other hand, for dr_clk to cmp_clk synchronization, the capture edge would
be the last cmp_clk rising edge prior to a dr_clk sampling event. This time, the
enable control would assert a cmp cycle before capture.

The cycle repeats when both the launch and capture clocks are perfectly aligned on
the rising edge, or every M cycles of slow clock (equivalently N cycles of fast clock).

TABLE 5-12 Waveform Parameters for Ideal Case

Parameter Description

N Multiplication factor of fast clock

M Multiplication factor of slow clock

T Fast clock period (cmp_clk)

Tref Reference clock period = N.T

Tslow Slow clock period (dr_clk) = M.T

k Cycle count of slow clock starting with 0
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FIGURE 5-24 Synchronization from Fast to Slow Clock

FIGURE 5-25 Synchronization from Slow to Fast Clock
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5.10 Appendix A.2 – Sync Pulse Timing
Analysis
Looking at the idealized timing diagrams and parameters in Appendix A.1, we can
analyze the conditions one at a time for min and max conditions.

5.10.1 Fast to Slow Clock Synchronization
As per the proposal, the capture edge for cycle k is at (k+1)(N/M)T. Working our way
backwards, the corresponding launch edge is the first edge on cmp_clk after
k(N/M)T. This works out to be FLOOR(k(N/M)+1)T. The pulse would have to be
generated a cycle before at FLOOR(k(N/M)T.

Amount of time available for setup,

tmax = (k+1)(N/M)T – FLOOR(k(N/M)+1)T

Similarly, the launch edge lags the last capture edge by

tmin = FLOOR(k(N/M)+1)T – k(N/M)T

There is a subtle difference between FLOOR(k(N/M)+1)T and
CEILING(k(N/M)T) which shows up when k= 0.

5.10.2 Slow to Fast Clock Synchronization
The situation is reversed, where we need to launch data on the dr_clk as early as
possible, ie, at k(N/M)T, and capture on cmp_clk as late as possible, at
FLOOR((k+1)(N/M)T). Enable pulse generation thus occurs at
FLOOR((k+1)(N/M)-1)T.

Therefore, setup margin is given by:

tmax = FLOOR((k+1)(N/M)T) – k(N/M)T

And the lag from last capture is

tmin = k(N/M)T – FLOOR(k(N/M))T
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5.10.3 Modifications for Non-Ideal Scenario
This time, we revisit the approach while factoring in real conditions. Some other
parameters that need to be considered are:

The constraints for max and min timing under non-ideal conditions for data launch
and capture to work correctly are:

tmax >  tcq + tsu + tdata + tskew + tjitter

tmin > th + tskew + tjitter - tcq

Corresponding timing margins are given by:

tmargin,max = tmax – tdata – tcq – tsu – tskew - tjitter

tmargin,min = tmin – th – tskew – tjitter + tcq

Both sets of equations hold true, regardless of synchronization direction. Only the
parameters tmax and tmin are derived differently as in the past section.

5.10.4 Computation and Selection of Sync Pulses
Now that a scheme has been proposed, and sync pulse generation formalized, here
is the algorithm for the complete solution:

1. Compute which phase of slow clock the pulses should be generated (under ideal
conditions) for fast to slow clock.

2. Find the corresponding timing margins available tmax and tmin (also ideal).

3. Estimate the amount of skew, jitter, tdata, tcq, tsu and th, and calculate tmargin,max
and tmargin,min.

TABLE 5-13 Additional Parameters for Non-ideal Scenario

Parameter Description

tsu Setup time of capture flip-flop.

th Hold time of launch flop.

tcq Clock-to-Q time in flip flop.

tdata Data delay from launch flop's Q output to capture flop D-pin

tskew Skew and static phase offsets between slow and fast clocks.

tjitter Jitter (cycle to cycle and long-term) between the clocks.
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4. If tmargin,max < 0 OR tmargin,min < 0 for any sync pulse, adjust phase for that
pulse and repeat steps two through 4.

5. Repeat steps one through four for all ratios of N/M.

6. Repeat steps one through five for slow to fast clock.

7. Repeat steps one through six for all 3 refclk frequencies.

We are done when tmargin,max > 0 AND tmargin,min > 0 for every ratio, otherwise
for any particular ratio if either tmargin < 0, this scheme will not work.
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CHAPTER 6

System Interface Unit (SIU)

This chapter contains the following sections:

■ Overview

■ Terminology

■ SIU Top Level Logical Block Diagram

■ Logical Subblocks

■ Outbound

■ Packet Formats

■ CSR

■ Unit Level Signals

6.1 Overview
OpenSPARC T2 has on chip multiple system I/O subsystems. OpenSPARC T2
integrates Fire's high speed IO core and connect directly to a x8 PCI Express channel
(2GB/s/direction). OpenSPARC T2's integrated network I/O unit includes two 10Gb
Ethernet MACs (2.5GB/s/direction). The System Interface Unit (SIU) provides
12GB/s of raw bandwidth per direction and has flexible interfaces for the Network
Interface Unit (NIU) and Data Management Unit (DMU) to access memory via eight
secondary level cache (L2) banks. SIU supports Fire's PCI Express. For the NIU, SIU
was designed with the ability to allow write traffic to bypass other posted write
traffic. SIU does not support coherency.
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FIGURE 6-1 SIU Top Level Block Diagram

The SIU also provides a data return path for reads to the Peripheral I/O subsystems.
The data for these PIO Reads and interrupt messages generated by the PCI Express
subsystem are ordered in the SIU prior to delivery to the NonCacheable Unit (NCU).

6.2 Terminology
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CSR: Configuration Status Register. A storage element for holding status or
configuration information. They can exist either on OpenSPARC T2 or off
OpenSPARC T2.

Core clock domain: reference to the speed of the SPARC processor core and L2
cache. Target is 1.4GHz

DMA: Direct Memory Access. A load or store originating from the IO subsystem
that targets the memory subsystem.

Inbound: Logically toward the CPU and memory subsystem and NCU, away from
the IO subsystems (NIU or DMU).

IO clock domain: references to the speed of the internal I/O interfaces units. Either
1/3 or core clock frequency. Also referred to as System clock domain

JBUS: Jalapeno bus. A coherency bus used in OpenSPARC T1 and other Sun
processors.

Nonposted: A transaction in which the sender does want and require an
acknowledge of delivery. A read is always nonposted.

Outbound: Logically toward the IO subsystems (NIU or DMU) and away from the
CPU, L2 caches and the NCU

Packet: A structure for transferring information between interfaces. A Packet can
consists of just a header or a header followed by a payload.

PIO: Peripheral Input Output. A load or store originating from the cpu that does not
target the caches and memory. The target of a PIO can either be onchip or offchip.

Posted: A transaction in which the sender does not want nor require an
acknowledgement of delivery

RDD: Read and Discard – All DMA accesses are noncoherent. Thus the data for a
DMA read should be treated as use once and discard. All DMA reads are converted
into RDDs by L2 caches and do not allocate in the L2 cache.

WR8: Write8 bytes – A WRM is decomposed into up to eight WR8 when the WRM is
forwarded to an L2 bank. The L2 does a read modify write operation for each eight
byte store. The eight byte enables for a WR8 can be randomly on or off.

WRI: Write Invalidate – all DMA Writes that are aligned to a cacheline address
boundary and writes 64 Byte of data will invalidate any matching address in the L2
cache tag array prior to data being forwarded to memory. (Terminology comes from
the JBUS architecture)

WRM: Write Merge – a DMA Write with one or more bytes of the 64 byte payload
not enabled. (Terminology comes from the JBUS architecture). A WRM may not cross
cacheline boundary.
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6.3 SIU Top Level Logical Block Diagram
The SIU is partitioned physically and logically into two parts based on flow
direction – SIU Inbound (SII) for inbound traffic and SIU Outbound (SIO) for
outbound traffic.

FIGURE 6-2 SIU Logical Block Diagram

All inbound traffic continues inbound through SIU until it reaches NCU or an L2
bank. All outbound traffic from NCU or L2 must leave SIU in the outbound
direction. NCU and L2 banks cannot send traffic to each other through the SIU.
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DMU and NIU cannot send traffic toward each other through the SIU. Because the
L2 banks have their own paths through the memory controllers to memory, the SIU
sees each L2 bank as a slave device. SIU assumes L2 never initiates requests to SIU.
Likewise, Network blocks are always seen as master devices pulling from and
pushing data to L2 only.

SIU does not support coherency.

All traffic uses a packet transfer interface. Each packet is one or two consecutive
address/header cycles immediately followed by 0 or more consecutive
data/payload cycles. SIU follows L2's addressing convention: big endian where the
databytes for the lowest address are transferred first. Where applicable, byte enables
are positional where byte_enable[0] always refer to databits[7:0] for all interfaces.

The interfaces between SIU and L2 are in the core clock domain - 1.5GHz. The
interfaces between SIU and DMU, NIU, NCU are in the IO clock domain – 350 MHz
or 1/4 core clock frequency.

TABLE 6-1 shows the packet types from DMU and NIU that are supported by SIU:

TABLE 6-1 Supported Packet Types from NIU and DMU

Source Packet type Posted Queue in which packet may enter

NIU RDD Nonposted Ordered

Bypass

WRI Posted Ordered

Bypass

WRI Nonposted Ordered

Bypass
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TABLE 6-2 shows how the mapping between inbound DMA addresses from DMU and
NIU to the L2 bank number. This is to support partial L2 banks when entire set(s) of
L2 banks are disabled.

Five bits (PM, BA01, BA23, BA45, BA67) are used to indicate partial mode active,
and which of the four pairs of banks are available. X is a don't care. When PM is on,
it is illegal for only three of the BAs to be asserted and illegal if all four BAs are
deasserted.

DMU RDD Nonposted DMA/INT (Ordered)

WRI Posted DMA/INT (Ordered)

WRM Posted DMA/INT (Ordered)

INT (Mondo) Nonposted DMA/INT (Ordered)

PIO Rd Completions Posted

PIO (Bypass)

TABLE 6-2 Partial L2 Bank Mapping

PM BA67 BA45 BA23 BA01 L2Bank[2] L2Bank[1] L2Bank[0]

0 X X X X PA[8] PA[7] PA[6]

1 0 0 0 0 Illegal 0 0 PA[6]

1 0 0 0 1 0 0 PA[6]

1 0 0 1 0 0 1 PA[6]

1 0 0 1 1 0 PA[7] PA[6]

1 0 1 0 0 1 0 PA[6]

1 0 1 0 1 PA[7] 0 PA[6]

1 0 1 1 0 PA[7] ~PA[7] PA[6]

1 0 1 1 1 Illegal 0 PA[7] PA[6]

1 1 0 0 0 1 1 PA[6]

TABLE 6-1 Supported Packet Types from NIU and DMU (Continued)

Source Packet type Posted Queue in which packet may enter
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SIU along with the gasket block inside each of the SPARC cores implement the same
index hashing algorithm for the L2 cache. The purpose is to improve performance
for certain software application – to reduce the thrashing of certain L2 indexes.
Software can enable this feature by writing to a CSR in NCU.

If hashing is enabled and PA[39]==0, SIU converts the PA[39:0] to a different PA for
L2:

L2_PA[39:18] = PA[39:18];

L2_PA[17:13] = PA[32:28] ^ PA[17:13];

L2_PA[12:11] = PA[19:18] ^ PA[12:11];

L2_PA[10:0] = PA[10:0];

6.4 Logical Subblocks
The SIU is partitioned physically and logically into two parts based on flow
direction – SIU Inbound (SII) for inbound traffic and SIU Outbound (SIO) for
outbound traffic. SIU is also partitioned into two clock domains.

A SIU subunit's name consists of three - five characters. All subunits are listed
below:

■ SII subunits:

ILC0, ILC1, ILC2, ILC3, ILC4, ILC5, ILC6, ILC7,

ILD0, ILD1, ILD2, ILD3, ILD4, ILD5, ILD6, ILD7,

IPCC, IPCS0, IPCS1, IPD, INC, IND

1 1 0 0 1 PA[7] PA[7] PA[6]

1 1 0 1 0 PA[7] 1 PA[6]

1 1 0 1 1 Illegal 0 PA[7] PA[6]

1 1 1 0 0 1 PA[7] PA[6]

1 1 1 0 1 Illegal 1 PA[7] PA[6]

1 1 1 1 0 Illegal 1 PA[7] PA[6]

1 1 1 1 1 PA[8] PA[7] PA[6]

TABLE 6-2 Partial L2 Bank Mapping (Continued)

PM BA67 BA45 BA23 BA01 L2Bank[2] L2Bank[1] L2Bank[0]
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■ SIO subunits:

OLC0, OLC1, OLC2, OLC3, OLC4, OLC5, OLC6, OLC7,

OLD0, OLD1, OLD2, OLD3, OLD4, OLD5, OLD6, OLD7,

OPCC, OPCS0, OPCS1, OPDS, OPDC

The first letter of a logical subunit's name indicates direction: Inbound or Outbound

The second letter of a logical subunit's name indicates either the destination for
inbound data or the source object for outbound data:

■ Second letter:

L = L2 cache

N = NCU

P = Packets (DMU & NIU)

The third letter of a logical subunit's name indicates Control path or Datapath

The optional last one or two character represents either an instance number (i.e. L2
bank number) or the subunit's clock domain (Core or System).

6.4.1 Clocks
Target operating frequencies, CPU:IO = 1500MHz:350MHz

■ Supported operating frequencies:

4:1 CPU:IO synchronous clock ratio

L2 and NCU @ 1500MHz,1400MHz,1300MHz, 1200MHz

NIU and DMU @ 350MHz, 325MHz, 300MHz
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6.4.2 Interface Datapath Access Mechanism

6.4.3 Inbound
The parity protected interfaces between SIU and the DMU and NIU are 128 bit wide
with side band signals for packet control. Having a 128 bit for header allows SIU to
provide a rich set of transaction types and allows SIU to provide a uniform and

TABLE 6-3 Interface Datapath Access Mechanism

Datapath Mechanism Comment

SII to L2 Credits SIU initially given:
Two request credits,
Four 64B-write-invalidate-data credits

From L2 to SIO None SII must not send request to L2 if SIO will not have
space to receive response from L2

SII to NCU Request/Grant
Arbitration

Receiver of packets schedules resources and asserts
Grant for one cycle to winning Requestor. Requestor
must send packet the cycle after its Grant is asserted.
Winning requestor may reassert Request for
subsequent packet while delivering current packet.
Requestor's Request must stay asserted until its Grant
is received.

SII can buffer 16 PIO Read data returns
SII can buffer four interrupt mondo data or 4 x 16B

From DMU to SII,
From NIU to SII

Credits SII provides each IO subsystem two dedicated
inbound packet queues. Each inbound queue can hold
a maximum of 16 requests + 64 Byte data payload per
request.
SII notifies each IO subsystem when an request has
been dequeued from either of the two dedicated
inbound packet queue.

From SIO to DMU,
From SIO to NIU

None DMU or NIU must not send request to SII if it will not
have space to receive response.

Internal SIU Datapaths
Request/Grant
Arbitration

Receiver of packets schedules resources and asserts
Grant for one cycle to winning Requestor. Requestor
must send packet the cycle after its Grant is asserted.
Winning requestor may reassert Request for
subsequent packet while delivering current packet.
Requestor's Request must stay asserted until its Grant
is received.
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generic but flexible enough for most IO architectures.

The inbound packet interface protocol works as follows: (replace 'ext' with 'niu' or
'dmu')

Cycle 1: Header Cycle

■ ext_sii_hdr_vld asserts for one cycle to indicate ext is sending the packet
header.

■ ext_sii_reqbypass indicates that ext is sending this packet to the SIU's 'bypass'
inbound queue.

■ ext_sii_datareq indicates this packet has a payload following the header cycle.

■ ext_sii_datareq16 indicates this packet has only one cycle (16 Byte maximum)
of payload. If datareq is asserted and datareq16 is deasserted, this packet has
four cycles of payload for a maximum transfer size of 64Bytes.

■ ext_sii_data[127:0] contains a valid header.

Cycle 2-5: Payload Cycle(s)

■ ext_sii_hdr_vld is deasserted.

■ ext_sii_data[127:0] contains the payload data

■ ext_sii_parity[3:0] contains the parity for each 32 bit of data. Parity[N]=
xor(data[32N+31: 32N])

■ ext_sii_be[15:0] contains the byteenables for each byte of data if applicable.
BE[N]==1 implies write data[8N + 7: 8N]

Each IO subsystem must keep track of number of available entries in the SIU
Inbound queues and not overflow the SIU. Each time SIU Inbound forwards a
request from its packet queue to its inbound L2 or NCU queue, SIU Inbound returns
a credit back to the appropriate IO subsystem via sideband signals.

Each of the SIU Inbound queue allows for a maximum of 16 packets.

SIU supports back-to-back packet transfers with no dead cycle in between packets.

SIU architecturally supports PIO Read returns, DMA read requests, Interrupt Writes,
DMA Write full cacheline (posted and nonposted), DMA write merge 64 bytes
(posted only). The same logic is instantiated twice. One for each IO subsystem
interface.

Another type of DMA access come from TCU/JTAG interface. The Read/Write
access from the JTAG interface is eight bytes. The address need to be eight-bytes
aligned (addr[2:0] = 3'b000). There is only one outstanding request allowed from the
JTAG interface. The signals sending from JTAG interface should be running on cmp
clock domain. When SII sending TCU read request, the adddr[2] need to be zero, so
that L2 will return most critical eight-bytes first.
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6.4.4 Interface Timing Diagrams and Protocols

FIGURE 6-3 Inbound Packet Interface Timing Diagram

iol2c
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A: A 64-byte DMA write request with 4 cycles of data payload.
If from Fire-DMU, this must be destined for the Ordered Queue in SIU.
If from NIU, ext may choose which queue in SIU is appropriate for the behavior wanted.
This example shows the DMA write request is for the Ordered Queue.

B: A read request, no payload.
If from Fire-DMU, this must be destined for the Ordered Queue in SIU.
If from NIU, ext may choose which queue in SIU is appropriate for the behavior wanted.
If this was the 16th outstanding credit, ext must stop issuing transactions to this Queue.

C: A 16-byte PIO read data return; 1 cycle of data payload following the header.
If from NIU, this must be destined for the Ordered Queue in SIU.
If from Fire-DMU, this must be destined for the Bypass Queue in SIU.
If this was the 16th outstanding credit, ext must stop issuing transactions to this Queue.

D: SIU returns a credit after forwarding a DMA write data from the Ordered Queue to the Inbound L2$ Queue.
If write request was from Fire-DMU, sii_dmu_wrack_vld asserts with tag information and
the Fire-DMU can add this credit back to the credit list,
If write request was from NIU and the write request was in the Ordered Queue, sii_ext_oqdq asserts.
Ext may now resume sending transaction to the SIU – this example has a DMA read request following credit.

E: (Only applicable for Fire-DMU) INT header plus 1 data beat of data payload,
the SIU checks the header to distinquish PIO read completion from INT payload;
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6.4.4.1 From NIU to SIU

Single and back-to-back DMA read request from NIU to SIU

For each DMA read request, NIU must always guarantee it has buffer space to
receive the DMA read response that will return from SIU outbound.

A DMA read does not allocate in the cache.

This describes the protocol for a single DMA read request from NIU to SIU.

1. NIU first checks that it has a credit available for the packet transfer.

If NIU does not have credit for SIU's Ordered Queue and wishes to send a DMA
read request to SIU's Ordered Queue, NIU must wait for sii_niu_oqdq to assert.

If NIU does not have credit for SIU's Bypass Queue and wishes to send a
DMA read request to SIU's Bypass Queue, NIU must wait for sii_niu_bqdq to
assert.

Once NIU has guaranteed that it will not overflow SIU, NIU can send the
DMA read request packet on the interface.

2. Send packet. This transfer takes one IO clock cycle.

a. NIU asserts header valid signal (niu_sii_hdr_vld) high,

b. NIU drives all the header bits appropriately on niu_sii_data[127:0]

Note that SIU does not require the byte address field in the header to be
aligned to a cacheline boundary. Memory will always return the critical 32 bit
word first and wrapped back to the beginning cacheline address boundary.
Because the current software ethernet driver model has the ethernet
transmit/control information structures in memory aligned to 64B address
boundary, NIU sets DMA Read address[5:0] set to 0.

c. NIU drives data request signals (niu_sii_datareq and niu_sii_datareq16) low.

d. NIU drives the destination queue signal (niu_sii_reqbypass) to high for the
bypass queue or low for the ordered queue.

e. The parity lines (niu_sii_parity) are a don't care for the header cycle.

f. SIU does not support byte enables for reads. If byteenable wires exist at the top
level interface (niu_sii_be), then they are a don't care for the header cycle.

3. NIU must reduce the appropriate credit counter.

SIU supports back-to-back transfers from NIU. A second packet may be sent
immediately the cycle after the first DMA Read packet if there is credit available for
the second transfer.
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Single and back-to-back DMA write request from NIU to SIU

For each DMA write request that NIU requires an acknowledgement of completion,
NIU must always guarantee it has buffer space to receive the DMA write completion
response that will return from SIU outbound. For N2’s NIU, this is always true. A
DMA write packet that needs an completion ack returned must be marked
nonposted in the packet header.

A DMA Write does not allocate in the cache.

This describes the protocol for a single DMA write request from NIU to SIU.

1. NIU first checks that it has a credit available for the packet transfer.

If NIU does not have credit for SIU's Ordered Queue and wishes to send a DMA
write request to SIU's Ordered Queue, NIU must wait for sii_niu_oqdq to assert.

If NIU does not have credit for SIU's Bypass Queue and wishes to send a DMA
write request to SIU's Bypass Queue, NIU must wait for sii_niu_bqdq to assert.

Once NIU has guaranteed that it will not overflow SIU, NIU can send the DMA
write request packet on the interface.

2. Send packet. This transfer takes five IO clock cycle.

a. On the first cycle,

i. NIU asserts header valid signal (niu_sii_hdr_vld) high.

ii. NIU drives all the header bits appropriately on niu_sii_data[127:0].

Note that SIU does not require the byte address field in the header to be
aligned to a cacheline boundary and allows for byte mask field in the header
to be set for a WRM, because the current software ethernet driver model has
the ethernet receive/control information structures in memory aligned to
64B address boundary, NIU sets DMA Write address[5:0] to 0, and
command field to be write full 64 bytes, byte mask active to 0.

iii. NIU drives data request signals (niu_sii_datareq high and niu_sii_datareq16
low).

iv. NIU drives the destination queue signal (niu_sii_reqbypass) to high for the
bypass queue or low for the ordered queue.

Writes to the ordered queue will always be issued by the SIU to L2 after the
youngest write in the bypass queue and after all prior writes to L2 has been
sent from L2 to MCU. The writes in the bypass queues are not ordered with
respect to other writes.

v. The parity lines (niu_sii_parity) are don't cares for the header cycle.

vi. If byte enables wires exist at the top level interface, the byteenable lines
(niu_sii_be) are don't cares for the header cycle.
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b. On the second, third, fourth, and fifth cycle,

i. NIU drives header valid signal (niu_sii_hdr_vld) low.

ii. NIU drives data payload on niu_sii_data[127:0] in big endian format.

iii. The data request signals (niu_sii_datareq and niu_sii_datareq16) are don't
cares for nonheader cycles.

iv. The destination queue signal (niu_sii_reqbypass) is a don't care for
nonheader cycle.

v. The parity lines (niu_sii_parity[3:0]) are driven.

vi. If byte enables wires exist at the top level interface, the byteenable lines
(niu_sii_be[15:0]) should be all 1's to be safe but are treated as don't cares if
during the header cycle, the byte mask active field was 0.

3. NIU must reduce the appropriate credit counter.

SIU supports back-to-back transfers from NIU. A second packet may be sent
immediately the cycle after the first DMA Write packet if there is credit available for
the second transfer.
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FIGURE 6-4 Timing Diagram for SIU Inbound Packet from DMU

6.4.4.2 From a Fire-PCI Express-DMU to SIU

For SIU to support Fire's version of a DMU that connects to PCI Express, SIU
Inbound must adapt to a stricter form of credit management where not only is a
credit returned when SII dequeues a packet, but the corresponding id for the packet
that was dequeued.

iol2clk

dmu_sii_data[127:0] hdr 0 data0 hdr 1

dmu_sii_hdr_vld
dmu_sii_reqbypass

BA

A: A 64-byte DMA write request with 4 cycles of data payload.
If from Fire-DMU, this must be destined for the Ordered Queue in SIU.
If from HT-DMU, dmu may choose which queue in SIU is appropriate for the behavior wanted.
This example shows the DMA write request is for the Ordered Queue.

B: A read request, no payload.
If from Fire-DMU, this must be destined for the Ordered Queue in SIU.
If from HT-DMU, dmu may choose which queue in SIU is appropriate for the behavior wanted.
If this was the 16th outstanding credit, dmu must stop issuing transactions to this Queue.

C: A 16-byte PIO read data return; 1 cycle of data payload following the header.
If from HT-DMU, this must be destined for the Ordered Queue in SIU.
If from Fire-DMU, this must be destined for the Bypass Queue in SIU.
If this was the 16th outstanding credit, dmu must stop issuing transactions to this Queue.

D: SIU returns a credit after forwarding a DMA write data from the Ordered Queue to the Inbound L2$ Queue.
If write request was from Fire-DMU, sii_dmu_wrack_vld asserts with tag information and
the Fire-DMU can add this credit back to the credit list,
If write request was from HT-DMU and the write request was in the Ordered Queue, sii_ext_oqdq asserts.
DMU may now resume sending transaction to the SIU – this example has a DMA read request following credit.

E: INT header plus 1 data beat of data payload, the SIU checks the header to distinquish PIO read
completion from INT payload;

sii_dmu_wrack_tag[3:0]

dmu_sii_be[15:0] xxx be0 xxx

hdr 2 data0data1 data2 data3

be1 be2 be3 xxx

dmu_sii_datareq16

sii_dmu_oqdq

hdr 3 hdr 4

be0

data0

be0

xxx

dmu_sii_parity[7:0] xxx xxxxxx validvalidvalid

tag

Dsii_dmu_wrack_vld

dmu_sii_datareq C E
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With respect to packet types, Fire does not support nonposted DMA writes and does
not allow DMA Writes to pass other writes so all DMAs would effectively go into
the SIU's Ordered Queue. The packet format differences between a prior
DMU<->SIU and Fire-DMU<->JBC is handled in a thin layer within the new DMU
called the DSN.

Fire's PCI-Express DMU requires SIU to be able to accept without flow control all
completions for all PIO reads that had originated from NCU.

SIU's Inbound architecture has a 16 deep FIFO for its Ordered Queue and a 16 deep
FIFO for its Bypass Queue. Fire's PCI-Express DMU supports 16 'credits' of
DMAs+Interrupts and 16 credits of PIOs.

A DMA write credit id may be reused once the write has been posted (dequeued)
from SIU's Inbound Packet Ordered Queue. A DMA read credit id may only be
reused after the DMA read data response has returned from SIU's Outbound to
DMU. Interrupt (Mondo type only) credit id may only be reused after NCU has
acked or nacked the Interrupt. NCU must adapt to Fire's PCI-Express DMU and
manage 16 PIO credits.

Without a design change, SIU's ordered Queue can support 16 outstanding
DMA+Interrupt. But expanding that to an 32 deep ordered queue and gutting the
design of the bypass queue to accommodate the 16 PIO completions would
significantly impact schedule and not allow for code reuse. The estimated net area
savings from gutting the design and extending the queue depth was determined to
be small (at most couple hundred square microns in Epic9).

The solution proposed and implemented is conditioned on the fact that SIU already
has dependency pointers for each of the 16 entries in the Inbound Packet Bypass
Queue and dependency pointers for each of the 16 entries in the Inbound Packet
Ordered Queue. An internal mode wire is added to indicates the interface is
connected to PCI-Express DMU instead of NIU. Effectively, the 'Bypass Queue'
becomes an ordered PIO completion queue. When in PCIExpress mode, rather than
using the results of address cams to set up dependencies for a new packet entering
the Bypass Queue, SIU forces that new packet to wait for the youngest packet
existing in the Ordered Queue. Note that new packets entering the Ordered Queue
by default (even for NIU) depends on the youngest packet existing in the Bypass
Queue. Forcing this dependency when in PCIExpress mode converts the Bypass
Queue into another ordered queue IF ALL the packets in the Bypass Queues drains
to the same place. If there are multiple DMA Writes in the bypass queue, the existing
ordering mechanism used for NIU would not guarantee a younger DMA Write from
the bypass queue entry would complete later than an older DMA Write from the
bypass queue that targets a different L2 bank.

Therefore, ALL DMA Writes (and interrupts) from Fire's PCI-Express DMU must be
steered into the Ordered Queue. Likewise, because there is only one drain from SIU
for all PIO completions (one FIFO path from SIU to NCU), when ALL PIO
Completions from Fire's PCI-Express DMU are steered in the Bypass Queue, the
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ordering requirement that PIO completions must pull all prior DMAs writes and all
prior PIO completions is satisfied and SIU now achieved a 16 entry PIO completion
queue at the cost of a few muxes added the original design. If physical areas become
more critical, the cam logic remaining may be optimized out during physical
implementation.

FIGURE 6-5 Timing Diagram for SIU Inbound Packet from DMU

Single and Back-to-Back DMA Read Request from Fire-DMU to SIU

For each DMA read request, DMU must always guarantee it has buffer space to
receive the DMA read response that will return from SIU outbound. For Fire-DMU,
this is always true.

iol2clk

dmu_sii_data[127:0] hdr 0 data0 hdr 1

dmu_sii_hdr_vld
dmu_sii_reqbypa

BA

A: A 64-byte DMA write request with 4 cycles of data payload.
If from Fire-DMU, this must be destined for the Ordered Queue in SIU.
If from HT-DMU, dmu may choose which queue in SIU is appropriate for the behavior wanted.
This example shows the DMA write request is for the Ordered Queue.

B: A read request, no payload.
If from Fire-DMU, this must be destined for the Ordered Queue in SIU.
If from HT-DMU, dmu may choose which queue in SIU is appropriate for the behavior wanted.
If this was the 16th outstanding credit, dmu must stop issuing transactions to this Queue.

C: A 16-byte PIO read data return; 1 cycle of data payload following the header.
If from HT-DMU, this must be destined for the Ordered Queue in SIU.
If from Fire-DMU, this must be destined for the Bypass Queue in SIU.
If this was the 16th outstanding credit, dmu must stop issuing transactions to this Queue.

D: SIU returns a credit after forwarding a DMA write data from the Ordered Queue to the Inbound L2$ Queue.
If write request was from Fire-DMU, sii_dmu_wrack_vld asserts with tag information and
the Fire-DMU can add this credit back to the credit list,
If write request was from HT-DMU and the write request was in the Ordered Queue, sii_ext_oqdq asserts.
DMU may now resume sending transaction to the SIU – this example has a DMA read request following credit.

E: INT header plus 1 data beat of data payload, the SIU checks the header to distinquish PIO read
completion from INT payload;

sii_dmu_wrack_tag[3:0]

dmu_sii_be[15:0] xxx be0 xxx

hdr 2 data0data1 data2 data3

be1 be2 be3 xxx

dmu_sii_datareq16

sii_dmu_oqdq

hdr 3 hdr 4

be0

data0

be0

xxx

dmu_sii_parity[3:0] xxx xxxxxx validvalidvalid

tag

Dsii_dmu_wrack_vld

dmu_sii_datareq C E

ss
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A DMA read does not allocate in the cache.

This describes the protocol for a single DMA read request from Fire-DMU to SIU.

1. Fire-DMU first checks that it has a credit available for the packet transfer.

a. If Fire-DMU does not have credit for SIU's Ordered Queue and wishes to send
a DMA read request to SIU, Fire-DMU must wait for sii_dmu_wrack_vld to
assert, a prior DMA Read to complete from SIU Outbound or an interrupt
credit to return from NCU.

b. Once Fire-DMU has guaranteed that it has a DMA credit, Fire-DMU can send
the DMA read request packet on the interface.

2. Send packet. This transfer takes one IO clock cycle.

a. Fire-DMU asserts header valid signal (dmu_sii_hdr_vld) high.

b. Fire-DMU drives all the header bits appropriately on dmu_sii_data[127:0]

i. Fire-DMU always generate a 64 Byte aligned address and never cross a
cacheline boundary. Fire-DMU sets DMA Read address[5:0] set to 0.

c. Fire-DMU drives data request signals (dmu_sii_datareq and
dmu_sii_datareq16) low.

d. Fire-DMU drives the destination queue signal (dmu_sii_reqbypass) to low for
the ordered queue.

e. The parity lines (dmu_sii_parity) are a don't care for the header cycle.

f. The byteenable lines (dmu_sii_be) are a don't care for the header cycle.

3. Fire-DMU must reduce the DMA credit counter.

SIU supports back-to-back transfers from Fire-DMU. A second packet may be sent
immediately the cycle after the first DMA Read packet if there is credit available for
the second transfer.

Single and Back-to-Back DMA Write Request from Fire-DMU to SIU

For Fire-DMU, all DMA Writes are posted and address aligned to cacheline
boundary although byte(s) may be deasserted at the beginning or the end. this is
always true.

A DMA Write does not allocate in the cache.

This describes the protocol for a single DMA write request from Fire-DMU to SIU.

1. Fire-DMU first checks that it has a credit available for the packet transfer.
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a. If Fire-DMU does not have credit for SIU's Ordered Queue and wishes to send
a DMA write request to SIU, Fire-DMU must wait for sii_dmu_wrack_vld to
assert, a prior DMA Read to complete from SIU Outbound or an interrupt
credit to return from NCU.

b. Once Fire-DMU has guaranteed that it has a write credit, Fire-DMU can send
the DMA write request packet on the interface.

2. Send packet. This transfer takes five IO clock cycle.

a. On the first cycle,

i. Fire-DMU asserts header valid signal (dmu_sii_hdr_vld) high.

ii. Fire-DMU drives all the header bits appropriately on dmu_sii_data[127:0].

For Fire-DMU, DMA Writes with or without bytemask active has address
aligned to 64-Byte boundary. Fire-DMU set DMA Write address[5:0] to 0.
Fire-DMU does not support nonposted writes.

iii. Fire-DMU drives data request signals (dmu_sii_datareq high and
dmu_sii_datareq16 low).

iv. Fire-DMU drives the destination queue signal (dmu_sii_reqbypass) to low
for the ordered queue.

Writes to the ordered queue will always be issued by the SIU to L2 after the
youngest PIO completion in the bypass queue and after all prior writes to
L2 has been sent from L2 to MCU.

v. The parity lines (dmu_sii_parity) are don't cares for the header cycle.

vi. The byteenable lines (dmu_sii_be) are don't cares for the header cycle.

b. On the second, third, fourth, and fifth cycle,

i. Fire-DMU drives header valid signal (dmu_sii_hdr_vld) low.

ii. Fire-DMU drives data payload on dmu_sii_data[127:0] in big endian format.

iii. The data request signals (dmu_sii_datareq and dmu_sii_datareq16) are don't
cares for nonheader cycles.

iv. The destination queue signal (dmu_sii_reqbypass) is a don't care for
nonheader cycle.

v. The parity lines (dmu_sii_parity[3:0]) are driven.

vi. The byteenable lines (dmu_sii_be[15:0]) should be driven. They are treated
as don't cares if during the header cycle, the byte mask active field was 0.

3. Fire-DMU must reduce the DMA credit counter.
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SIU supports back-to-back transfers from Fire-DMU. A second packet may be sent
immediately the cycle after the first DMA Write packet if there is credit available for
the second transfer.

Single and Back-to-Back Interrupt Request from Fire-DMU to SIU

PCI-Express requires that an interrupt it send to the CPU via whatever path is
delivered after the youngest corresponding DMA write has been sent to memory
(interrupt from Fire-DMU must guarantee that prior writes sent to SIU has left L2).
Fire-DMU take advantage of the ordering maintained by SIU by simply send an
interrupt to NCU via SIU's ordered queue.

Because these interrupt types are mondo, Fire-DMU must be capable of retrying
NAcked mondo and Fire-DMU must have an interrupt response path from NCU.

This describes the protocol for a single interrupt from Fire-DMU to SIU.

1. Fire-DMU first checks that it has a credit available for the packet transfer.

a. If Fire-DMU does not have credit for SIU's Ordered Queue and wishes to send
a DMA write request to SIU, Fire-DMU must wait for sii_dmu_wrack_vld to
assert, a prior DMA Read to complete from SIU Outbound or an interrupt
credit to return from NCU.

b. Once Fire-DMU has guaranteed that it has a DMA-INT credit, Fire-DMU can
send the interrupt request packet on the interface.

2. Send packet. This transfer takes two IO clock cycle.

a. On the first cycle,

i. Fire-DMU asserts header valid signal (dmu_sii_hdr_vld) high.

ii. Fire-DMU drives all the header bits appropriately on dmu_sii_data[127:0].

iii. Fire-DMU drives data request signals (dmu_sii_datareq high and
dmu_sii_datareq16 high).

iv. Fire-DMU drives the destination queue signal (dmu_sii_reqbypass) to low
for the ordered queue.

Interrupt in the ordered queue will always be issued by the SIU to NCU
after the youngest PIO completion in the bypass queue and after all prior
writes to L2 has been sent from L2 to MCU.

v. The parity lines (dmu_sii_parity) are don't cares for the header cycle.

vi. The byteenable lines (dmu_sii_be) are don't cares for the header cycle.

b. On the second cycle,
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i. Fire-DMU drives header valid signal (dmu_sii_hdr_vld) low.

ii. Fire-DMU drives mondo data payload on dmu_sii_data[127:0].

This is the first 16Bytes of the mondo data.

iii. The data request signals (dmu_sii_datareq and dmu_sii_datareq16) are don't
cares for nonheader cycles.

iv. The destination queue signal (dmu_sii_reqbypass) is a don't care for
nonheader cycle.

v. The parity lines (dmu_sii_parity[3:0]) are driven.

vi. The byteenable lines (dmu_sii_be[15:0]) should be all 1's to be safe.

3. Fire-DMU must reduce the DMA-INT credit counter.

SIU supports back-to-back transfers from Fire-DMU. A second packet may be sent
immediately the cycle after the first Interrupt packet if there is credit available for
the second transfer.

Single and Back-to-Back PIO Read Data Return from Fire-DMU to SIU

PCI-Express requires that an interrupt it send to the CPU via whatever path is
delivered after the youngest corresponding DMA write has been sent to memory
(interrupt from Fire-DMU must guarantee that prior writes sent to SIU has left L2).
Fire-DMU take advantage of the ordering maintained by SIU by when in
PCI-Express mode by simply sending the PIO Completion to NCU via SIU's Bypass
Queue.

This describes the protocol for a single PIO Read data return from Fire-DMU to SIU.

1. Send packet. This transfer takes two IO clock cycle. Because NCU guarantees that
NCU will stop sending PIO request if all 16 PIO credits are used, Fire-DMU does
not need to check for credit available prior to PIO read completion transfers.

a. On the first cycle,

i. Fire-DMU asserts header valid signal (dmu_sii_hdr_vld) high.

ii. Fire-DMU drives all the header bits appropriately on dmu_sii_data[127:0].

iii. Fire-DMU drives data request signals (dmu_sii_datareq high and
dmu_sii_datareq16 high).

iv. Fire-DMU drives the destination queue signal (dmu_sii_reqbypass) to high
for the bypass queue.
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A PIO completion in the bypass queue will always be issued by the SIU to
NCU after the youngest PIO completion in the bypass queue and after all
prior DMA writes to L2 has been sent from L2 to MCU and all prior
interrupts are on its way to NCU.

v. The parity lines (dmu_sii_parity) are don't cares for the header cycle.

vi. The byteenable lines (dmu_sii_be) are don't cares for the header cycle.

2. On the second cycle,

a. Fire-DMU drives header valid signal (dmu_sii_hdr_vld) low.

b. Fire-DMU drives data payload on dmu_sii_data[127:0] in big endian format.

i. The CPU knows how many bytes it wanted.

ii. Note that if this PIO read is for a CSR, Fire-DMU must replicate the CSR's 64
bit value on the 128 bit payload. The CPU expects the lower 64 data bits to
be the same as the upper 64 bits.

iii. The data request signals (dmu_sii_datareq and dmu_sii_datareq16) are don't
cares for nonheader cycles.

iv. The destination queue signal (dmu_sii_reqbypass) is a don't care for
nonheader cycle.

v. The parity lines (dmu_sii_parity[3:0]) are driven.

vi. The byteenable lines (dmu_sii_be[15:0]) should be all 1's.

SIU supports back-to-back transfers from Fire-DMU. A second packet may be sent
immediately the cycle after the first PIO read completion packet if there is credit
available for the second transfer.

6.4.4.3 From SIU to L2

Back to Back Read Requests to L2

A read request packet (on sii_l2t_req[31:0]) consists of two header cycles followed by
three dummy cycles. The first two dummy cycles are required by L2 for pipeline
alignment - so the initial pipeline stages of a read request looks like the stages of a
write 8 byte request. The last dummy cycle is for turnaround required by L2. The
signal sii_l2t_req_vld asserts for one cycle to indicate the first cycle of the packet
transfer. SIU only has two request tokens so SIU can burst only up to two back to
back read requests to the L2 Tag. After two outstanding requests without an
indication of a dequeue from L2 (l2t_sii_iq_dequeue asserting high for one cycle),
SIU must wait for an entry in the input queue in L2Tag to drain. FIGURE 6-6 shows
6-22 OpenSPARC T2 SoC Microarchitecture Specification Part 1 of 2 • May 2008



the best case of back to back read requests. SIU bursts two reads, then sees
l2t_sii_iq_dequeue asserting during the second transfer and proceeds to send out a
3rd read request. After which point, resource constraints prevent further back to
back requests. According to the L2 pipeline, the earliest l2t_sii_iq_dequeue asserts is
two cycles after L2Tag receives the second dummy data cycle from the 1st read
request. The next possible assertion of l2t_sii_iq_dequeue must be a minimum of 16
clock cycles after the 1st assertion. This minimum pulse period of once every 17
cycles avoids the bus contention on the data return path from L2 Bank to SIU (1
header cycle + 16 payload cycles).

A read request inbound to L2 will generate a response packet from L2 on the
outbound path. An inbound read request from SIU should not overflow SIU's
receive header and data buffers in the outbound direction. SIU's outbound L2
subunit sends dequeue signals to the inbound L2 subunit to communicate buffer
resource availability and SIU's inbound L2 subunit increments and decrements its
credit counters.

For a read request, there is no data payload to protect, so the ECC lines (sii_l2b_ecc)
are a don't care.

FIGURE 6-6 SIU to L2: Back to Back Reads

Because the L2 Tags are physically way across the chip from SIU or a one way
distance of 9 to 10mm, two cycles of delay staging flops per direction will most
likely be required to accommodate the paths between SIU and L2. The timing
diagrams shown in this specification do not push out the signals to account for the
delay stages.

Back to Back WR8 Request follow by WRI Request

A Write8 byte is a partial store in L2 cache and the packet transfer consists of two
two cycles of header followed by two cycles of payload and one dummy turnaround
cycle. The bytemask is encoded in the header. In the current L2 implementation, a
WR8 request does not consume any data I/O write buffer entry. Instead, L2 pumps
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the 64 bit data into pipeline stages of 64 flops. Like the read request to L2, SIU must
have a request token available before it can send a write request. L2 asserts
l2t_sii_iq_dequeue for one cycle when it sends the WR8 down its pipeline during the
first pass. Note that for a WR8, SIU does not need a data token and should not
decrement its data credit for a WR8 transfer. For performance purpose, SIU does not
issue any WR8 with all bytes off.

A Write Invalidate (WRI) invalidates L2 if there's a tag match and moves all 64 bytes
to memory. A WRI packet transfer consists of two cycles of header followed by 16
cycles of payload and one dummy turnaround cycle. L2 does not move the write
data to the data cache array (for either WR8 or WRI) until L2 has accumulated the
entire data payload. Like the read request to L2, SIU must have a request token
available before it can send a write invalidate request. SIU will also need a data
token (initially set to four to match the four I/O write buffer entries in L2 Tag). SIU
decrement its data credit for a WRI transfer. Although not shown in FIGURE 6-7, L2
asserts l2t_sii_iq_dequeue for one cycle when it sends the WRI request down its
pipeline and L2 also asserts l2t_sii_wib_dequeue for one cycle when L2 moves the 64
byte write data out of the I/O write buffer.

ECC (sii_l2b_ecc[6:0]) is generated to protect the content of each data cycle. The ECC
algorithm used by SIU is the same as used by L2 for its data array and produces
seven check bits for a set of 32 data bit. Note that because ECC algorithm used by L2
is different from memory, L2 will check the ECC from SIU and will regenerate new
ECC for memory for a WRI request.

Any nonposted write request inbound to L2 will generate an ack packet from L2 on
the outbound path. An inbound write request from SIU should not overflow SIU's
receive header buffers in the outbound direction. SIU's outbound L2 subunit sends
dequeue signals to the inbound L2 subunit to communicate buffer resource
availability and SIU's inbound L2 subunit increments and decrements its credit
counters.

FIGURE 6-7 SIU to L2: Back to Back Writes (WR8 followed by WRI)
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6.4.4.4 From SIU to NCU

FIGURE 6-8 shows fastest possible back to back transfer from the SIU to NCU. This
could be for Interrupt or PIO completion. SIU signals NCU it wants to transfer a
packet. The request signal is held high until SIU sees ncu_sii_gnt asserts (it only
asserts for one clock cycle). The cycle after grant, SIU drives for five cycles always,
beginning with the header and four cycles of payload/parity. While SIU is driving
the data lines, SIU may reassert the request line if it has more work to do. NCU is
expected to ignore the request line until two cycles before the current packet to
check if another transfer is requested. If NCU has space, it will reassert grant for one
cycle again for the next transfer. The earliest the second grant can assert is on the
fourth payload cycle of the first transfer. This would allow for back to back transfer
with no bubbles on the sii_ncu_data bus.

FIGURE 6-8 Timing Diagram for Packet from SIU to NCU (Back to Back Transfer)

6.4.4.5 From TCU to SIU

There will be two bits interface (tcu_sii_vld, tcu_sii_data) from TCU to SII for DMA
read/write access.

tcu_sii_data is a 128/64 bit data stream with 64-bit header, 64-bits of data in case of
write. tcu_sii_vld asserted at the first, 64nd cycle on valid tcu_sii_data. There will
be 128 bits (header+data) for DMA write and 64-bits for DMA read.

: SIU signals NCU for transaction request;
: NCU sends grant signal to indicate ready to accept packet in next cycle;
: SIU starts new packet;

: 2 cycles before finishing the current packet, NCU checks if there is another request;
: NCU sends grant signal to indicate ready to accept new packet in next cycle;
: SIU starts new packet..

sii_ncu_parity[1:0] par A0 parA3 par B2

sii_ncu_req

ncu_sii_gnt

iol2clk

par A1xxxxxxxxxxxx xxxx par B1 xxxxpar A2 par B1

A

B

C

D

E

F

don't care don't care

A

B

C

D

E

F

sii_ncu_data[31:0] pld pA0 pldA3 pld B2pld A1hdrAhdr Axxxx hdr B pld B1 xxxxpld A2 pld B0
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Header format:

bit[63:56] = 0x81 for read, 0x82 for write

bit[55:40] = 0x00 reserved

bit[39:0] = eight byte aligned physical address (bit[5:0])

6.4.5 SIU's Inbound Pipeline

6.4.5.1 Major Pipeline Stages

There are four major pipeline stages in the inbound transfer. The best case total
latency is eight cmp clock cycles + four IO clock cycles. The worst case total latency
to NCU is 15 cmp clock cycles + 15 IO clock cycles. The worst case total latency to L2
Tag is 15 cmp clock cycles +32 cmp clock cycles. The following subsections will
discuss the latencies of each stages in details. Refer to FIGURE 6-9.

Stage1: Interface (3-7 IO clock cycles)

The interface latency between DMU/NIU to SIU is between from three to seven
cycles. Request and grant arbitration costs two cycles. Although that latency can be
hidden when there are back to back requests and the first request transfers at least
one payload cycle, it must be taken into account. The best case is one cycle of read
request to either L2 or NCU. The worst case is one cache line write request from
DMU/NIU to L2. It is one cycle of header plus four cycles of payload. The
transaction on the bus will be registered and written to the fifo (register file) in this
stage.

Stage2: Write to Fifo (1 to 4 cmp clock + 1 IO clock cycles)

This stage includes the header decoding and address lookup to set dependency for
DMU packets followed by write to the fifo (register file). Once the last cycle of
packet has been written into the FIFO and to disallow flow through FIFO, read
pointer synchronization across the clock domain takes a minimum of one to four
cmp clock cycles. one IO cycle (3 or four cmp clock cycles) for header decoding and
register file write, and one to four cmp clocks for the read ptr synchronization.

Stage3: Read from Fifo and arbitration (3-11 cmp clock cycles)
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There are two cycles for arbitration between different fifo queues (DMU ordered,
DMU bypass, NIU). In this stage, the arbitor check for the resources availability and
priority of each queue to grant the transfer. Depending on the type of transaction,
the transfer going to the queues in the inbound L2 subunits may take one or 9 cmp
cycles. The transfer going to the queues in the inbound NCU subunit takes 1, 2 or 3
cmp cycles. Inbound toward L2 contributes to both the best case and worse case
latency.

Stage4: L2 interface (4-32 cycles), NCU interface (4 to 7 IO clock cycles)

This stage includes latency of either the Ilks or IND. In the IND, SIU crosses back
from the cmp clock domain into the IO domain. That pointer synchronization plus
writing and reading from the width conversion FIFO take two IO clock cycles. The
subsequent transfer to NCU takes two to five IO clock cycles. In the ILDs, there are
two cycles of header (Addr Tag) and (0 to 16 cycles) for regular RDD, WRI, WR8
transaction. However, when there is a WRM request, since L2 only merges eight
bytes, a WRM will be broken down to a maximum of eight WR8 transfers. With each
WR8 being four cmp cycles (two cycles of header and two cycles of payload), and
assuming L2 can stream the merge pipeline, the worse case is 32 cmp cycles for eight
transfers. The best case is RDD (two cycles of header + three dummy data cycles)
and the worse case is WRM (32 cycles).
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FIGURE 6-9 Inbound Pipeline Diagram
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6.4.6 Block Diagrams of SIU Inbound

6.4.6.1 Top Level Block Diagrams

FIGURE 6-10 SIU Inbound Top Level
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6.4.6.2 Sub-Blocks - ILD

FIGURE 6-11 SIU Inbound L2 Datapath (ILD) Subunit
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6.4.6.3 Sub-Block - IND

FIGURE 6-12 SIU Inbound NCU Datapath (IND) Subunit
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6.4.6.4 Sub-Block Descriptions

Top

The logical top level of the SIU inbound logic consist of control sub-blocks and data
path sub-blocks. The datapath include the following sub-blocks:

ILDs: There are eight identical copies of ILD instantiated in the inbound logic. Each
ILD can hold four requests and four cachelines of write data and associated
byte-enables, ECC and header information. ILDs handle transaction going to L2
cache, it has one unified data queue 78bits wide x 32 deep to hold the four cachelines
- writing in 64 bit data + 14 bit ECC per cycle. It acts as buffer for assembling of
SIU_L2 packets.

IND: IND handles transfer going to NCU. It acts as a buffer for assembling
SIU_NCU packets. It can buffer 16 PIO Read 16Byte responses and four interrupt
16Byte mondo write requests (2 32-bit x 40 data queues, 4x26-bit register for
Interrupt header storage, 16 16-bit register for PIO Read Return header storage). IND
runs in both clock domains. It down converts the cmp clock frequency of IPD into
the IO clock frequency because NCU's interface to SIU runs in the IO clock domain.

DMU_ORDERED header queue: it is a 62-bit wide x 16 depth register file with
input and output registered. The write operation is running at Io_clock domain, and
the read operation is running at L2_clock domain.

DMU_BYPASS header queue: it is a 62-bit wide x 16 depth register file with input
and output registered. The write operation is running at Io_clock domain, and the
read operation is running at L2_clock domain.

NIU_ORDERED header queue: it is a 62-bit wide x 16 depth register file with input
and output registered. The write operation is running at Io_clock domain, and the
read operation is running at L2_clock domain.

NIU_BYPASS header queue: it is a 62-bit wide x 16 depth register file with input
and output registered. The write operation is running at Io_clock domain, and the
read operation is running at L2_clock domain.

DMU_ORDERED parity queue: it is a 1-bit x 16 register. It hold the parity bit of the
whole packet including header and payload.

DMU_BYPASS parity queue: it is a 1-bit x 16 register. It hold the parity bit of the
whole packet including header and payload.

NIU_ORDERED parity queue: it is a 1-bit x 16 register. It hold the parity bit of the
whole packet including header and payload.

NIU_BYPASS parity queue: it is a 1-bit x 16 register. It hold the parity bit of the
whole packet including header and payload.
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DMU_ORDERED_BE queue: it is a 16-bit x 16 register file with input and output
registered. The write operation running at Io_clock domain, and the read operation
is running at L2 clock domain.

DMU_BYPASS_BE queue: it is a 16-bit x 16 register file with input and output
registered. The write operation running at Io_clock domain, and the read operation
is running at L2 clock domain.

DMU_ORDERED payload queue: it is a 128-bit x 64 depth queue logically. It is
implemented with one 128-bit x 32 depth register file with input and output
registered. The write operation runs at Io_clock domain and the read operation runs
at L2_clock domain.

DMU_BYPASS payload queue: it is a 128-bit x 64 depth queue logically. It is
implemented with one 128-bit x 64 depth register file with input and output
registered. The write operation runs at Io_clock domain and the read operation runs
at L2_clock domain.

NIU_ORDERED payload queue: it is a 128-bit x 64 depth queue logically. It is
implemented with one 128-bit x 32 depth register file with input and output
registered. The write operation runs at Io_clock domain and the read operation runs
at L2_clock domain.

NIU_BYPASS payload queue: it is a 128-bit x 64 depth queue logically. It is
implemented with one 128-bit x 64 depth register file with input and output
registered. The write operation runs at Io_clock domain and the read operation runs
at L2_clock domain.

The control path include the following sub-blocks: IPC, ILC, Refer to the next
subsections for the details of IPC and ILC sub-blocks.

ILC Sub-block

There are eight identical copies of ILCs instantiated in SIU. ILCs are running at core
clock domain. There are two major functions of ILC sub-block:

1. It checks the L2 bank's availability. There are two counters in each ILC to keep
track of outstanding L2 transactions. One is the transaction counter, which keep
track of outstanding L2 requests which are issued to L2 and no acknowledgments
come back yet. The second counter keeps track of the WRI requests. The
requirements from L2 stated that L2 allow two outstanding requests (WR8, RDD,
WRM) and four outstanding WRI requests. As long as the counters' value satisfy
the L2 requirements, the particular L2 bank is considered as available. The
availability information will be passed to IPC for arbitration purposes.

2. ILC will drive the SIU-L2 interface bus according to the protocol defined in the
previous sections. Also it will assemble the packets with header and payload
formats according to the SIU-L2 packet format defined in the previous sections.
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Note – For the WR8 transfer with no bit set in the byte-mask, SIU will just discard
the transaction.

For WRM of 64 byte merge, ILC will break it down to eight WR8 requests and
assemble eight packets for it.

Should a WRM of 64 bytes have no bytes on, SIU will not send out any WR8 packets
to L2 but will wait for all outstanding acks from L2 to return and then inject a single
fake write response into the outbound L2 subblock for return to DMU if needed.

INC Sub-block

The INC sub-block is running at core clock domain, however part of the logic is
running at IO clock domain for the purpose of driving the SIU-NCU interface
signals. There is no flow control between SIU and NCU for read returns, NCU is
considered as always available with respect to read returns. However INC need to
keep track of outstanding interrupts, there are four outstanding interrupts allowed
in SIU. Once it reached that number, it will signal the IPC to block further interrupt
requests to NCU. Another function of INC is to assemble the packet following the
SIU-NCU packet format and drive the SIU_NCU interface accordingly.

IPC Sub-block

There are two identical copies of IPCs instantiated in SIU, one for DMU and one for
NIU. IPCs are mainly running at IO clock domain. However, part of the logic is
running at core clock domain to handle the cross clock domain situation. The logic
will be partitioned into two parts (IPCC and IPCS) according their clock domain.

IPCS sub-block implement two major functions:

1. IPCS will drive the DMU/NIU – SIU interface bus according to the protocol
defined in previous section. It check for the availability of different queues to
maintain flow control for the interface.

2. IPCS maintains the ordering rules for the input side from the DMU and NIU. It
uses the sideband signals and header information to dispatch requests from DMU
to DMU_ORDERED queue and DMU_BYPASS queue and from NIU to
NIU_ORDERED queue and NIU_BYPASS queue.

IPCS has access to two FIFOs containing addresses and write/read bit duplicating
the addresses and command type in the ordered and bypass FIFOs. Assuming the
register-file FIFOs are not cam-able, the two FIFOs must be made of flops for address
comparison. IPCS maintains 5 pointers – the location of the youngest write entry in
the bypass queue, the youngest entry in the bypass queue, the youngest entry in the
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ordered queue, the oldest entry in the ordered queue, the oldest entry in the bypass
queue. IPCS and IPCC communicates with each other to maintain these pointers. All
packets from an interface updates the duplicate address FIFOs for that interface.

For the newest write entering the ordered queue, IPCS tags it as dependent on the
younger of the two entries: youngest write in the bypass queue or the youngest
matching cacheline address in the bypass queue. This is done by storing a pointer to
the bypass queue and setting a dependency pointer valid bit.

For the newest read entering the ordered queue, IPCS tags it as dependent on the
youngest entry with the same address in the bypass queue. This is done by storing a
pointer to the bypass queue and setting a dependency pointer valid bit.

For the newest write or read entering the bypass queue, IPCS tags it as dependent
on the youngest entry with the same address in the ordered queue. This is done by
storing a pointer to the ordered queue and setting a dependency pointer valid bit.

In PCIExpress mode, IPCS tags each newest entry as dependent on the youngest
entry in the opposite queue.

IPCC sub-block implements two major functions:

1. IPCC will drive the output buses of the inbound packet fifos according to the
protocol defined in previous section. It check for the availability of different
queues in IND and ILDs to maintain flow control.

2. IPCC maintain the ordering rules for the output side for DMU packet and does a
two level arbitration between NIU and DMU. The top level arbitration is between
NIU and DMU packets on a deficit round robin basis. NIU packets have no
ordering requirement with respect to other packets from DMU. DMU packets
have no ordering requirement with respect to packets from NIU. The second level
arbitration is between the two DMU FIFOs.

IPCC maintains two counters – a bypass write counter and an ordered write counter.
The bypass write counter counts the number of writes sent from the bypass queue
but have not received their acknowledgements. The ordered write counter counts
the number of writes or interrupts that were sent from the ordered queue but have
not received their acknowledgements. An ordered target ID tracks which of the nine
targets (eight L2, one NCU) was the last issued write/interrupt from the ordered
queue.

When a write/interrupt/PIO read return reaches the top of the ordered queue and
has its dependency pointer valid bit set, IPCC first checks if that entry in the bypass
queue has been dequeued. If it has and the bypass write counter reaches zero, then a
second check is made. After the bypass write counter has reached zero, if it's a read
return then it may continue, else the following is decided. A comparison between
the ordered target ID against the destination of the write/interrupt is made. If they
are the same, then it may continue. If they are not the same, then the write/interrupt
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must wait until the ordered write counter has reached zero before it can continue.
When the write/interrupt packet dequeues, the ordered write counter is
incremented and the ordered target ID is updated.

When a read reaches the top of the ordered queue and has its dependency pointer
valid bit set, IPCC first checks if that entry in the bypass queue has been dequeued.
If it has and the bypass write counter reaches zero, then a second check is made. A
comparison between the ordered target ID against the destination of read is made. If
they are the same, then it may continue. If they are not the same, then the read must
wait until the ordered write counter has reached zero before it can continue. No
counter is incremented when the read dequeues.

When a write or read reaches the top of the bypass queue and has its dependency
pointer valid bit set, then IPCC first checks if that entry in the ordered queue has
been dequeued. If it has, then the write may continue. Once dequeued and if its a
write, then the bypass write counter is incremented. No counter is incremented
when a read dequeues.

When a flush reaches the top of the ordered queue and has its dependency pointer
valid bit set, IPCC checks if that entry in the bypass queue has been dequeued. If it
has and the bypass write counter reaches zero, then a second check is made. After
the bypass write counter has reached zero, must wait until the ordered write counter
has reached zero before it is dequeued. When a flush dequeues and it's nonposted, a
response packet is injected into the outbound path to return to DMU.

6.4.6.5 Reliability, Availability, and Serviceability (RAS)

Syndrome format of sii_ncu_syn_data[63:0]

sii_ncu_syn_vld will cover the 16 io cycles of syndrome.

Cycle0: send sii_ncu_syn_data[3:0]

Cycle1: send sii_ncu_syn_data[7:4]

.

.

Cycle15: send sii_ncu_syn_data[63:60]

==================================

>> bit[63:62]     = 2'b00         (in case of future changes!)

>> bit [61]      = niud_pe

>> bit [60]      = niua_pe

>> bit [59]      = niuctag_ue
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>> bit [58]      = dmud_pe

>> bit [57]      = dmua_pe

>> bit [56]      = dmuctag_ue

>> bit [55:40]  = ctag[15:0]

>> bit [39:0]   = Physical Address[39:0]

>> ==================================

6.5 Outbound

6.5.1 Interface Timing Diagrams

6.5.1.1 From L2 to SIU

Single Read Response from L2

FIGURE 6-13 shows the quickest a read request inbound to an L2 bank will return
outbound to SIU. The greyed bars in the diagram mean some clock cycles are not
shown.

After L2Tag has accumulated the read request packet with the dummy cycles for
pipeline alignment (shown as sii_l2t_req[31:0]), the read request can be dispatched
down L2's pipeline. The l2t_sii_iq_dequeue signal asserts high for one cycle when L2
dispatches the read. That signal is used by SIU's Inbound L2 Control subunit for
credit based flow control. In the current L2 pipeline, the earliest L2 can assert
l2t_sii_iq_dequeue is two cycles after the last dummy data cycle of the request
packet.

L2 Bank asserts the l2b_sio_ctag_vld signal high for one cycle to indicate the
completion of the read. On the cycle that l2b_sio_ctag_vld asserts, l2b_sio_data has a
read response header. The subsequent 16 cycles of l2b_sio_data[31:0] contain the 64B
read data. Parity is generated on l2b_sio_parity[1:0] and corresponds to the parity of
each data word of l2b_sio_data. The l2b_sio_ue_err signal is also active during the
data cycles to indicate that L2 had detected an uncorrectable error for that data
word.
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FIGURE 6-13 L2 Read Data Return Timing Diagram (Fastest case is shown)

The bottom part of the timing diagram represents the read response continuing
outbound internally through SIU. Read requests can be pipelined to L2 and the
responses pipelined back to SIU. However because there is no direct flow control to
stop a response from L2 from overflowing SIU's outbound response buffers, SIU's
Outbound L2 Control subunit asserts internal signal sio_sii_olc_ilc_dequeue high for
a cycle when a credit is returned to SIU's Inbound L2 Control subunit. The diagram
shows SIU forwarding the read response packet to the outbound packet data subunit
on the next data bus (old_opd_data[63:0]) as early as possible. The earliest this can
happen is after SIU has received 3/4 the response payload from L2. The assumption
made here is that SIU can forward the accumulated result of all the parity checks
and uncorrectable errors later. Otherwise, SIU pays the latency of accumulating the
full 64B response payload. Working backward from the databus old_opd_data are
SIU's outbound internal arbitration request-grant signals olc_opc_req and
opc_olc_gnt. The dequeue signal sio_sii_olc_ilc_dequeue for the inbound path can
simply be a buffered version of the grant signal opc_olc_gnt as shown, if the timing
can be made. Otherwise it will assert a cycle later.

Due to stall conditions such as a cache miss, the latency between the assertion of
l2t_sii_iq_dequeue and l2b_sio_ctag_vld can exceed the 9 cycles shown in the above
diagram. Likewise, due to back stall conditions further downstream in the outbound
paths, the latency between the assertion of sii_l2t_req_vld and
sio_sii_olc_ilc_dequeue can exceed the 26 cycles shown in the above diagram.
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Write 8 Responses from L2 to SIU

FIGURE 6-14 shows two WR8 requests inbound to an L2 bank followed by three
signals to related to the WR8 responses returning outbound to SIU from L2. The
greyed bars in the diagram mean some clock cycles are not shown.

FIGURE 6-14 L2 Write8 Acknowledgement Timing Diagram

After L2Tag has accumulated the WR8 request packet (shown as sii_l2t_req[31:0]),
the request can be dispatched down L2's pipeline. The l2t_sii_iq_dequeue signal
asserts high for one cycle when L2 dispatches the write. That signal is used by SIU's
Inbound L2 Control subunit for credit based flow control. In the current L2 pipeline,
the earliest L2 can assert l2t_sii_iq_dequeue is two cycles after the last data cycle of
the request packet. The l2t_sii_iq_dequeue signal guarantees write ordering has
occurred in L2. However, it does not mean the write has completed.

For the WR8 acknowledgement, the latency between l2t_sii_iq_dequeue and
l2b_sio_ctag_vld depends on whether the store missed the L2 or not. L2 handles the
merge like an atomic read-modified-write operation. A subsequent request from SIU
would not overtake the WR8 should the WR8 miss L2 on the first pass and must
wait to be reissued after a fill. Note that there is no new assertion of
l2t_sii_iq_dequeue on second pass of a WR8.

The timing diagram shows that when l2b_sio_ctag_vld asserts, L2 Bank responds
with a tag on signal l2b_sio_data[31:0]. This tag does not contain enough
information for SIU to know if the WR8 response is the last of a sequence of up to
eight WR8 packets that were decomposed from a single write transaction. The
assumption made in the SIU is that DMU will never need a ack response for writes
with bytemasks (all memory writes with bytemask from DMU are posted) and hence
SIU Inbound and Outbound paths do not need to coordinate to scoreboard the tag.
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Similarly, the assumption is that NIU will never generate bytemask writes requests
to SIU and thus SIU will never generate WR8 for NIU and again SIU would not need
to scoreboard the tag after SIU issue to L2.

Because the outbound path never needs to respond to a WR8 response from L2,
those responses never enters any queue in the SIU outbound L2 data or control
paths.

Write Invalidate Response from L2 to SIU

FIGURE 6-15 shows a Write Invalidate request inbound to an L2 bank and the
outbound return of the write response. The greyed bars in the diagram mean some
clock cycles are not shown.

FIGURE 6-15 L2 Write Invalidate Acknowledgement Timing Diagram

After L2Tag has accumulated the 18-cycle WRI request packet (shown as
sii_l2t_req[31:0]), the request can be dispatched down L2's pipeline. The
l2t_sii_iq_dequeue signal asserts high for one cycle when L2 dispatches the write.
That signal is used by SIU's Inbound L2 Control subunit for credit based flow
control. In the current L2 pipeline, the earliest L2 can assert l2t_sii_iq_dequeue is
two cycles after the last data cycle of the request packet. The l2t_sii_iq_dequeue
signal guarantees write ordering has occurred in L2. However, it does not mean the
write has completed. When L2 Tag drains the 64 bytes of write data from its I/O
Write Buffer and the data are enroute to the memory controller, the
l2t_sii_wib_dequeue signal asserts for one cycle. This signal is used only for a Write

sii_l2t_req_vld

sii_l2t_req[31:0] ----

Write Invalidate
Access

old_opd_data[63:0]

l2t_sii_wib_dequeue

opc_olc_gnt

sio_sii_olc_ilc_dequeue

SIU INTERNAL SIGNALS

l2b_sio_data[31:0]

Hdr-----

l2b_sio_ctag_vld

Header + 8 Dummy Data Cycles

Addr D0WRI

D7

l2t_sii_iq_dequeue

Tag D0 D2D1

Addr1, tag, WRI data dead

olc_opc_req

D15
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Invalidate request as a Write8 request does not consume any data buffer in L2. The
SIU Inbound L2 subunit monitors the signal l2t_sii_wib_dequeue for credit based
flow control of L2's four I/O Write Buffers. Many cycles later, the l2b_sio_ctag_vld
signal asserts for one cycle to indicate the completion of the write. When
l2b_sio_ctag_vld asserts, l2b_sio_data contains the header of the write response
packet. eight cycles of dummy data follows to align L2's store pipeline. The bottom
part of the timing diagram represents the write response continuing outbound
through SIU. For flow control, the outbound L2 control subunit signals to the
inbound L2 control subunit that an entry has been dequeued.

6.5.1.2 From SIU to NIU

The assumption is that the NIU has buffers to receive all DMA responses from SIU.
There is no flow control from NIU to throttle SIU Outbound and thus SIU is allowed
to send responses back to back without any bubble to NIU.

Writes from NIU can be either posted or nonposted. For nonposted writes, SIU must
return an acknowledgement response back to NIU when the L2 has acknowledged
completion of the write. There is no requirement of the SIU to return the ack
response packet in the same order that NIU delivered the write request nor in the
order that the write completed in memory.

The parity protected interfaces between SIU and the NIU are 128 bit wide with side
band signals for packet control. Having a 128 bit for header allows SIU to provide a
rich set of transaction types and allows SIU to provide a uniform and generic but
flexible enough for most IO architectures. See SIU-DMU Interface List and SIU-NIU
Interface List.

The outbound packet interface protocol works as follows:

Cycle: Header Cycle

■ sio_niu_hdr_vld asserts for one cycle to indicate SIU is sending the packet
header to niu.

■ sio_niu_datareq is set to 1 to indicate this packet has a four cycle payload
following the header cycle to transfer 64 Bytes of data. It is set to 0 to indicate
this packet is an write acknowledge and has no data payload.

■ sio_niu_data[127:0] contains a valid header.

Cycle 2-5: Payload Cycles if sio_niu_datareq was asserted during Header Cycle.

■ sio_niu_hdr_vld is deasserted.

■ sio_niu_data[127:0] contains the payload data. Data is returned big endian and
critical four Byte first and wraps back to the beginning of the cacheline when it
reaches the cacheline boundary.

■ sio_niu_parity[3:0] contains the parity for each 32 bit of data. Parity[N]=
xor(data[32N+31: 32N])
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6.5.1.3 From SIU to DMU

The assumption is that the DMU has buffers to receive all DMA responses from SIU.
There is no flow control from DMU to throttle SIU Outbound and thus SIU is
allowed to send responses back to back without bubble to DMU.

Fire-DMU never issues nonposted DMA writes so all responses from SIU to
Fire-DMU has a four cycle payload.

The parity protected interfaces between SIU and the DMU are 128 bit wide with side
band signals for packet control. Having a 128 bit for header allows SIU to provide a
rich set of transaction types and allows SIU to provide a uniform and generic but
flexible enough for most IO architectures.

The outbound packet interface protocol works as follows:

Cycle 1: Header Cycle

■ sio_dmu_hdr_vld asserts for one cycle to indicate SIU is sending the packet
header to dmu.

■ sio_dmu_datareq is set to 1 to indicate this packet has a four cycle payload
following the header cycle to transfer 64 Bytes of data.

■ sio_dmu_data[127:0] contains a valid header.

Cycle 2-5: Payload Cycles if sio_dmu_datareq was asserted during Header Cycle.

■ sio_dmu_hdr_vld is deasserted.

■ sio_dmu_data[127:0] contains the payload data. Data is returned big endian
and critical four Byte first and wraps back to the beginning of the cacheline
when it reaches the cacheline boundary.

■ sio_dmu_parity[3:0] contains the parity for each 32-bit of data. Parity[N]=
xor(data[32N+31: 32N])

6.5.1.4 From SIO to TCU

There will be two bits interface (sio_tcu_vld, sio_tcu_data) from SIO to TCU for
DMA read/write response.

sio_tcu_data is a 64-bit data stream for read request, and 1bit of data=0 for write
request.

Header format:

bit[63:0] = eight bytes of read return data for read request

bit[0] = 0x0
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6.5.2 Outbound Pipeline

6.5.2.1 From L2

L2 Bus Cycle Packets (Write Acknowledge)

1. L2B-OLD Header Enqueue (one L2 cycle: 32 bit bus)

2. OLD-OPD Request (one+ L2 cycle)

3. OLD-OPD Grant (one L2 cycle)

4. OLD-OPD Transmit/Muxing Wire Delay (one to two L2 cycles)

5. OLD-OPD Header Enqueue (one1 L2 cycle: 64 bit bus)

6. OPD-OPD Domain Crossing (one-three L2 cycles)

7. OPD-DMU/NIU Header Enqueue (one IO cycle: 128 bit bus)

L2 Bus Cycle Packets (Read Response)

1. L2B-OLD Header Enqueue (one L2 cycle: 32 bit bus)

2. L2B-OLD Data Payload Enqueue (16 L2 cycles: 32 bit bus)

3. OLD-OPD Request (one+ L2 cycles)

4. OLD-OPD Grant (one L2 cycle)

5. OLD-OPD Transmit/Muxing Wire Delay (one to two L2 cycles)

6. OLD-OPD Header Enqueue (one L2 cycle: 64 bit bus)

7. OLD-OPD Data Payload Enqueue (8 L2 cycles: 64 bit bus)

8. OPD-OPD Domain Crossing (one-three L2 cycles)

9. OPD-DMU/NIU Header Enqueue (one IO cycle: 128 bit bus)

10. OPD-DMU/NIU Data Payload Enqueue (four IO cycles: 128 bit bus)
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6.5.3 SIU Outbound Block Diagram

6.5.3.1 OPD: Outbound Packet Datapath

FIGURE 6-16 SIU Outbound Packet Datapath (OPD) Subunit
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6.5.3.2 OLD: Outbound L2 Datapath

FIGURE 6-17 SIU Outbound L2 Datapath (OLD) Subunit

6.5.4 SIU Outbound Subunit Descriptions

6.5.4.1 Datapath

OLD0 to OLD7 receive and store response packets from L2 buffer. Each interface has
a 64Byte four-deep payload buffers physically organized as two regfiles. Each regfile
is 32bit wide x 32 deep – written in at cmp clock @ 32bit/cycle, read out at cmp clock
@ 64bit/cycle. There is also a header queue in each interface to hold the tag
information. That queue is 18 bits wide x four-deep.
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The physical placement and organization of these OLDx queues are critical to the
critical path in the outbound direction. The distance between the farthest two
regfile's IO flops determines how far the mux-select lines would need to travel on
the first level of 8:1 muxing of these 64 bit wire bundles.

OPD: The outbound packet datapath subunit holds packets from the OLDx subunits
and stream them out to DMU and NIU. NIU and DMU each has a separate
outbound packet queue 16 entry deep for responses from L2. The packet queues are
physically separated into header queues, payload queues, and parity. The packets
crosses clock domain from core clock to IO clock in OPD.

6.5.4.2 Control Path

OLC0 to OLC7 are identical instantiations of the control logic to enqueue and
dequeue from the OLD FIFOs. Each makes a request to OPCC and waits for a grant
before it ships the DMA response over to the Outbound packet datapath and FIFOs.

OPCC: The outbound packet control logic in the core clock domain monitors all the
eight request lines from OLC0 to OLC7, checks that the destination FIFO is available
and then drives grant and controls the mux selects for the 8:1 muxes. It also transfer
FIFO write pointers to the IO clock domain so the corresponding outbound packet
control logic in the IO clock domain can handle pushing the data out to DMU or
NIU. OPCC also monitors the L2 response headers to signal to the inbound side how
many and type of responses received so IPCC can do bookkeeping.

OPCS: The outbound packet control logic in the IO clock domain monitors the
pessimistic FIFO write pointers from OPCC and communicates with DMU or NIU.

6.6 Packet Formats

6.6.1 Inbound To L2

6.6.1.1 WRI Packet

Write Invalidate (WRI) request must be 64 byte aligned and a full 64 bytes is written
to memory. The bottom six bits of address for a WRI request are set to zero.
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FIGURE 6-18 Write Invalidate Request

J :Jtag access : 1= Jtag access from tcu, 0= regular dma packet from IO

O:Ordered bit : 1=From SIU Inbound Ordered Queue. Needed by SIU.

P:Posted bit : 1=Posted => Completion Ack by SIU to the source NOT needed,

0=Nonposted => Completion Ack by SIU to the source NEEDED
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S:Source: 1=DMU, 0=NIU

T:Tag[15:0] generated by the source to track the transaction.

If the P bit is zero, the response packet will contain this 16-bit tag.

For this implementation, DMU and NIU will both guarantee packets with address
errors (like unmapped address or illegal access) will not be sent to SIU. This was
different than in OpenSPARC T1 where OpenSPARC T1's JBI set the error bit and
changed the physical address to all zeros.

Parity error will be logged in the header if SIU or a prior unit had detected an
uncorrectable error in the data payload.

Legal WRI Packet Encodings:

L2 does not look at the O, P, S and T fields from SIU but simply pipe them along
back to SIU Outbound when L2 generates the response packet.

For this implementation, NIU never sends bytemasked writes which means all DMA
writes from NIU will become WRI's not WR8. In NIU's case, DMA writes can be
issued to the SIU's ordered queue or the SIU's bypass queue. However, a high
percentage of NIU's DMAs will go into the bypass queue. NIU's writes can be
posted or nonposted. Fire-DMU never issue nonposted memory writes. In the
Fire-DMU implementation, all their DMA writes are restricted to the ordered queue.

So if the NIU and DMU interfaces are behaving correctly, the following header
restrictions apply for WRI:

P must be 1 if from Fire-DMU.

O must be 1 if Fire-DMU.

PA[5:0] must be all 0s.

Header cycle bits 26:24 == 3'b100

6.6.1.2 WR8 Packet

For the Write8 bytes (WR8) request, random byte writes are supported provided at
least one byte gets written. A byte mask field [7:0] is supported for the random byte
writes with at least one byte mask = 1. Bytemask field is positional. The address for
a WR8 request must be eight-byte aligned (the lower 3 bits of the address must be 0).
6-48 OpenSPARC T2 SoC Microarchitecture Specification Part 1 of 2 • May 2008



FIGURE 6-19 Write 8 Bytes Request

J :Jtag access: 1= Jtag access from tcu, 0= regular dma packet from IO

O:Ordered bit: 1=From SIU Inbound Ordered Queue. Needed by SIU.

P:Posted bit: 1=posted. Needed by SIU

E: Error bit: (parity or uncorrectable error)

S:Source: 1=DMU, 0=NIU;

Legal WR8 Packet Encodings:

L2 does not look at the O, P, S fields from SIU but simply pipe them along back to
SIU Outbound when L2 generates the response packet.

For this implementation, NIU never sends bytemasked writes which means all DMA
writes from NIU will become WRI's not WR8. Fire-DMU can send DMA writes that
will decompose into WR8. Fire-DMU never issue nonposted memory writes. In the
Fire-DMU implementation, all their DMA writes are restricted to the ordered queue.

So if the NIU and DMU interfaces are behaving correctly, the following header
restrictions apply for WR8:

■ S must be 1.

■ P must be 1.

■ O must be 1 if Fire-DMU.

■ PA[2:0] must be 0s.

■ Header cycle bits 26:24 == 3'b010
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6.6.1.3 RDD Packet

FIGURE 6-20 RDD Requests

J :Jtag access : 1= Jtag access from tcu, 0= regular dma packet from IO

O:Ordered bit : 1=From SIU Inbound Ordered Queue. Needed by SIU.

P:Posted bit : reads are nonposted so this bit should always be 0

E: Error bit : (parity or uncorrectable error)

S:Source : 1=DMU, 0=NIU

T:Tag[15:0] generated by the source to track the transaction.

The response packet will contain this 16-bit tag.

Legal RDD Packet Encodings:

RDD requests will always read a full 64 byte cache line, although L2 does not require
the address to be any alignment. NIU and Fire-DMU will always align to a 64 Byte
address boundary. Note there must be two dummy data cycles in the read request
from SIU to L2 to match the pipeline format for WR8.

L2 does not look at the O, P, S and T fields from SIU but simply pipe them along
back to SIU Outbound when L2 generates the response packet.

For this implementation, NIU can issue reads to either the SIU's ordered or bypass
queue. However, a high percentage of NIU's DMAs will go into the bypass queue.
For Fire-DMU implementation, all their DMA reads are restricted to the ordered
queue.
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6 5 4 3 2 1 0 31 30 29 28 27 26 25 24 21 22 2120 19 18 17 16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0
6-50 OpenSPARC T2 SoC Microarchitecture Specification Part 1 of 2 • May 2008



So if the NIU and DMU interfaces are behaving correctly,

the following header restrictions apply for RDD:

■ P must be 0

■ O must be 1 if Fire-DMU

■ PA[5:0] must be all 0s if from Fire-DMU or NIU

■ Header cycle bits 26:24 == 3'b001

6.6.2 Outbound from L2

6.6.2.1 RDD Response Packet

L2 drives back a packet with a 64 Byte cacheline payload, critical 32-bits first. Should
the address sent on the SIU-L2 interface be not aligned to a 64 Byte boundary, L2
will align the responses to a 4-word (32 bit) boundary. The initial 32-bit doubleword
within the 64 Byte line is indicated by Address[5:2]. Data responses will start at the
specified address, continuing sequentially to the end of the cache line and then
wrap. The Read bit (bit 16) is set to 1. The same tag is returned to SIU. For this
example, the requested address had addr[5:0]=101101 (or decimal 45). Note that byte
44 is returned first by L2.

Note that L2 returns the CBA (Critical Byte Address – address[2:0]) from the original
RDD request. NIU and Fire-DMU always read on a 64 Byte boundary so this is not
an issue and data is therefore always returned at the cacheline boundary and
CBA[2:0] should always be 0 when the SIU->L2 read request is legal.

L2 also pipes back to SIU Outbound the fields O, P, S, Tag as sent by SIU Inbound.
The field E indicates there was an error. SIU Outbound will pass the error condition
downstream to DMU or NIU.

Example FIGURE 6-21 shows PA[5:0]=101101 (decimal 45).
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FIGURE 6-21 RDD Response Packet when PA[5:0] is not all zeros

Legal RDD Response Packet Encodings:

Refer to RDD Packet.

Given those restrictions, if the NIU and DMU interfaces and SIU Inbound are
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P must be 1

O must be 1 if Fire-DMU

CBA[2:0] must be all 0s if from Fire-DMU or NIU

S must be 1 if from Fire-DMU. Must be 0 if from NIU

Header cycle bit 16 must be 1

Tag[15:0] matches Tag sent by NIU/Fire-DMU

6.6.2.2 Write Invalidate Response Packet

FIGURE 6-22 WRI Response Packet

A write invalidate response packet looks like a read response packet filled with eight
cycles of dummy data. Because of the L2 pipeline, after a write response, the next
response (either read or write) cannot come until after eight pad cycles. SIU
Outbound will drop all write invalidate responses with the 'P'osted bit set.

L2 pipes back to SIU Outbound the fields O, P, S tag as sent by SIU Inbound. The
field E indicates there was an error. SIU Outbound will pass the error condition
downstream to DMU or NIU if P bit was a 0.

V UE, Paritys Packet Data [31:0]
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Legal WRI Response Packet Encodings:

Refer to WRI Packet.

Given those restrictions, if the NIU and DMU interfaces and SIU Inbound are
behaving correctly, the following header bits are expected for WRI responses:

UE: Uncorrectable error generated by L2, internal L2 error

Ctag Ecc: check bit for Tag[15:0]

P must be 1 if from Fire-DMU.

O must be 1 if Fire-DMU

S must be 1 if from Fire-DMU. Must be 0 if from NIU

Header cycle bit 19:16 must be 0s

Tag[15:0] matches Tag sent by NIU/Fire-DMU

6.6.2.3 Write8 Response Packet

FIGURE 6-23 WR8 Response Packet

V UE, Paritys Packet Data [31:0]

0 Invalid Dummy Cycle0

0 Invalid Dummy Cycle1

0 Invalid Dummy Cycle2

0 Invalid Dummy Cycle3

0 Invalid Dummy Cycle4

0 Invalid Dummy Cycle5

0 Invalid Dummy Cycle6

0 Invalid Dummy Cycle7

1 Invalid J C tagecc[5:0] O P E S 0 0 0  0 T ag[15: 0]

UE

U

1 0 31 30 29 28 27 26 25 24 21 22 2120 19 18 17 16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0

E

6-54 OpenSPARC T2 SoC Microarchitecture Specification Part 1 of 2 • May 2008



A write8 response packet looks like a read response packet filled with eight cycles of
dummy data. Because of the L2 pipeline, after a write response, the next response
(either read or write) cannot come until after eight pad cycles. SIU Outbound will
drop all write8 responses with the 'P'osted bit set. Because the SIU to L2 WR8
request packet header does not provide enough bits for a full 16 bit Tag field and
because it is guaranteed that all writes with bytemasks from Fire-DMU are posted
and because NIU does not do any writes with bytemasks, SIU outbound's
implementation drops all WR8 responses. However, SIU Outbound does decode the
header fields so SIU Inbound can do buffer management and therefore expects L2 to
pipe back to SIU Outbound fields O, P, S as sent by SIU Inbound. The field E
indicates there was an error. Currently, there is no mechanism to log an WR8
response packet with an error.

Legal WR8 Response Packet Encodings:

Refer to WR8 Packet.

Given those restrictions, if the NIU and DMU interfaces and SIU Inbound are
behaving correctly, the following header bits are expected for WR8 responses:

J Jtag access: 1= Jtag access from tcu, 0= regular dma packet from IO

UE: Uncorrectable error generated by L2, internal L2 error

Ctag Ecc: check bit for Tag[15:0]

P must be 1.

O must be 1 if Fire-DMU

S must be 1.

Header cycle bit 19:16 must be 0s

6.6.2.4 DMA Read Request Packet from NIU to SIU

All read requests by NIU will return 64 Bytes aligned to 64B boundary. The one cycle
packet on niu_sii_data[127:0] contains only the header. The header format is shown
below with the SUPPORTED settings needed for Read Requests by NIU. The 16 bit
ID is the captured into the tag field sent up to L2 by SIU and later returned back to
NIU. There are no payload cycles for the request packet. During the packet transfer,
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NIU indicates whether the DMA Read packet will go into an ordered queue or a
bypass queue. The reads do not fill in L2. A high percentage of DMA Reads go to the
bypass queue. Rads are by default non-posted.

6.6.2.5 DMA Write Request Packet from NIU to SIU

NIU always sends a full cacheline of data for writes. The header format is shown
below with the SUPPORTED settings needed for Write Requests by NIU. The 16 bit
ID is the captured into the tag field sent up to L2 by SIU. The address is always 64
Byte aligned. All DMA Write Request from NIU can be either nonposted (requires a
write response from SIU to indicate completion) or posted (no response from SIU).

TABLE 6-4 NIU to SIU: DMA Read Request Header Format

NIU's Header Cycle
niu_sii_data[msb:lsb] for a Read

Name Usage

127:122 Command
127=Response bit
126=Posted request bit
125=Read bit
124=Write ByteMask Active
123=L2 bit
122=NCU bit

Must be 0
Must be 0
Must be 1
Must be 0
Must be 1
Must be 0

121:85 Reserved Must Be Zero

84:83 Address parity Bit 84 for odd address bit
Bit 83 for even address it

82:82 TimeOutError 1=This packet had Timed Out

81:81 UnmappedAddressError 1=This packet's address mapped to an
nonexistent, reserved, or erroneous
address

80:80 UncorrectableError Must be 0 because read request does not
carry data payload

79:64 ID[15:0] NIU supplies an ID that it can use to
track the responses later

63 Reserved Must be Zero

62 Command Parity Parity bit for bit127-122

61:56 Ctag Ecc 6bit sec-dec check bit for ID

55-40 Reserve Must be Zero

39:0 PA[39:0] Must be 64B aligned -
PA[5:0] must be zeros
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Prior to the packet transfer, NIU indicates whether the packet will go into an
ordered queue or a 'bypass' queue. The writes do not allocate in L2. Writes to the
ordered queue will always be issued by the SIU to L2 after the youngest write in the
bypass queue. The writes in the bypass queues are not ordered with respect to other
writes in the bypass queue. NIU will never use byte-masks so if niu_sii_be[15:0]
exists at the interface, NIU always drives them to all 1's.

The header encoding for a DMA Write from NIU is shown in TABLE 6-6.

TABLE 6-5 NIU to SIU: Write Request Packet Format

Packet Cycle Number Packet Content of niu_sii_data[127:0]

1 NIU's Write Header

2 Byte0, Byte1,..., Byte15

3 Byte16, Byte17, ..., Byte31

4 Byte32, Byte33, ..., Byte47

5 Byte48, Byte49, ..., Byte63

TABLE 6-6 NIU to SIU: DMA Write Request Header Format

NIU's Header Cycle
niu_sii_data[msb:lsb] for a Write

Name Usage

127:122 Command
127=Response bit
126=Posted request bit
125=Read bit
124=Write ByteMask Active
123=L2 bit
122=NCU bit

Must be 0
0=NIU needs an ack
Must be 0
Must be 0 (all bytes on)
Must be 1
Must be 0

121:85 Reserved Must Be Zero

84:83 Address parity Odd, even address parity

82:82 TimeOutError 1=This packet had Timed Out

81:81 UnmappedAddressError 1=This packet's address mapped to an
nonexistent, reserved, or erroneous
address

80:80 UncorrectableError 1=data payload has uncorrectable error

79:64 ID[15:0] NIU supplies an ID that it can use to
track the responses later

62 Command parity Command parity[127:122]
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6.6.3 Outbound to NIU

6.6.3.1 DMA Write Response Packet from SIU to NIU

If NIU had requested a response (write-ack), SIU will return a packet to indicate the
completion of the write. The write responses can return out of order.

The write response is a one cycle packet containing only a header. Immediately
following a write response can be another write or read response.

61:56 CtagEcc[5:0] 6-bit ECC check bit for ID

55:40 Reserved Must be Zero

39:0 PA[39:0] Must be 64B aligned -
PA[5:0] must be zeros

TABLE 6-7 SIU to NIU: DMA Write Response Header Format

SIO's Header Cycle
sio_niu_data[msb:lsb] for Write

Response

Name Usage

127:122 Command
127=Response bit
126=Posted request bit
125=Read bit
124=Write ByteMask Active
123=L2 bit
122=NCU bit

Must be 1
Must be Ignored (driven to 0)
Must be 0
Must be Ignored (driven to 0)
Must be Ignored (driven to 1)
Must be Ignored (driven to 0)

121:84 Reserved Must Be Zero

83:83 Reserved Must Be Zero

82:82 Reserved Must Be Zero

81:81 UncorrectableError for prior
address, Ctag Ecc

1=This packet's address mapped to an
nonexistent, reserved, or erroneous address

TABLE 6-6 NIU to SIU: DMA Write Request Header Format (Continued)

NIU's Header Cycle
niu_sii_data[msb:lsb] for a Write

Name Usage
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6.6.3.2 DMA Read Response Packet from SIU to NIU

The read response packet from SIU to NIU is one cycle of header followed by four
cycles of data payload. The above data order assumes that NIU had set the lower six
bits of the PA to zero. Otherwise L2 and SIU will return data critical 32-bit
doubleword first and wrap around the 64 Byte boundary.

80:80 Data Error 1=data payload has a detected uncorrectable
error. This could be:
1. timeout errors
2. unmapped errors
3. data ue error from L2$ or dram

79:64 ID[15:0] ID supplied originally by NIU

63:40 Reserved Must be Zero

39:0 PA[39:0] Must be Ignored

TABLE 6-8 SIU to NIU: DMA Read Response Packet Format

Packet Cycle Number Packet Content of sio_niu_data[127:0]

1 SIU to NIU DMA Read Response Header

2 Byte0, Byte1, ..., Byte15

3 Byte16, Byte17, ..., Byte31

4 Byte32, Byte33, ..., Byte47

5 Byte48, Byte49, ..., Byte63

TABLE 6-7 SIU to NIU: DMA Write Response Header Format (Continued)

SIO's Header Cycle
sio_niu_data[msb:lsb] for Write

Response

Name Usage
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The read response header encoding is defined in TABLE 6-9:

6.6.4 Inbound from DMU.

6.6.4.1 Packet from =Fire-DMU to SIU.

There are four expected/supported types of packet transfers from Fire-DMU to SIU

DMA Read Request: A packet with only a header cycle and no payload cycles.
Addresses must be 64-Byte aligned. Must be steered into SIU's Inbound Ordered
Queue.

TABLE 6-9 SIU to NIU Read Response Header Format

SIO's Header Cycle
sio_niu_data[msb:lsb] for Read

Response

Name Usage

127:122 Command
127=Response bit
126=Posted request bit
125=Read bit
124=Write ByteMask Active
123=L2 bit
122=NCU bit

Must be 1
Must be Ignored (driven to 0)
Must be 1
Must be Ignored (driven to 0)
Must be Ignored (driven to 1)
Must be Ignored (driven to 0)

121:84 Reserved Must Be Zero

83:83 Reserved Must Be Zero

82:82 Reserved 1=This packet had Timed Out

81:81 UncorrectableError for prior
address, Ctag Ecc

1=This packet's address and Ctag Ecc
err

80:80 DE data error 1=data payload has a detected
uncorrectable error. This could be:
1. timeout errors
2. unmapped errors
3. data ue error from L2$ or dram

79:64 ID[15:0] ID supplied originally by NIU

63:40 Reserved Must be Zero

39:0 PA[39:0] Must be Ignored
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Interrupt Write Request: A packet with a header cycle and fixed size of one payload
cycle with all 16 bytes in the payload valid. Must be steered into SIU's Inbound
Ordered Queue.

DMA Write Request: A packet with a header cycle and fixed size of four payload
cycles. Addresses must be 64-Byte aligned and always posted. Must be steered into
SIU's Inbound Ordered Queue.

PIO Read Data Return: A packet with a header cycle and fixed size of one payload
cycle. SIU and NCU will transport the full 16 bytes. Only the cpu cares which
byte(s) within the 16 bytes are enabled. Must be steered into SIU's Inbound Bypass
Queue.

TABLE 6-10 for dmc_tag[15:0] is referred to by all packets from Fire-DMU. See
OpenSPARC T2 SoC Microarchitecture Specification, Part 2 of 2 for DMU information.

TABLE 6-10 Fire-DMC Tag

Field Bits Description

DMA transactions

dmc_tag[15] type 0b-indicates DMA/Int transactions

dmc_tag[14:11] cl_tag[3:0] Dmc transaction number for tracking credits

dmc_tag[10:6] d_ptr[4:0] Used for DMA Rds only-dou dma rd buffer address

dmc_tag[5:1] pkt_tag[4:0] Used for DMA Rds only-PSB index for building packet records

dmc_tag[0] cl_sts Used for DMA Rds only-indicates 1st cacheline in packet sequence

Int Transactions

dmc_tag[15] type 0b-indicates DMA/Int transactions

dmc_tag[14:11] cl_tag[3:0] Dmc transaction number for tracking credits

dmc_tag[10:3] Rsv[7:0] reserved

dmc_tag[2:1] mdo_tag[1:0] mondo_tag for mondo-reply to IMU

dmc_tag[0] rsv Must be 0

MMU Tablewalk Transactions

dmc_tag[15] type 1b-indicates MMU Tablewalk transactions

dmc_tag[14:11] cl_tag[3:0] Dmc transaction number for tracking credits

dmc_tag[10:6] Rsv[4:0] reserved

dmc_tag[5:0] Mtag[5:0] Used for MMU tablewalks only-MMU tag for tracking tablewalks
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Note – The NCU will distinguish interrupts from PIO cpl's by using dmc_tag[15].

DMA Read Request packet from Fire-DMU to SIU

All read requests by Fire-DMU will return 64 Bytes aligned to 64B boundary. The
one cycle packet on dmu_sii_data[127:0] contains only the header. The header format
is shown below with the SUPPORTED settings needed for Read Requests by
Fire-DMU. The 16 bit ID is the captured into the tag field sent up to L2 by SIU and
later returned back to Fire-DMU. There are no payload cycles for the request packet.
During the packet transfer, Fire-DMU must always steer DMA Reads into the
ordered queue. The reads do not fill in L2. Reads are by default non-posted.

PIO Cpl Transactions

dmc_tag[15:13] Rsv[2:0] Must be 3'b100

dmc_tag[12:9] jbc_trans_#[3:0] Pio transaction credit id

dmc_tag[8:0] thread_id[8:0] Thread id of PIO read request

TABLE 6-11 Fire-DMU to SIU: DMA Read Request Header Format

Fire-DMU's Header
Cycle

dmu_sii_data[msb:lsb]
for a Read

Name Usage

127:122 Command
127=Response bit
126=Posted request bit
125=Read bit
124=Write ByteMask
Active
123=L2 bit
122=NCU bit

Must be 0
Must be 0
Must be 1
Must be 0
Must be 1
Must be 0

121:85 Reserved Must Be Zero

84:83 Address parity Bit 84 for odd address bit
Bit 83 for even address it

82:82 TimeOutError 1=This packet had Timed Out, used only by Fire-DMU for
PIO Rd Completions

TABLE 6-10 Fire-DMC Tag (Continued)

Field Bits Description
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DMA Write Request Packet from Fire-DMU to SIU

Fire-DMU does not always send a full cacheline of data for writes. The header
format is shown below with the SUPPORTED settings needed for Write Requests by
Fire-DMU. The 16 bit ID is the captured into the tag field sent up to L2 by SIU. The
address is always 64 Byte aligned. All DMA Write Request from Fire-DMU are
posted (no response from SIU). Fire-DMU must always steer DMA Writes into the
SIU's ordered queue. The writes do not allocate in L2. Fire-DMU can send DMA
writes with all bytes enabled and with one or more bytes at the beginning and/or
the end of the 64Bytes disabled.

81:81 UnmappedAddressError 1=This packet's address mapped to an nonexistent, reserved,
or erroneous address
used only by Fire-DMU for PIO Rd Completions

80:80 UncorrectableError used only by Fire-DMU for PIO Rd Completions

79:64 ID[15:0] (dmc_tag[15:0]) DMU supplies an ID that it can use to track the responses
later.
See dmc_tag TABLE 6-10

63 Reserved Must be Zero

62 Command Parity Parity bit for bit127-122

61:56 Ctag Ecc 6bit sec-dec check bit for ID

55-40 Reserve Must be Zero

39:0 PA[39:0] Must be 64B aligned -
PA[5:0] must be zeros

TABLE 6-12 Fire-DMU to SIU Write Request Packet Format

Packet Cycle Number Packet Content of dmu_sii_data[127:0]

1 Fire-DMU's Write Header

2 Byte0, Byte1, ..., Byte15

3 Byte16, Byte17, ..., Byte31

4 Byte32, Byte33, ..., Byte47

5 Byte48, Byte49, ..., Byte63

TABLE 6-11 Fire-DMU to SIU: DMA Read Request Header Format (Continued)

Fire-DMU's Header
Cycle

dmu_sii_data[msb:lsb]
for a Read

Name Usage
Chapter 6 System Interface Unit (SIU) 6-63



The header encoding for a DMA Write from Fire-DMU is shown in TABLE 6-13.

TABLE 6-13 Fire-DMU to SIU: DMA Write Request Header Format

Fire-DMU's Header Cycle
dmu_sii_data[msb:lsb] for a

Write

Name Usage

127:122 Command
127=Response bit
126=Posted request bit
125=Read bit
124=Write ByteMask Active

123=L2 bit
122=NCU bit

Must be 0
Must be 1
Must be 0
0=Write full cacheline. 1=WRM
Must be 1
Must be 0

121:84 Reserved Must Be Zero

83:83 Reserved Must Be Zero

82:82 TimeOutError 1=This packet had Timed Out, used
only by Fire-DMU for PIO Rd
Completions

81:81 UnmappedAddressError 1=This packet's address mapped to an
nonexistent, reserved, or erroneous
address
used only by Fire-DMU for PIO Rd
Completions

80:80 UncorrectableError 1=data payload has uncorrectable error
used only by Fire-DMU for PIO Rd
Completions

79:64 ID[15:0] (dmc_tag[15:0]) Fire-DMU supplies an ID that it can use
to track the responses later. See
dmc_tag TABLE 6-10.

63 Reserved Must be Zero

62 Command Parity Parity bit for bit127-122

61:56 Ctag Ecc 6bit sec-dec check bit for ID

55-40 Reserve Must be Zero

39:0 PA[39:0] Must be 64B aligned -
PA[5:0] must be zeros
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Interrupt Write Request packet from Fire-DMU to SIU

Fire-DMU can send an interrupt to NCU via SIU. The interrupt is always a mondo
type with 16 bytes of payload. NCU decodes the ID field to determine how to
process the mondo and to differentiate it from a PIO Completion. SIU transports the
full 16 bit ID to NCU. Interrupts must be steered toward the ordered queue.

The header encoding for an Interrupt Write from Fire-DMU is shown in TABLE 6-15.

TABLE 6-14 Fire-DMU to SIU: Interrupt Write Request Packet Format

Packet Cycle Number Packet Content of dmu_sii_data[127:0]

1 Fire-DMU's Interrupt Write Header

2 Mondo Byte0, Byte1, ..., Byte15

TABLE 6-15 Fire-DMU to SIU: Interrupt Write Request Header Format

Fire-DMU's Header Cycle
dmu_sii_data[msb:lsb] for an

Interrupt

Name Usage

127:122 Command
127=Response bit
126=Posted request bit
125=Read bit
124=Write ByteMask Active
123=L2 bit
122=NCU bit

Must be 0
Must be 0
Must be 0
Must be 0
Must be 0
Must be 1

121:84 Reserved Must Be Zero

83:83 Reserved Must Be Zero

82:82 TimeOutError 1=This packet had Timed Out
used only by Fire-DMU for PIO Rd
Completions

81:81 UnmappedAddressError Must be 0
used only by Fire-DMU for PIO Rd
Completions

80:80 UncorrectableError Must be 0
used only by Fire-DMU for PIO Rd
Completions

79:64 ID[15:0] See NCU spec or see dmc_tag
TABLE 6-10 for Interrupt ID encoding

63:40 Reserved Must be Zero

39:0 PA[39:0] Must be Ignored
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PIO Read Completion Packet from Fire-DMU to SIU

Fire-DMU can send a PIO Read completion packet to NCU via SIU. The PIO Read
completion has a one cycle payload. SIU transports the full 16 bit ID and 16 byte
payload to NCU. PIO Read completions from Fire-DMU must be steered toward the
bypass queue. Only cpu cares which byte(s) within the 16 bytes are enabled.

The header encoding for a PIO Read Completion from Fire-DMU is shown in
TABLE 6-17.

TABLE 6-16 Fire-DMU to SIU: PIO Read Completion Response Packet Format

Packet Cycle Number Packet Content of dmu_sii_data[127:0]

1 Fire-DMU's PIO Read Completion Header

2 Byte0, Byte1, Byte2, Byte3, Byte4, Byte5, Byte6, Byte7,
Byte8, Byte9, Byte10, Byte11, Byte12, Byte13, Byte14, Byte15

TABLE 6-17 Fire-DMU to SIU: PIO Read Completion Packet Header Format

Fire-DMU's Header Cycle
dmu_siu_data[msb:lsb] for PIO

completions

Name Usage

127:122 127=Response bit Must be 1

126=Posted request bit Must be 0 (Ignored by SIU if Response
bit is set)

125=Read bit Must be 1

124=Write ByteMask Active Must be 0 (Ignored by SIU if Response
bit is set or if Read bit is set)

123=L2 bit Must be 0

122=NCU bit Must be 1

121:84 Reserved Must Be Zero

83:83 Reserved Must Be Zero

82:82 TimeOutError 1=This packet had Timed Out

81:81 UnmappedAddressError 1=This packet's address mapped to an
nonexistent, reserved, or erroneous
address

80:80 UncorrectableError 1=data payload has a detected
uncorrectable error
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6.6.5 Outbound to DMU.

6.6.5.1 Packet from SIU to Fire-DMU.

There is one type of packet transfers from SIU to Fire-DMU.

DMA Read Response: A packet with a header cycle followed by a fixed size of four
payload cycles with all bytes valid. Because Fire-DMU's DMA Read Request are
always cacheline aligned, the data returned always starts at the cacheline boundary.
Data format is big endian.

79:64 ID[15:0] for PIO read completions this is PIOID
[15:13]=3'b100
[12:9] will be the credit id returned on
PIO rd completions,
[8:0] will be the {3'b000, cpu-thread
ID[5:0]}.
See NCU or DSN specification.

62 Command parity Command parity for [127:122]

63:40 Reserved Must be Zero

39:0 PA[39:0] Must be Ignored.

TABLE 6-18 SIU to Fire-DMU: DMA Read Response Packet Format

Packet Cycle Number Packet Content of sio_dmu_data[127:0]

1 SIU to Fire-DMU's DMA Read Response Header

2 Byte0, Byte1, ..., Byte15

3 Byte16, Byte17, ..., Byte31

4 Byte32, Byte33, ..., Byte47

5 Byte48, Byte49, ..., Byte63

TABLE 6-17 Fire-DMU to SIU: PIO Read Completion Packet Header Format (Continued)

Fire-DMU's Header Cycle
dmu_siu_data[msb:lsb] for PIO

completions

Name Usage
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The header format is shown in TABLE 6-19.

TABLE 6-19 SIU to Fire-DMU: Outbound Packet Header Format

SIO to Fire-DMU's Header Cycle
sio_dmu_data[msb:lsb]

Name Usage

127:122 Command
Legal combinations

- DMA Read Response 1010_10

127=Response bit Must be 1

126=Posted request bit Must be Ignored (driven to 0)

125=Read bit Must be 1

124=Write ByteMask Active Must be Ignored (driven to 0)

123=L2 bit Must be 1

122=NCU bit Must be 0

121:84 Reserved Must Be Zero

83:83 Reserved Must Be Zero

82:82 TimeOutError 1=This packet had Timed Out

81:81 UnmappedAddressError 1=This packet's address mapped to an
nonexistent, reserved, or erroneous address

80:80 UncorrectableError 1=response has a detected uncorrectable
error. This could be:
1. timeout errors
2. unmapped errors
3. data ue error from L2$ or dram

79:64 ID[15:0] (dmc_tag[15:0]) For Response, this is DMU's ID

63:62 Reserved Must be Zero

61:56 CtagEcc[5:0] 6-bit ECC check bit for ID

55:40 Reserved Must be Zero

39:0 Bus Address[39:0] For Responses, SIU does not return the
Address.
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6.6.6 Inbound to NCU

6.6.6.1 Packet from SIU to NCU

There is one cycle of header followed by four cycles of payload data. The format of
the header is shown in TABLE 6-20.

DMU sending to SIU as the following [127:0]
Byte0  Byte1...  Byte15
Byte16  Byte17...  Byte31
Byte 32  Byte33...  Byte47
Byte 48  Byte49...  Byte63

SIU send to L2 is  [31:0]
Byte0 Byte1 Byte2 Byte3 cycle1
Byte 4 Byte5 Byte6 Byte7  cycle2
:
:
Byte 60 Byte61 Byte62  Byte63  cycle16

TABLE 6-20 SIU to NCU: Inbound Packet Header Format

Header Cycle
sii_ncu_data[msb:lsb]

Name Usage

31:31 TimeOutError 1=This packet had Timed Out

30:30 UnmappedAddressError 1=This packet's address mapped to an
nonexistent, reserved, or erroneous address

29:29 UncorrectableError 1=packet has an uncorrectable error

28 SIU Ctag Uncorrectable Error 1= ctag uncorrectable error

27-22 Reserve Must be Zero

21:16 ctag ECC check bit for ID [15:0]

15:0 ID[15:0] as originally sent by
DMU.
dmc_tag[15:0]

If Interrupt is from DMU,
NCU returns the entire tag back to DMU
with mondo_ack or mondo_nack signal
asserted.

If PIO Completion is from DMU,
dmc_tag[12:9] = NCU credit id will be

returned to the credit pool
dmc_tag[8:0] = {3'b000, cpu-thread id[5:0]}
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SIU send to NCU will  be [31:0]
Byte0 Byte1 Byte2 Byte3 cycle1
Byte4 byte5 Byte6  Byte7  cycle2
:
Byte12 Byte13 Byte14 Byte15  cycle4

6.7 CSR
SIU has no CSRs. Data parity errors and uncorrectable errors detected are signaled
in the packet header to the receiving unit. It is assumed that the end unit will log the
error.

The following is a summary of what the CSR tool looks like and may be a candidate
for connecting/generating CSRs within OpenSPARC T2. If debug control status
registers are defined in the future, then SIU will participate with whatever
methodology is defined for accessing CSRs.

Control Status Register (CSR)

All the control and status registers inside the OpenSPARC T2 are generated by the
CSR Tool, so that we can reduce some of the coding effort and standardize the
register access among different modules within OpenSPARC T2. All the modules
with CSR registers will be connected with CSR specific interface in a ring fashion.

CSR interface signals:

Inputs:

clk - clock signal for the design

rst - reset signal for the flops

csrbus_data_in - data to writeto CSR

csrbus_addr - address to send to select one CSR

csrbus_src_bus - source bus identification

csrbus_valid - specifies that address and data lines are valid
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Outputs:

csrbus_mapped - asserted when CSR within module is selected

csrbus_acc_vio - improper access is attempted

csrbus_done - transaction is completed

csrbus_data_out - data read from the CSR

CSR Read/Write Access:

For read from CSR, csrbus_valid is asserted along with address and source bus
information, data come back on csrbus_data_out when csrbus_done is asserted.

For write operation, csrbus_valid is asserted along with address and data info, then
the carbus_done is asserted shortly after within the same cycle.
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6.8 Unit Level Signals

6.8.1 SIU-L2 Interface List

TABLE 6-21 SIU-L2 Interface List

Signal Name I/O Size From/To Description

SII to L2Tag signals

sii_l2t0_req_vld O 1 SIU->L2T Packet request valid (first cycle) to L2Tag for bank0

sii_l2t1_req_vld O 1 SIU->L2T Packet request valid (first cycle) to L2Tag for bank1

sii_l2t2_req_vld O 1 SIU->L2T Packet request valid (first cycle) to L2Tag for bank2

sii_l2t3_req_vld O 1 SIU->L2T Packet request valid (first cycle) to L2Tag for bank3

sii_l2t4_req_vld O 1 SIU->L2T Packet request valid (first cycle) to L2Tag for bank4

sii_l2t5_req_vld O 1 SIU->L2T Packet request valid (first cycle) to L2Tag for bank5

sii_l2t6_req_vld O 1 SIU->L2T Packet request valid (first cycle) to L2Tag for bank6

sii_l2t7_req_vld O 1 SIU->L2T Packet request valid (first cycle) to L2Tag for bank7

sii_l2t0_req O 32 SIU->L2T Packet header/data for bank0

sii_l2t1_req O 32 SIU->L2T Packet header/data for bank1

sii_l2t2_req O 32 SIU->L2T Packet header/data for bank2

sii_l2t3_req O 32 SIU->L2T Packet header/data for bank3

sii_l2t4_req O 32 SIU->L2T Packet header/data for bank4

sii_l2t5_req O 32 SIU->L2T Packet header/data for bank5

sii_l2t6_req O 32 SIU->L2T Packet header/data for bank6

sii_l2t7_req O 32 SIU->L2T Packet header/data for bank7

SII to L2Buffer signals

sii_l2b0_ecc O 7 SIU->L2T Packet ECC for bank0

sii_l2b1_ecc O 7 SIU->L2B Packet ECC for bank1

sii_l2b2_ecc O 7 SIU->L2B Packet ECC for bank2

sii_l2b3_ecc O 7 SIU->L2B Packet ECC for bank3

sii_l2b4_ecc O 7 SIU->L2B Packet ECC for bank4

sii_l2b5_ecc O 7 SIU->L2B Packet ECC for bank5
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sii_l2b6_ecc O 7 SIU->L2B Packet ECC for bank6

sii_l2b7_ecc O 7 SIU->L2B Packet ECC for bank7

L2Tag to SII signals

l2t0_sii_iq_dequeue I 1 L2T->SIU L2Tag is unloading a bank0 request

l2t1_sii_iq_dequeue I 1 L2T->SIU L2Tag is unloading a bank1 request

l2t2_sii_iq_dequeue I 1 L2T->SIU L2Tag is unloading a bank2 request

l2t3_sii_iq_dequeue I 1 L2T->SIU L2Tag is unloading a bank3 request

l2t4_sii_iq_dequeue I 1 L2T->SIU L2Tag is unloading a bank4 request

l2t5_sii_iq_dequeue I 1 L2T->SIU L2Tag is unloading a bank5 request

l2t6_sii_iq_dequeue I 1 L2T->SIU L2Tag is unloading a bank6 request

l2t7_sii_iq_dequeue I 1 L2T->SIU L2Tag is unloading a bank7 request

l2t0_sii_wib_dequeue I 1 L2T->SIU L2Tag is unloading a bank0 write invalidate data buffer

l2t1_sii_wib_dequeue I 1 L2T->SIU L2Tag is unloading a bank1 write invalidate data buffer

l2t2_sii_wib_dequeue I 1 L2T->SIU L2Tag is unloading a bank2 write invalidate data buffer

l2t3_sii_wib_dequeue I 1 L2T->SIU L2Tag is unloading a bank3 write invalidate data buffer

l2t4_sii_wib_dequeue I 1 L2T->SIU L2Tag is unloading a bank4 write invalidate data buffer

l2t5_sii_wib_dequeue I 1 L2T->SIU L2Tag is unloading a bank5 write invalidate data buffer

l2t6_sii_wib_dequeue I 1 L2T->SIU L2Tag is unloading a bank6 write invalidate data buffer

l2t7_sii_wib_dequeue I 1 L2T->SIU L2Tag is unloading a bank7 write invalidate data buffer

L2Buffer to SIO signals

l2b0_sio_ctag_vld I 1 L2B->SIU Response packet Valid (First Cycle) from L2 bank 0

l2b1_sio_ctag_vld I 1 L2B->SIU Response packet Valid (First Cycle) from L2 bank 1

l2b2_sio_ctag_vld I 1 L2B->SIU Response packet Valid (First Cycle) from L2 bank 2

l2b3_sio_ctag_vld I 1 L2B->SIU Response packet Valid (First Cycle) from L2 bank 3

l2b4_sio_ctag_vld I 1 L2B->SIU Response packet Valid (First Cycle) from L2 bank 4

l2b5_sio_ctag_vld I 1 L2B->SIU Response packet Valid (First Cycle) from L2 bank 5

l2b6_sio_ctag_vld I 1 L2B->SIU Response packet Valid (First Cycle) from L2 bank 6

l2b7_sio_ctag_vld I 1 L2B->SIU Response packet Valid (First Cycle) from L2 bank 7

l2b0_sio_data I 32 L2B->SIU Read data/write response packet from L2 bank0

l2b1_sio_data I 32 L2B->SIU Read data/write response packet from L2 bank1

TABLE 6-21 SIU-L2 Interface List (Continued)

Signal Name I/O Size From/To Description
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l2b2_sio_data I 32 L2B->SIU Read data/write response packet from L2 bank2

l2b3_sio_data I 32 L2B->SIU Read data/write response packet from L2 bank3

l2b4_sio_data I 32 L2B->SIU Read data/write response packet from L2 bank4

l2b5_sio_data I 32 L2B->SIU Read data/write response packet from L2 bank5

l2b6_sio_data I 32 L2B->SIU Read data/write response packet from L2 bank6

l2b7_sio_data I 32 L2B->SIU Read data/write response packet from L2 bank7

l2b0_sio_ue_err I 1 L2B->SIU UE on Read data from L2 bank0

l2b1_sio_ue_err I 1 L2B->SIU UE on Read data from L2 bank1

l2b2_sio_ue_err I 1 L2B->SIU UE on Read data from L2 bank2

l2b3_sio_ue_err I 1 L2B->SIU UE on Read data from L2 bank3

l2b4_sio_ue_err I 1 L2B->SIU UE on Read data from L2 bank4

l2b5_sio_ue_err I 1 L2B->SIU UE on Read data from L2 bank5

l2b6_sio_ue_err I 1 L2B->SIU UE on Read data from L2 bank6

l2b7_sio_ue_err I 1 L2B->SIU UE on Read data from L2 bank7

l2b0_sio_parity[1:0] I 2 L2B->SIU Parity on Read data from L2 bank0

l2b1_sio_parity[1:0] I 2 L2B->SIU Parity on Read data from L2 bank1

l2b2_sio_parity[1:0] I 2 L2B->SIU Parity on Read data from L2 bank2

l2b3_sio_parity[1:0] I 2 L2B->SIU Parity on Read data from L2 bank3

l2b4_sio_parity[1:0] I 2 L2B->SIU Parity on Read data from L2 bank4

l2b5_sio_parity[1:0] I 2 L2B->SIU Parity on Read data from L2 bank5

l2b6_sio_parity[1:0] I 2 L2B->SIU Parity on Read data from L2 bank6

l2b7_sio_parity[1:0] I 2 L2B->SIU Parity on Read data from L2 bank7

TABLE 6-21 SIU-L2 Interface List (Continued)

Signal Name I/O Size From/To Description
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6.8.2 SIU-NCU Interface List

TABLE 6-22 SIU-NCU Interface List

Signal Name I/O Size From/To Description

NCU to SII

ncu_sii_gnt I 1 NCU->SIU Grant – xfr packet to NCU starting next cycle

ncu_sii_dmuctag_uei I 1 NCU->SIU Inject uncorrectable error for ctag

ncu_sii_dmuctag_cei I 1 NCU->SIU Inject correctable error for ctag

ncu_sii_dmua_pei I 1 NCU->SIU Inject address parity error

ncu_sii_dmud_pei I 1 NCU->SIU Inject Data parity error

ncu_sii_niuctag_uei I 1 NCU->SIU Inject uncorrectable error for ctag

ncu_sii_niuctag_cei I 1 NCU->SIU Inject correctable error for ctag

ncu_sii_niua_pei I 1 NCU->SIU Inject address parity error

ncu_sii_niud_pei I 1 NCU->SIU Inject data parity error

SII to NCU

sii_ncu_req O 1 SIU->NCU Packet request from SIU to NCU

sii_ncu_data O 32 SIU->NCU Packet header/data from SIU to NCU

sii_ncu_parity[1:0] O 2 SIU->NCU Parity on data from SIU to NCU

sii_ncu_dmuctag_ue O 1 SIU->NCU Uncorrectable error for ctag

sii_ncu_dmuctag_ce O 1 SIU->NCU Correctable error for ctag

sii_ncu_dmua_pe O 1 SIU->NCU Address parity error

sii_ncu_dmud_pe O 1 SIU->NCU Data parity error

sii_ncu_niuctag_ue O 1 SIU->NCU Uncorrectable error for ctag

sii_ncu_niuctag_ce O 1 SIU->NCU Correctable error for ctag

sii_ncu_niua_pe O 1 SIU->NCU Address parity error

sii_ncu_niud_pe O 1 SIU->NCU Data parity error

sii_ncu_syn_vld O 1 SIU->NCU Syndrome valid signal

sii_ncu_syn_data[3:0] O 4 SIU->NCU Syndrome bus total 16 cycle xfr syndrome

SIO to NCU

sio_ncu_ctag_ue O 1 SIU->NCU Uncorrectable error for ctag

sio_ncu_ctag_ce O 1 SIU->NCU Correctable error for ctag

sio_ncu_data_parity O 1 SIU->NCU Data parity error
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Partial L2 Bank Mode bits

ncu_sii_pm I 1 NCU->SIU 0=all 8 banks available
1=partial mode and need to look at each ncu_sii_ba*
signals

ncu_sii_ba01 I NCU->SIU 0=bank0 and bank1 unavailable
1=both banks available

ncu_sii_ba23 I NCU->SIU 0=bank2 and bank3 unavailable
1=both banks available

ncu_sii_ba45 I NCU->SIU 0=bank4 and bank5 unavailable
1=both banks available

ncu_sii_ba67 I NCU->SIU 0=bank6 and bank7 unavailable
1=both banks available

L2 Index Hashing Enable bit

ncu_sii_l2_idx_hash_e
n

I NCU->SIU 1=enable hashing of PA for L2 index.

TABLE 6-22 SIU-NCU Interface List (Continued)

Signal Name I/O Size From/To Description
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6.8.3 SIU-NIU Interface List

TABLE 6-23 SIU-NIU Interface List

Signal Name I/O Size From/To Description

NIU to SII signals

niu_sii_hdr_vld I 1 NIU->SIU Asserted during the header phase of any requests from
NIU to SIU. Not asserted during the data transfer phase.

niu_sii_reqbypass I 1 NIU->SIU Valid during the header phase only.
0: Current request is for the bypass queue
1: Current request is for the ordered queue

niu_sii_datareq I 1 NIU->SIU Valid during the header phase only.
0: Current request is a read, with no payload;
1: Current request is a write, with one or four cycles of data
payload

niu_sii_datareq16 I 1 NIU->SIU Valid during the header phase only. Don't care if
niu_sii_datareq is 0.
Otherwise should always be 0 for the supported modes
expected from NIU: Current write request has 64B data
payload;

niu_sii_data[127:0] I 128 NIU->SIU Packet header/data for L2.
(Big-endian)

niu_sii_parity[7:0] I 4 NIU->SIU Parity of data payload cycles (127:0)

SII to NIU signals

sii_niu_oqdq O 1 SIU->NIU Transaction credit for the ordered queue

sii_niu_bqdq O 1 SIU->NIU Transaction credit for the ordered queue

SIO to NIU signals

sio_niu_hdr_vld O 1 SIU->NIU Envelops the header of any requests from SIU to NIU. Not
asserted during the data transfer phase. NIU determines
from the header if and how much data will follow.

sio_niu_data[127:0] O 128 SIU->NIU Packet header/data for NIU

sio_niu_parity[7:0] O 4 SIU->NIU Parity of payload cycles (127:0)
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6.8.4 SIU-DMU Interface List

TABLE 6-24 SIU-DMU Interface List

Signal Name I/O Size From/To Description

DMU to SII signals

dmu_sii_hdr_vld I 1 DMU->SIU Asserted during the header phase of any requests from
DMU to SIU. Not asserted during the data transfer phase.

dmu_sii_reqbypass I 1 DMU->SIU Valid during the header phase only.
Asserted for PIO rd cpl's

dmu_sii_datareq I 1 DMU->SIU Valid during the header phase only.
0: Current request is a read, with no payload;
1: Current request is a write, with one or four cycles of
data payload

dmu_sii_datareq16 I 1 DMU->SIU Valid during the header phase only. Don't care if
dmu_sii_datareq is 0.
0: Current write request has 64B data payload;
1: Current write request has 16B data payload. (meant for
NCU – int/PIO read data)

dmu_sii_data[127:0] I 128 DMU->SIU Packet header/data for L2/NCU.
(Big-endian)
For PIO read completions, the 64 bit PIO payload will be
duplicated on both halves of the 128 bit data bus. Which
64 bits to replicate will be determined by dmu_sii_be[15:0]

dmu_sii_be[15:0] I 16 DMU->SIU Packet data byte enables/errors. Only valid during data
transfer phase. (Bit position matches Byte position on the
data bus.)

dmu_sii_parity[7:0] I 4 DMU->SIU Parity of data payload cycles (127:0)

dmu_sii_be_parity I 1 DMU->SIU Parity of dmu_sii_be[15:0]

SII to DMU signals

sii_dmu_wrack_tag[3:0] O 4 SIU->DMU j2d_d_wrack_tag[3:0] DSN/DMU name
Transaction credit id for dma wrack

sii_dmu_wrack_parity O 1 SIU->DMU Parity bit for the sii_dmu_wrack_tag

sii_dmu_wrack_vld O 1 SIU->DMU j2d_d_wrack_vld DSN/DMU name
Valid signal for j2d_d_wrack_tag
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6.8.5 SIU-TCU Interface List

SIO to DMU signals

sio_dmu_hdr_vld O 1 SIU->DMU Envelops the header of any requests from SIU to DMU.
Not asserted during the data transfer phase. DMU
determines from the header if and how much data will
follow.

sio_dmu_data[127:0] O 128 SIU->DMU Packet header/data for DMU

sio_dmu_parity[7:0] O 4 SIU->DMU Parity of payload cycles (128:0)

TABLE 6-25 SIU-TCU Interface List

Signal Name I/O Size From/To Description

TCU to SII

tcu_sii_vld I 1 TCU->SII Valid signal to qualify the tcu_sii_data

tcu_sii_data I 1 TCU->SII Serial data bus for dma rd/wr request

SIO to TCU

sio_tcu_vld O 1 SIO->TCU Valid signal to qualify the sio_tcu_data

sio_tcu_data O 1 SIO->TCU Serial bus for DMA return data/hdr

SII to DBG

sii_dbg_l2t0_req[1:0] O 2 SII->DBG 00=no req, 01=rd,10=wr,11=wr8

sii_dbg_l2t1_req[1:0] O 2 SII->DBG 00=no req, 01=rd,10=wr,11=wr8

sii_dbg_l2t2_req[1:0] O 2 SII->DBG 00=no req, 01=rd,10=wr,11=wr8

sii_dbg_l2t3_req[1:0] O 2 SII->DBG 00=no req, 01=rd,10=wr,11=wr8

sii_dbg_l2t4_req[1:0] O 2 SII->DBG 00=no req, 01=rd,10=wr,11=wr8

sii_dbg_l2t5_req[1:0] O 2 SII->DBG 00=no req, 01=rd,10=wr,11=wr8

sii_dbg_l2t6_req[1:0] O 2 SII->DBG 00=no req, 01=rd,10=wr,11=wr8

sii_dbg_l2t7_req[1:0] O 2 SII->DBG 00=no req, 01=rd,10=wr,11=wr8

TABLE 6-24 SIU-DMU Interface List (Continued)

Signal Name I/O Size From/To Description
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CHAPTER 7

Non-Cacheable Unit (NCU)

This chapter contains the following sections:

■ Overview

■ Clock Domains

■ Data Flow

■ Interface Signals, Protocols, and Timing Diagrams

■ Interrupts

■ NCU Global Physical Address (PA) Assignments

■ Appendix A

■ Appendix B

7.1 Overview
The main function of NCU is to communicate between the CMP cores (64 threads total) and
the various blocks in the IO subsystem. FIGURE 7-1 shows the connectivity of NCU with
various IO subsystem blocks as well as the XBAR, which connects to CMP core on the other
side. Traffic on XBAR side runs at CPU clock frequency whereas traffic on IO subsystem
side is at IO clock frequency. In general, traffic goes to NCU does not require high
performance and can tolerate high latency.
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FIGURE 7-1 NCU Connectivity

TABLE 7-1 shows a summary of types of traffic and bus size between each unit control
block and NCU.

TABLE 7-1 NCU/UCB Communication Type and Bus Size

Unit Control Block
(UCB)

Bus Size (downstream/ upstream
(protocol))

External req/ack/intr CSR On Chip
Interrupts

Boot Up

SII --/32 (SII/NCU Table4) Mondo intr., PIO
rtns

--- --- ---

DMU Mondo resp.: 4/--
PIO: 64/-- (NCU/DMU 5)

CSR: 32/32 (UCB Table2,3)

Mondo Interrupt.
Resp.
PIO rd_req/wr requests

---
CSR rw

--- ---

MCUs 4/4 (UCB 2,3) --- CSR rw OCI ---

CCU 4/4 (UCB 2,3) --- CSR rw --- ---
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7.1.1 Changes from OpenSPARC T1 IOB
Changes from two MCUs to four MCUs.

CTU changes to CCU + TCU.

JBUS changes to SIU + DMU with different interface format

Adds DMU CSR support.

Adds DMU PIO token ID engine to limit numbers of outstanding PIO to DMU

Adds DMU PIO memory due to OpenSPARC T2 IOMMU changes

Adds support for Mondo Interrupt ID return for DMU

Adds ASI register to comply with SUN's CMP specification

Adds L2 partial bank mode support

Internal memories upsizing to accommodate 64 threads and memory pipelines
adjustment

XBAR packet format changes

Modifies reset handling to comply with OpenSPARC T2's reset scheme

Integrates SSI (boot ROM i/f logics)

RAS logics

OpenSPARC T2 naming rule compliance.

TCU 8/8 (UCB 2,3) --- CSR rw --- ---

SSI (integrated
into NCU)

4/4 (UCB 2,3) --- CSR rw OCI Instruction
s

RST 4/4 (UCB 2,3) --- CSR rw --- ---

DBG 4/4 (UCB 2,3) --- CSR rw --- ---

TABLE 7-1 NCU/UCB Communication Type and Bus Size (Continued)

Unit Control Block
(UCB)

Bus Size (downstream/ upstream
(protocol))

External req/ack/intr CSR On Chip
Interrupts

Boot Up
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FIGURE 7-2 NCU Internal Logical Block Diagram

NCU retains most of the internal block name from OpenSPARC T1 IOB since it does
not violate the OpenSPARC T2 naming rule:

c2i – cpu to io

i2c – io to cpu

sdp – slow clock (io_clk domain) data path

sctl – slow clock control logic

fdp – fast clock (cpu_clk domain) data path

fctl – fast clock control logic
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7.2 Clock Domains
There are two clock domains in NCU: CPU clock domain and IO clock domain.

■ CPU Clock Domain: XBAR side communications at CPU clock frequency
(targeted for 1.4GHz)

■ IO Clock Domain: IO subsystem side communications at IO clock frequency
(targeted for 1.4GHz /4 = 350MHz or 1.4GHz/3 = 467MHz)

7.3 Data Flow
Data Flow can be subdivided into the following categories:

Downstream -- packets/information going from XBAR to IO subsystem.

1. CPU non-cacheable external PIO store requests (8B max) /load requests (16B
max).

2. CPU external instruction fetch (IFILL) requests.

3. On chip CSR read/write requests (8B only) from CPU to IO subsystem.

4. Upstream – packets/information going from IO subsystem to XBAR.

5. PIO read returns (16B max).

6. External Instruction fetch returns (4B only).

7. CSR read returns (8B only).

8. Mondo Interrupts (with 16B mondo payload).

9. On-chip interrupts (MCU, SSI).

Loopback – packet/information going from XBAR and being sent back to XBAR

1. CPU Mondo Interrupt Table lookup.

2. NCU's internal CSR/ ASI register access.

Undeliverable – NCU adopted the OpenSPARC T1 IOB's packet delivery policy. All
writes/STORE_REQs to NCU from core is non-posted which means core requires
STORE_ACK to confirm the packets delivery. NCU generates STORE_ACK back to
core automatically whenever a STORE_REQ is dequeued successfully from the main
downstream FIFO or the DMUPIO fifo. Therefore, core still gets a STORE_ACK for
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an undeliverable STORE_REQ, and the actual STORE_REQ packet is discarded. For
undeliverable LOAD_REQ/read, NCU generates an CPX Load Return packet with
uncorrectable error bit set.

7.3.1 Downstream Path Block Diagrams
FIGURE 7-3 and FIGURE 7-4 show the logical block diagram for downstream
communication path, PCX interface is a 130 bit-wide data bus running at 1.5GHz.,
sourcing packets into NCU. The packet is then decoded by c2i_fdp and c2i_fctl
blocks to extract the CPU Mondo interrupt table access from other traffic, which
includes on-chip CSR read/write access, CPU non-cacheable external load/store
request (PIO read/write), and CPU instruction fetch request. All requests other than
Mondo interrupt table access are sent to the CPU command FIFO, which is a 32 deep
domain crossing FIFO. The write control is managed by c2i_fctl block in CPU clock
domain and the read control is managed by c2i_fctl block in IO clock domain. When
a CPU packet is dequeued from the FIFO, c2i_sdp and c2i_sctl blocks will determine
which of UCB output buffers to send the packet to. Each of the UCB output buffer
contains a double buffer and a working buffer as shown in FIGURE 7-4.
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FIGURE 7-3 Downstream Path Logic Block Diagram
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FIGURE 7-4 Downstream Data Path Block Diagram

Note – There is no downstream communications to SIU because all non cacheable
external CPU load/store requests (PIO requests) are sent directly to DMU, and there
is no CSR in SIU neither. However, SIU talks to NCU on the upstream data return
path, and this will be covered in the upstream path.

7.3.2 Upstream Path Block Diagrams
FIGURE 7-5 and FIGURE 7-6 show the logical block diagram for the upstream
communication path. NCU collects packets from each IO block and push them into
the upstream main FIFO in IO clock domain. For Mondo Interrupt case (originated
from DMU and sent via SIU to NCU), NCU checks the internal status table for the
target CPU thread's availability and responses with an “ack” or “nack,” An “ack”
means the Mondo Interrupt is accepted, and a “nack” means it is rejected. The
upstream main FIFO is a 32 deep domain crossing FIFO, shared by all IO blocks.
Data is written in IO clock domain and read out in CPU clock domain. The head
pointer and tail pointer of the FIFO are controlled by the i2c_sctl block in IO clock
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domain and i2c_fctl block in CPU clock domain, respectively. C2i_fdp and c2i_fctl
blocks also arbitrate and mux between the upstream main FIFO output and CPU
Mondo lookup data output as shown in FIGURE 7-5 and FIGURE 7-6.

FIGURE 7-5 Upstream Path Logic Block Diagram
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FIGURE 7-6 Upstream Data Path Block Diagram
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7.4 Interface Signals, Protocols, and Timing
Diagrams

TABLE 7-2 NCU/XBAR (CCX) Interface Signals

NCU/XBAR(CCX) Interface Signals Direction Comment

ncu_pcx_stall_pq Output NCU back pressure control signal to CCX

pcx_ncu_data_rdy_px1 Input PCX to NCU data valid (px1 version)

pcx_ncu_data_px2[129:0] Input PCX to NCU data bus (px2 version)

cpx_ncu_grant_cx[7:0] Input CPX grant indicates the corresponding packet has
reached its CPU destination and there is room for more
packet for the same corresponding CPU destination.

ncu_cpx_req_cq[7:0] Output NCU to CPX request signals

ncu_cpx_data_ca[144:0] Output NCU to CPX data bus

TABLE 7-3 NCU/MCU0 Interface Signals

NCU/MCU0 Interface Signals Direction Comment

mcu0_ncu_stall Input MCU0 back pressure control signal to NCU

ncu_mcu0_vld Output NCU to MCU0 data valid

ncu_mcu0_data[3:0] Output NCU to MCU0 data bus

ncu_mcu0_stall Output NCU back pressure control signal to MCU0

mcu0_ncu_vld Input MCU0 to NCU data valid

mcu0_ncu_data[3:0] Input MCU0 to NCU data bus

ncu_mcu0_e0i Output Error injection0 to MCU0

mcu0_ncu_e1 Input Error strobe1 from MCU0

ncu_mcu0_e1i Output Error injection1 to MCU0

mcu0_ncu_e2 Input Error strobe2 from MCU0

ncu_mcu0_e2i Output Error injection2 to MCU0
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TABLE 7-4 NCU/MCU1 Interface Signals

NCU/MCU1 Interface Signals Direction Comment

mcu1_ncu_stall Input MCU1 back pressure control signal to NCU

ncu_mcu1_vld Output NCU to MCU1 data valid

ncu_mcu1_data[3:0] Output NCU to MCU1 data bus

ncu_mcu1_stall Output NCU back pressure control signal to MCU1

mcu1_ncu_vld Input MCU1 to NCU data valid

mcu1_ncu_data[3:0] Input MCU1 to NCU data bus

mcu1_ncu_e0 Input Error strobe0 from MCU1

ncu_mcu1_e0i Output Error injection0 to MCU1

mcu1_ncu_e1 Input Error strobe1 from MCU1

ncu_mcu1_e1i Output Error injection1 to MCU1

mcu1_ncu_e2 Input Error strobe2 from MCU1

ncu_mcu1_e2i Output Error injection2 to MCU1

TABLE 7-5 NCU/MCU2 Interface Signals

NCU/MCU2 Interface Signals Direction Comment

mcu2_ncu_stall Input MCU2 back pressure control signal to NCU

ncu_mcu2_vld Output NCU to MCU2 data valid

ncu_mcu2_data[3:0] Output NCU to MCU2 data bus

ncu_mcu2_stall Output NCU back pressure control signal to MCU2

mcu2_ncu_vld Input MCU2 to NCU data valid

mcu2_ncu_data[3:0] Input MCU2 to NCU data bus

mcu2_ncu_e0 Input Error strobe0 from MCU2

ncu_mcu2_e0i Output Error injection0 to MCU2

mcu2_ncu_e1 Input Error strobe1 from MCU2
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ncu_mcu2_e1i Output Error injection1 to MCU2

mcu2_ncu_e2 Input Error strobe2 from MCU2

ncu_mcu2_e2i Output Error injection2 to MCU2

TABLE 7-6 NCU/MCU3 Interface Signals

NCU/MCU3 Interface Signals Direction Comment

mcu3_ncu_stall Input MCU3 back pressure control signal to NCU

ncu_mcu3_vld Output NCU to MCU3 data valid

ncu_mcu3_data[3:0] Output NCU to MCU3 data bus

ncu_mcu3_stall Output NCU back pressure control signal to MCU3

mcu3_ncu_vld Input MCU3 to NCU data valid

mcu3_ncu_data[3:0] Input MCU3 to NCU data bus

mcu3_ncu_e0 Input Error strobe0 from MCU3

ncu_mcu3_e0i Output Error injection0 to MCU3

mcu3_ncu_e1 Input Error strobe1 from MCU3

ncu_mcu3_e1i Output Error injection1 to MCU3

mcu3_ncu_e2 Input Error strobe2 from MCU3

ncu_mcu3_e2i Output Error injection2 to MCU3

TABLE 7-7 NCU/SSI Interface Signals

NCU/SSI Interface Signals Direction Comment

ncu_mio_ssi_sck Output Boot ROM interface clk (iol2clk/8)

ncu_mio_ssi_mosi Output Boot ROM interface data ssi Output to ROM

mio_ncu_ssi_miso Input Boot ROM interface data ROM to ssi

mio_ncu_ssi_ext_int_l Input Low active external trigger interrupt

TABLE 7-5 NCU/MCU2 Interface Signals (Continued)

NCU/MCU2 Interface Signals Direction Comment
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TABLE 7-8 NCU/DBG1 Interface Signals

NCU/DBG1 Interface Signals Direction Comment

dbg1_ncu_stall Input DBG1 back pressure control signal to NCU

dbg1_ncu_vld Input DBG1 to NCU data valid

dbg1_ncu_data[3:0] Input DBG1 to NCU data bus

ncu_dbg1_vld Output NCU to DBG1 data valid

ncu_dbg1_data[3:0] Output NCU to DBG1 data bus

ncu_dbg1_stall Output NCU back pressure control signal to DBG1

ncu_dbg1_error_event Output NCU error happens, enabled with wmr_vec_mask

TABLE 7-9 NCU/CCU Interface Signals

NCU/CCU Interface Signals Direction Comment

ccu_ncu_stall Input CCU back pressure control signal to NCU

ncu_ccu_vld Output NCU to CCU data valid

ncu_ccu_data[3:0] Output NCU to CCU data bus

ncu_ccu_stall Output NCU back pressure control signal to CCU

ccu_ncu_vld Input CCU to NCU data valid

ccu_ncu_data[3:0] Input CCU to NCU data bus

TABLE 7-10 NCU/TCU Interface Signals

NCU/TCU Interface Signals Direction Comment

tcu_ncu_stall Input TCU back pressure control signal to NCU

tcu_ncu_vld Input TCU to NCU data valid

tcu_ncu_data[7:0] Input TCU to NCU data bus

ncu_tcu_stall Output NCU back pressure control signal to TCU

ncu_tcu_vld Output NCU to TCU data valid.

ncu_tcu_data[7:0] Output NCU to TCU data bus.
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ncu_tcu_soc_error Output One pulse signal to TCU each time when an soc error
packet is generated from NCU to the core

ncu_tcu_bank_avail[7:0] Output Copy from bankavail[7:0].

tcu_ncu_mbist_start[1:0] Input Mbist start (1'b0 for normal function mode)

ncu_tcu_mbist_done[1:0] Output Mbist done

ncu_tcu_mbist_fail[1:0] Output Mbist fail

tcu_dbr_gateoff Input Turn off all the vld and stall when it is 1'b1.

TABLE 7-11 NCU/RST Interface Signals

NCU/RST Interface Signals Direction Comment

rst_ncu_stall Input RST back pressure control signal to NCU

ncu_rst_vld Output NCU to RST data valid

ncu_rst_data[3:0] Output NCU to RST data bus

ncu_rst_stall Output NCU back pressure control signal to RST

rst_ncu_vld Input RST to NCU data valid

rst_ncu_data[3:0] Input RST to NCU data bus

rst_ncu_unpark_thread Input After each “warm reset” is de-asserted and all BISX
activities are completed, RST send in a 1-clock wide pulse
to tell NCU the system is ready to wake up the master
thread, which is the lowest available thread basing on
core_enable_status ASI register.

rst_ncu_xir_ Input External Initiated Interrupt (multi-clock wide pulse
signal) This signal triggers interrupts to cpu_thr that
based on XIR_steering register. It will be deasserted
when ncu_rst_xir_done is high.

ncu_rst_xir_done Output NCU asserts this signal back to RST block to indicate all
XIR interrupts have been generated (multi-clock wide
pulse). It will be deasserted when rst_ncu_xir_ is back to
high.

TABLE 7-10 NCU/TCU Interface Signals (Continued)

NCU/TCU Interface Signals Direction Comment
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TABLE 7-12 NCU/DMU CSR Interface Signals

NCU/DMU CSR Interface Signals Direction Comment

dmu_ncu_stall Input DMU CSR bus back pressure control signal to NCU.

ncu_dmu_vld Output NCU to DMU CSR data valid.

ncu_dmu_data[31:0] Output NCU to DMU CSR data bus.

ncu_dmu_stall Output NCU CSR bus back pressure control signal to DMU.

dmu_ncu_vld Input DMU to NCU CSR data valid.

dmu_ncu_data[31:0] Input DMU to NCU CSR data bus.

TABLE 7-13 NCU/DMU PIO and Mondo Interface

NCU/DMU PIO and Mondo Interface Direction Comment

ncu_dmu_pio_hdr_vld Output Indicates ncu_dmupio_data is valid for PIO header
transaction.

ncu_dmu_mmu_addr_vld Output Indicates ncu_dmupio_data is valid for one cycle for
“mmu invalidate vector.” The vector is coming a write
operation into CSR register 0x80_0000_2030

ncu_dmu_pio_data[63:0] Output NCU to DMU data bus

dmu_ncu_wrack_par Input Odd parity check for dmu_ncu_wrack_tag[3:0].

dmu_ncu_wrack_vld Input Indicates dmu_ncu_wrack_tag[3:0] is valid

dmu_ncu_wrack_tag[3:0] Input Credit ID back to NCU for PIO write completion.

ncu_dmu_mondo_ack Output Mondo Interrupt ack (ncu_dmu_mondo_id[5:0] is valid
when this signal is asserted to indicate the mondo_id it
is acking.)

ncu_dmu_mondo_nack Output Mondo Interrupt nack (ncu_dmu_mondo_id[5:0] is valid
when this signal is asserted to indicate the mondo_id it
is nacking.)

ncu_dmu_mondo_id[5:0] Output Mondo Interrupt ID, valid when ncu_dmu_mondo_ack
or ncu_dmu_mondo_nack is asserted.

dmu_ncu_ctag_ue Input Ctag double bit ue from SIO DMA read return.

ncu_dmu_ctag_uei Output Ctag double bit ue injected by RASEJR.

dmu_ncu_ctag_ce Input Error strobe from dmu (ctag ue)
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ncu_dmu_ctag_cei Output Error injection signal

dmu_ncu_d_pe Input Error strobe from dmu (data parity error)

ncu_dmu_d_pei Output Error injection signal

dmu_ncu_siicr_pe Input Error strobe from dmu (siicr parity error)

ncu_dmu_siicr_pei Output Error injection signal

dmu_ncu_ncucr_pe Input Error strobe from dmu (ncucr parity error)

ncu_dmu_ncucr_pei Output Error injection signal

dmu_ncu_ie Input Error strobe from dmu (internal error)

ncu_dmu_iei Output Error injection signal

TABLE 7-14 NCU/SII Interface Signals

NCU/SII Interface Signals Direction Comment

ncu_sii_gnt Output NCU to SII grant signal to indicate there is room to
receive one more packet. Transaction should starts in the
next cycle

sii_ncu_req Input SII to NCU packet available request

sii_ncu_data[31:0] Input SII to NCU data bus

sii_ncu_dparity[1:0] Input SII to NCU data parity (covers sii_ncu_data[31:0] bus for
data cycle only). Odd parity: bit[0] covers even bits, and
bit[1] covers odd bits.

sii_ncu_dmua_ue Input Error strobe from sii (dmu pkt address ue)

ncu_sii_dmua_uei Output Error injection signal

sii_ncu_dmuctag_ue Input Error strobe from sii (dmu pkt ctag ue)

ncu_sii_dmuctag_uei Output Error injection signal

sii_ncu_dmuctag_ce Input Error strobe from sii (dmu pkt ctag ce)

ncu_sii_dmuctag_cei Output Error injection signal

sii_ncu_dmud_pe Input Error strobe from sii (dmu pkt data parity error)

ncu_sii_dmud_pei Output Error injection signal

sii_ncu_niua_ue Input Error strobe from sii (niu pkt address ue)

ncu_sii_niua_uei Output Error injection signal

TABLE 7-13 NCU/DMU PIO and Mondo Interface (Continued)

NCU/DMU PIO and Mondo Interface Direction Comment
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sii_ncu_niuctag_ue Input Error strobe from sii (niu pkt ctag ue)

ncu_sii_niuctag_uei Output Error injection signal

sii_ncu_niuctag_ce Input Error strobe from sii (niu pkt ctag ue)

ncu_sii_niuctag_cei Output Error injection signal

sii_ncu_niud_pe Input Error strobe from sii (niu pkt data parity ue)

ncu_sii_niud_pei Output Error injection signal

sii_ncu_syn_vld Input Error syndrome vld for sii_ncu_syn_data[3:0]

sii_ncu_syn_data[3:0] Output Error syndrome data bus for

ncu_sii_pm Output L2 bank partial mode. (Value is from
BANK_ENABLE_STATUS register)

ncu_sii_ba01 Output L2 bank0,1 available (Value is from
BANK_ENABLE_STATUS register)

ncu_sii_ba23 Output L2 bank2,3 available (Value is from
BANK_ENABLE_STATUS register)

ncu_sii_ba45 Output L2 bank4,5 available (Value is from
BANK_ENABLE_STATUS register)

ncu_sii_ba67 Output L2 bank6,7 available (Value is from
BANK_ENABLE_STATUS register)

ncu_sii_l2_idx_hash_en Output L2 index hash enable. (Value is from
L2_IDX_HASH_EN_STATUS register)

TABLE 7-15 SIO/NCU Interface Signals

SIO/NCU Interface Signals Direction Comment

sio_ncu_ctag_ue Input Error strobe from sio (ctag ue)

ncu_sio_ctag_uei Output Error injection signal

sio_ncu_ctag_ce Input Error strobe from sio (ctag ce)

ncu_sio_ctag_cei Output Error injection signal

sio_ncu_d_pe Input Error strobe from sio (data parity error)

ncu_sio_d_pei Output Error injection signal

TABLE 7-14 NCU/SII Interface Signals (Continued)

NCU/SII Interface Signals Direction Comment
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TABLE 7-16 eFuse/NCU Interface Signals

eFuse/NCU Interface Signals Direction Comment

efu_ncu_fuse_data Input Fuse unit serial data signal

efu_ncu_coreavl_xfer_en Input Indicates data bit is valid for core available register.

efu_ncu_bankavl_xfer_en Input Indicates data bit is valid for bank available register.

efu_ncu_fusestat_xfer_en Input Indicates data bit is valid for fuse status reg.

efu_ncu_sernum0_xfer_en Input Indicates data bit is valid for sernum0 reg.

efu_ncu_sernum1_xfer_en Input Indicates data bit is valid for sernum1 reg.

efu_ncu_sernum2_xfer_en Input Indicates data bit is valid for sernum2 reg.

TABLE 7-17 CCU/NCU Interface Signals

CCU/NCU Interface Signals Direction Comment

ccu_cmp_io_sync_en Input Sync. pulse for cmp domain to io domain

ccu_io_cmp_sync_en Input Sync. pulse for io domain to cmp domain

tcu_pce_ov Input TEST control. 1'b0 for normal functional mode

tcu_ncu_clk_stop Input TEST control. 1'b0 for normal functional mode

tcu_ncu_io_stop Input TEST control. 1'b0 for normal functional mode

ccu_io_out Input CCU output goes to NCU io clkgen.

tcu_aclk Input SCAN clock

tcu_bclk Input SCAN clock

TABLE 7-18 Global Signals

Global Signals Direction Comment

scan_in Input SCAN IN (1'b0 or 1'b1 for normal function mode
simulation)

scan_out Output SCAN OUT

tcu_ncu_mbist_scan_in Input Mbist scan in (1'b0 or 1'b1 for normal function mode
simulation)

ncu_tcu_mbist_scan_out Output Mbist scan out
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tcu_mbist_bisi_en Input Bist engine enable (1'b0 for normal function mode)

tcu_scan_en Input SCAN enable. 1'b0 for normal functional mode

tcu_se_scancollar_in Input TEST control. 1'b0 for normal functional mode

tcu_se_scancollar_out Input TEST control. 1'b0 for normal functional mode

tcu_array_wr_inhibit Input TEST control. 1'b0 for normal functional mode

TABLE 7-19 Signals to L2T

Signals to L2T Direction Comment

ncu_l2t_pm Output L2 bank partial mode. (Value is from
BANK_ENABLE_STATUS register)

ncu_l2t_ba01 Output L2 bank0,1 available (Value is from
BANK_ENABLE_STATUS register)

Ncu_l2t_ba23 Output L2 bank2,3 available (Value is from
BANK_ENABLE_STATUS register)

ncu_l2t_ba45 Output L2 bank4,5 available (Value is from
BANK_ENABLE_STATUS register)

ncu_l2t_ba67 Output L2 bank6,7 available (Value is from
BANK_ENABLE_STATUS register)

TABLE 7-20 Signals to all SPC

Signals to all SPC Direction Comment

ncu_spc_pm Output L2 bank partial mode. (Value is from
BANK_ENABLE_STATUS register)

ncu_spc_ba01 Output L2 bank0,1 available (Value is from
BANK_ENABLE_STATUS register)

ncu_spc_ba23 Output L2 bank2,3 available (Value is from
BANK_ENABLE_STATUS register)

ncu_spc_ba45 Output L2 bank4,5 available (Value is from
BANK_ENABLE_STATUS register)

ncu_spc_ba67 Output L2 bank6,7 available (Value is from
BANK_ENABLE_STATUS register)

TABLE 7-18 Global Signals (Continued)

Global Signals Direction Comment
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ncu_spc_l2_idx_hash_en Output L2 index hash enable. (Value is from
L2_IDX_HASH_EN_STATUS register)

cmp_tick_enable Output ASI register cmp_tick_enable signal.

tcu_wmr_vec_mask Output ASI register wmr_vec_mask signal.

TABLE 7-21 SPC 0

SPC 0 Direction Comment

ncu_spc0_core_enable_status Output For gating off clock to SPC0

ncu_spc0_core_running[7:0] Output 8-bit signals to indicate parking or unparking
request to SPC0 for each thread

spc0_ncu_core_running_status[7:0] Input 8-bit signals to indicate the current SPC0 status is
active or parking.

TABLE 7-22 SPC1

SPC1 Direction Comment

ncu_spc1_core_enable_status Output For gating off clock to SPC1

ncu_spc1_core_running[7:0] Output 8-bit signals to indicate parking or unparking request
to SPC1 for each thread

spc0_ncu_core_running_status[7:0] Input 8-bit signals to indicate the current SPC1 status is
active or parking.

TABLE 7-23 SPC2

SPC2 Direction Comment

ncu_spc2_core_enable_status Output For gating off clock to SPC2

ncu_spc2_core_running[7:0] Output 8-bit signals to indicate parking or unparking request
to SPC2 for each thread

spc2_ncu_core_running_status[7:0] Input 8-bit signals to indicate the current SPC2 status is
active or parking.

TABLE 7-20 Signals to all SPC (Continued)

Signals to all SPC Direction Comment
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TABLE 7-24 SPC3

SPC3 Direction Comment

ncu_spc3_core_enable_status Output For gating off clock to SPC3

ncu_spc3_core_running[7:0] Output 8-bit signals to indicate parking or unparking request
to SPC3 for each thread

spc3_ncu_core_running_status[7:0] Input 8-bit signals to indicate the current SPC3 status is
active or parking.

TABLE 7-25 SPC4

SPC4 Direction Comment

ncu_spc4_core_enable_status Output For gating off clock to SPC4

ncu_spc4_core_running[7:0] Output 8-bit signals to indicate parking or unparking request
to SPC4 for each thread

spc4_ncu_core_running_status[7:0] Input 8-bit signals to indicate the current SPC4 status is
active or parking.

TABLE 7-26 SPC5

SPC5 Direction Comment

ncu_spc5_core_enable_status Output For gating off clock to SPC5

ncu_spc5_core_running[7:0] Output 8-bit signals to indicate parking or unparking request
to SPC5 for each thread

spc5_ncu_core_running_status[7:0] Input 8-bit signals to indicate the current SPC5 status is
active or parking.
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7.4.1 XBAR Interface

7.4.1.1 NCU/XBAR PCX Interface (Downstream)

The PCX interface is a 130 bit-wide bus with two bits flow control signals. The signal
“ncu_pcx_stall_pq” is to back pressure XBAR when the downstream CPU shared
buffer becomes full. An asserted “pcx_ncu_data_rdy_px1” indicates the data bus
“pcx_ncu_data_px2[129:0]” to NCU is valid in next cycle. FIGURE 7-7 shows the case
that CPU shared buffer has available entry and is filled by PCX packets again. The
de-assertion of “ncu_pcx_stall_pq” indicates there is room for at least six more PCX
packets. Due to the nature of pipelining design, there may be three more packets in
flight after the assertion of “ncu_pcx_stall_pq” signal. Therefore, when
“ncu_pcx_stall_pq” signal is asserted, NCU is guaranteed to be able to accept as
least three more packets from XBAR PCX interface as shown in FIGURE 7-7.

Note – NCU is using px1 version of “data ready” signal and px2 version for “data”
bus.

TABLE 7-27 SPC6

SPC6 Direction Comment

ncu_spc6_core_enable_status Output For gating off clock to SPC6

ncu_spc6_core_running[7:0] Output 8-bit signals to indicate parking or unparking request
to SPC6 for each thread

spc6_ncu_core_running_status[7:0] Input 8-bit signals to indicate the current SPC6 status is
active or parking.

TABLE 7-28 SPC7

SPC7 Direction Comment

ncu_spc7_core_enable_status Output For gating off clock to SPC7

ncu_spc7_core_running[7:0] Output 8-bit signals to indicate parking or unparking request
to SPC7 for each thread

spc7_ncu_core_running_status[7:0] Input 8-bit signals to indicate the current SPC7 status is
active or parking.
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FIGURE 7-7 Downstream PCX Interface Timing

7.4.1.2 NCU/XBAR CPX Interface (Upstream)

The CPX interface is a 146 bit-wide data bus plus two sets of eight bit-wide flow
control. NCU keeps track of the number outstanding requests without grant for each
of the eight CPU. When the number of outstanding requests without grant reaches
two for a particular CPU, NCU will stop sending the third request to the same CPU
until the first grant has returned. This is mainly due to CCX has two levels of
buffering for each CPU destination, and sending a third outstanding packet to the
same destination will result in packet being lost. The timing diagram for the CPX
bus is shown in FIGURE 7-8.
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FIGURE 7-8 Upstream PCX Interface Timing

7.4.2 NCU/MCU Interface
There are four MCUs on OpenSPARC T2, and they are all connected to NCU in the
same manner. The downstream and upstream paths are both four bit-wide data bus
with two control signals. The interface protocol is a 128 bit packet being spread into
32 cycles of transactions. NCU only sends type “READ_REQ,” and “WRITE_REQ.”
with 8B request size to MCU for CSR access.

The packet types that MCU sends upstream to NCU are:

“READ_ACK,” with 8B payload in response to a successful “READ_REQ,” (128-bit
UCB packet)

“READ_NACK,” without payload in response to an unsuccessful “READ_REQ,”
(64-bit UCB packet without payload)

“INT,” for on chip interrupt, resulting from some error conditions in MCU (64-bit
UCB Int. packet with dev_id = 1)

FIGURE 7-9 and FIGURE 7-10 show the downstream and upstream timing diagram for
NCU/MCU interface.
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FIGURE 7-9 NCU to MCU/SSI/RNG/CCU/RST Downstream Timing Diagram (back-to-back case)

FIGURE 7-10 MCU/SSI/RNG/CCU/RST to MCU Upstream Timing Diagram

Back-to-back read ack return of IFIKK return with 8B payload.
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7.4.3 Boot ROM Interface (NCU/SSI))
NCU has integrated the SSI interface logics which originated from OpenSPARC T1.
With modification, the ncu_mio_ssi_sck frequency is now programmable. It could be
iol2clk/8 (default) or iol2clk/4. There are four i/o pins directly connecting to the
external. Reference Appendix A regarding the boot ROM interface. The original SSI
UCB interface has become NCU's internal signals and is no longer visible from
outside of NCU cluster. If a request from CPU is an IFILL request, but the 40-bit PA
is not addressed to SSI (0xFF_Fxxxx_xxxx), NCU/SSI classifies this as an
un-deliverable packet, and will reply with IFILL return to CPU with uncorrectable
error set. When CPU initiates an IFILL request to NCU, CPU expects only four bytes
IFILL load return. For IFILL request, CPU should only request 4Byte. The F4B field
in CPX packet should always be set to “1”. However, for SSI's CSR request, CPU
should always do 8-byte access similar to all other CSR access. SSI also supports
non-IFILL and non CSR type access, which read or write to external. For this type of
requests, SSI supports 1,2,4,8 bytes access.

ncu_mio_ssi_sck could be programmed as iol2clk/8 or iol2clk/4, depends on the
CSR register NCU_SCKSEL. This register is warm_reset protected. The new value
programmed into NCU_SCKSEL register, can't effects current ncu_mio_ssi_sck until
next warm reset.

After warm reset, NCU holds up to five ms before sending first request. This is the
time FPGA needs to lock sck clock. However, during test and debug mode TCU can
drive tcu_sck_bypass signal to “1”, and this will cause NCU/SSI to skip the 5ms
wait. System developer should make sure the external boot ROM interface logic is
stabilized and ready before SSI sends out the first request.

7.4.4 NCU/CCU Interface
The CCU interface is same as the NCU/MCU interface in UCB packet format. The
request size is always 8B and the request types that NCU sends downstream to CCU
are “READ_REQ,” and “WRITE_REQ.”

CCU returns the following to NCU:

■ “READ_ACK, "with 64 bit payload in response to a successful CSR
“READ_REQ;”

■ “READ_NACK,” without payload in response to an unsuccessful CSR
“READ_REQ.”

The interface timing diagram for NCU/CCU is same as NCU/MCU, which can be
found in FIGURE 7-9 and FIGURE 7-10.
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7.4.5 NCU/RST Interface
The RST interface is same as the NCU/MCU interface in UCB packet format. The
request size is always 8B and the request types that NCU sends downstream to RST
are “READ_REQ,” and “WRITE_REQ.” RST returns the following to NCU:

■ “READ_ACK,”with 64 bit payload in response to a successful CSR “READ_REQ;”

■ “READ_NACK,” without payload in response to an unsuccessful CSR
“READ_REQ.”

The interface timing diagram for NCU/RST is same as NCU/MCU, which can be
found in FIGURE 7-9 and FIGURE 7-10.

7.4.6 NCU/DMU CSR Interface
The DMUCSR Interface is same as the NCU interface in UCB packet format. The
request size is always 8B, and the request types that NCU sends downstream to
DMUCSR interface are “READ_REQ,” and “WRITE_REQ.” DMUCSR interface
returns the following to NCU:

■ “READ_ACK,”with 64 bit payload in response to a successful CSR “READ_REQ;”

■ “READ_NACK,” without payload in response to an unsuccessful CSR
“READ_REQ.”

The interface timing diagram for NCU/DMUCSR is same as NCU/NIU, which can
be found in FIGURE 7-11 and FIGURE 7-12.

7.4.7 NCU/DBG Interface
NCU/DBG interface is similar to NCU/MCU interface. The downstream and upstream paths
are both four bit-wide data bus with two control signals. The interface protocol is a 128 bit
packet being spread into 32 cycles of transactions. NCU only sends type “READ_REQ,” and
“WRITE_REQ.” with 8B request size to DBG for CSR access. The packet types that DBG
sends upstream to NCU are:

■ “READ_ACK,” with 8B payload in response to a successful “READ_REQ,”
(128-bit UCB packet)

■ “READ_NACK,” without payload in response to an unsuccessful “READ_REQ,”
(64-bit UCB packet without payload)

Refer to NCU/MCU Interface for NCU/DBG interface.
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7.4.8 NCU/TCU Interface
The TCU interface is similar to NCU/MCU or NCU interfaces using UCB packet
format except it is an eight-bit data bus plus two control signals each way. For
write_req, read_req, and read_ack type, the packet size is 128-bit and requires 16
cycles to complete the transaction. For read_nack type, the packet size is 64-bit, and
requires eight cycles to complete the transaction. TCU is intended to connect to the
external service processor (JTAG/TAP controller,) and, therefore, is capable to
initiate request type UCB packet into NCU. TCU can be in both master or slave
mode.

NCU does not support JTAG/TAP access across the Crossbar to L2s nor CPUs.
Therefore, TCU is limited to access the following via NCU: NCU's CSR, MCUs' CSR,
NIU's CSR/PIO, SSI's CSR, DMU's CSR+PIO, RST's CSR, CCU's CSR.

The request type UCB packet from TCU to NCU should contain the following fields: Buffer
ID (always 2'b01), a valid 40-bit PA field, a valid Packet Type and a Request Size field. On
the return path, when an UCB packet returned to NCU with the Buffer ID field marked as
TAP packet, NCU routes the packet back to TCU accordingly. All write requests from TCU
are “posted,” which means no “ack” is generated back to TCU after a write request, and the
packet will be dropped silently if address is illegal. This implies TCU can generated multiple
consecutive write requests (possibly back-to-back) in a short period of time because it does
not require “ack” for a write request. However, once TCU generates a read requests to NCU,
there should not be any more requests until a “READ_ACK” or “READ_NACK” UCB
packet has returned back to TCU. NCU does not support Interrupt type packet nor IFILL
type packet on NCU/TCU interface.

TCU/NCU interface is designed as a low performance, infrequent access interface. Unlike
other interface, NCU provides only minimum buffering for TCU accessing. Excessive traffic
from TCU can possibly slow down performance of NCU due to lack of buffering issue.

The interface timing diagram for NCU/TCU is same as NCU/MCU, which can be
found in FIGURE 7-9and FIGURE 7-10 with data bus set to [7:0] and number of cycles
set to 16.

TABLE 7-29 UCB Packet Types supported on TCU/NCU interface

WRITE_REQ TCU->NCU 128-bit UCB packet (8B header + 8B payload)

READ_REQ TCU->NCU 128-bit UCB packet (8B header + 8B meaningless payload)

READ_ACK NCU->TCU 128-bit UCB packet (8B header + 8B payload).
Note: PA and Size fields are invalid in a return packet.

READ_NACK NCU->TCU 64-bit UCB packet (8B header only).
Note: PA and Size fields are invalid in a return packet.
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7.4.9 NCU/DMU PIO Interface
NCU sends PIO read/write request (non cacheable LOAD_REQ/STORE_REQ)
directly through the NCU/DMUPIO interface. NCU keeps a total of 16 “credit Ids.
Each PIO request sends to DMU will consume a “credit ID,” which will be returned
from the signal dmu_ncu_wrack_tag[3:0] after a PIO write is completed. The PIO
read returned packet from SIU also has a returning “credit ID” embedded in its
header. These returned “credit Ids are put back to the pool and will be reused again.
Therefore, there can be a maximum of 16 outstanding PIO read and PIO write
requests. Note that DMU has a limit of processing up to 16 PIO requests FIGURE 7-11
show the timing diagram the DMUPIO interface. Signal dmu_ncu_mmu_addr_vld
will be asserted when CPU perform a write to NCU's MMU_ID_ADDR register, and
the value of the register is put on to the ncu_dmu_piodata[63:0] bus.

FIGURE 7-11 NCU/DMUPIO Interface Timing Diagram
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7.4.10 NCU/DMU Mondo Response Interface
After receiving Mondo Interrupt packet from SIU, NCU directly response to DMU
with the Mondo ID which is qualified by an “ack” or a “nack” at the same cycle. The
six-bit ID bus is valid when “ncu_dmu_mondo_ack” or “ncu_dmu_mondo_nack”
signal is asserted. FIGURE 7-12 shows the timing diagram for NCU/DMU Mondo
Response interface.

FIGURE 7-12 NCU/DMU Mondo Response Interface Timing Diagram (from NCU to DMU.)

7.4.11 NCU/SII Interface
SII only has upstream path to NCU. Packets received from SII are either PIO read
returns or Mondo Interrupts. When signal “ncu_siu_gnt” is asserted, in response to
an asserted “siu_ncu_req”, a new packet transaction should start in the next cycle.
Once a packet transaction is in progress, NCU ignores the signal “siu_ncu_req” until
two cycle before ending of the current packet. Details of the interface timing is
shown in FIGURE 7-13. packet from SII to NCU always have five cycles (one header
cycle with four payload cycles.)
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FIGURE 7-13 NCU/SIU Interface Timing Diagram (from SIU to NCU)

7.4.12 eFuse Interface
NCU only receive signals from eFuse. This interface has a serial data signal shared
by different register. eFuse will guarantee there are 22 consecutive bits/data with
MSB first per “*dshift” assertion as shown if the following diagram. The only
exception is efu_ncu_fusestat_dshift signal, which is 64-bit status information
inputting into NCU's eFuse Status CSR register.
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FIGURE 7-14 EFU/NCU Interface Timing Diagram.
Chapter 7 Non-Cacheable Unit (NCU) 7-33



7.4.13 Packet Format

7.4.13.1 UCB (Unit Control Block) Data Packet Format

TABLE 7-30 UCB Data Packet Format

Bit Name Definition

[127:64] Payload Data 8B Payload Data. If packet is from PCX, this field is from PCX's data field.
Payload is valid only for “WRITE_REQ,” “READ_ACK,” and “IFILL_ACK”
types packets
For “READ_REQ,” and “IFILL_REQ” packet, this 8B payload is
meaningless.
For “READ_NACK,” or “IFILL_NACK” types, there is no payload.

[63:55] ByteMask (use only for TCU to DMUPIO packets)
This field is being ignored in general. Only exception is when TCU initiates
a DMUPIO request. In such case, this field is being treated similar to PCX
packet's size field.

[54:15] 40 bit PA This field is valid only for request type packet, and should be ignored for
return type packet.

CSR Address:
Upper eight bits indicates the block that it should go to. Individual block
should only look at the lower 32 bits

If packet is from PCX, this field is from PCX's address field.

[14:12] Request Size (This field is being ignored in TCU to DMUPIO packets)
This field is valid only for request type packets and should be ignored for
return type packets. If packet is from PCX, this field is from PCX's size field.

Supported size for request type:
3'b000 : 1 Byte (valid only for SSI non-ifill type)
3'b001 : 2 Byte (valid only for SSI non-ifill type)
3'b010 : 4 Byte (valid only for SSI, can be ifill or non-ifill type)
3'b011 : 8 Byte (for all other access)

NOTE: UCB protocol only support up to 8Byte payload max. DMUPIO is
not in UCB protocol, and, therefore,is not limited by this restriction.

[11:10] Buffer ID NCU sends 2'b00 if a request is originated from Core and sends 2'b01 if
request is originated from TCU. All UCB clients returning packets to NCU
must return the same value in this field as in the original request packet.
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[9:7] CPU ID [2:0] This field indicates the source CPUID this packet is from, or the target
CPUID this packet should be send back to.

[6:4] Thread ID [2:0] This field indicates the target thread this packet is from or targeting to.

[3:0] Packet Type 4'b0000: READ NACK (generates CPX NCU Load Return with U.E. if
packet is to CPX)
4'b0001: READ ACK (generates CPX NCU Load Return if packet is to CPX)

4'b0011: IFILL ACK (generates CPX NCU Ifill Return if packet is to CPX)

4'b0111: IFILL NACK (generates CPX NCU Ifill Return with err if packet is to CPX)

4'b0100: READ REQ (from PCX LOAD if packet is from PCX)
4;b0101: WRITE REQ (from PCX STORE if packet is from PCX)

4'b0110: IFILL REQ (from PCX Inst. FILL if packet is from PCX)

TABLE 7-30 UCB Data Packet Format (Continued)

Bit Name Definition
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7.4.13.2 UCB (Unit Control Block) Interrupt Packet Format

7.4.13.3 SII to NCU Header Format

Each header is followed by four cycles of payload data.

TABLE 7-31 UCB Interrupt Packet Format

Bit Name Definition

[63:57] reserved Reserved (may not be 0)

[56:51] Interrupt vector interrupt vector (valid only when Packet Type=INT_VEC, MCU, SSI
should always use Packet Type = INT, which cause s NCU to ignore this
field)

[50:19] Reserved Reserved (may not be 0)

[18:10] Device ID This field identify the entry of the int_man mem. lookup table.

[9:7] CPU ID This field indicates the target CPU this interrupt packet should be sent to
when Packet Type = INT (should not be use by MCU, or SSI)

[6:4] Thread ID This field indicates the target thread this interrupt packet should be sent
to when Packet Type = INT

[3:0] Packet Type 4'b1000: INT (interrupt)
4'b1100: INT_VEC (interrupt w/ vector field,cpu_id,and thread_id valid)

TABLE 7-32 SIU to NCU Header Format

Header Cycle
“siu_ncu_data[31:0]”

Name Definition

[31] TimeOut Packet timed out (this will cause a CPX NCU Load Return packet with
'err' field set to uncorrectable error)

[30] DmuAE Unmapped Error (this will cause a CPX NCU Load Return packet with
'err' field set to uncorrectable error)

[29] DmuUe Uncorrected error from DMU (this will normally cause a CPX NCU Load
Return packet with 'err' field set to uncorrectable error)

[28] Ebit Packet error bit (indicates packet has error and already reported by SII,
and NCU will terminate this packet silently with any other action)
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[27:22] Reserved Reserved (ignore by NCU)

[21:16] dmc_tag_ecc[
5:0]

dmc_ctagecc check bits

[15:0] dmc_tag[15:0
]

dmc_tag[15] = 0 --> Mondo Interrupt packet
For Mondo Interrupt, NCU returns {dmc_tag[14:11],dmc_tag[2:1]} back
to DMU with Mondo_ack or Mondo_nack signals asserted.

Targeted cpu_thread ID = payload[75:70]
mondo_data0=payload[127:64]
mondo_data1=payload[63:0]

. dmc_tag[15] = 1 --> PIO read return packet
dmc_tag[14:12]: reserved (must be 0)
dmc_tag[11:8]: NCU credit ID return,
dmc_tag[7:6]: buf_id[1:0], 2'b00=normal, 2'b01=JTAG access
dmc_tag[5:0]: cpu_thread[5:0]

TABLE 7-32 SIU to NCU Header Format (Continued)

Header Cycle
“siu_ncu_data[31:0]”

Name Definition
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7.4.13.4 NCU to DMUPIO Header Format

TABLE 7-33 NCU to DMUPIO Header Format

Header Cycle
“ncu_dmupio_data[63:0]”

Name Definition

[63:61] Reserved Reserved (may not be 0)

[60] PIO read 1'b1 for PIO read
1'b0 for PIO write

[59:56] NCU Credit ID 4-bit Credit from that will eventually return back
to NCU for reuse. This is to guarantee that there
can only be 16 outstanding PIO transactions as
DMU cannot take more than 16.

[55:48] Byte Count/Byte Mask This field is directly come from 'size' field of a
PCX packet

For PIO read: (cannot count on upper 5bit to be
zero for read case from PCX packet)

8'bxxxx_x000: 1 Byte
8'bxxxx_x001: 2 Bytes
8'bxxxx_x010: 4 Bytes
8'bxxxx_x011: 8 Bytes
8'bxxxx_x100: 16Bytes

For PIO write:
8bit byte mask indicates which of the 8B of

store data should be updated

[47:40] NCU PIO ID {buf_id[1:0],CPU_thrID[5:0]}

[39:38] reserved Must be 0

[37:36] Command Mapping See PCIE base/mask CSR registers for mapping
details.
2'b11: Mem64 space
2'b10: Mem32 space
2'b01: IO space (if PA[28]=1'b1)
2'b00: Config space (if PA[28]=1'b0)

[35:0] Bus Address PA address [35:0]. This address is PCX packet
address, masked with mask registers.
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7.4.13.5 DMUPIO Read Request Address and Data Format

When CPU sends a non-cacheable external LOAD_REQ request (PIO read request)
to NCU via the PCX interface, the packet contains a 40 bit address, request type,
request size, etc. Followings are rules for read access to the external PCI space.

1. The 40-bit address is a byte address pointing to the 1st byte CPU is interested in.

2. The most CPU asks for are 16 bytes which is indicated by the PCX packet's size
field.

3. DMU/NCU returns 16B to CPU via XBAR (with 64 msb is replicated to 64 lsb for
non 16B returns)

4. DMU/NCU do not align the return data.

5. For 2 Byte LOAD_REQ, the fetch should not cross the two Byte boundary

(i.e. ByteAddress should be 0,2,4,6,8..., case 3 below)

6. For 4 Byte LOAD_REQ, the fetch should not cross the four Byte boundary

(i.e. ByteAddress should be 0,4,8,..., case four below)

7. For 8 Byte LOAD_REQ, the fetch should not cross the eight Byte boundary

(i.e. ByteAddress should be 0,8,..., case 5 below)

8. For 16 Byte LOAD_REQ, the fetch should not cross the 16 Byte boundary

(i.e. ByteAddress should be 0,x10,x20,x30,..., case 6 below)

Example: Focus on the lower 16 bits of the 36-bit address, and assume the upper 24
bits point to the correct PIO region in the following cases.
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7.4.13.6 DMUPIO Write Request Address and Data Format

When CPU sends a non-cacheable external STORE_REQ (PIO write request) to NCU
via the PCX interface, the packet contains a 40 bit byte address, request type, request
size, etc. Following are rules for write access to the external PCI space.

1. The 40-bit address from PCX is a byte address pointing to the 1st byte CPU is
interested in.

2. The most CPU generated store is eight Bytes which is indicated by the PCX
packet's byte mask field.

TABLE 7-34 PIO Read Address and Data Format

Case (in plain English) Note Lower 16 bits of
PA field in PCX

packet

Lower 2 bit of
size field in PCX

packet

16 Byte return from SIU some
time later

Case 1: LOAD_REQ
Byte Address 1 for 1 Byte

(Byte Address
can be any
value for 1
Byte)

16'h0001 3'b000
(means 1 Byte)

{2{64'hxxAB_xxxx_xxxx_xxxx}}

(x's means unknown, cpu 'don't
care,' and could be anything
depends on what DMU is
reading)

Case 2: LOAD_REQ
Byte Address 3 for 1 Byte

(Byte Address
can be any
value for 1
Byte)

16'h0003 3'b000 {2{64'hxxxx_xxAB_xxxx_xxxx}}

Case 3: LOAD_REQ
Byte Address 4 for 2 Bytes

(Byte Address
1,3,5,7 are
illegal)

16'h0004 3'b001
(means 2
Bytes)

{2{64'hxxxx_xxxx_ABCD_xxxx}}

Case 4: LOAD_REQ
Byte Address 4 for 4 Bytes

(Byte Address
1~3 or 5~7 are
illegal)

16'h0004 3'b010
(means 4
Bytes)

{2{64'hxxxx_xxxx_ABCD_EF01}}

Case 5: LOAD_REQ
Byte Address 8 for 8 Bytes

(Byte Address
1~7 or 9~f are
illegal)

16'h0008 3'b011
(means 8
Bytes)

{2{64'hABCD_EF01_2345_6789}}

Case 6: LOAD_REQ
Byte Address 0x10 for 16
Bytes

(Byte Address
1~f are illegal)

16'h0010 3'b100
(means 16
Bytes)

{64'hABCD_EF01_2345_6789_
0123_4567_89AB_CDEF}

Note: this does not imply any
data replication, just all bits are
valid and no replication for a 16B
load return.
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3. NCU support “partial store” feature by sending the 8bit 'byte mask field', which
is position mask, directly to DMU. The 8bit byte mask field can be at any
combinations. DMU in OpenSPARC T2 also supports “partial store” feature.

4. NCU does not align any payload data. The 8B payload data is sent to DMU
unmodified. The masked 36-bit byte address is sent to DMU with the lower 3 bits
PA[2:0] being turn off (always 0) for write only.

Focus on the lower 16 bits of the 40-bit address, and assume the upper 24 bits point
to the correct PCI PIO region in the following cases.

TABLE 7-35 PIO Write Address and Data Format

Case (in plain English) Note Lower 16 bits of
address field

from PCX packet

8 bit size field
from PCX packet

8 Byte payload from PCX and
to DMU

Ex. 1: STORE_REQ
Byte Address 1 for 1 Byte

(Byte Address
from CPU can
be any value
pointing to 1st
critical Byte)

16'h0001
(sending to
DMU as
16'h0000)

8'b0100_0000 64'hxxAB_xxxx_xxxx_xxx

(x's means unknown, cpu 'don't
care,' and could be anything
depends on what DMU is
reading)

Ex. 2: STORE_REQ
Byte Address 5 for 1 Byte

(Byte Address
from CPU can
be any value
pointing to 1st
critical Byte)

16'h0005
(sending to
DMU as
16'h0000)

8'b0000_0100 64'hxxxx_xxxx_xxAB_xxxx

Ex. 3: STORE_REQ
Byte Address 3 for 2 Bytes
(contiguous)

(Byte Address
from CPU can
be any value
pointing to 1st
critical Byte)

16'h0003
(sending to
DMU as
16'h0000)

8'b0001_1000 64'hxxxx_xxAB_CDxx_xxxx

Ex. 4: STORE_REQ
Byte Address 3 for 2 Bytes
(non-contiguous)

(Byte Address
from CPU can
be any value
pointing to 1st
critical Byte)

16'h0003
(sending to
DMU as
16'h0000)

8'b0001_0010 64'hxxxx_xxAB_xxxx_CDxx

Ex. 5: STORE_REQ
Byte Address 1 for 4 Bytes
(non-contiguous)

(Byte Address
from CPU can
be any value
pointing to 1st
critical Byte)

16'h0001
(sending to
DMU as
16'h0000)

2'b0101_0011 64'hxxAB_xxCD_xxxx_EF01
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7.5 Interrupts

7.5.1 Mondo Interrupt Path (External Interrupts)
All interrupts come from DMU/SIU are treated as Mondo Interrupts. It is originated
from DMU but send to NCU via SIU. Mondo Interrupts in NCU, actually, including
external devices interrupts and MSI Interrupts. However, NCU does not distinguish
between them. FIGURE 7-15 shows detail for the Mondo Interrupt path and control.
Since NCU serves Mondo Interrupts in the order of receiving, DMU is guarantee to
have Mondo “ack” or “nack” back in the order of sending
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FIGURE 7-15 Mondo Interrupt Path
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7.5.2 Non Mondo Interrupt (On Chip Interrupt)
The on chip interrupt or Non Mondo Interrupt is identified by its device ID. Each
device ID associates with an interrupt source and also index to an entry in Interrupt
Management Table (int_man table). This non-mondo interrupt is a “fire-and-forget”
type interrupt because once NCU fires the interrupt to the processor, no further
information is retained inside NCU. FIGURE 7-15 shows details of the non-mondo
type interrupt path, and a list of device ID can be found in TABLE 7-36.

TABLE 7-36 Device ID Assignments

Device ID Definition

0 Reserved

1 MCU ECC errors, counter rollover, SSI
errors

2 SSI Interrupt from EXT_INT_L pin

3 ~ 63 Reserved
7-44 OpenSPARC T2 SoC Microarchitecture Specification Part 1 of 2 • May 2008



FIGURE 7-16 Non Mondo Interrupt Path
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7.6 NCU Global Physical Address (PA)
Assignments

7.6.1 Global Physical Address Assignments
NCU also serves as the Physical Address parser. Each packet dequeued from the
downstream main FIFO carries a 40-bit address, also known as physical address
(PA). NCU determines the destination of the packet by examining the eight MSB
(bit[39:32]) of the physical address. The address range of each IO subsystem block
can be found in TABLE 7-37.

In OpenSPARC T2, CCX (Crossbar) automatically filters out all L2 related packets (L2
non-cacheable CSR and all cacheable packet,) and send them directly to L2. Therefore,
packets come from PCX interface to NCU are guaranteed to have bit[39] set to “1'b1.”

TABLE 7-37 Global Physical Address Assignments

MSB Address Range[39:32] Assignment

0x80 NCU

0x82 Reserved

0x83 CCU

0x84 MCUs
[13:12] = 2'b00 for MCU0
[13:12] = 2'b01 for MCU1
[13:12] = 2'b10 for MCU2
[13:12] = 2'b11 for MCU3

0x85 TCU

0x86 DBG

0x87 Reserved

0x88 DMUCSR

0x89 RST

0x90 ASI CPU shared registers

0x91 ~ 0x9F Reserved
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7.6.2 NCU Local CSR Assignments

7.6.2.1 NCU Management

Each device sends its device ID to NCU along with the UCB interrupt packet. The
device ID is used to index into the Interrupt Management table.

MONDO_INT_VEC performs the identical function for Mondo Interrupts that
INT_MAN performs for other IO interrupts, except that the CPU_ID (thread ID) is
specified in the Mondo interrupt transaction.

0xA0 ~ 0xBF L2 CSR (handles by CCX directly and does not come
to NCU)

0xD0 ~ 0xFE Reserved

0xFF SSI (boot ROM)

TABLE 7-38 Interrupt Management – INT_MAN (0x80_0000_0000) (count 128 step 8)

Bit Name Initial Value R/W Description

[63:14] Reserved 0 RO Reserved

[13:8] CPU X RW CPUID to manage the device

[7:6] Reserved 0 RO Reserved

[5:0] Vector X RW Interrupt Vector

TABLE 7-39 Mondo Interrupt Vector Register – MONDO_INT_VEC (0x80_0000_0a00)

Bit Name Initial Value R/W Description

[63:6] Reserved 0 RO Reserved

[5:0] Vector 0 RW Interrupt Vector for Mondo interrupts
(encodes bit set in
ASI_SWVR_INTR_RECEVIE)

TABLE 7-37 Global Physical Address Assignments (Continued)

MSB Address Range[39:32] Assignment
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This register is warm reset protected.

This register is warm reset protected.

This register is warm reset protected.

The following Bank Available, Bank Enable and Bank Enable Status works the same
fashion as the ASI's Core Available, Core Enable and Core Enable status. Bank
Available is only programmable by eFuse after POR event, and will not change. This
default value is propagated in to Bank Enable register which is programmable at any
time after POR event. Finally, the Bank Enable Status register is the one that being
used by different clusters/clock disabling. The Bank Enable Status is only updated
from Bank enable register at the de-assertion of WMR event.

TABLE 7-40 Processor Serial Number – SER_NUM (0x80_0000_1000)

Bit Name Initial Value R/W Description

[63:44] sernum2 0 RO Chip's serial number programmed by eFuse

[43:22] sernum1 0 RO Chip's serial number programmed by eFuse

[21:0] sernum0 0 RO Chip's serial number programmed by eFuse

TABLE 7-41 eFuse Status – EFU_STAT (0x80_0000_1008)

Bit Name Initial Value R/W Description

[63:0] efu_status 0xFFFFFFFFFF
FFFFFF

RO eFuse status programmed by eFuse block

TABLE 7-42 Core Available – CORE_AVAIL (0x80_0000_1010)

Bit Name Initial Value R/W Description

[63:0] Core_avail 0xFFFFFFFFFF
FFFFFF

RO Core available programmed by eFuse
This register is same as core_available in
ASI

TABLE 7-43 Bank Available – BANK_AVAIL (0x80_0000_1018)

Bit Name Initial Value R/W Description

[63:8] Reserved 0 RO Reserved

[7:0] Bank_avail 0xFF RO Bank available programmed by eFuse
This register indicates the availability of
each L2 bank.
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This register is warm reset protected.

This register is warm reset protected.

There are certain rules for L2 partial bank mode, refer to Level 2 Cache, System
Interface Unit (SIU), Clock Control Unit (CCU) specifications for details. The Bank
Enable Status changes only after the de-assertion of WMR event. NCU provides a
signal for each bank pair. For example, BA01 means bank 0 and bank 1. BA01 is “0”
if bank 0 or bank 1 is disable or unavailable.

Since there are encoding involves between Bank Enable and Bank Enable Status. A preview
version of partial bank signals is provided whenever there is a change in Bank Enable
register. However, the final/usable copy that provided to different clusters will not be
changed until after WMR event.

The PM (partial mode) signal is 1 if any of the bank is not enable. Each of the BA* signal is
a result of two bank enable being “ANDED” together. However, there are some illegal
combinations of BA* signals, and NCU is the BA* rule enforcer. Refer to Level 2 Cache,
System Interface Unit (SIU), Clock Control Unit (CCU) chapters for illegal case
details. The following is the illegal case mapping by NCU.

TABLE 7-44 Bank Enable – BANK_ENABLE (0x80_0000_1020)

Bit Name Initial Value R/W Description

[63:8] Reserved 0 RO Reserved

[7:0] Bank_enable 0xFF RW Received initial from Bank Available after
POR event. This programed value is
reflected onto Bank Enable Status at the
de-assertion of WMR event. (note: hardware
forces a non-available bank indicated by
Bank Available register to 0, so that SW
cannot enable a non-available bank)

TABLE 7-45 Illegal Case Mapping

Illegal PM,BA67,BA45,BA23,BA01 combinations Resulting BA67,BA45,BA23,BA01

1,0,0,0,0 --> 1,0,0,0,0
(Bad Chip, no mapping)

1,0,1,1,1 --> 1,0,0,1,1

1,1,0,1,1 --> 1,0,0,1,1

1,1,1,0,1 --> 1,1,1,0,0

1,1,1,1,0 --> 1,1,1,0,0
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TABLE 7-46 Bank Enable Status – BANK_ENABLE_STATUS (0x80_0000_1028)

Bit Name Initial Value R/W Description

[63:13] Reserved 0 RO Reserved

[12] PM_preview 0 RO L2 partial mode preview value

[11] BA67_preview 1 RO BA67 preview value

[10] BA45_preview 1 RO BA45 preview value

[9] BA23_preview 1 RO BA23 preview value

[8] BA01_preview 1 RO BA01 preview value

[7:5] Reserved 0 RO Reserved

[4] PM 0 RO L2 partial mode
(final copy to different clusters)

[3] BA67 1 RO Availability of bank 6 and bank 7 (final copy
to different clusters)

[2] BA45 1 RO Availability of bank 4 and bank 5 (final copy
to different clusters)

[1] BA23 1 RO Availability of bank 2 and bank 3 (final copy
to different clusters)

[0] BA01 1 RO Availability of bank 0 and bank 1 (final copy
to different clusters)

TABLE 7-47 L2 Index Hash Enable – L2_IDX_HASH_EN (0x80_0000_1030)

Bit Name Initial Value R/W Description

[63:1] Reserved 0 RO Reserved

[0] L2_Idx_Hash_en 0 RW L2 indexing enable. New value will not
propagate to L2_Idx_hash_en_status until
the next wrm_reset.
7-50 OpenSPARC T2 SoC Microarchitecture Specification Part 1 of 2 • May 2008



This register is warm reset protected.

This register is warm reset protected.

7.6.2.2 RAS Related Registers

Logics sets ESR bit on the error indication (thus recording the error) if the
corresponding bit in the ELE is set. Errors will continue to be recorded until a logged
error also has its respective EIE bit set. This causes the NCU to dispatch an
“SocError” message using a CPX Error Indication Packet. A “snapshot” of the ESR
be taken/stored in the PER register and the ESR cleared.

TABLE 7-48 L2 Index Hash Enable Status – L2_IDX_HASH_EN_STATUS (0x80_0000_1038)

Bit Name Initial Value R/W Description

[63:1] Reserved 0 RO Reserved

[0] L2_Idx_hash_en_statu
s

0 RO Final/usable copy of l2_index_hash_en to
SII and SPC

TABLE 7-49 NCU/SSI SCK clock select – NCU_SCKSEL (0x80_0000_3040)

Bit Name Initial Value R/W Description

[63:2] Reserved 0 RO Reserved

[1:0] ncu_scksel 0 RW when “01”, ssi_sck = iol2clk/4
all other cases, ssi_sck = iol2clk/8
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All CPUTHR ID fields are protected by ECC (SecDed) in NCU's memories. As a
general policy, if an uncorrectable error happens at CPUTHR ID, NCU terminates
the corrupted packet silent without replying to any of the CPUTHR ID since the
CPITHR ID is unknown. TABLE 7-50 shows expected NCU behavior when NCU
detected an error.

TABLE 7-50 NCU Response to Error

Error type Cause of source Transaction (return packet) Syndrome reg

NcuDmuCredit DMUPIO store from
PCX interface

When NCU received wack with
parity error, NCU drop the
wack_tag.

No

NcuCtagCe [23] 1 DMUPIO read
return
for sii interface
2. MONDO interrupt
from sii interface

Complete. send load return
cpx packet without error

Complete. send INT cpx
packet without error

No

NcuCtagUe [22] 1. DMUPIO read
return
from sii interface
2. MONDO interrupt
from sii interface

Terminated. Do not send load
return CPX packet

Continue. send INT CPX
packet with error
but not ack back mondo id

Format 2 data
(ctag is corrupted)

NcuDataParity [14] 1. DMUPIO read
return
from SII interface
2. MONDO interrupt
from sii interface

Continue. Send load return
CPX packet with error

terminate, do not send INT
CPX packet and
not ack back mondo id

Format 2 data

NcuDmuUe[21] 1. DMUPIO
store/load (read)
from PCX interface

Terminate. Not forward packet
to DMUPIO.
If cputhr id is corrupted: no
response is generated
If cputhr id is not corrupted:
return without error bit set for
store, return with error bit set
for load.

Format 1
RCTP=4'hf
RCTP data match with
PCX packet
7-52 OpenSPARC T2 SoC Microarchitecture Specification Part 1 of 2 • May 2008



NcuCpxUe [20] 1. PIO/CSR store
from PCX interface.

2. Load return/IO
interrupt from IOs

Continue transfer packet to
target. Don't send store ack
return CPX packet. (EJR write
can't be affected) \
Terminate. Don't send load
return/Interrupt CPX packet.

No

NcuPcxUe [19] PIO/CSR load/store
form PCX interface

Terminate. Don't pass done
packet to target. Don't send
store ack return CPX packet

Format 1
RCTP=4'h1011
RCTP data match with
PCX packet
(data is corrupted data)

NcuPcxData[18] PIO/CSR Load from
PCX interface

PIO/CSR store from
PCX interface

Continue (read)

Terminated. (write)
Ack back to CPU without error.

Format 1
RCTP = 4'h0110
RCTP data match with
PCX packet

NcuIntTable [17] Load INT table from
PCX interface

IO interrupts from IO
(NIU/MCU/SSI)
interface

Continue, send load ack return
CPX packet with error

terminate. Don’t' send INT
CPX packet

Format 1
RCTP = 4'hf
RCTP data match with
PCX packet
format 1
RCTP = 4'h6
RCTP data match with
interrupt table (corrupted)

NcuMondoFifo[16] load MONDO table
from PCX interface

terminate. Don’t sent ack
return CPX packet

NcuMondoTable[15] Load the MOND table Continue, send load ack return
CPX packet with error

TABLE 7-51 Error Status Register - ESR (0x80_0000_3000)

Bit Name Initial Value R/W Description

[63] valid 0 RW Valid: indicates that any error or multiple error has
been recorded.

[62:41] Reserved 0 RO Reserved

[42] NcuDmuCredit 0 RW Credit token to NCU for DMU pio write credits

TABLE 7-50 NCU Response to Error (Continued)

Error type Cause of source Transaction (return packet) Syndrome reg
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[41] Mcu3Ecc 0 RW MCU3 ECC Correctable (exceeded data CE threshold)

[40] Mcu3Fbr 0 RW MCU3 Fbdimm Recoverable

[39] SpareBit[4] 0 RW This bit is always set to 0 and does not capture
anything regardless of EJR settings (see note below
table)

[38] Mcu2Ecc 0 RW MCU2 ECC Correctable (exceeded data CE threshold)

[37] Mcu2Fbr 0 RW MCU2 Fbdimm Recoverable

[36] SpareBit[3] 0 RW This bit is always set to 0 and does not capture
anything regardless of EJR settings (see note below
table)

[35] Mcu1Ecc 0 RW MCU1 ECC Correctable (exceeded data CE threshold)

[34] Mcu1Fbr 0 RW MCU1 Fbdimm Recoverable

[33] SpareBit[2] 0 RW This bit is always set to 0 and does not capture
anything regardless of EJR settings (see note below
table)

[32] Mcu0Ecc 0 RW MCU0 ECC Correctable (exceeded data CE threshold)

[31] Mcu0Fbr 0 RW MCU0 Fbdimm Recoverable

[30] SpareBit[1] 0 RW This bit is always set to 0 and does not capture
anything regardless of EJR settings (see note below
table)

[29] NiuDataParity 0 RW Data Parity error in the DMA read return from the SIO

[28] NiuCtagUe 0 RW Ctag double bit Uncorrected error from the SIODMA
read return

[27] NiuCtagCe 0 RW Ctag single bit Corrected Error from the SIO DMA
read return

[26] SioCtagCe 0 RW Ctag single bit Corrected Error after the OLD Fifo.

[25] SioCtagUe 0 RW Ctag double bit Uncorrected Error from the OLD Fifo.
Recommended Fatal Error

[24] SpareBit[0] 0 RW (Does not capture anything)

[23] NcuCtagCe 0 RW Ctag single bit Corrected error on Interrupt write or
PIO read return.

[22] NcuCtagUe 0 RW Cag double bit error on Interrupt write or PIO read
return. Recommended Fatal Error. (NCUSYN)

[21] NcuDmuUe 0 RW For IOMMU conflicts. (NCUSYN)

[20] NcuCpxUe 0 RW Error in Output Fifo to CPX.

TABLE 7-51 Error Status Register - ESR (0x80_0000_3000) (Continued)

Bit Name Initial Value R/W Description
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This register is warm reset protected.

[19] NcuPcxUe 0 RW CPU PIO/CSR commands, may be Fatal. (NCUSYN)

[18] NcuPcxData 0 RW Error in CPU PCX Fifo. (NCUSYN)

[17] NcuIntTable 0 RW Error in NCU read of Interrupt table. (NCUSYN)

[16] NcuMondoFifo 0 RW Parity/ECC error in read of Mondo Fifo

[15] NcuMondoTable 0 RW Parity/ECC error in CPU read Mondo table

[14] NcuDataParity 0 RW Parity for Interrupt write or PIO read return from the
SIO. (NCUSYN)

[13] DmuDataParity 0 RW Data Parity error in the DMA read return from the SIO

[12] DmuSiiCredit 0 RW Parity error in the DMA write acknowledge Credit
from the SII. Recommended Fatal Error

[11] DmuCtagUe 0 RW Ctag double bit Uncorrected error from the SIO DMA
read return. Recommended Fatal Error

[10] DmuCtagCe 0 RW Ctag single bit Corrected error from the SIO DMA read
return

[9] DmuNcuCredit 0 RW Parity error in the PIO read/Mondo acknowledge
Credit from the NCU Recommended Fatal Error

[8] DmuInternal 0 RW Recommended Fata Error

[7] SiiDmuAparity 0 RW Parity error for Address field for DMA transactions
from DMU Fifo. (SIISYN)

[6] SiiNiuDParity 0 RW Data parity error for DMA writes from DMU Fifo.
(SIISYN)

[5] SiiDmuDParity 0 RW Data parity error for DMA writes from DMU Fifo.
(SIISYN)

[4] SiiNiuAParity 0 RW Parity error fro Address field for DMA transactions
from NIU Fifo. (SIISYN)

[3] SiiDmuCtagCe 0 RW Ctag single bit Corrected error, in transaction from
NIU Fifo

[2] SiiNiuCtagCe 0 RW Ctag single bit Corrected error in transaction from NIU
Fifo

[1] SiiDmuCtagUe 0 RW Ctag double bit Uncorrected ECC or Command Parity
Error in transaction from DMU Fifo. (SIISYN)

[0] SiiNiuCtagUe 0 RW Ctag double bit Uncorrected ECC or Command Parity
Error in transaction from NIU Fifo. (SIISYN)

TABLE 7-51 Error Status Register - ESR (0x80_0000_3000) (Continued)

Bit Name Initial Value R/W Description
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Note – Bit[30], [33], [36], and [39] in the ESR register does not capture anything from
hardware point of view. Even though the corresponding EJE is set, these bit still
capture 0. However, software can set these bit to 1 and cause SOC interrupt or fatal
error for testing purposes.

ELE provides the capability to select individual error events to be logged in the ESR.
If a 'Log Enable' bit is set, and the corresponding error type signal is asserted, then
the respective bit position in the ESR's “Recorded Error Type” field is set.

This register selects individually logged errors to dispatch an SocError message.
Each bit enables interrupting (dispatching SOCError) for the respective bit position
in the ESR. Interrupts may be sent if no other SOCError is still pending as indicated
by the PER valid bit=1. Thus, if no pending SOCError (i.e. PER valid=0) and the
respective “Interrupt Enable” bit is set, the SOCError indication will be dispatched
for logged errors at this bit location.

This register provides the capability to select individual error checking nodes to
have their parity/ECC bits flipped. When the respective bit is set, the parity/ECC
will be flipped, causing on error, for this particular parity/ECC checking location.

TABLE 7-52 Error Log Enable - ELE (0x80_0000_3008)

Bit Name Initial Value R/W Description

[63:43] Reserved 0 RO Reserved

[42:0] Error Log Enable 0x7FFFFFFFFF
F

RW 1-to-1 corresponding to ESR register

TABLE 7-53 Error Interrupt Enable - EIE (0x80_0000_3010)

Bit Name Initial Value R/W Description

[63:43] Reserved 0 RO Reserved

[42:0] Error Interrupt
Enable

0 RW 1-to-1 corresponding to ESR register

TABLE 7-54 Error Injection Register - EJR (0x80_0000_3018)

Bit Name Initial Value R/W Description

[63:43] Reserved 0 RO Reserved

[42:0] Error Injection
Enable

0 RW 1-to-1 corresponding to ESR register with
exception of bit[30],[33],[36], and [39],
which the corresponding ESR bit always
capture 0 regardless of EJR is set.
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Each error type may be programmed to cause a Fatal Error This register enables an
error to cause the signal “ncu_rst_fatal_error” to be asserted to the Reset Unit. If the
respective “Fatal Error Enable” bit is set, and the corresponding error type is
asserted, a fatal error will be dispatched to the Reset Unit. This functionality is not
dependent on the settings of the ESR, PER, ELE or EIE.

This register is a snapshot copy of the entire 64-bit of the ESR. This “snapshot” is
taken when NCU initiates an SOC Error packet dispatch. This is caused when an
error type occurs that has both the respective “log” enable and respective
“interrupt” enable bit positions set. After an SOC Error message, the thread's trap
handler may read this register to determine the error “cause”. When this register's
Valid bit is set further SOCError message dispatches are disabled.

This register is warm reset protected.

The SII Error Syndrome Register stores the syndrome (header) information from an
SII caused error event. This register is located in NCU. Data is sent to NCU from SII
on a special 4-bit serial bus (refer to Appendix B). When the logging is disable for
this error type, NCU will simply ignore the data syndrome data transfer from SII. In

TABLE 7-55 Fatal Error Enable - FEE (0x80_0000_3020)

Bit Name Initial Value R/W Description

[63:43] Reserved 0 RO Reserved

[42:0] Fatal Error
Enable

0 RW 1-to-1 corresponding to ESR register

TABLE 7-56 Pending Error Register - PER (0x80_0000_3028)

Bit Name Initial Value R/W Description

[63:0] (same as ESR) (same as ESR) (same as ESR) (same as ESR)
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this case, it will retain the prior data already stored in the SIISYN register. If
bit[63],“Valid”-bit, is already set, NCU will ignore further SIISYN coming from SII
until software clears this bit.

This register is warm reset protected.

This register is warm reset protected.

TABLE 7-57 SII Error Syndrome - SIISYN (0x80_0000_3030)

Bit Name Initial Value R/W Description

[63] valid 0 RW valid

[62:59] Reserved 0 RO Reserved

[58:56] Etag 0 RW Indicates which type of error is associated
with this syndrome. This is the lower 3-bit
of the error type index in ESR (SII error
types only limited to bit7-bit0). For
example, the “Etag” of a “SiiNiuAParity”
error = 4.

[55:40] Ctag 0 RW 16-bit CTAG or ID field from SII or
DMU/SII header

[39:0] PA 0 RW 40 physical address

TABLE 7-58 NCU Error Syndrome - NCUSYN (0x80_0000_3038)
If bit[62] is 0: format 1

Bit Name Initial Value R/W Description

[63] Valid 0 RW Valid

[62] Format=0 0 RW Format 0

[61:58] RCTP 0 RW Rqtyp, Cpu, Thr ,PA valid

[57:56] Reserved 0 RO Reserved

[55:51] etag 0 RW Which bit in ncuesr causes loading of
syndrome

[50:46] Rqtyp 0 RW Packet request type

[45:43] Cpu_id 0 RW CPU ID

[42:40] Thr_id 0 RW Thread ID

[39:0] PA 0 RW 40bit PA
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This register is warm reset protected.

This register is warm reset protected.

7.6.2.3 Mondo Table Access

The following register are used to manage the Mondo Interrupts.

When NCU receives a Mondo interrupt, it sets the Busy bit and ack DMU. When a Busy bit
is set, it means an interrupt is waiting to be serviced or is being serviced. Software needs to
reset the Busy bit after it completes servicing the interrupt. If the Busy bit is already set
when an interrupt arrives at NCU, a NACK will be sent back to DMU. The Busy bit is set
after a reset and software has to clear it to begin receiving interrupts.

TABLE 7-59 NCU Error Syndrome - NCUSYN (0x80_0000_3038)
If bit[62] is 1

Bit Name Initial Value R/W Description

[63] Valid 0 RW Valid

[62] Format=1 0 RW Format 1

[61:58] Reserved 0 RW Rqtyp,Cpu,Thr,PA valid

[57:56] Reserved 0 RO Reserved

[55:51] etag 0 RW Which bit in ncuesr causes loading of
syndrome

[50:46] Reserved 0 RW Packet request type

[45:43] Reserved 0 RW CPU ID

[42:40] Reserved 0 RW Thread ID

[39:0] CTAG 0 RW {24'b0,ctag[5:0]}

TABLE 7-60 DBG1 Error Event Trigger Enable - NCU_CREG_DBGTRIG_EN (0x80_0000_4000)

Bit Name Initial Value R/W Description

[63:1] Reserved 0 R/O reserved

[0] dbgtrigen 0 R/W Enable dbg1 error event trigger.
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There are two Mondo Interrupt Mondo Tables. The tables are read-only by software
and the entries are updated by DMU Mondo interrupts, provided that
corresponding Busy bit is not currently set. NCU will ack the interrupt if it is not
busy, otherwise the NCU will NACK it.

When a thread reads the following alias register, it is reading its own entry in the
Mondo Data0 table (i.e. The PA will from PCX bus will be ignored, and the
cputhr[5:0] will be used for accessing the table entry.) This is designed for a CPU
thread accessing its own entry without doing address calculation or knowing its
own cpu thread I.D. If access if from JTAG the cputhr[5:0] in UCB packet will be
used for table indexing.

When a thread reads the following alias register, it is reading its own entry in the
Mondo Data1 table (i.e. The PA will from PCX bus will be ignored, and the
cputhr[5:0] will be used for accessing the table entry.) This is designed for a CPU
thread accessing its own entry without doing address calculation or knowing its
own cpu thread I.D. If access if from JTAG the cputhr[5:0] in UCB packet will be
used for table indexing.

TABLE 7-61 Mondo Interrupt Data0 – MONDO_INT_DATA0 (0x80_0004_0000) (Count 64 Step 8)

Bit Name Initial Value R/W Description

[63:0] Data0 X RO First 64 bits of Mondo interrupt data

TABLE 7-62 Mondo Interrupt Data1 – MONDO_INT_DATA1 (0x80_0004_0200) (Count 64 Step 8)

Bit Name Initial Value R/W Description

[63:0] Data1 X RO Second 64 bits of Mondo interrupt data

TABLE 7-63 Alias Mondo Interrupt Data0 – MONDO_INT_ADATA0 (0x80_0004_0400)

Bit Name Initial Value R/W Description

[63:0] Data0 X RO First 64 bits of Mondo interrupt data

TABLE 7-64 Alias Mondo Interrupt Data1 – MONDO_INT_ADATA1 (0x80_0004_0600)

Bit Name Initial Value R/W Description

[63:0] Data1 X RO Second 64 bits of Mondo interrupt data
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When a thread reads the following alias register, it is reading its own entry in the
Mondo Busy table (i.e. The PA will from PCX bus will be ignored, and the
cputhr[5:0] will be used for accessing the table entry.) This is designed for a CPU
thread accessing its own entry without doing address calculation or knowing its
own cpu thread I.D. If access if from JTAG the cputhr[5:0] in UCB packet will be
used for table indexing.

7.6.3 ASI Registers
The ASI registers could be accessible by both JTAG and core. The algorithm for
mapping from ASI address to IO address is as follows:

PA[39:32] = 0x90

PA[31:29] = core_id[2:0] (physical core id)

PA[28:26] = tid[2:0] (thread id)

PA[25:18] = asi[7:0]

PA[17:3] = VA[17:3]

PA[2:0] = 000

TABLE 7-65 Mondo Interrupt Busy – MONDO_INT_BUSY(0x80_0004_0800) (Count 64 Step 8)

Bit Name Initial Value R/W Description

[63:7] Reserved 0 RO Reserved

[6] Busy 1 RW Hardware set Busy to “1” when an interrupt
is received. Hardware nacks an incoming
Mondo interrupt if Busy bit is already set.

[5:0] Reserved 0 RO Reserved

TABLE 7-66 Alias Mondo Interrupt Busy – MONDO_INT_ABUSY(0x80_0004_0a00)

Bit Name Initial Value R/W Description

[63:7] Reserved 0 RO Reserved

[6] Busy 1 RW Hardware set Busy to “1” when an interrupt
is received. Hardware nacks an incoming
Mondo interrupt if Busy bit is already set.

[5:0] Reserved 0 RO Reserved
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If it's a register that is shared by all virtual cores, then the core_id, PA[31:29] and
thread_id, PA[28:26] are ignored. NCU always decode only PA [25:0] if PA[39:32]=
0x90.

7.6.3.1 Core Available Register – ASI_CORE_AVAILABLE
(0x90_0104_0000)

(ASI:41 VA:00)

This register is programmed by eFuse controller after POR is deasserted. NCU will
detect the de-assertion of efu_ncu_coreavail_dshift signal which triggers update to
Core Enable, Core Enable Status and XIR Steering registers. The granularity of the
fuses is at each physical core level, and there are eight core in OpenSPARC T2.
Therefore, physically there are only eight bits for this register. Hardware
automatically expands each bit (representing a core) to eight bits and becomes a total
of 64 bit representing 64 threads.

■ JTAG accessible (RO)

This register is warm reset protected.

7.6.3.2 Core Enable Status Register – ASI_CORE_ENABLE STATUS
(0x90_0104_0010)

(ASI:41 VA:10)

The Core Enable Status Register is updated from Core Enable register at the
deassertion of “warm reset”, or from Core Available register at de-assertion of
efu_ncu_coreavail_dshift signal (after POR deasserted). JTAG could program the
Core Enable register after POR and before the “warm reset,” so that Core Enable
Status register takes the value of Core enable at the next “warm reset” deassertion.

Hardware implements only 8-bit for this register. When SW reads, NCU
automatically expands each bit to 8-bit wide and becomes 64 bits total to represent
64 threads. In OpenSPARC T2, CPU uses the value of this register to gate off the
clock to the appropriate physical core.

■ JTAG accessible (RO)

TABLE 7-67 Core Available Register

Bit Name Initial Value R/W Description

[63:0] Core_available 0xFFFFFFFFF
FFFFFFF(by

POR)

RO A one means the thread is available
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■ A thread that is not available in the Core Available register must have its
corresponding status bit set to 0 by hardware.

7.6.3.3 Core Enable Register – ASI_CORE_ENABLE
(0x90_0104_0020)

ASI:41 VA:20

This register is first update after POR (actually at the assertion of
efu_ncu_coreavail_dshift) based on Core Available register. When SW uses this
register to enable/disable a core or thread, the effect of programming this register
will take place only after the following “warm reset.”

Hardware implements only eight bits, representing eight cores for this register. When
reading, NCU expands each bit into eight bits and becomes a total of 64 bits, representing 64
threads. When writing, NCU ANDed eight corresponding bits to a physical core to reduce
the 64 bits signals down to eight bits which representing eight cores.

■ JTAG accessible: RW

■ Bits corresponding to the same core is ANDed together by NCU before writing
into the register. So, if one thread is being disabled, all threads within the same
physical core are also being disabled.

■ Hardware forces all threads in an unavailable core's thread (based on Core
Available register) to be disabled.

■ Hardware enforces “no all-core-disabled” rule to protect the situation that all
cores are disabled by SW or by JTAG. If JTAG writes all 0s to this register, NCU
will set the lowest available core (based on Core Available register) to 1. If CPU
writes all 0 to this register, NCU will keep the bit corresponding to CPU that
initiates the command to 1. A disabled/unavailable thread (basing on core
available and core enable status registers) should never access this register.
Unpredictable hardware behavior will be resulted in such case.

TABLE 7-68 Core Enable Status Register

Bit Name Initial Value R/W Description

[63:0] Core_enable_s
tatus

0xFFFFFFFFF
FFFFFFF

RO A one means the thread is currently enabled

TABLE 7-69 Core Enable Register

Bit Name Initial Value R/W Description

[63:0] Core_enable 0xFFFFFFFFF
FFFFFFF (by

POR)

R/W A one means the thread will be enable
following the next “warm reset”
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This register is warm reset protected.

7.6.3.4 XIR Steering Register – ASI_XIR_STEERING
(0x90_0104_0030)

(ASI:41 VA30)

SW can program which thread gets XIR when XIR pin is asserted. SW can program
this register such that all threads, a subset of threads, a thread, or none of the
threads will get XIR.

XIR Steering register first receives a default value based on Core available register
after POR (actually at deassertion of efu_ncu_coreavail_dshift). At each deassertion
of “warm reset,” XIR Steering register gets new default value basing on Core Enable
register which could be programmed by SW or JTAG.

■ JTAG accessible RW

■ If a core is not enable, all corresponding bits in XIR Steering register are force to 0
by hardware.

7.6.3.5 Core Running RW Register
–ASI_CORE_RUNNING_RW(0x90_0104_0050)

(ASI:41 VA:50)

SW uses this register to park or unpark a thread. Each bit position corresponds to a
thread. If the bit is set to 1, the thread is running. When set to 0, the thread is parked.
A parked thread stops execute new instructions and will not initiate transaction
except in response to a coherency transaction initiated by other threads. It could take
arbitrarily long from the time this register is programmed to the thread is actually
parked or unparked.

Upon “warm reset,” this register is set to all 0. When NCU receives the
rst_ncu_wake_thread signal from RST cluster, NCU will set the lowest available
thread bit to 1 based on Core Enable Status register. This thread becomes the master
thread. Privileged software, running on the master thread, will subsequently write to

TABLE 7-70 XIR Steering Register

Bit Name Initial Value R/W Description

[63:0] Xir_steering 0xFFFFFFFFFF
FFFFFF

R/W A one means the thread will receive a
“reset” interrupt when XIR external pin is
asserted
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this register to unpark other threads. It is up to software to perform the initialization
that are required by thread upon unparking. There are 3 ways to program this
register:

1. Writing directly to Core Running RW register

2. Alternatively, SW can write a 1 to the corresponding thread bit in Core Running
W1S register. This results in setting the corresponding bit in Core Running RW
register to 1.

3. Alternatively, SW can write a 1 to the corresponding thread bit in Core Running
W1C register. This results in clearing the corresponding bit the Core Running RW
register to 0.

■ JTAG accessible RW

■ Hardware forces all unavailable or disabled threads to be parked (base on Core
Enable Status register) Writing 1 into the disabled thread bits will have no effect.

Only JTAG is able to park all threads during debug by writing all '0' to core_running
register. Other than JTAG, hardware enforce “no all-thread-parked” rule. When core
write to core_running register to park all threads, the hardware will keep the
requesting thread unparked. A disabled/unavailable thread (basing on core
available and core enable status registers) or a parked thread should never access
this register. Unpredictable hardware behavior will be resulted in such case.

7.6.3.6 Core Running Status Register –
ASI_CORE_RUNNING_STATUS (0x90_0104_0058)

(ASI:41 VA:58)

Each SPC thread will send spc_core_running_status to indicate its status. The SPC
thread determines the status of each thread by the following criteria. The SPC thread
receives a request to park or unpark the based upon a '1' to '0' or '0' to '1' transition
on the ncu_spc_core_running signal from NCU. An indeterminate time later, once all
activity for that thread has been processed (the store buffer is empty, any pending
cache and TLB misses have bee processed, and all instructions have completed
execution), the SPC will drive the spc_cmp_core_running_status signal to a '0' (to
signal the thread is parked) or to a '1' (to signal the thread is running). Upon “warm
reset,” Core Running Status should be all 0s.

TABLE 7-71 Core Running RW Register

Bit Name Initial Value R/W Description

[63:0] Core_running RW 0x1 (by POR
and WMR)

R/W A one means the thread is being unparked. A zero
means the thread is current park or disabled. The
status is reported in Core_running_status register
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7.6.3.7 Core Running W1S Register – ASI_CORE_RUNNING_W1S
(0x90_0104_0060)

(ASI:41 VA:60)

7.6.3.8 Core Running W1C Register – ASI_CORE_RUNNING_W1C
(0x90_0104_0068)

(ASI:41 VA:68)

7.6.3.9 Interrupt Vector Dispatch Register – INT_VEC_DISP
(0x90_01CC_0000)

(ASI:73 VA:00)

TABLE 7-72 Core Running Status Register

Bit Name Initial Value R/W Description

[63:0] Core_running_stat
us

0x1 (by POR
and WMR)

RO A one means the thread is currently running. A
zero means the thread is currently parked or
disabled.

TABLE 7-73 Core Running W1S Register

Bit Name Initial Value R/W Description

[63:0] Core_running_W1S N/A WO Write one to a bit will cause the corresponding bit
in core_running_rw register to be set to a one.

TABLE 7-74 Core Running W1C Register

Bit Name Initial Value R/W Description

[63:0] Core_running
_W1C

N/A WO Write one in a bit will cause the
corresponding bit int core_running_rw
register to be cleared to a zero. Write zero
means no change on the bit.
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A thread may write to the following register to trigger an interrupt to another
thread. NCU will generate an interrupt packet and send to a targeted CPU Thread
specified in CPU_TH[5:0]. TCU may also write into this register to generate an
interrupt to a specific CPU Thread.

7.6.3.10 RAS Error Steering Register – RAS_ERR_STEERING
(0x90_0104_1000)

(ASI:41 VA:1000)

This register stores the virtual core ID (VCID), which is used by NCU to determine
the error thread target of socerror messages. This six-bit cpuid + threadid will be
included in cpx packet. Refer to RAS Related Registers

This register is warm reset protected.

7.6.3.11 ASI CMP Tick Enable Register –
ASI_CMP_TICK_ENABLE(0x90_0140_0038)

(ASI:41 VA:38)

TABLE 7-75 Interrupt Vector Dispatch Register

Bit Name Initial Value R/W Description

[63:14] Reserved 0 RO Reserved (NCU ignores write to these bits)

[13:8] Thread 0 WO CPU_TH[5:0]

[7:6] Reserved 0 RO Reserved (NCU ignores write to these bits)

[5:0] Vector 0 WO Interrupt Vector (encodes bit set in
ASI_SWVR_INTR_RECEVIE)

TABLE 7-76 RAS Error Steering Register

Bit Name Initial Value R/W Description

[63:6] reserved 0 RO Reserved.

[5:0] VCID 0 RW cpuID+threadID for target error thread
location.
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This register is used to synchronize the TICK register of all physical cores. Refer to
OpenSPARC T2 Programmer’s Reference Manual.

Its value is preserved across warm reset.

7.6.3.12 ASI Warm Reset Vector Mask Register –
ASI_WMR_VEC_MASK(0x90_0114_0018)

(ASI:45 VA:18)

When this register is set to '1' by software, POR, WMR or DBR will be able to be
directed to RAM, at location (0x000000020).

Its value will be preserved during warm reset.

Note that POR and WMR are events, not signals.

TABLE 7-77 ASI CMP Tick Enable Register

Bit Name Initial Value R/W Description

[63:1] reserved 0 RO Reserved.

[0] tick_enable 0 RW Set to '1' to enable incrementing of TICK
registers in all physical cores.

TABLE 7-78 ASI Warm Reset Vector Mask Register

Bit Name Initial Value R/W Description

[63:1] reserved 0 RO Reserved.

[0] Wmr_vec_mas
k

0 RW Send to TCU for wmr protect.
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7.7 Appendix A
SSI Software Interface

Addresses within the SSI address range (0xFF_F000_0000 to 0xFF_FFFF_FFFF) are
issued to the off-chip SSI interface bus. The only transactions that are supported
directly to the SSI interface are:

■ 1, 2, 4, 8 Byte aligned Reads

■ 1, 2, 4, 8 Byte aligned Writes

Since the Boot ROM is predominantly used for instructions, which is explicitly
always big-endian, all accesses to the SSI interface bus are treated as big-endian.

1. SSI Register Interface The SSI registers all deal with error handling, so are
described in the OpenSPARC T2 Programmer’s Reference Manual.

2. SSI Error Handling TABLE 7-79 describes the SSI's handling of errors. The error
indication on read returns is delivered regardless of the ERREN bit, where it is up
to the processor to ignore the error or receive it. Logging the error and sending an
error interrupt are controlled by the ERREN bit. Note that returning zeros on an
I-fetch timeout will tend to cause an illegal instruction trap.

3. SSI Interrupts

SSI generates interrupts for two reasons: either the EXT_INT_L pin was asserted,
or an error was detected.

The external interrupt pin is intended to be used by the FPGA, and has NO
ordering protection, meaning when EXT_INT_L is asserted, an interrupt is issued
to the IOB, without checking any transactions in flight. The interrupt is delivered
to the IOB using the SSI device ID, i.e. (device ID == 2).

EXT_INT_L is treated as an asynchronous input, meaning the JBI must
synchronize it to its internal clock before using it. Also, EXT_INT_L is treated as
an edge-triggered interrupt, meaning that JBI will detect a rising edge on the
synchronized signal, and issue an interrupt to the IOB on those rising edges. If the

TABLE 7-79 SSI Error Handling

Error TType Severity Logs Returns ERREN

SSI Parity Error Read Uncorrectable Just the bit Data with error indication Async Intr

SSI Parity Error Write Uncorrectable Just the bit N/A Async Intr

SSI Timeout Read Uncorrectable Just the bit All Zeros with error indication Async Intr

SSI Timeout Write Uncorrectable Just the bit N/A Async Intr
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actual use is level-sensitive, software is responsible for querying the FPGA device
(or whatever is driving EXT_INT_L), to see if the interrupt is still asserted, at the
end of the interrupt handler.

To guarantee being seen, EXT_INT_L must be asserted for at least 4.5 JBUS cycles.

Error interrupts, when enabled, are delivered to the IOB using the error device ID,
(device ID == 1).

4. SSI Interface The Serial System Interface (SSI) is defined for to allow
microprocessors to access peripherals in a low pin count fashion. The
OpenSPARC T2 chip will not directly interface to peripherals but instead will
provide a interface that can be easily converted to peripheral protocols by an
external Programmable Logic Device (PLD). Isolating the OpenSPARC T2 chip
from these peripherals allows the devices to use higher voltage signalling and
provides a mechanism for protocol conversion.

For the purposes of this discussion, some assumptions of the environment will be
made. The JBUS will be assumed to run at 200 MHz nominally, although the
actual frequency could be somewhat less than 200. In addition the OpenSPARC
T2 chip is assumed to interface to either a CPLD or a more complex FPGA. In the
former case, the CPLD may just interface to a Flash PROM. In the latter case, the
FPGA may include peripherals of its own (e.g. RS232 UART or system
management microprocessor) and have a dedicated parallel (8-bit or wider)
interface to Flash ROMs and potentially SRAMs. All of these peripherals would
be memory mapped into the 256 Megabyte SSI addressable location area
(FF_F000_0000 FF_FFFF_FFFF). All devices accessible off the SSI interface will be
only targets OpenSPARC T2 will always be the master of the bus.

5. Functional Interface

The SSI interface includes three pins: SSI_SCK (clock), SSI_MOSI (master
out/slave in), and SSI_MISO (master in/slave out). SSI_CLK and SSI_MOSI are
outputs of OpenSPARC T2, and SSI_MISO is an input. The SSI_SCK is a free
running clock, toggling whenever the on chip JBUS clock is toggling. It is
assumed to be nominally 50 Mhz, but is always a divide by four or eight of the
JBUS clock.

6. SSI Request

An SSI request is transmitted on the SSI_MOSI line. It can be either a read
command or a write command. The format of all these requests is one start bit, 3
bit command (CMD[2:0]), a 28 bit address, 0-64 bits of data, and a parity bit. The
high order (most significant) bit within the command, address and data are
always transmitted first, with the low order bit transferred last. Zeros are
transmitted as a low voltage value and ones are transmitted as a high value. A
start bit is a high value.

CMD[2] is 0 for write, 1 for read

CMD[1:0] encodes the transaction size as follows:
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■ 2'b00 - 1 byte

■ 2'b01 - 2 byte

■ 2'b10 - 4 byte

■ 2'b11 - 8 byte

For every SSI request, a SSI response is expected. A succeeding request can not be
sent until the preceding request has had a response. (No command pipelining is
supported.)

When OpenSPARC T2 has no request to transfer or is waiting for a response, the
SSI_MOSI line is held in the low voltage state.

The parity bit is set such that the number of 1s in the start bit, the command, the
address, any data bits, and the parity bit is an even number.

7. SSI Response

An SSI response is received on the SSI_MISO line. It can be either a read response
which must contain data or a write response which must contain no data. The
format of a read response is one start bit, 8-64 data bits, and one parity bit. The
format of a write response is one start bit and one parity bit. The high order (most
significant) bit within the data are always transmitted first, with the low order bit
transferred last. Zeros are transmitted as a low voltage value and ones are
transmitted as a high value. A start bit is a high value.

The parity bit is set such that the number of 1s in the start bit, any data bits, and
the parity bit is an even number. This means a write response is two 1's in
consecutive cycles.

When the target has no response to transfer or is processing a request, the
SSI_MISO line is held in the low voltage state.

Electrical Interface

The SSI_SCK, SSI_MOSI, SSI_MISO, and EXT_INT_L signals will be HSTL signals
at 1.5V. Care must be taken on the input so that overshoot doesn't exceed the 1.5V
VDD for long enough to induce gate oxide breakdown for the CO27.C process.
(See the signal ERS for voltage levels and currents.)

When driving OpenSPARC T2 will drive SSI_MOSI for 3 JBUS cycles prior to a
SSI_SCK rising edge and hold SSI_MOSI for one JBUS cycle after the SSI_SCK
rising edge. When receiving, OpenSPARC T2 will wait 3 JBUS cycles after a rising
SSI_SCK edge to sample the input line.
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7.8 Appendix B
The following is the SII/NCU interface data format which results in the SIISYN
syndrome register.

siisyn_data[63:0] comes from SII to NCU, 4-bit at a time (see following timing
diagram),

starting 1st transfer in bit[3:0], then bit[7:4], and so on

Siisyn_data[39:0] = PA,

siisyn_data[55:40] = ctag,

siisyn_data[61] = niud_pe,

Siisyn_data[60] = niua_pe,

siisyn_data[59] = niuctag_ue,

siisyn_data[58] = dmud_pe,

Siisyn_data[57] = dmua_pe,

siisyn_data[56] = dmuctag_ue,

NCU will encode siisyn_data[61:56] to 3-bit Etag, siisyn[58:56] as in TABLE 7-80

TABLE 7-80 SII/NCU Interface Data Format

siisyn_data[61] “000001
”

“000001” “000001” “000001” “000001” “000001”

Etag[2:0] “001” “111” “101” “000” “100” “110”
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FIGURE 7-17 SII to NCU Error Strobe

FIGURE 7-18 SII to NCU Error Syndrome
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FIGURE 7-19 SII to NCU Error Strobe and Syndrome Transfer Example
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