
Sun Microsystems, Inc.
www.sun.com

Submit comments about this document at: http://www.sun.com/hwdocs/feedback

OpenSPARC™ T2 System-On-Chip
(SoC) Microarchitecture

Specification (Part 2 of 2)

Part No. 820-5090-10
May 2008, Revision A

Copyright © 2008 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In
particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at
http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.

Use is subject to license terms.

This distribution may include materials developed by third parties.

Sun, Sun Microsystems, the Sun logo, Solaris, OpenSPARC T1, OpenSPARC T2 and UltraSPARC are trademarks or registered trademarks of
Sun Microsystems, Inc. in the U.S. and other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other
countries. Products bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc.

UNIX is a registered trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

The Adobe logo is a registered trademark of Adobe Systems, Incorporated.

Products covered by and information contained in this service manual are controlled by U.S. Export Control laws and may be subject to the
export or import laws in other countries. Nuclear, missile, chemical biological weapons or nuclear maritime end uses or end users, whether
direct or indirect, are strictly prohibited. Export or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion
lists, including, but not limited to, the denied persons and specially designated nationals lists is strictly prohibited.

Sun makes no representation that the OpenSPARC T2 design model or its implementation does not infringe any third party patents or other
intellectual property rights.

DOCUMENTATION AND REGISTER TRANSFER LEVEL (RTL) ARE PROVIDED "AS IS", AND ALL EXPRESS OR IMPLIED CONDITIONS,
REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE
HELD TO BE LEGALLY INVALID.

Copyright © 2008 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuels relatifs à la technologie incorporée dans le produit qui est décrit dans ce
document. En particulier, et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plus des brevets américains listés à
l’adresse http://www.sun.com/patents et un ou les brevets supplémentaires ou les applications de brevet en attente aux Etats - Unis et dans les
autres pays.

L’utilisation est soumise aux termes de la Licence.

Cette distribution peut comprendre des composants développés par des tierces parties.

Sun, Sun Microsystems, le logo Sun, Solaris, OpenSPARC T1, OpenSPARC T2 et UltraSPARC sont des marques de fabrique ou des marques
déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays.

Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc.
aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun
Microsystems, Inc.

UNIX est une marque déposée aux Etats-Unis et dans d’autres pays et licenciée exlusivement par X/Open Company, Ltd.

Le logo Adobe. est une marque déposée de Adobe Systems, Incorporated.

Les produits qui font l’objet de ce manuel d’entretien et les informations qu’il contient sont regis par la legislation americaine en matiere de
controle des exportations et peuvent etre soumis au droit d’autres pays dans le domaine des exportations et importations. Les utilisations
finales, ou utilisateurs finaux, pour des armes nucleaires, des missiles, des armes biologiques et chimiques ou du nucleaire maritime,
directement ou indirectement, sont strictement interdites. Les exportations ou reexportations vers des pays sous embargo des Etats-Unis, ou
vers des entites figurant sur les listes d’exclusion d’exportation americaines, y compris, mais de maniere non exclusive, la liste de personnes qui
font objet d’un ordre de ne pas participer, d’une facon directe ou indirecte, aux exportations des produits ou des services qui sont regi par la
legislation americaine en matiere de controle des exportations et la liste de ressortissants specifiquement designes, sont rigoureusement
interdites.

LA DOCUMENTATION EST FOURNIE "EN L’ETAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT
TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L’APTITUDE A UNE UTILISATION PARTICULIERE OU A
L’ABSENCE DE CONTREFACON.

Contents

Preface xxxvii

1. Data Management Unit (DMU) 1–1

1.1 Overview 1–2

1.1.1 DMU Block Diagram 1–3

1.1.2 Abbreviation 1–4

1.1.3 General Ingress Pipeline (IP) Operations 1–4

1.1.4 General Egress Pipeline (EP) Operations 1–5

1.2 Functional Description of DMU Sub-blocks 1–6

1.3 Transaction Manager Unit (TMU) 1–6

1.3.1 TMU Function Description: 1–6

1.3.1.1 Data Ingress Manager (DIM) 1–7

1.3.1.2 Data Egress Manager (DEM) 1–7

1.3.1.3 MSI-X Support: 1–7

1.4 Interrupt Message Unit (IMU) 1–8

1.4.1 IMU Functional Description 1–8

1.4.1.1 Definition of Terms 1–8

1.4.1.2 IMU Mondo State Machine 1–9

1.4.1.3 PCI-Express/PCI-X/PCI MSI Capability Structure 1–
10
iii

1.4.1.4 IMU Mondo INO Mapping Table 1–13

1.4.1.5 IMU CSRs Change List 1–13

1.5 Record Management Unit (RMU) 1–32

1.5.1 RMU Function Description 1–32

1.5.1.1 Link Receive Manger (LRM) 1–32

1.5.1.2 Schedule Records Manager (SRM) 1–33

1.5.1.3 Retire Record Manager (RRM) 1–33

1.6 Transaction Scoreboard Unit (TSB) 1–33

1.6.1 TSB Function Description 1–33

1.7 Memory Management Unit (MMU) 1–34

1.7.1 IOMMU Description 1–34

1.7.1.1 IOMMU Bounds Check for Bypass Mode 1–34

1.7.1.2 Customized Virtual Tag Buffer Design 1–34

1.7.1.3 Customized Physical Tag Buffer Design 1–35

1.8 Context Manager Unit (CMU) 1–35

1.8.1 CMU Function Description 1–35

1.8.1.1 Receive Context Manager (RCM) 1–35

1.8.1.2 Transmit Context Manager (TCM) 1–36

1.8.1.3 Context Record (CTX) 1–36

1.9 Packet Manager Unit (PMU) 1–37

1.9.1 PMU Function Description 1–37

1.9.1.1 Packet Receive Manager (PRM) 1–37

1.10 Packet Scoreboard (PSB) 1–37

1.10.1 Add JTAG to Thread ID 1–37

1.11 Cache Line Unit (CLU) 1–38

1.11.1 CLU Function Description 1–38

1.11.1.1 Cacheline Transmit Manager (CTM) 1–38

1.11.1.2 Cacheline Receive Manager (CRM) 1–38
iv OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

1.11.1.3 Mondo Interrupt -> One Data Beat 1–39

1.12 Data In Unit (DIU) 1–39

1.12.1 DIU Function Description 1–39

1.13 Data Out Unit (DOU) 1–40

1.13.1 DOU Function Description 1–40

1.13.2 SRAM 1–40

1.13.2.1 Adding Test Features 1–40

1.14 DMU SIU/NCU Interface Unit (DSN) 1–41

1.14.1 DSN Overview 1–41

1.14.2 DSN Block Diagrams 1–42

1.14.3 DSN Detailed Block Diagram 1–43

1.14.4 DSN Interface Descriptions 1–43

1.14.4.1 DSN-SIU Interface 1–43

1.14.4.2 DSN-SIU Interface List 1–45

1.14.4.3 SIU to DSN Egress Commands 1–46

1.14.4.4 SIU to DSN Outbound Header sent by SIU
(DMA rd cpls only) 1–48

1.14.4.5 Bit Mapping from DSN to SII for DMA rd/wr
Requests 1–49

1.14.4.6 Bit Mapping from NCU/SIU Header to DMU for
DMA/Int ack/nack 1–49

1.14.4.7 DMU to SIU Ingress Commands 1–50

1.14.4.8 DSN to SII Header as sent by DSN 1–52

1.14.4.9 DSN-SII Header RAS 1–53

1.14.4.10 DSN-SII Interface Timing Diagrams 1–55

1.14.4.11 DSN-NCU Interface Description 1–56

1.14.4.12 DSN-NCU Interface Pin List 1–58

1.14.4.13 NCU-DSN Egress PIO Commands 1–59

1.14.4.14 Bit Mapping from NCU Header to DMU for PIO
rd/wr 1–60
Contents v

1.14.4.15 NCU-DSN Timing Diagram 1–62

1.14.4.16 NCU to DSN Command Header Info 1–63

1.14.4.17 NCU to DSN Header for MMU Invalidates 1–63

1.14.5 DSN-DMU Interface 1–64

1.15 Interface Layer Unit (ILU) 1–66

1.15.1 Overview 1–66

1.15.2 Block Diagram 1–69

1.15.3 Functional Description 1–70

1.15.4 Interface Signals 1–71

1.15.5 Transaction Flow 1–74

1.15.6 Passing Data Across Clock Domains 1–77

1.15.6.1 Synchronizer Scenario 1–78

1.15.6.2 Gray-Coded Buffer Pointers 1–78

1.15.6.3 Auto-Update Req-Ack Interface 1–79

1.15.6.4 Demand-Based Req-Ack Interface 1–81

1.15.7 IIL Sub Block 1–82

1.15.7.1 IIL Block Diagram 1–83

1.15.7.2 IIL Timing Diagram 1–84

1.15.7.3 Assumptions 1–84

1.15.8 ILU PEU Interface 1–86

1.15.8.1 Block Diagram 1–86

1.15.8.2 ILU-PTL Signal Interface 1–86

1.15.8.3 Data Buffers 1–87

1.15.8.4 Buffer Management 1–88

1.15.8.5 IIL Type Decoder 1–89

1.15.8.6 Drain State 1–90

1.15.8.7 PCI-E Flow Control Credit Processing 1–91

1.15.8.8 PIO Completion Time Out 1–92
vi OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

1.15.9 EIL Sub Block 1–93

1.15.9.1 EIL Block Diagram 1–94

1.15.9.2 EIL Timing Diagram 1–95

1.15.9.3 EIL Record Format 1–96

1.15.9.4 EIL Type Decoder 1–97

1.15.9.5 EIL Buffer Manager 1–98

1.15.9.6 EIL Finite State Machines 1–99

1.15.9.7 EIL Data Alignment 1–100

1.15.9.8 EIL Release Generating 1–102

1.15.10 CIB Sub Block 1–103

1.15.11 ISB Sub Block 1–105

1.15.12 ILU Idle Check 1–106

1.16 Pin Mapping 1–106

1.17 RAS 1–107

1.17.1 DSN/SII-SIO RAS Interface 1–107

1.17.2 DSN/NCU RAS Interface 1–108

1.17.3 DMU Internal RAS 1–109

1.17.4 RAS Interface Signals 1–109

1.17.5 Error Cases 1–111

1.17.6 IOMMU RAS 1–112

1.17.7 No Syndrome Register in DSN 1–113

1.18 Resets 1–114

1.19 Content and Status Registers (CSRs) 1–114

1.19.1 CSR Address Decoding 1–114

1.19.2 Content and Status Register (CSR) Related Pins 1–116

1.19.3 CSR Block Diagram 1–116

1.20 Transaction Ordering 1–117

1.21 DEBUG Features 1–117
Contents vii

1.21.1 Quiescent DMU/SII/SIO Interface 1–118

1.21.2 Debug Busses 1–118

1.21.3 All PCI-Ex Error Output 1–118

1.21.4 Debug Interface Signals 1–119

1.21.5 DSN Debug Signals 1–119

2. Miscellaneous I/O (MIO) Specification 2–1

2.1 Overview 2–1

2.1.1 MIO Interface with System and Rest of OpenSPARC T2 2–1

2.1.2 Internal Pullups/Pulldowns in MIO for Inputs 2–10

2.1.3 MIO Clocking 2–11

2.1.4 DFT Support for MIO 2–15

2.2 Debug Port 2–17

2.2.1 DTM Support in MIO 2–20

2.2.2 Timing Spec for Debug Port Signals for Reliable Logic Analyzer
Sampling 2–20

2.3 MIO RTL Hierarchy 2–21

3. Debug 3–1

3.1 Overview 3–1

3.2 OpenSPARC T2 Debug Features 3–2

3.2.1 Observability 3–2

3.2.1.1 CLK/PLL Observability 3–2

3.2.1.2 Debug Port 3–3

3.2.2 Repeatability 3–7

3.2.2.1 FBDIMM Link training after Debug Reset 3–10

3.2.2.2 I/O Quiescent in OpenSPARC T2 During Checkpoint
3–12

3.2.3 Debug Events 3–12

3.2.3.1 Debug Events in SPARC Cores 3–13
viii OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

3.2.3.2 Debug Events in SoC 3–14

3.2.4 Joint Test Action Group (JTAG) Access 3–15

3.2.4.1 JTAG Scan out 3–17

3.2.4.2 JTAG Shadow Scan 3–17

3.2.4.3 JTAG Boundary Scan 3–19

3.2.4.4 JTAG CREG/UCB Access 3–20

3.2.4.5 Clock Stretch 3–21

3.2.4.6 Clock Stop 3–21

3.2.4.7 Single Stepping, Disable Overlap, Cycle Step, Run N
Instructions 3–26

3.2.5 Fatal Error Indication on Pin 3–26

3.2.6 TRIGIN and TRIGOUT pins 3–26

3.2.7 DTM Support in DB1,MIO modules 3–27

3.2.7.1 MCU DTM Mode Signals 3–30

3.3 OpenSPARC T2 Core Debug Features 3–30

3.3.1 Basic Features 3–31

3.3.2 Enhanced Features 3–33

3.3.3 Details of the OpenSPARC T2 Core Debug Features 3–37

3.3.3.1 Instruction Breakpoints 3–37

3.3.3.2 Instruction and Data Address Watchpoints 3–38

3.3.3.3 Trap on Taken Control Transfer 3–40

3.3.3.4 Single Instruction Step 3–40

3.3.3.5 Disable Overlap 3–41

3.3.3.6 Soft-Stop Request from TCU to Core 3–41

3.3.3.7 Shadow Scan 3–41

3.3.3.8 Debug Event Control Register 3–42

3.4 Core Interface with the TCU 3–43

3.4.1 Clock Interface 3–43

3.4.1.1 Tcu_spc_clk_stop 3–44
Contents ix

3.4.1.2 Core_available & Core_enabled 3–45

3.4.1.3 Core_running[7:0] & Core_running_status[7:0] 3–45

3.4.1.4 Scan_enable 3–45

3.4.1.5 Spc_hardstop_request[7:0] &
Spc_softstop_request[7:0] 3–45

3.4.2 Debug Event Interface 3–45

3.4.2.1 spc_trigger_pulse[7:0] 3–46

3.4.3 Scan Interface 3–46

3.4.3.1 Scan_in 3–46

3.4.3.2 Scan_out 3–46

3.4.3.3 Shadow_scan_in 3–46

3.4.3.4 Shadow_scan_cntrl[n:0] 3–46

3.4.3.5 Shadow_scan_out 3–47

3.4.4 Single Step Mode Signals (and Single Step Usage Model) 3–47

3.4.5 Disable Overlap Mode Signals (and Usage Model) 3–49

3.5 Debug Block Interface Signals 3–51

3.6 Debug Blocks (dbg0.v and dbg1.v) 3–61

3.6.1 OpenSPARC T2 Debug Port 3–64

3.6.2 CSR Block in Debug.v 3–71

3.7 Debug Appendix 3–72

3.7.1 Checkpoint Sequence (SW-HW interaction) 3–72

3.7.2 SW Visible State Lost on Debug Reset 3–75

3.7.3 Registers to Support Debug 3–78

3.7.3.1 Debug Port Configuration Register 3–78

3.7.3.2 RESET_GEN Register 3–79

3.7.3.3 RESET_SOURCE Register 3–79

3.7.3.4 ASI_WMR_VEC_MASK Register 3–80

3.7.3.5 MCU Channel Read Latency Register 3–80

3.7.3.6 MCU Sync Frame Frequency Register 3–81
x OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

3.7.3.7 Subsystem Reset Register 3–81

3.7.3.8 I/O Quiesce Control Register 3–82

3.7.3.9 Core DECR Register 3–82

3.7.3.10 SoC DECR Register 3–84

3.7.3.11 L2 Mask Register 3–85

3.7.3.12 L2 Compare Register 3–85

3.7.3.13 DMU Core and Block Interrupt Enable Register 3–86

3.7.3.14 DRAM Debug Trigger Enable Register 3–86

3.7.3.15 NCU Debug Trigger Enable Register 3–87

3.7.3.16 L2 Error Enable Register 3–88

3.7.3.17 ASI_OVERLAP_MODE Register 3–88

3.7.3.18 PEU Debug Select A Register 3–89

3.7.3.19 PEU Debug Select B Register 3–90

3.7.3.20 DMU Debug Select Register for DMU Debug Bus A 3–
91

3.7.3.21 DMU Debug Select Register for DMU Debug Bus B 3–
92

4. Electronic Fuse Unit (EFU) 4–1

4.1 Overview 4–1

4.1.1 Definitions of Terms Used 4–3

4.2 EFU Block Diagram 4–4

4.2.1 Unit Functional Description of EFU 4–5

4.2.1.1 eFuse Array (EFA) 4–5

4.2.1.2 eFuse Controller (FCT) 4–6

4.2.1.3 TCU Interface 4–7

4.3 EFU Logical Implementation 4–8

4.3.1 eFuse Modes of Operations 4–8

4.3.1.1 Power On Reset Read Mode 4–8

4.3.1.2 JTAG Read Access 4–11
Contents xi

4.3.1.3 Fuse Programming Mode 4–13

4.3.1.4 JTAG Fuse Bypass Mode 4–14

4.3.1.5 Fuse Sample Mode 4–16

4.3.2 Interface with NCU, SRAM Header Flops and TCU Destinations
4–19

4.3.2.1 EFU to SRAM Header Flops 4–19

4.3.2.2 SRAM to EFU Interface: 4–19

4.3.2.3 EFU to NCU Interface: 4–19

4.3.2.4 TCU to EFU Transfers 4–20

4.3.2.5 EFU to TCU: 4–20

4.3.3 Register Formats 4–20

4.3.3.1 RV REGISTER CLEAR ID 4–20

4.3.3.2 Block ID 4–22

4.3.3.3 SRAM Redundancy Register Formats: 4–24

4.3.3.4 L2 Data Array EFA Entry Definition 4–25

4.3.3.5 L1 INSTRUCTION CACHE (ICD) EFA Entry
Definition 4–27

4.3.3.6 L1 data cache array redundancy register (DCD)
definition 4–27

4.3.3.7 Core Available 4–28

4.3.3.8 L2 Bank Available 4–28

4.3.3.9 FSR SERDES Trimming Registers 4–28

4.3.3.10 DMU DATA Registers 4–30

4.3.3.11 SER_NUM Programming 4–30

4.4 Unit-Level Interface Signals 4–33

4.5 Miscellaneous/Multiple Clock Domains 4–41

4.6 eFuse Array Specification 4–42

4.6.1 eFuse Array Organization 4–42

4.6.2 eFuse Array Functions 4–43

4.6.3 Timing Diagrams 4–43
xii OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

4.6.4 Interface Table 4–46

5. Reset Unit Specification 5–1

5.1 OpenSPARC T1 and OpenSPARC T2 Partitioning 5–2

5.2 Reset Overview 5–2

5.2.1 Goals 5–2

5.2.2 Nomenclature 5–3

5.2.3 Priority 5–3

5.2.4 OpenSPARC T2 Structures that Hold State 5–5

5.2.5 eFuse destination Flops and Latches 5–6

5.2.6 Latches 5–7

5.2.7 Flip-Flops Outside of SRAMs 5–8

5.2.8 SRAM Input Flops 5–10

5.2.9 SRAM Output Flops 5–10

5.2.10 Core Array Contents 5–11

5.2.11 NIU, DMU-PEU, RST, and TAP Reset Implementations Differ 5–
11

5.2.12 Eliminating Clock Contention 5–12

5.2.12.1 Before gclk starts 5–12

5.2.12.2 After gclk starts, Asic SE deasserts, and Asic clk_ctop
deasserts 5–12

5.2.12.3 Two Signals Require Asynchronous Assert,
Synchronous Deassert. 5–13

5.3 Types of Reset 5–14

5.3.1 TRST_ 5–14

5.3.2 POR 5–14

5.3.3 DBR 5–14

5.3.4 WMR 5–15

5.3.4.1 A Fatal Error causes a WMR 5–15

5.3.4.2 Conflicting Demands placed on WMR 5–16
Contents xiii

5.3.5 WMR Trap and SPARC-V9 POR Trap 5–17

5.3.5.1 How OpenSPARC T1 Starts its Virtual Cores at Reset
5–17

5.3.5.2 How OpenSPARC T2 Starts its Virtual Cores at Reset
5–18

5.3.6 XIR 5–18

5.3.6.1 JTAG can cause XIR 5–19

5.3.7 WDR 5–20

5.3.7.1 Tomatillo SouthBridge System_watchdog Timer
Signal 5–20

5.3.7.2 CMP Watchdog Reset, WDR 5–20

5.3.8 XIR, WDR, and SIR Perform No Reset 5–21

5.4 Machine State after Each Kind of Reset 5–21

5.4.1 Venn Diagram 5–22

5.4.2 Reset Signals Asserted for each Kind of Reset 5–23

5.4.3 POR Clears the Valid Bits in the L2T Directory of L1 Tags CAM 5–
25

5.5 OpenSPARC T2 is a System On a Chip 5–28

5.5.1 System On a Board 5–28

5.5.2 System On a Chip 5–29

5.5.3 Serial System Interface, SSI 5–30

5.5.4 Connections between RST and Other Clusters 5–32

5.6 Registers 5–33

5.6.1 (0x89-0000-0808) Reset Generation Register, RESET_GEN 5–33

5.6.2 (0x89-0000-0818) Reset Source Register, RESET_SOURCE 5–34

5.6.3 (0x89-0000-0838)Subsystem Reset Register, SSYS_RESET 5–35

5.6.4 (0x89-0000-0810) Reset Status Register, RSET_STAT 5–36

5.6.5 (0x89-0000-0820) Fatal Error Enable Register, RESET_FEE 5–37

5.6.6 (0x89-0000-0860) Clock Control Unit Time Register, CCU_TIME
5–38
xiv OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

5.6.7 (0x89-0000-0870) Lock Time Register, LOCK_TIME 5–39

5.6.8 (0x89-0000-0880) Propagation Time Register, PROP_TIME 5–40

5.6.9 (0x89-0000-0890) NIU Time Register, NIU_TIME 5–42

5.7 Power-On Reset Sequence Overview 5–43

5.7.1 Power-On Reset Duration in a System 5–45

5.7.2 Power-On Reset Duration on a Tester 5–46

5.7.3 Warm Reset Duration in a System 5–47

5.7.4 Warm Reset Duration on a Tester 5–49

5.8 Deterministic Behavior 5–50

5.9 Power-On Reset Sequence 5–52

5.9.1 During PWRON_RST_L (including POR1) 5–57

5.9.2 After PWRON_RST_L (including POR2) 5–58

5.9.3 Power-On Reset Sequence - End of POR1 5–58

5.9.4 Pre-WMR Boot Code 5–60

5.9.5 During WMR1 5–61

5.9.6 After WMR 5–62

5.9.7 Post-WMR Boot Code 5–63

5.10 Warm Reset Sequence 5–63

5.10.1 Before rst_mwr_ 5–63

5.10.2 During rst_wmr_ 5–64

5.10.3 After rst_wmr_ 5–64

5.10.4 Post-WMR Boot Code 5–65

5.11 Reset Sequence for DBG 5–65

5.12 Reset Sequence for NIU 5–66

5.13 Reset Sequence for XIR 5–66

5.14 Reset and Scan of the Reset Unit 5–66

5.14.1 tcu_rst_clk_stop 5–67

5.14.2 tcu_rst_io_clk_stop 5–67
Contents xv

5.15 Reset Unit Ports 5–68

5.15.1 Input Ports 5–68

5.15.2 Output Ports 5–70

5.16 Appendices 5–72

5.16.1 OpenSPARC T1 Thread Suspension Differs from CMP Suspend
5–72

5.16.2 CMP Disabling and Parking of Virtual Cores 5–73

5.16.3 OpenSPARC T1 Reset Sequence 5–75

5.16.4 Glossary 5–76

5.16.5 Glossary of Shadow Terms 5–76

5.16.6 Promotion among Core Available, Enable, and Status registers 5–
77

6. Network Interface Unit (NIU) 6–1

6.1 Introduction 6–2

6.1.1 Context for OpenSPARC T2 6–3

6.1.2 Features and Requirements 6–3

6.1.3 Design Goals 6–4

6.1.4 Buffering Analysis 6–4

6.1.5 Single 10 Gigabit Port Active 6–5

6.1.6 All 10G and 1G Ports Active 6–5

6.1.6.1 Transaction Time-Outs and System Errors 6–5

6.1.7 Data Alignment Format for Internal Datapath 6–7

6.1.7.1 Request Data Format 6–7

6.1.7.2 Response Data Format 6–8

6.2 Chip Overview 6–9

6.3 Configuration and Modes of Operation 6–11

6.4 Effective Performance Targets for various Host Bus variants of NIU 6–11

6.5 Theory of Operation 6–12

6.6 Receive Datapath 6–15
xvi OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

6.7 Input Packet Processor (IPP) 6–15

6.8 Header Parser and Classification Engine (FFLP) 6–16

6.9 Receive DMA Engine 6–17

6.10 Transmit Datapath 6–17

6.11 Transmit DMA Controller 6–17

6.11.2 Cache Management Engine 6–19

6.11.3 Tx DMA Cache RAM 6–19

6.11.4 Tx DMA Cache Fetch Engine 6–20

6.11.5 Tx DMA Cache Write Engine 6–22

6.12 Tx Controller Interface 6–22

6.13 Transmit Controller 6–23

6.14 Ethernet MicroArchitecture Specification (MAC,MIF) 6–26

6.14.1 MAC Network Connections 6–26

6.14.1.1 T2 Network Interface Connections 6–26

6.14.2 Ethernet Port Configuration Table 6–27

6.14.3 Ethernet Port Loopback Mode Configuration Table 6–27

6.14.4 T2 MAC Loopback Mode 6–27

6.14.5 Serdes - MAC Interface Signals 6–30

6.15 NIU_RXC_TOP Microarchitecture Specification 6–31

6.15.1 NIU_RXC_TOP Overview 6–31

6.15.1 NIU_RXC_TOP Interface Signals 6–33

6.16 NIU_RXC_TOP Sub-Modules 6–35

6.16.1 niu_ipp 6–35

6.16.2 fflp 6–35

6.16.3 niu_zcp 6–36

6.16.4 tcam 6–36

6.16.5 vlan_table 6–36

6.17 NIU_IPP Microarchitecture Specification 6–36
Contents xvii

6.17.1 NIU_IPP Overview 6–36

6.17.2 NIU_IPP Interface signals 6–38

6.17.3 NIU_IPP Interface Timing 6–39

6.17.4 IPP Operation 6–41

6.17.5 IPP_LOAD 6–44

6.17.5.1 Interface with MAC 6–44

6.17.5.2 Interface with FFLP 6–44

6.17.5.3 SRAM 6–45

6.17.6 IPP_UNLOAD 6–45

6.17.6.1 Interface with RDMC 6–45

6.17.6.2 SRAM 6–47

6.17.7 Checksum 6–47

6.18 NIU_PIO Microarchitecture Specification 6–48

6.18.1 NIU_PIO Overview 6–48

6.18.2 NIU_PIO Interface Signals 6–50

6.18.3 NIU_PIO Interface Timing 6–51

6.18.3.1 PIO - Client Interface Protocol 6–51

6.18.3.2 PIO - UCB Interface Protocol 6–52

6.18.3.3 PIO Write Cycle 6–55

6.18.3.4 PIO Read Cycle 6–55

6.18.3.5 PIO Error Condition 6–55

6.18.4 Interrupt Controller Microarchitecture 6–56

6.18.5 Virtualization 6–58

6.18.6 Multi-Partition 6–58

6.18.7 PIO Transaction FIFO Microarchitecture 6–58

6.18.8 Registers for Other Modules Microarchitecture 6–59

6.19 FFLP Microarchitecture 6–60

6.19.1 Overview 6–60
xviii OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

6.19.2 Interface Signals 6–62

6.19.3 Interface Timing 6–63

6.19.3.1 Principle of CAM Access: 6–65

6.19.4 FFLP Microarchitecture Block 6–67

6.19.5 Major Pipeline Stages 6–68

6.19.6 L2/L3/L4 Header Classification 6–70

6.19.6.1 Header Parsing 6–70

6.19.6.2 L2 Header Classification 6–71

6.19.6.3 L3/L4 Header Classification 6–72

6.19.7 TCAM Classification 6–74

6.19.7.1 Associative Memory Organization 6–74

6.19.7.2 Search Key & Search Execution 6–77

6.20 ZCP Microarchitecture 6–82

6.20.1 ZCP Overview 6–82

6.20.2 ZCP Interface Signals 6–84

6.20.3 ZCP Microarchitecture Block 6–85

6.20.4 RDC Table Microarchitecture 6–86

6.20.5 ZCP State Machine Microarchitecture 6–86

6.20.6 ZCP Control FIFO Microarchitecture 6–86

6.20.7 ZCP - RDMC Interface Data Format 6–86

6.20.8 ZCP FIFO Memory Configuration 6–87

6.21 RDMC Microarchitecture Specification 6–87

6.21.1 RDMC Overview 6–87

6.21.2 RDMC Interface Signals 6–89

6.21.3 RDMC Interface Timing 6–93

6.21.4 RDMC Microarchitecture Block 6–94

6.21.5 Descriptor Cache & Descriptor Fetch 6–95

6.21.6 Packet Buffer Selection 6–96
Contents xix

6.21.7 Port Scheduler 6–97

6.21.8 Packet Processing 6–97

6.21.9 Completion Shadow RAM and Completion Write Back 6–98

6.21.10 Mailbox Update 6–100

6.21.11 Drop Packet 6–100

6.22 TDMC Microarchitecture Specification 6–101

6.22.1 TDMC Overview 6–101

6.22.2 TDMC Interface Signals 6–103

6.22.2.1 Transmit Controller Engine and Transmit DMA
Interface 6–103

6.22.2.2 Transmit Controller Engine and Transmit DMA Error
Interface 6–104

6.22.2.3 Transmit DMA-Meta Interface Signals 6–104

6.22.2.4 Transmit DMA Interface and PIO Interface 6–107

6.22.3 TDMC Interface Timing Diagrams 6–107

6.22.3.1 TXC-TDMC Interface Timing Diagrams 6–107

6.22.3.2 TDMC-Meta Interface Timing Diagrams 6–110

6.22.3.3 TDMC-PIO Interface Timing Diagrams 6–110

6.22.4 Functional Block Diagram 6–111

6.23 TXC Microarchitecture Specification 6–114

6.23.1 TXC Overview 6–114

6.23.2 Meta Interface Signals 6–116

6.23.3 TXC to TDMC Interface 6–117

6.23.4 TXC to 10 G MAC Interface 6–118

6.23.5 PIO Interface 6–118

6.23.6 NIU_TXC Block Diagrams 6–119

6.24 Meta Arb Microarchitecture Specification 6–125

6.24.1 Meta Arb Overview 6–125

6.24.2 Meta Arb Interface Signals 6–128
xx OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

6.25 Meta Interface Microarchitecture Specification 6–134

6.25.1 Meta Interface Overview 6–134

6.25.2 Meta Request Interface Signals 6–135

6.25.3 Write Request Interface Signals 6–136

6.25.4 Write Request Interface Timing 6–137

6.25.5 Read Request Interface Signals 6–141

6.25.6 Read Request Interface Timing 6–142

6.25.7 Response Interface Signals 6–145

6.25.8 Response Interface Timing 6–147

6.25.9 Alignment for Request and Response Data 6–152

6.25.9.1 Request Data Format 6–152

6.25.9.2 Response Data Format 6–152

6.25.10 Acknowledgment Signals 6–154

6.26 Interrupt Microarchitecture Specification 6–156

6.26.1 Interrupt Overview 6–156

6.26.2 Interrupt Event Generation 6–157

6.26.3 Interrupt Request Arbitration 6–158

6.26.4 Interrupt SID Generation 6–159

6.27 Debug Microarchitecture Specification 6–162

6.27.1 Overview 6–162

6.27.2 Debug Port 6–163

6.28 N2 NIU Design for Test 6–164

6.28.1 Membist Block Diagrams 6–165

6.28.2 MAC Wrapper DFT Clocks 6–167

6.28.3 MAC Wrapper DFT Port Names 6–167

6.28.4 RDP Wrapper DFT Port Names 6–169

6.28.5 TDS Wrapper DFT Port Names 6–169

6.28.6 RTX Wrapper DFT Port Names 6–171
Contents xxi

6.28.7 SMX Module DFT Port Names 6–173

6.28.8 TDMC Module DFT Port Names 6–173

6.28.9 RDMC Module DFT Port Names 6–175

6.28.10 TXC Module DFT Port Names 6–175

6.28.11 RXC Module DFT Port Names 6–177

6.28.12 Controller to SRAM Mapping 6–179

6.28.13 Scan and MEMBIST Signals for NIU SRAMs 6–180

6.28.14 SRAM Array Signal Names 6–180

6.28.15 Membist Controller Port Names 6–181

6.28.16 RAM vs. Membist Controller Connectivity 6–186

6.29 SMX Microarchitecture 6–187

6.29.1 Block Diagram 6–188

6.29.2 SMX Data Flow Diagram 6–189

6.29.3 Description of Bus Interfaces to the SMX Module 6–190

6.29.3.1 SIU Interface 6–190

6.29.4 Meta-SIU Header Translation 6–194

6.29.5 Functional Description of Sub-blocks 6–195

6.29.5.1 Meta Request Sub-module 6–195

6.29.5.2 Sii Request Sub-module 6–196

6.29.5.3 Sio Response Sub-module 6–196

6.29.5.4 Meta Response Sub-module 6–196

6.29.6 Transaction Table 6–196
xxii OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

Figures

FIGURE 1-1 DMU Block Diagram 1–3

FIGURE 1-2 IMU Mondo State Machine 1–10

FIGURE 1-3 IMU Block Diagram 1–12

FIGURE 1-4 Interface Block Diagram 1–42

FIGURE 1-5 Detailed Block Diagram 1–43

FIGURE 1-6 Ingress Interface Timing Diagram 1–55

FIGURE 1-7 Egress Interface Timing Diagram 1–56

FIGURE 1-8 NCU-DSN Timing Diagram 1–62

FIGURE 1-9 ILU Block Diagram 1–69

FIGURE 1-10 Asynchronous Clocks & Synchronizer Scenario 1–78

FIGURE 1-11 Schematic req-ack Interface across Clock Domains 1–80

FIGURE 1-12 Auto-update req-ack on the Ingress Side Timing Diagram 1–81

FIGURE 1-13 Demand-based req-ack Timing Diagram 1–82

FIGURE 1-14 IIL Block Diagram 1–83

FIGURE 1-15 IIL Timing Diagram 1–84

FIGURE 1-16 ILU-PTL Connection Diagram 1–86

FIGURE 1-17 EIL Block Diagram 1–94

FIGURE 1-18 EIL Timing Diagram: PIO requests 1–95

FIGURE 1-19 EIL Timing Diagram: DMA Completions 1–96

FIGURE 1-20 Signal Relations in Buffer Manager 1–99
xxiii

FIGURE 1-21 Data Pattern written to the EDB 1–102

FIGURE 1-22 CIB Block Diagram 1–104

FIGURE 1-23 ISB Block Diagram 1–105

FIGURE 1-24 CSR Block Diagram 1–116

FIGURE 2-1 IO2X Sync Enable Timing with respect to l2clk 2–12

FIGURE 2-2 Global Clock and Sync Enable Distribution to DB1/TCU and MIO 2–13

FIGURE 2-3 Data Transfer from DB1 to MIO 2–14

FIGURE 2-4 MIO's Boundary Scan Cell (cl_sc1_bs_cell2_4x) Schematic 2–16

FIGURE 2-5 OpenSPARC T2 Debug Port Layout across DBG0,DBG1 and MIO 2–19

FIGURE 3-1 Core Shadow Scan Architecture 3–18

FIGURE 3-2 TCU Clock Stop Logic 3–24

FIGURE 3-3 Clock Stop Sequencing through Clock Domains 3–25

FIGURE 3-4 DTM Mode 1 Configuration for db1,mio in OpenSPARC T2 3–28

FIGURE 3-5 DTM Mode 2 Configuration for db1,mio in OpenSPARC T2 3–29

FIGURE 3-6 OpenSPARC T2 Core to TCU Debug Interface 3–44

FIGURE 3-7 DBG0 and DBG1 in OpenSPARC T2 Floorplan 3–63

FIGURE 3-8 OpenSPARC T2 Debug Port layout across DBG0,DBG1 and MIO 3–65

FIGURE 3-9 Rate Conversion from iol2clk to io2xclk 3–66

FIGURE 3-10 Rate Conversion from l2clk to io2xclk 3–67

FIGURE 4-1 EFU Top Level Diagram 4–4

FIGURE 4-2 Timing Diagram showing Power On Reset Read Mode 4–10

FIGURE 4-3 JTAG Read Access Timing Diagram. 4–13

FIGURE 4-4 Fuse Programming Mode Timing Diagram. 4–14

FIGURE 4-5 JTAG Fuse Bypass Mode 4–16

FIGURE 4-6 Destination Sample Mode Timing Diagram 4–18

FIGURE 4-7 SRAM to EFU Data Transfer Timing Diagram 4–19

FIGURE 4-8 EFU to NCU Interface Timing Diagram 4–20

FIGURE 4-9 EFA Row Read Access 4–44

FIGURE 4-10 EFA Supply Detect Access 4–44

FIGURE 4-11 EFA Program Access 4–45
xxiv OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

FIGURE 5-1 Venn Diagram 5–23

FIGURE 5-2 Reset Signals 5–24

FIGURE 5-3 System On a Board 5–29

FIGURE 5-4 System On a Chip 5–30

FIGURE 5-5 Connections between RST and Other Clusters 5–32

FIGURE 5-6 Clock Cycles 5–50

FIGURE 5-7 Sequence - Start of POR1 5–53

FIGURE 5-8 Sequence - End of POR1 5–54

FIGURE 5-9 Reset Sequence - POR2 5–55

FIGURE 5-10 Reset Sequence - Warm Reset: WMR1+WMR2 5–56

FIGURE 6-1 Request Data Format 6–8

FIGURE 6-2 Response Data Format 6–8

FIGURE 6-3 NIU Top Level Block Diagram 6–10

FIGURE 6-4 TXDMA Sub Blocks 6–18

FIGURE 6-5 Diagram Of Descriptor Cache 6–20

FIGURE 6-6 Request State Machine 6–22

FIGURE 6-7 TXDMA To TXC Interface Timing Diagram 6–23

FIGURE 6-8 TX Controller Block Diagram 6–25

FIGURE 6-9 Network Interface Connections 6–26

FIGURE 6-10 T2 MAC Top Level Architecture 6–29

FIGURE 6-11 NIIU-RXC Block Diagram 6–32

FIGURE 6-12 NIU_IPP Interfacing Blocks Diagram 6–37

FIGURE 6-13 IPP_XMAC Interface Timing Diagram 6–39

FIGURE 6-14 IPP_FFLP Interface Timing Diagram 6–40

FIGURE 6-15 IPP_RDMC Interface Timing Diagram 6–41

FIGURE 6-16 IPP Block Diagram 6–42

FIGURE 6-17 IPP Datapath Diagram 6–43

FIGURE 6-18 IPP_FIFO Read Timing Diagram 6–45

FIGURE 6-19 IPP_FIFO Read Timing Diagram 6–47

FIGURE 6-20 NIU_PIO and Interfacing Blocks Block Diagram 6–49
Figures xxv

FIGURE 6-21 Client Side PIO Read Timing Diagram 6–51

FIGURE 6-22 Client Side PIO Write Timing Diagram 6–51

FIGURE 6-23 Back_to_Back Read Timing Diagram 6–52

FIGURE 6-24 Back_to_Back Write Timing Diagram 6–53

FIGURE 6-25 Write followed by Read Timing Diagram 6–54

FIGURE 6-26 UCB Side Interrupt Timing Diagram 6–57

FIGURE 6-27 FFLP and Interfacing Blocks Block Diagram 6–61

FIGURE 6-28 IPP <-> FFLP Interface Timing 6–63

FIGURE 6-29 FFLP <-> ZCP Interface Timing 6–64

FIGURE 6-30 Timing Reference for Back to Back CAM Search 6–64

FIGURE 6-31 Example of Interleaved CAM Search and PIO Access 6–66

FIGURE 6-32 Sub-block Block Diagram with Interfacing Sub-block 6–67

FIGURE 6-33 FFLP Logic Pipeline Stages 6–68

FIGURE 6-34 FFLP Pipeline Stages 6–70

FIGURE 6-35 Associative Memory (CAM-RAM) Logical Organization 6–76

FIGURE 6-36 Search-update CAM Cycle with associated SRAM 6–80

FIGURE 6-37 ZCP and Interfacing Blocks Block Diagram 6–83

FIGURE 6-38 ZCP Block Diagram 6–85

FIGURE 6-39 ZCP State Machine. 6–85

FIGURE 6-40 Data Format 6–86

FIGURE 6-41 RDMC and Interfacing Blocks Block Diagram 6–88

FIGURE 6-42 Sub-block Block Diagram with Interfacing Sub-block 6–94

FIGURE 6-43 Packet Data Format 6–98

FIGURE 6-44 TDMC Interface Diagram 6–102

FIGURE 6-45 TDMC-TXC Interface Timing Diagram 6–108

FIGURE 6-46 TDMC-TXC Interface Timing Diagram 6–109

FIGURE 6-47 TDMC-TXC Interface Timing Diagram 6–110

FIGURE 6-48 TDMC Block Diagram 6–112

FIGURE 6-49 TDMC Descriptor Cache Management Data Flow 6–113

FIGURE 6-50 NIU_TXC Interface Diagram 6–115
xxvi OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

FIGURE 6-51 NIU_TXC Block Diagram 6–119

FIGURE 6-52 Packet Engine Block Diagram 6–120

FIGURE 6-53 Deficit Round Robin Engine 6–121

FIGURE 6-54 ReOrder Engine Block Diagram 6–122

FIGURE 6-55 ReOrder State Management 6–123

FIGURE 6-56 Packet Assembly Engine 6–124

FIGURE 6-57 Top Level View of META_ARB and Neighbor Blocks 6–126

FIGURE 6-58 META ARB Top Level Flow 6–127

FIGURE 6-59 Write Request - Command, Data Phase Illustration 6–129

FIGURE 6-60 Write Request from the Same Client 6–129

FIGURE 6-61 Write Request from Different Client 6–130

FIGURE 6-62 Non-Posted Write Acknowledgement 6–131

FIGURE 6-63 Read Response - Command, Data Phase 6–133

FIGURE 6-64 Interleaved Read Write and PIO Packets 6–135

FIGURE 6-65 Single Write Request 6–137

FIGURE 6-66 Single Write Request With Read Bubble‘ 6–138

FIGURE 6-67 Two Write Requests 6–139

FIGURE 6-68 Back to Back Write Requests 6–140

FIGURE 6-69 Single Read Request 6–142

FIGURE 6-70 Two Read Requests 6–143

FIGURE 6-71 Back to Back Read Requests 6–144

FIGURE 6-72 Read Response with Data 6–147

FIGURE 6-73 Back to Back Read Responses 6–148

FIGURE 6-74 Segmented Read Responses 6–149

FIGURE 6-75 Transaction Time-out 6–150

FIGURE 6-76 Example of Response Transactions 6–151

FIGURE 6-77 Request Data Format 6–152

FIGURE 6-78 Response Data Format 6–153

FIGURE 6-79 Acknowledgement Waveform 6–155

FIGURE 6-80 Interrupt Datapath Block Diagram 6–157
Figures xxvii

FIGURE 6-81 Interrupt Diagram 6–158

FIGURE 6-82 NIU Interrupt Arbitration Datapath 6–160

FIGURE 6-83 Interrupt Arbitration State Machine 6–161

FIGURE 6-84 Top-level Debug Diagram 6–162

FIGURE 6-85 NIU Block Diagram 6–164

FIGURE 6-86 Membist TDS Block Diagram 6–165

FIGURE 6-87 Membist RDP Block Diagram 6–165

FIGURE 6-88 Membist RTX Block Diagram 6–166

FIGURE 6-89 Ram vs. Membist Controller Connectivity 6–186

FIGURE 6-90 SMX Module Block Diagram 6–188

FIGURE 6-91 SMX Data Flow 6–189
xxviii OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

Tables

TABLE 1-1 IMU Mondo INO Mapping 1–13

TABLE 1-2 Interrupt Mapping Registers 1–13

TABLE 1-3 Interrupt Clear Registers (0x601400 – 0x601440) 42 Consecutive Registers, one for each
Mondo 1–14

TABLE 1-4 Interrupt Retry Timer Register (0x601A00) 1–15

TABLE 1-5 Interrupt State Status Register I (0x601A10) 1–15

TABLE 1-6 Interrupt State Status Register II (0x601A18) 1–15

TABLE 1-7 INTX Status Register (0x0060B000) 1–16

TABLE 1-8 INT A Clear Register (0x0060B008) 1–16

TABLE 1-9 INT B Clear Register (0x0060B010) 1–17

TABLE 1-10 INT C Clear Register (0x0060B018) 1–17

TABLE 1-11 INT D Clear Register (0x6010B018) 1–17

TABLE 1-12 Event Queue Base Address Register (0x00610000) 1–18

TABLE 1-13 Event Queue Control Set Registers (0x00611000 – 0x00611118) - 36 Consecutive Registers,
one for each EQ 1–18

TABLE 1-14 Event Queue Control Clr Registers (0x00611200 – 0x00611318) 36 Consecutive Registers,
one for each EQ 1–19

TABLE 1-15 Event Queue State Register (0x00611400 – 0x00611518) - 36 consecutive registers, one for
each EQ 1–19

TABLE 1-16 Event Queue Tail Register – (0x00611600 – 0x00611718) - 36 Consecutive Registers, one
for each EQ 1–20

TABLE 1-17 Event Queue Head Registers – (0x00611800 – 0x611918) - 36 Consecutive Registers, one
for each EQ 1–20
xxix

TABLE 1-18 MSI Mapping Registers - (0x00620000 – 0x006207f8) - 256 consecutive registers, one for
each MSI 1–20

TABLE 1-19 MSI Clear Registers – (0x00628000 – 0x006287f8) - 256 consecutive registers, one for each
MSI 1–21

TABLE 1-20 Interrupt Mondo Data 0 Register – (0x0062c000) 1–21

TABLE 1-21 Interrupt Mondo Data 1 Register – (0x0062c008) 1–21

TABLE 1-22 ERR COR Mapping Register (0x00630000) 1–22

TABLE 1-23 ERR NONFATAL Mapping Register (0x00630008) 1–22

TABLE 1-24 ERR FATAL Mapping Register (0x00630010) 1–22

TABLE 1-25 PM PME Mapping Register (0x00630018) 1–23

TABLE 1-26 PME To ACK Mapping Register (0x00630020) 1–23

TABLE 1-27 IMU Error Log Enable Register (0x00631000) 1–23

TABLE 1-28 IMU Interrupt Enable Register (0x00631008) 1–24

TABLE 1-29 IMU Interrupt Status Register – (0x00631010) 1–26

TABLE 1-30 IMU Error Status Clear Register (0x00631018) 1–27

TABLE 1-31 IMU Error Status Set Register (0x00631020) 1–29

TABLE 1-32 IMU RDS Error Log Register (0x00631028) 1–31

TABLE 1-33 IMU SCS Error Log Register (0x00631030) 1–31

TABLE 1-34 IMU EQS Error Log Register (0x00631038) 1–32

TABLE 1-35 DSN-SIU Interface List 1–45

TABLE 1-36 SIU to DSN Egress Commands 1–46

TABLE 1-37 DMC_TAG Field Definitions 1–46

TABLE 1-38 SIU to DSN Header Bit Definitions 1–48

TABLE 1-39 DMU to SIU Ingress Command Bit Definitions 1–51

TABLE 1-40 DSN to SII Header Bit Definitions 1–52

TABLE 1-41 DSN to NCU Interface Pin List 1–58

TABLE 1-42 NCU to DSN PIO Command Bit Definitions 1–59

TABLE 1-43 jbc_tag[10:0] Descriptions 1–60

TABLE 1-44 NCU to DSN Command Header Bit Definitions 1–63

TABLE 1-45 NCU to DSN Header Bit Definitions 1–64

TABLE 1-46 DSN-DMU Interface Pins 1–64
xxx OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

TABLE 1-47 Abbreviation List 1–66

TABLE 1-48 ILU Signal Interface 1–71

TABLE 1-49 Transaction Summary on the Ingress Side flowing in/out of the ILU Block 1–75

TABLE 1-50 Transaction Summary on the Egress Side flowing in/out of the ILU Block 1–77

TABLE 1-51 ILU-PTL Signal Interface 1–86

TABLE 1-52 Encoded Signal Credit_type[1:0] 1–89

TABLE 1-53 IIL Type Decoder Block Functions 1–90

TABLE 1-54 EIL Type Decoder Block Functions 1–97

TABLE 1-55 ILU Status 1–104

TABLE 1-56 Pin Mappings from Existing DMU to DSN 1–106

TABLE 1-57 RAS Signals 1–109

TABLE 1-58 DSN Error Cases 1–111

TABLE 1-59 IOMMU Error Cases 1–112

TABLE 1-60 Content and Status Register (CSR) Related Pins 1–116

TABLE 1-61 Debug Ports 1–119

TABLE 1-62 DSN Debug Signals 1–119

TABLE 2-1 MIO Pinlist 2–2

TABLE 2-2 Sharing of Debug Pins with Other Pins 2–6

TABLE 2-3 Shared Pins Functionality and Frequencies 2–9

TABLE 2-4 Inputs with Pullups/Pulldowns in MIO 2–10

TABLE 3-1 CMP PLL pll_char_out[1:0] 3–2

TABLE 3-2 MCU/DRAM PLL pll_char_out[1:0] 3–3

TABLE 3-3 Domain Stopping Order 3–24

TABLE 3-4 OpenSPARC T2 DTM Modes 3–27

TABLE 3-5 ASI_INST_MASK_REG Contents 3–37

TABLE 3-6 ASI_WATCHPOINT Contents 3–38

TABLE 3-7 ASI_LSU_CONTROL_REG Contents 3–39

TABLE 3-8 Debug Block Interface Signals 3–51

TABLE 3-9 Mapping 3–69

TABLE 3-10 State that Loses Value over debug_reset (excluding NIU and PCI_EX) 3–75
Tables xxxi

TABLE 3-11 Debug Port Configuration Register 3–78

TABLE 3-12 Reset Generation Register RESET_GEN (0x89-0000-0808) 3–79

TABLE 3-13 Reset Source Register RESET_SOURCE (0x89-0000-0818) 3–79

TABLE 3-14 ASI_WMR_VEC_MASK Reg Format 3–80

TABLE 3-15 MCU Channel Read latency Register Format 3–80

TABLE 3-16 MCU Sync Frame Frequency Register 3–81

TABLE 3-17 Subsystem Reset Register 3–81

TABLE 3-18 I/O Quiesce Control Register Format 3–82

TABLE 3-19 ASI_DECR Format 3–82

TABLE 3-20 ASI_DECR bit-pair settings to achieve Debug 3–83

TABLE 3-21 SOC_DECR Format 3–84

TABLE 3-22 ASI_DECR Bit-pair Settings to achieve Debug 3–84

TABLE 3-23 L2 Mask reg Format 3–85

TABLE 3-24 L2 Compare Reg Format 3–85

TABLE 3-25 DMU Core and Block Interrupt Enable register Format 3–86

TABLE 3-26 DRAM Debug Trigger Enable Register 3–87

TABLE 3-27 NCU Debug Trigger Enable Register 3–87

TABLE 3-28 L2 Error Enable Register 3–88

TABLE 3-29 ASI_OVERLAP_MODE Register 3–88

TABLE 3-30 PEU Debug Select A Register (0x000683000/0x0) 3–90

TABLE 3-31 PEU Debug Select B Register (0x000683008/0x0) 3–90

TABLE 3-32 DMU Debug Select A Register (0x000653000/0x0) 3–91

TABLE 3-33 DMU Debug Select B Register (0x000653008/0x0) 3–92

TABLE 4-1 Terms 4–3

TABLE 4-2 Fields in the eFuse Array Data[31:0] 4–5

TABLE 4-3 Truth Table of EFA Programmed Data 4–5

TABLE 4-4 TAP Private Instructions for Fuse Functionality 4–8

TABLE 4-5 Seven Bit Block ID for Memories 4–20

TABLE 4-6 Six Bit Block IDs for Memories 4–22

TABLE 4-7 L2 Data Array Entry Description 4–25
xxxii OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

TABLE 4-8 Readback 4–25

TABLE 4-9 L2 Tag Array RID/RV Field Description 4–26

TABLE 4-10 L2 Tag Array RID/RV Field Description 4–26

TABLE 4-11 Readback 4–27

TABLE 4-12 L1 ICD RID/RV Field Descriptions 4–27

TABLE 4-13 L1 DCD RID/RV Field Descriptions for Column Repair 4–27

TABLE 4-14 Core Available 4–28

TABLE 4-15 L2 Bank Available 4–28

TABLE 4-16 DMU Write Data Format 4–30

TABLE 4-17 DMU Read Data Format 4–30

TABLE 4-18 eFuse Row SERNUM0 Format 4–31

TABLE 4-19 eFuse Row SERNUM1 Format 4–31

TABLE 4-20 Proposed eFuse Row SERNUM2 Format 4–31

TABLE 4-21 Unit-Level Interface Signals 4–33

TABLE 4-22 Interface Table for EFA 4–46

TABLE 5-1 OpenSPARC Partitioning 5–2

TABLE 5-2 Reset Actions 5–3

TABLE 5-3 Trap Types 5–4

TABLE 5-4 Preemption 5–5

TABLE 5-5 Destination of Information from the EFU 5–6

TABLE 5-6 Latch Kind 5–7

TABLE 5-7 Types of Flip-Flops 5–8

TABLE 5-8 SRAM Input Flops 5–10

TABLE 5-9 SRAM Output Flops 5–10

TABLE 5-10 Core Array Contents 5–11

TABLE 5-11 Chip Reset 5–16

TABLE 5-12 Machine State 5–21

TABLE 5-13 Cleared Arrays 5–22

TABLE 5-14 Initialize Arrays 5–25

TABLE 5-15 CPU State after Reset and in RED_state 5–28
Tables xxxiii

TABLE 5-16 Reset Generation Register 5–33

TABLE 5-17 Reset Source Register 5–34

TABLE 5-18 Subsystem Reset Register 5–36

TABLE 5-19 Reset Status Register 5–37

TABLE 5-20 Fatal Error Enable Register 5–38

TABLE 5-21 Clock Control Unit Time Register 5–38

TABLE 5-22 Lock Time Register 5–39

TABLE 5-23 Propagation Time register 5–40

TABLE 5-24 NIU Time Register 5–42

TABLE 5-25 Types of Structures 5–43

TABLE 5-26 Power-On Reset Sequence Duration 5–45

TABLE 5-27 Power-On Reset Duration on Tester 5–46

TABLE 5-28 Maximum Delay Warm Reset Sequence 5–48

TABLE 5-29 Minimum Warm Reset Duration 5–49

TABLE 5-30 Inport Ports Clocks 5–68

TABLE 5-31 Output Ports Clocks 5–70

TABLE 5-32 Thread Suspension 5–73

TABLE 5-33 CMP Shared Machine State 5–74

TABLE 5-34 CMP Specification Terms 5–75

TABLE 5-35 CMP Term Meaning 5–75

TABLE 5-36 Register Abbreviations 5–77

TABLE 5-37 Power-On Reset sequence of Events 5–77

TABLE 5-38 Warm reset Sequence of Events 5–78

TABLE 6-1 NIU-OpenSPARC T2 Configurations 6–11

TABLE 6-2 NIU-OpenSPARC T2 Tx Performance 6–11

TABLE 6-3 T2 MAC Port Configuration 6–27

TABLE 6-4 T2 MAC Port Configuration - Loopback Analysis 6–28

TABLE 6-5 MAC Interrupts Info Table 6–30

TABLE 6-6 NIU_RXC_TOP Top Level Interface Signals 6–33

TABLE 6-7 NIU_IPP Top Level Interface Signals 6–38
xxxiv OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

TABLE 6-8 <fflp_ipp_sum> Checksum Information from fflp to ipp 6–44

TABLE 6-9 <ipp_data_status_word> a Packet Information from ipp to rdmc 6–46

TABLE 6-10 NIU_PIO Top Level Interface Signals 6–50

TABLE 6-11 <Registers for Other Modules> Interface Signals 6–59

TABLE 6-12 FFLP Top Level Interface Signals 6–62

TABLE 6-13 Class Code 6–72

TABLE 6-14 Class - Key Relationship 6–77

TABLE 6-15 ZCP Top Level Interface Signals 6–84

TABLE 6-16 ZCP FIFO Memory Configuration 6–87

TABLE 6-17 Top Level Interface Signals 6–89

TABLE 6-18 TXC - TDMC DMA Cache Interface Signals 6–103

TABLE 6-19 TXC- TDMC Error Interface Signals 6–104

TABLE 6-20 TDMC- Meta Interface Write Request Interface Signals 6–104

TABLE 6-21 Write Acknowledge Interface Signals 6–105

TABLE 6-22 Read Request Interface Signals 6–105

TABLE 6-23 Read Response Interface Signals 6–106

TABLE 6-24 TDMC - PIO Interface 6–107

TABLE 6-25 Meta Request Queue 6–116

TABLE 6-26 Meta Response Queue 6–116

TABLE 6-27 TXC to TDMC Interface 6–117

TABLE 6-28 XMAC Interface 6–118

TABLE 6-29 PIO Interface 6–118

TABLE 6-30 Write Request Signals 6–128

TABLE 6-31 Non-Posted Write Response Phase (Acknowledgement) 6–130

TABLE 6-32 Read Request Command Phase 6–131

TABLE 6-33 Read Response Command and Data Phase 6–132

TABLE 6-34 Write Request Meta Signals 6–136

TABLE 6-35 Read Request Meta Signals 6–141

TABLE 6-36 Clock Cycles Between Conditional Event 6–145

TABLE 6-37 Read Response Meta Signals 6–145
Tables xxxv

TABLE 6-38 Acknowledgement Queue Meta Signals 6–154

TABLE 6-39 Debug Data Port 6–163

TABLE 6-40 Debug Internal Clock Signals 6–163

TABLE 6-41 MAC DFT Clock Ports 6–167

TABLE 6-42 MAC Functional vs. DFT Clock Groupings 6–167

TABLE 6-43 MAC DFT Scan Ports 6–167

TABLE 6-44 RDP DFT Ports 6–169

TABLE 6-45 TDS DFT Ports 6–169

TABLE 6-46 RTX DFT Ports 6–171

TABLE 6-47 SMX DFT Ports 6–173

TABLE 6-48 TDMC DFT Ports 6–173

TABLE 6-49 RDMC DFT Ports 6–175

TABLE 6-50 TXC DFT Ports 6–175

TABLE 6-51 RXC DFT Ports 6–177

TABLE 6-52 Array Signals 6–180

TABLE 6-53 NIU_MB0 SMX Mbist Controller Ports 6–181

TABLE 6-54 TXC NIU_MB1 Mbist Controller Ports 6–181

TABLE 6-55 TDMC NIU_MB2 Mbist Controller Ports 6–182

TABLE 6-56 RDMC NIU_MB4 Mbist Controller Ports 6–182

TABLE 6-57 RXC NIU_MB3 IPP Mbist Controller Ports 6–183

TABLE 6-58 RXC NIU_MB5 TCAM Mbist Controller Signals 6–183

TABLE 6-59 RXC NIU_MB6 Mbist Controller Signals 6–184

TABLE 6-60 RXC NIU_MB7 ZCP Mbist Controller Signals 6–185

TABLE 6-61 SII-SMX Interface 6–190

TABLE 6-62 SIO-SMX Interface 6–190

TABLE 6-63 Meta Protocol Signals 6–191

TABLE 6-64 Command Opcode (RECEIVE and SEND command) 6–193

TABLE 6-65 SIU header/Meta Command Translation: DMA Read/Write Request 6–194
xxxvi OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

Preface

This OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification includes
detailed functional descriptions of the OpenSPARC T2 System-on-Chip I/O
components. This manual is divided into two volumes, (Part 1 of 2) P/N 820-2620-10
and (Part 2 of 2) P/N 820-5090-10.

This manual also provides I/O signal list for each component. This processor
expands Sun’s throughput computing initiative by doubling the number of threads
from the OpenSPARC T1 processor and adding support for industry standard I/O
interfaces like PCI-Express and 10Gigabit Ethernet.

How This Document Is Organized
This OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification (Part 2 of 2).,
P/N 820-5090-10 includes detailed functional descriptions of the following
OpenSPARC T2 System-on-Chip I/O components.

Chapter 1 describes the Data Management Unit (DMU)

Chapter 2 describes the Miscellaneous I/O (MIO)

Chapter 3 describes the Debug Functions

Chapter 4 describes the Electronic Fuse Unit (EFU)

Chapter 5 describes the Reset Functions

Chapter 6 describes the Network Interface Unit
Preface xxxvii

Using UNIX Commands
This document might not contain information about basic UNIX® commands and
procedures such as shutting down the system, booting the system, and configuring
devices. Refer to the following for this information:

■ Software documentation that you received with your system

■ Solaris™ Operating System documentation, which is at:

http://docs.sun.com
xxxviii OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

http://docs.sun.com

Shell Prompts

Typographic Conventions

Shell Prompt

C shell machine-name%

C shell superuser machine-name#

Bourne shell and Korn shell $

Bourne shell and Korn shell superuser #

Typeface*

* The settings on your browser might differ from these settings.

Meaning Examples

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output

Edit your.login file.
Use ls -a to list all files.
% You have mail.

AaBbCc123 What you type, when contrasted
with on-screen computer output

% su

Password:

AaBbCc123 Book titles, new words or terms,
words to be emphasized.
Replace command-line variables
with real names or values.

Read Chapter 6 in the User’s Guide.
These are called class options.
You must be superuser to do this.
To delete a file, type rm filename.
Preface xxxix

Related Documentation
The documents listed as online are available at:

http://www.opensparc.net/

Application Title Part Number Format Location

Documentation OpenSPARC T2 Core
Microarchitecture
Specification

820-2545 PDF Online

Documentation OpenSPARC T2 System-
On-Chip (SoC)
Microarchitecture
Specification (Part 1 of 2)

820-2620 PDF Online

Documentation OpenSPARC T2 System-
On-Chip (SoC)
Microarchitecture
Specification (Part 2 of 2)

820-5090 PDF Online
xl OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

http://www.opensparc.net/

Documentation, Support, and Training

Third-Party Web Sites
Sun is not responsible for the availability of third-party web sites mentioned in this
document. Sun does not endorse and is not responsible or liable for any content,
advertising, products, or other materials that are available on or through such sites
or resources. Sun will not be responsible or liable for any actual or alleged damage
or loss caused by or in connection with the use of or reliance on any such content,
goods, or services that are available on or through such sites or resources.

Sun Welcomes Your Comments
Sun is interested in improving its documentation and welcomes your comments and
suggestions. You can submit your comments by going to:

http://www.sun.com/hwdocs/feedback

Please include the title and part number of your document with your feedback:

OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification (Part 1 of 2), part
number 820-2620-10.

OpenSPARC T2 System-On-Chip (SoC) Microarchitecture Specification (Part 2 of 2), part
number 820-5090-10.

Sun Function URL

OpenSPARC T2 http://www.opensparc.net/

Documentation http://www.sun.com/documentation/

Support http://www.sun.com/support/

Training http://www.sun.com/training/
Preface xli

http://www.sun.com/hwdocs/feedback
http://www.sun.com/training/
http://www.sun.com/support/
http://www.sun.com/documentation/
http://www.opensparc.net/

xlii OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

CHAPTER 1

Data Management Unit (DMU)

This chapter contains the following sections:

■ Overview

■ Functional Description of DMU Sub-blocks

■ Transaction Manager Unit (TMU)

■ Interrupt Message Unit (IMU)

■ Record Management Unit (RMU)

■ Transaction Scoreboard Unit (TSB)

■ Memory Management Unit (MMU)

■ Context Manager Unit (CMU)

■ Packet Manager Unit (PMU)

■ Packet Scoreboard (PSB)

■ Cache Line Unit (CLU)

■ Data In Unit (DIU)

■ Data Out Unit (DOU)

■ DMU SIU/NCU Interface Unit (DSN)

■ Interface Layer Unit (ILU)

■ Pin Mapping

■ RAS

■ Resets

■ Content and Status Registers (CSRs)

■ Transaction Ordering

■ DEBUG Features
1-1

1.1 Overview
The OpenSPARC T2 PCI-Express subsystem leverages the Data Management Core
(DMC) from VSP Fire ASIC for PCI-Express Packet processing. With the additional
glue logic (DSN block) between Fire DMC IP, OpenSPARC T2 SIU (system interface
unit) and OpenSPARC T2 NCU (non-cacheable unit), the DSN block plus Fire DMC
constitutes the Data Management Unit (DMU) in the OpenSPARC T2 PCI-Express
Subsystem.

This specification documents the high level DMU function.

The DMU is responsible for managing and directing all command and data flows
from/to PCI-Express Unit (PEU), System Interface Unit (SIU), and Non-Cacheable
Unit (NCU). The DMU has three primary external interfaces, one to the SIU, one to
the NCU and one to the PEU.

The DMU manages Transaction Layer Packet (TLP) to/from the PEU and maintains
the same ordering as from the PEU and then to the SIU. For maintaining ordering
between PEU and SIU, the DMU requires the policy that has PIO reads pulling DMA
writes to completion. When the PEU issues complete TLP transactions to the DMU,
the DMU segments the TLP packet into multiple cacheline oriented SIU commands
and issues them to the SIU. The DMU also queues the response cachelines from SIU,
and reassembles the multiple cachelines into one TLP packet with maximal payload
size. Furthermore, the DMU accepts/queues the PIO transactions requests from
NCU, and coordinates with the appropriate destination, to which the address and
data will be sent.

The DMU encapsulates the functions necessary to resolve a virtual PCI-Express
packet address into a L2 cacheline physical address which can be presented on the
SIU interface. The DMU also encapsulates the functions necessary to interpret
PCI-Express Message Signaled Interrupts, Emulated INTX Interrupts and provides
the functions to post interrupt events to queues managed by software in main
memory and generates the Solaris Interrupt Mondo to notify software. The DMU
decodes INTACK and INTNACK from interrupt targets and conveys the information
to the Interrupt Function so it can move on to service the next interrupt if any (for
INTACK) or replay the current interrupt (for INTNACK).
1-2 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

1.1.1 DMU Block Diagram

FIGURE 1-1 DMU Block Diagram

CLU
CTM

16x60

Data Cmd

16x60x2

CRM

Cmd

PMU PRM

4x79

PSB

32x44
+16x6

P
I
O

D
M
A

M
S
I

P
I
O

D
M
A

Cmd Rcrd

2KB
16x
19B

2KB

RCM

4x93

CMU

CTX
TCM
4x80

Data

4x60

Ingr Pkt Rcrd Egr Pkt Rcrd

32x(48+5+11+5)
16x(48+4)

MMU TDB

VTB PTB

4KB

Schd Rcrd

TSB
32x48

RMUSRM

LRM

TSB

IMU INT Out Rcrd LRM Rcrd

8x116(FF)

6x124(FF)
RRM

6x70(FF)

Retired Rcrd

DIM DEMTMU

DIM Rcrd RRM Rcrd

4x128(FF)5x126(FF)

PEC Rcrd

Align

PIO
DMA/
INT

Unsup./
Fault

MSI Data

INT In Rcrd

2x13112x17

Mondo Req

INT
Ack/Nack

SRM Rcrd

6x123(FF)

DMC

PEC Rcrd
Chapter 1 Data Management Unit (DMU) 1-3

1.1.2 Abbreviation
DMU - Data Management Unit

SIU - System Interface Unit

NCU - Non-Cacheable Unit

PEU – PCI-Express Unit

CLU – Cache Line Unit

CTM – Cacheline Transmit Manager

CRM – Cacheline Receive Manager

PMU – Packet Manager Unit

CMU – Context Manager Unit

IOMMU – IO Memory Management Unit

IMU – Interrupt and Message Unit

RMU – Record Manager Unit

TMU – Transaction Manager Unit

DIU – Data-In Unit

DOU – Data-Out Unit

TSB – Transaction ScoreBoard

PSB – Packet ScoreBoard

VTB – Virtual Tag Buffer

TDB – Translation Data Buffer

MSI – Message Signal Interrupt

1.1.3 General Ingress Pipeline (IP) Operations
1. TMU dequeues PEU TLP Record from input Queue.

2. TMU parses PEU TLP Record - extract record contents, data.

3. TMU moves write data to DATA Pool if necessary.

4. RMU builds/Installs Transaction entry on Transaction scoreboard (TRN SCBD).
1-4 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

5. RMU build Schedule Record and enqueue Schedule Record to IOMMU.

6. IOMMU Manager dequeues Schedule Record, builds VAR record (if necessary),
enqueues VAR record on VAR Queue, dequeues VAR record, does VA-> PA
translation and returns results in PhyAD Q, Merges PhyAD from PhyAD Q into
Schedule Record, enqueues Schedule Record to Context Manager.

7. Context Receive Manager dequeues Schedule Record, and installs context in
current Context (CNTXT) Lists.

8. Context Manager fetches next Context from CNTXT list, builds Packet Record,
enqueues Packet Record to Packet Receive Manager.

9. Packet Receive Manager dequeues Packet Record, Breaks up Packet Record into
cacheline oriented record, builds a Cacheline Command Record, enqueues
Cacheline Command Record to Cacheline Transmit Manager, builds/updates
Packet Scoreboard entry.

10. Cacheline Transmit Manager dequeues Cacheline Command Record, enqueues
cacheline Command Record onto DSN interface, pulls data from DATA pool and
enqueues data on outgoing data queue to DSN.

1.1.4 General Egress Pipeline (EP) Operations
DMA Read Data Responses:

1. CRM (Cacheline Receive Manager) dequeues a DATA return from the DMA read
request, builds Packet Record, enqueues Packet Record to TCM (Transmit Context
Manager) Queue, updates PKT scoreboard

2. TCM (Transmit Context Manager) dequeues Packet Record, matches the context
to a current Context (CNTXT) list entry, processes the context, builds a Retire
Record, enqueues Retire Record to Retire Record Manager, marks the Context as
done if all Packet Records have been returned, retires Context

3. RRM (Retire Record Manager) dequeues Retire Record, updates Transaction
Scoreboard, builds and issues TLP Record to Transaction Manager.

4. Transaction Manager dequeues TLP Record, builds a PEU Record enqueues PEU
Record to PEU Egress Interface Layer HDR FIFO with address in DMU DATA
Pool

5. PEU Egress Interface Layer moves data from DMU Data Pool to VC Data Buffer

Commands (PIO):

1. CRM dequeues a PIO Record from the DSN, builds Packet Record, enqueues
Packet Record to Transmit Context Manager Queue, updates PKT scoreboard.
Chapter 1 Data Management Unit (DMU) 1-5

2. Transmit Context Manager dequeues Packet Record, bypasses Context, builds and
enqueues Retire Record to Retire Record Manager.

3. Retire Record Manager dequeues Retire Record, builds and issues TLP Record to
Transaction Manager.

4. Transaction Manager dequeues TLP Record, builds a PEU Record and enqueues
the record into the Egress Interface Layer HDR FIFO.

5. Egress Interface Layer moves data from DMU PIO Pool to VC Data Buffer

1.2 Functional Description of DMU
Sub-blocks
The DMU contains several groups of functions, including Cache Line Unit (CLU),
Packet Manager Unit (PMU), Context Manager Unit (CMU), IO Memory
Management Unit (IOMMU), Record Manager Unit (RMU), Interrupt and Message
Unit (IMU), Transaction Manager Unit (TMU), Transaction Scoreboard (TSB), Packet
Scoreboard (PSB), Data Buffers (DIU and DOU) and Interface Layer Unit (ILU). The
following sections describe the architecture, functionality and change requirement of
each groups.

1.3 Transaction Manager Unit (TMU)

1.3.1 TMU Function Description:
The TMU interfaces with the Interface Layer Unit (ILU) of the PEU to manage the
TLPs ingress and egress flows. It consists of two sub-blocks, Data Ingress Manager
(DIM) and Data Egress Manager (DEM).
1-6 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

1.3.1.1 Data Ingress Manager (DIM)

In the ingress direction, ILU pushes header record to a record FIFO residing in DIM.
These records include a pointer to a packet payload in the IDB of PEU. The DIM
manages the DIB buffer space allocation on a cacheline basis. It aligns a packed
16-byte wide data pulled from IDB to a non-packed cacheline oriented data format,
calculates byte masks, and pushes the data and byte mask to DIU.

Meanwhile, DIM sends release records to ILU when it pulls data out of IDB. The
DIM identifies a Message Signaled Interrupt (MSI) type from a DMA manager. On a
MSI operation, it checks the data parity and pushed the result along with the
payload to IMU MSI data FIFO, and a reformed header record is pushed to LRM
record FIFO.

The records out of DIM is in strict order as the records into DIM. For non-MSI
records with payload, the record will be pushed into LRM record FIFO before the
associated payload is transferred from IDB in PEU to DIU in DMU. DIM passes DIU
DMA write buffer and PIO read completion buffer write pointers to CLU. CLU
knows if the payload associated with certain records is ready by comparing the
write pointers to its own data buffer read pointers.

For MSI, DIM pushes an MSI associated payload directly into IMU MSI data FIFO
and passes the MSI record to IMU via LRM, and the payload can not arrive IMU
after the associated record.

1.3.1.2 Data Egress Manager (DEM)

In the egress direction, the header records are pushed by the RMU to a record FIFO
residing in DEM. DEM computes the full 64-bit address from a 40-bit encoded
address for PIO memory 64-bit address access. It pushes the reformatted header
records down to the EIL record FIFO if the FIFO is not full.

1.3.1.3 MSI-X Support:

To support MSI-X, the datapath width between DIM and IMU MSI data FIFO need
to be increased from 16 bits to 32 bits.
Chapter 1 Data Management Unit (DMU) 1-7

1.4 Interrupt Message Unit (IMU)

1.4.1 IMU Functional Description

1.4.1.1 Definition of Terms
■ Event Queue - A ring buffer in memory defined by a physical base address which

is cacheline aligned, it's size in cachelines, a head pointer, and a tail pointer.

■ Event Queue Interrupt - A type of Mondo interrupt to notify software that a given
event queue has entries in it which need to be processed. This type of Mondo
interrupt can only be mapped to Solaris interrupt numbers 24-59.

■ Event Queue Number - A number between 0 and 35 which is used to uniquely
identify which given event queue an event queue write is destined for.

■ Event Queue Write - A 64 byte write to memory (virtual or physical) which is
caused by the reception of a MSI/Message from PEU. The IMU actually only
writes 16 bytes into the DMU DIU, the remaining bytes are zero filled when CLU
dispatches the write packets to DSN.

■ Inband Interrupt - A sub set of I/O bus interrupts which are received by
OpenSPARC T2 PEU via the normal flow of traffic on the PCI-Express. MSI s and
INT x emulated messages fall into the category.

■ Internal Interrupt - A type Mondo interrupt which is generated internally by
OpenSPARC T2 IO subsystem. They are caused by errors which occur within the
chip. Each unit has the ability to generate 1 internal interrupt which are then
mapped to Solaris Interrupt numbers 62 (DMU) and 63(PEU).

The IMU handles MSIs (Message Signal Interrupts), PCIE messages, INTx emulation
interrupts, and internal interrupts (error and event). In response to receiving one of
the above transactions requests, the IMU must generate a response which will be
either a null record, an event queue write record or a Solaris interrupt Mondo
record. It also generates properly formatted 16 bytes of data required with each
transaction.

IMU uses event queues to queue up MSIs and valid PCIE messages received which
require software notification. An event queue is tied to a specific processor and
generates only one outstanding Solaris Mondo interrupt for one or more than one
write to the event queue.

MSIs are mandatory in PCI-Express. They are queued in one or more event queues
located in system memory. Each event queue generates only one outstanding Solaris
Mondo interrupt. When the MSI record is dequeued off the In Interrupt Record
1-8 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

Queue and associated DATA is dequeued off of the MSI data queue, the MSI data is
decoded and EQ state is looked up. If EQ is available, a new header record is formed
and enqueued into the Out Interrupt Record Queue. At the same time, the data is
sent to DIU along with the corresponding the parity and byte enables generated by
IMU. The process of PCI-Express Message is similar to MSI except no associated
data. When MSIs and Messages pass through the command/header pipeline, an EQ
write is performed if no error conditions occur. The tail pointer for the EQ is
increments automatically to prepare for the next EQ write. When a difference is seen
between the head and tail pointers, a Mondo will be generated for the event queue
and sent to the Mondo Request Queue in LRM. The Event Queue Mondo record
re-enters the IMU via the In Interrupt Record Queue at a later point. This Event
Queue Mondo is then enqueued onto the Out Interrupt Record Queue.

INTx emulation interrupts trigger the state machine transition to generate a Mondo
record. Then the Mondo record is enqueued to the Mondo Request Queue in the
LRM. After being tagged by LRM, the Mondo record flows back to IMU to be
processed via In Interrupt Record Queue, and then is enqueued onto the Out
Interrupt Record Queue as other type of records.

Internal interrupts for error and status notification will generate one or more Solaris
interrupt Mondo vectors. They will not use the event queues since some of the errors
would be detected when trying to write to an event queue.

1.4.1.2 IMU Mondo State Machine

IMU uses a level sensitive interrupt mechanism and is governed by a certain set of
rules which may be found below. Also please refer to FIGURE 1-2.

■ A host bus interrupt can be in one of three states: IDLE, RECEIVED, or
PENDING.

a. IDLE - represents the state where no interrupts have been reported.

b. RECEIVED - indicates that an interrupt has been detected by the hardware and
should be delivered to the processor if/when the valid bit is set in its mapping
register.

c. PENDING - represents the state when the interrupt has been queued to be or
has been sent to the processor to be handled.

■ A detection of an interrupt by hardware when the current interrupt state is IDLE
causes a state transition from IDLE to RECEIVED.

■ Any subsequent detection of the same interrupt by hardware is dropped until
software resets the state machine back to IDLE.

■ If the valid bit for a given interrupt in the RECEIVED state is enabled and the
hardware has scheduled that interrupt for transmission to the processor, a state
transition occurs from RECIEVED to PENDING.
Chapter 1 Data Management Unit (DMU) 1-9

■ At no point can hardware make any other transitions in the state machine besides
the previously two afore mentioned transitions.

■ The state for each interrupts can be set to any desired state by software.

■ If SW sets the state machine into a given state, all of the HW arcs for that state are
still valid and any events and or state transitions which should occur in that state
will occur.

FIGURE 1-2 IMU Mondo State Machine

1.4.1.3 PCI-Express/PCI-X/PCI MSI Capability Structure

The capabilities mechanism in PCI-Express/PCI-X/PCI end device is used to
identify and configure a MSI capable device. The message capability structure is
illustrated below. Each device function that supports MSI (in a multi-function
device) must implement its own MSI capability structure.

IDLE = 00

RECEIVED = 01 PENDING = 11

No Interrupt detectedSW PIO

SW PIO

SW PIO

SW PIO

SW valid is enabled and
interrupt has been scheduled

SW valid is not enabled
1-10 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

To request service, an MSI function writes the contents of the Message Data register
to the address specified by the contents of the Message Address register (and,
optionally, the Message Upper Address register for a 64-bit message address).

.

Capability Structure for 32-bit Message Address

31 ---- 16 15 ----- 8 7 ----- 0

Message Control Next Ptr Cap ID

Message Address

Message Data

Capability Structure for 64-bit Message Address

31 ---- 16 15 ----- 8 7 ----- 0

Message Control Next Ptr Cap ID

Message Address

Message Upper Address

Message Data
Chapter 1 Data Management Unit (DMU) 1-11

FIGURE 1-3 IMU Block Diagram

Out Cmd Sub-Blk

Cmd Decode Sub-Blk

State Check Sub-
Blk

EQ Check Sub-Blk

Replay Status Sub-Blk

Interrupt State
Sub-Blk

Group Controller
Sub-Blk

Data
Mover
Sub-
Blk

Header RecordMSI Data

EQ LookupHeader Command

Header Command

Lookup Reply

Data Address

Data Address

MSI Data In Intr record Q Intf

Mondo
Replays

Mondo Replay Status IntfHeader Command

Q Intf
1-12 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

1.4.1.4 IMU Mondo INO Mapping Table

1.4.1.5 IMU CSRs Change List

Interrupt Mapping Registers (0x601000 – 0x601150) 42 consecutive registers, one for each
Mondo)

TABLE 1-1 IMU Mondo INO Mapping

INO Function

INOs 0-19 Reserved

INO 20-23 4 interrupts for PCI Express INTx Emulation
-20 INTA
-21 INTB
-22 INTC
-23 INTD

INO 24 – 59 36 Event Queue Interrupts

INO 60 – 61 Reserved

INO 62 DMU Internal Interrupt

INO 63 PEU Internal Interrupt

TABLE 1-2 Interrupt Mapping Registers

Field Bits Reset
Name

Reset
Value

Type Description

MDO_MODE [63] rst_l 0x0 RW This bit is used to select which of the two mondo
formats the mondo will use.
A value of 1 = Data Bearing Mondo.
A value of 0 = Non Data Bearing Mondo (Normal
Mondo).
The value of this bit, will be used as bit 63 of the first
data word in the Mondo vector. In general, EQ
mondo s should have this bit set to 1 and non EQ
Mondos should set this bit to 0.

RESERVED [62:32] rst_l 0x0 RW Reserved field

V [31] rst_l 0x0 RW Valid bit: When set to 0, interrupt will not be
dispatched to Core. Has no other impact on interrupt
state.

Thread_ID [30:25] rst_l 0x0 RW Thread ID of the core that this interrupt will be sent
to.
Chapter 1 Data Management Unit (DMU) 1-13

RESERVED [24:10] Reserved field

INT_CNTRL_
NUM

[9:6] rst_l 0x0 RW Interrupt Controller Number. This is used to select
which Interrupt controller will issue the interrupt.
This is a 1-hot value only 1 bit may be selected at a
time. Valid Values are as follows:
0000 - No controller selected
0001 - Interrupt Controller 0
0010 - Interrupt Controller 1
0100 - Interrupt Controller 2
1000 - Interrupt Controller 3
If other values are programmed this is a
programming error the results are undefined

RESERVED [5:0] Reserved field

TABLE 1-3 Interrupt Clear Registers (0x601400 – 0x601440) 42 Consecutive Registers, one for each
Mondo

Field Bits Reset
Name

Reset
Value

Type Description

RESERVED [63:2] Reserved field

INT_STATE [1:0] rst_l 0x0 RW Writing of the register, the value of the lower two
bits are used to control the state bits for the interrupt
state machine associated with this interrupt. The
following values may be written:
00 - Set the state machine to IDLE state.
01 - Set the state machine to RECEIVED state.
10 - Reserved, If this value is used it is a
programming error. The results are undefined.
11 - Set the state machine to PENDING state.
When reading from this register, the actual state of
the associated interrupt state machine are read. The
legal values are the same as listed above.

TABLE 1-2 Interrupt Mapping Registers (Continued)

Field Bits Reset
Name

Reset
Value

Type Description
1-14 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

TABLE 1-4 Interrupt Retry Timer Register (0x601A00)

Field Bits Reset
Name

Reset
Value

Type Description

RESERVED [63:25] Reserved field

Limit [1:0] rst_l 0x0 RW Limit the retry interval in clock cycles (OpenSPARC
T2 IO Clock Frequency)

TABLE 1-5 Interrupt State Status Register I (0x601A10)

Field Bits Reset
Name

Reset
Value

Type Description

STATE [63:0] rst_l 0x0 R State Values for Mondos 0 through 31 Each state is
two bits in the register with the MSB being the 2nd
bit of Mondo 31 and the LSB being the 1st bit of
Mondo 0.

TABLE 1-6 Interrupt State Status Register II (0x601A18)

Field Bits Reset
Name

Reset
Value

Type Description

STATE [63:0] rst_l 0x0 R State Values for Mondos 32 through 63 Each state is
two bits in the register with the MSB being the 2nd
bit of Mondo 63 and the LSB being the 1st bit of
Mondo 32.
Chapter 1 Data Management Unit (DMU) 1-15

TABLE 1-7 INTX Status Register (0x0060B000)

Field Bits Reset
Name

Reset
Value

Type Description

RESERVED [63:4] Reserved field

INT_A [3] rst_l 0x0 R INT A Status 0= No INTX 1= INTX This register will
be set when an assert INT A message is received and
will be cleared when a deassert INT A message is
received or when cleared via the INT A Clear
Register by software

INT_B [3] rst_l 0x0 R INT B Status 0= No INTX 1= INTX This register will
be set when an assert INT B message is received and
will be cleared when a deassert INT B message is
received or when cleared via the INT B Clear
Register by software

INT_C [3] rst_l 0x0 R INT C Status 0= No INTX 1= INTX This register will
be set when an assert INT C message is received and
will be cleared when a deassert INT C message is
received or when cleared via the INT C Clear
Register by software

INT_D [3] rst_l 0x0 R INT D Status 0= No INTX 1= INTX This register will
be set when an assert INT D message is received and
will be cleared when a deassert INT D message is
received or when cleared via the INT D Clear
Register by software

TABLE 1-8 INT A Clear Register (0x0060B008)

Field Bits Reset
Name

Reset
Value

Type Description

RESERVED [63:1] Reserved field

CLR [0] rst_l 0x0 RW1C Write 0 = has no effect, Write 1 will clear the INT A
bit of the INTX Status Register. When reading, the
value of the INT A bit from the INTX Status
Register will be returned
1-16 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

TABLE 1-9 INT B Clear Register (0x0060B010)

Field Bits Reset
Name

Reset
Value

Type Description

RESERVED [63:1] Reserved field

CLR [0] rst_l 0x0 RW1C Write 0 = has no effect, Write 1 will clear the INT B
bit of the INTX Status Register. When reading, the
value of the INT B bit from the INTX Status
Register will be returned

TABLE 1-10 INT C Clear Register (0x0060B018)

Field Bits Reset
Name

Reset
Value

Type Description

RESERVED [63:1] Reserved field

CLR [0] rst_l 0x0 RW1C Write 0 = has no effect,
Write 1 will clear the INT C bit of the INTX Status
Register.
When reading, the value of the INT C bit from the
INTX Status Register will be returned

TABLE 1-11 INT D Clear Register (0x6010B018)

Field Bits Reset
Name

Reset
Value

Type Description

RESERVED [63:1] Reserved field

CLR [0] rst_l 0x0 RW1C Write 0 = has no effect
Write 1 will clear the INT D bit of the INTX Status
Register.
When reading, the value of the INT D bit from the
INTX Status Register will be returned
Chapter 1 Data Management Unit (DMU) 1-17

TABLE 1-12 Event Queue Base Address Register (0x00610000)

Field Bits Reset
Name

Reset
Value

Type Description

ADDRESS 63:19 rst_l 0x0 RW EQ Base Address, 512K Aligned This address has
to a properly formatted physical or virtual address.
Meaning if this address is suppose to be bypass it
needs the upper 14 address bits [63:50] set to all 1
s, address bits [49:39] set to zero. The lower bits of
the address [38:18] are used as the cacheable
physical address on L2$. For a virtual address bit
63 need to be zero, bits [62:32] are don’t care, bits
[31:18] used to access the IOMMU.

RESERVED 18:0 Reserved field

TABLE 1-13 Event Queue Control Set Registers (0x00611000 – 0x00611118) - 36 Consecutive Registers, one
for each EQ

Field Bits Reset
Name

Reset
Value

Type Description

RESERVED [63:58] Reserved field

ENOVERR [57] rst_l 0x0 L 0-no action
1-Set OVERR bit
A read of this register is not allowed. This bit
should only be set if the EQ is currently in the
ACTIVE state. Setting this bit when the EQ is IDLE
will cause undetermined results.

RESERVED [56:45] Reserved field

EN [44] rst_l 0x0 L 0-no action
1-Enable EQ
EQ will be running when STATE = ACTIVE, A
read of this register is not allowed. This bit should
only be written when the EQ is currently IDLE. If
the EQ is not in the IDLE state this operation will
have no effect on the state of the EQ.

RESERVED [43:0] Reserved field
1-18 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

TABLE 1-14 Event Queue Control Clr Registers (0x00611200 – 0x00611318) 36 Consecutive Registers, one for
each EQ

Field Bits Reset
Name

Reset
Value

Type Description

RESERVED [63:58] Reserved field

COVERR [57] rst_l 0x0 L 0-no action
1-Clear OVERR bit
A read of this register is not allowed.

RESERVED [56:48] Reserved field

E2I [47] rst_l 0x0 L 0-no action
1-Go from ERROR to IDLE
A read of this register is not allowed. This bit
should only be written when the EQ is currently in
the error. If the EQ is not in the ERROR state this
operation will have no effect on the state of the EQ.

RESERVED [46:45] Reserved field

DIS [44] rst_l 0x0 L 0-no action
1-Disable EQ
A read of this register is not allowed. This bit
should only be set if the EQ is currently in the
ACTIVE state. If the EQ is not in the ACTIVE state
this operation will have no effect on the state of the
EQ.

RESERVED [43:0] Reserved field

TABLE 1-15 Event Queue State Register (0x00611400 – 0x00611518) - 36 consecutive registers, one for each
EQ

Field Bits Reset
Name

Reset
Value

Type Description

RESERVED [63:3] Reserved field

STATE [2:0] rst_l 0x0 L Event Queue State 001-IDLE, 010-ACTIVE, 100-
ERROR
Chapter 1 Data Management Unit (DMU) 1-19

TABLE 1-16 Event Queue Tail Register – (0x00611600 – 0x00611718) - 36 Consecutive Registers, one for each
EQ

Field Bits Reset
Name

Reset
Value

Type Description

RESERVED [63:58] Reserved field

OVERR [57] rst_l 0x0 R 1-EQ Overflow occurred.

RESERVED [56:7] Reserved field

TAIL [6:0] rst_l 0x0 RW Value of the current HW tail pointer. In normal
operation it is read by SW and written by HW.

TABLE 1-17 Event Queue Head Registers – (0x00611800 – 0x611918) - 36 Consecutive Registers, one for each
EQ

Field Bits Reset
Name

Reset
Value

Type Description

RESERVED [63:7] Reserved field

TAIL [2:0] rst_l 0x0 RW EQ Head Pointer. Initialize by s/w, written by s/w
during operation.

TABLE 1-18 MSI Mapping Registers - (0x00620000 – 0x006207f8) - 256 consecutive registers, one for each
MSI

Field Bits Reset
Name

Reset
Value

Type Description

V [63] rst_l 0x0 RW 0 - Not Valid, A received MSI of this number will
be treated as an error.
1 - Valid, A received MSI of this number will be
routed to the EQ specified in the eqnum field

EQWR_N [62] rst_l 0x0 R 0 - OK to write to, a received MSI of the number
will be will be sent to the EQ specified.
1 - MSI already in EQ, received MSI of the number
will be will be treated as a duplicate. S/W must
clear this bit BEFORE calling the clients interrupt
handler.

RESERVED [61:6] Reserved field

EQNUM [5:0] rst_l 0x0 RW Event Queue Number
1-20 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

TABLE 1-19 MSI Clear Registers – (0x00628000 – 0x006287f8) - 256 consecutive registers, one for each MSI

Field Bits Reset
Name

Reset
Value

Type Description

RESERVED [63] Reserved field

EQWR_N [62] rst_l 0x0 RW1C Write 0 = has no effect.
Write 1 = will clear the EQWR_N bit of the MSI
Mapping Register.
When reading, the value of the EQWR_N bit from
the MSI Mapping Register will be returned

RESERVED [61:0] Reserved field

TABLE 1-20 Interrupt Mondo Data 0 Register – (0x0062c000)

Field Bits Reset
Name

Reset
Value

Type Description

DATA [63:6] rst_l 0x0 RW Data 0 word, bits 63:6 of mondo used for a data
baring mondos with the mode bit set to 1.

RESERVED [5:0] Reserved field

TABLE 1-21 Interrupt Mondo Data 1 Register – (0x0062c008)

Field Bits Reset
Name

Reset
Value

Type Description

DATA [63:0] rst_l 0x0 RW Data 1 word of mondo used for data baring
mondos with the mode bit set to 1.
Chapter 1 Data Management Unit (DMU) 1-21

TABLE 1-22 ERR COR Mapping Register (0x00630000)

Field Bits Reset
Name

Reset
Value

Type Description

V [63] rst_l 0x0 RW 0 - Not Valid, A received message of this type will
be treated as an error.
1 - Valid, A received message of this type will be
routed to the EQ specified in the eqnum field

RESERVED [62:6] Reserved field

EQNUM [5:0] rst_l 0x0 RW Event Queue Number

TABLE 1-23 ERR NONFATAL Mapping Register (0x00630008)

Field Bits Reset
Name

Reset
Value

Type Description

V [63] rst_l 0x0 RW 0 - Not Valid, A received message of this type will
be treated as an error.
1 - Valid, A received message of this type will be
routed to the EQ specified in the eqnum field

RESERVED [62:6] Reserved field

EQNUM [5:0] rst_l 0x0 RW Event Queue Number

TABLE 1-24 ERR FATAL Mapping Register (0x00630010)

Field Bits Reset
Name

Reset
Value

Type Description

V [63] rst_l 0x0 RW 0 - Not Valid, A received message of this type will
be treated as an error.
1 - Valid, A received message of this type will be
routed to the EQ specified in the eqnum field

RESERVED [62:6] Reserved field

EQNUM [5:0] rst_l 0x0 RW Event Queue Number
1-22 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

TABLE 1-25 PM PME Mapping Register (0x00630018)

Field Bits Reset
Name

Reset
Value

Type Description

V [63] rst_l 0x0 RW 0 - Not Valid, A received message of this type will
be treated as an error.
1 - Valid, A received message of this type will be
routed to the EQ specified in the eqnum field

RESERVED [62:6] Reserved field

EQNUM [5:0] rst_l 0x0 RW Event Queue Number

TABLE 1-26 PME To ACK Mapping Register (0x00630020)

Field Bits Reset
Name

Reset
Value

Type Description

V [63] rst_l 0x0 RW 0 - Not Valid, A received message of this type will
be treated as an error.
1 - Valid, A received message of this type will be
routed to the EQ specified in the eqnum field

RESERVED [62:6] Reserved field

EQNUM [5:0] rst_l 0x0 RW Event Queue Number

TABLE 1-27 IMU Error Log Enable Register (0x00631000)

Field Bits Reset
Name

Reset
Value

Type Description

RESERVED [62:15] Reserved field

SPARE_LOG_EN [14:10] por_l 0x1 RW Spare Error, Error Log Enable Bits

EQ_OVER_LOG_EN [9] por_l 0x1 RW EQ Overflow Error, Error Log Enable
Bit

EQ_NOT_EN_LOG_EN [8] por_l 0x1 RW EQ Not Enabled, Error Log Enable
Bit

MSI_MAL_ERR_LOG_EN [7] por_l 0x1 RW Malformed MSI, Error Log Enable
Bit

MSI_PAR_ERR_LOG_EN [6] por_l 0x1 RW MSI Data Parity Error, Error Log
Enable Bit
Chapter 1 Data Management Unit (DMU) 1-23

PMEACK_MES_NOT_EN_LOG_
EN

[5] por_l 0x1 RW PME to ACK Message Not Enabled,
Error Log Enable Bit

PMPME_MES_NOT_EN_LOG_E
N

[4] por_l 0x1 RW PM PME Message Not Enabled,
Error Log Enable Bit

FATAL_MES_NOT_EN_LOG_E
N

[3] por_l 0x1 RW Fatal Message Not Enabled, Error,
Log Enable Bit

NONFATAL_MES_NOT_EN_LO
G_EN

[2] por_l 0x1 RW Non Fatal Message Not Enabled,
Error Log Enable Bit

COR_MES_NOT_EN_LOG_EN [1] por_l 0x1 RW Correctable Message Not Enabled,
Error Log Enable Bit

MSI_NOT_EN_LOG_EN [0] por_l 0x1 RW MSI Not Enabled, Error Log Enable
Bit

TABLE 1-28 IMU Interrupt Enable Register (0x00631008)

Field Bits Reset
Name

Reset
Value

Type Description

RESERVED [63:47] Reserved field

SPARE_S_INT_EN [46:42] rst_l 0x0 RW Spare Error, Secondary Interrupt
Enable Bits

EQ_OVER_S_INT_EN [41] rst_l 0x0 RW EQ Overflow Error, Secondary
Interrupt Enable Bit

EQ_NOT_EN_S_INT_EN [40] rst_l 0x0 RW EQ Not Enabled, Secondary
Interrupt Enable Bit

MSI_MAL_ERR_S_INT_EN [39] rst_l 0x0 RW Malformed MSI, Secondary
Interrupt Enable Bit

MSI_PAR_ERR_S_INT_EN [38] rst_l 0x0 RW MSI Data Parity Error, Secondary
Interrupt Enable Bit

PMEACK_MES_NOT_EN_S_INT_EN [37] rst_l 0x0 RW PME to ACK Message Not Enabled,
Secondary Interrupt Enable Bit

PMPME_MES_NOT_EN_S_INT_EN [36] rst_l 0x0 RW PME Message Not Enabled,
Secondary Interrupt Enable Bit

FATAL_MES_NOT_EN_S_INT_EN [35] rst_l 0x0 RW Fatal Message Not Enabled,
Secondary Interrupt Enable Bit

NONFATAL_MES_NOT_EN_S_INT_EN [34] rst_l 0x0 RW Fatal Message Not Enabled,
Secondary Interrupt Enable Bit

TABLE 1-27 IMU Error Log Enable Register (0x00631000) (Continued)
1-24 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

COR_MES_NOT_EN_S_INT_EN [33] rst_l 0x0 RW Correctable Message Not Enabled,
Secondary Interrupt Enable Bit

MSI_NOT_EN_S_INT_EN [32] rst_l 0x0 RW MSI Not Enabled, Secondary
Interrupt Enable Bit

RESERVED [31:15] Reserved field

SPARE_P_INT_EN [14:10] Spare Error, primary Interrupt
Enable Bits

EQ_OVER_P_INT_EN [9] EQ Overflow Error, primary
Interrupt Enable Bit

EQ_NOT_EN_P_INT_EN [8] rst_l 0x0 RW EQ Not Enabled, Primary Interrupt
Enable Bit

MSI_MAL_ERR_P_INT_EN [7] rst_l 0x0 RW Malformed MSI, Primary Interrupt
Enable Bit

MSI_PAR_ERR_P_INT_EN [6] rst_l 0x0 RW MSI Data Parity Error, Primary
Interrupt Enable Bit

PMEACK_MES_NOT_EN_P_INT_EN [5] rst_l 0x0 RW PME to ACK Message Not Enabled,
Primary Interrupt Enable Bit

PMPME_MES_NOT_EN_P_INT_EN [4] rst_l 0x0 RW PME Message Not Enabled, Primary
Interrupt Enable Bit

FATAL_MES_NOT_EN_P_INT_EN [3] rst_l 0x0 RW Fatal Message Not Enabled, Primary
Interrupt Enable Bit

NONFATAL_MES_NOT_EN_P_INT_EN [2] rst_l 0x0 RW Fatal Message Not Enabled, Primary
Interrupt Enable Bit

COR_MES_NOT_EN_P_INT_EN [1] rst_l 0x0 RW Correctable Message Not Enabled,
Primary Interrupt Enable Bit

MSI_NOT_EN_P_INT_EN [0] rst_l 0x0 RW MSI Not Enabled, Primary Interrupt
Enable Bit

TABLE 1-28 IMU Interrupt Enable Register (0x00631008) (Continued)

Field Bits Reset
Name

Reset
Value

Type Description
Chapter 1 Data Management Unit (DMU) 1-25

TABLE 1-29 IMU Interrupt Status Register – (0x00631010)

Field Bits Reset
Name

Reset
Value

Type Description

RESERVED [63:47] Reserved field

SPARE_S [46:42] rst_l 0x0 RW Spare Error, Secondary Error Status
Bit 1 = Error Received

EQ_OVER_S [41] rst_l 0x0 RW EQ Overflow Secondary Error Status
Bit 1 = Error Received

EQ_NOT_EN_S [40] rst_l 0x0 RW EQ Not Enabled Secondary Error
Status Bit 1 = Error Received

MSI_MAL_ERR_S [39] rst_l 0x0 RW Malformed MSI Secondary Error
Status Bit 1 = Error Received

MSI_PAR_ERR_S [38] rst_l 0x0 RW MSI Data Parity Secondary Error
Status Bit 1 = Error Received

PMEACK_MES_NOT_EN_S [37] rst_l 0x0 RW PME to ACK Message Not Enabled
Secondary Error Status Bit 1 = Error
Received

PMPME_MES_NOT_EN_S [36] rst_l 0x0 RW PM PME Message Not Enabled
Secondary Error Status Bit 1 = Error
Received

FATAL_MES_NOT_EN_S [35] rst_l 0x0 RW Fatal Message Not Enabled
Secondary Error Status Bit 1 = Error
Received

NONFATAL_MES_NOT_EN_S [34] rst_l 0x0 RW Non Fatal Message Not Enabled
Secondary Error Status Bit 1 = Error
Received

COR_MES_NOT_EN_S [33] rst_l 0x0 RW Correctable Message Not Enabled
Secondary Error Status Bit 1 = Error
Received

MSI_NOT_EN_S [32] rst_l 0x0 RW MSI Not Enabled Secondary Error
Status Bit 1 = Error Received

RESERVED [31:15] Reserved field

SPARE_P [14:10] rst_l 0x0 RW Spare Error, Primary Error Status Bit
1 = Error Received

EQ_OVER_P [9] rst_l 0x0 RW EQ Overflow Primary Error Status
Bit 1 = Error Received

EQ_NOT_EN_P [8] rst_l 0x0 RW EQ Not Enabled Primary Error
Status Bit 1 = Error Received
1-26 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

MSI_MAL_ERR_P [7] rst_l 0x0 RW Malformed MSI Primary Error Status
Bit 1 = Error Received

MSI_PAR_ERR_P [6] rst_l 0x0 RW MSI Data Parity Primary Error Status
Bit 1 = Error Received

PMEACK_MES_NOT_EN_P [5] rst_l 0x0 RW PME to ACK Message Not Enabled
Primary Error Status Bit 1 = Error
Received

PMPME_MES_NOT_EN_P [4] rst_l 0x0 RW PM PME Message Not Enabled
Primary Error Status Bit 1 = Error
Received

FATAL_MES_NOT_EN_P [3] rst_l 0x0 RW Fatal Message Not Enabled Primary
Error Status Bit 1 = Error Received

NONFATAL_MES_NOT_EN_P [2] rst_l 0x0 RW Non Fatal Message Not Enabled
Primary Error Status Bit 1 = Error
Received

COR_MES_NOT_EN_P [1] rst_l 0x0 RW Correctable Message Not Enabled
Primary Error Status Bit 1 = Error
Received

MSI_NOT_EN_P [0] rst_l 0x0 RW MSI Not Enabled Primary Error
Status Bit 1 = Error Received

TABLE 1-30 IMU Error Status Clear Register (0x00631018)

Field Bits Reset
Name

Reset
Value

Type Description

RESERVED [63:47] Reserved field

SPARE_S [46:42] por_l 0x0 RW1C Spare Error, Secondary Error Status
Bit 1 = Error Received

EQ_OVER_S [41] por_l 0x0 RW1C EQ Overflow Secondary Error Status
Bit 1 = Error Received

EQ_NOT_EN_S [40] por_l 0x0 RW1C EQ Not Enabled Secondary Error
Status Bit 1 = Error Received

MSI_MAL_ERR_S [39] por_l 0x0 RW1C Malformed MSI Secondary Error
Status Bit 1 = Error Received

MSI_PAR_ERR_S [38] por_l 0x0 RW1C MSI Data Parity Secondary Error
Status Bit 1 = Error Received

TABLE 1-29 IMU Interrupt Status Register – (0x00631010) (Continued)

Field Bits Reset
Name

Reset
Value

Type Description
Chapter 1 Data Management Unit (DMU) 1-27

PMEACK_MES_NOT_EN_S [37] por_l 0x0 RW1C PME to ACK Message Not Enabled
Secondary Error Status Bit 1 = Error
Received

PMPME_MES_NOT_EN_S [36] por_l 0x0 RW1C PM PME Message Not Enabled
Secondary Error Status Bit 1 = Error
Received

FATAL_MES_NOT_EN_S [35] por_l 0x0 RW1C Fatal Message Not Enabled
Secondary Error Status Bit 1 = Error
Received

NONFATAL_MES_NOT_EN_S [34] por_l 0x0 RW1C Non Fatal Message Not Enabled
Secondary Error Status Bit 1 = Error
Received

COR_MES_NOT_EN_S [33] por_l 0x0 RW1C Correctable Message Not Enabled
Secondary Error Status Bit 1 = Error
Received

MSI_NOT_EN_S [32] por_l 0x0 RW1C MSI Not Enabled Secondary Error
Status Bit 1 = Error Received

RESERVED [31:15] Reserved field

SPARE_P [14:10] por_l 0x0 RW1C Spare Error, Primary Error Status Bit
1 = Error Received

EQ_OVER_P [9] por_l 0x0 RW1C EQ Overflow Primary Error Status
Bit 1 = Error Received

EQ_NOT_EN_P [8] por_l 0x0 RW1C EQ Not Enabled Primary Error
Status Bit 1 = Error Received

MSI_MAL_ERR_P [7] por_l 0x0 RW1C Malformed MSI Primary Error Status
Bit 1 = Error Received

MSI_PAR_ERR_P [6] por_l 0x0 RW1C MSI Data Parity Primary Error Status
Bit 1 = Error Received

PMEACK_MES_NOT_EN_P [5] por_l 0x0 RW1C PME to ACK Message Not Enabled
Primary Error Status Bit 1 = Error
Received

PMPME_MES_NOT_EN_P [4] por_l 0x0 RW1C PM PME Message Not Enabled
Primary Error Status Bit 1 = Error
Received

FATAL_MES_NOT_EN_P [3] por_l 0x0 RW1C Fatal Message Not Enabled Primary
Error Status Bit 1 = Error Received

TABLE 1-30 IMU Error Status Clear Register (0x00631018) (Continued)

Field Bits Reset
Name

Reset
Value

Type Description
1-28 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

NONFATAL_MES_NOT_EN_P [2] por_l 0x0 RW1C Non Fatal Message Not Enabled
Primary Error Status Bit 1 = Error
Received

COR_MES_NOT_EN_P [1] por_l 0x0 RW1C Correctable Message Not Enabled
Primary Error Status Bit 1 = Error
Received

MSI_NOT_EN_P [0] por_l 0x0 RW1C MSI Not Enabled Primary Error
Status Bit 1 = Error Received

TABLE 1-31 IMU Error Status Set Register (0x00631020)

Field Bits Reset
Name

Reset
Value

Type Description

RESERVED [63:47] Reserved field

SPARE_S [46:42] por_l 0x0 RW1S Spare Error, Secondary Error Status
Bit 1 = Error Received

EQ_OVER_S [41] por_l 0x0 RW1S EQ Overflow Secondary Error Status
Bit 1 = Error Received

EQ_NOT_EN_S [40] por_l 0x0 RW1S EQ Not Enabled Secondary Error
Status Bit 1 = Error Received

MSI_MAL_ERR_S [39] por_l 0x0 RW1S Malformed MSI Secondary Error
Status Bit 1 = Error Received

MSI_PAR_ERR_S [38] por_l 0x0 RW1S MSI Data Parity Secondary Error
Status Bit 1 = Error Received

PMEACK_MES_NOT_EN_S [37] por_l 0x0 RW1S PME to ACK Message Not Enabled
Secondary Error Status Bit 1 = Error
Received

PMPME_MES_NOT_EN_S [36] por_l 0x0 RW1S PM PME Message Not Enabled
Secondary Error Status Bit 1 = Error
Received

FATAL_MES_NOT_EN_S [35] por_l 0x0 RW1S Fatal Message Not Enabled
Secondary Error Status Bit 1 = Error
Received

NONFATAL_MES_NOT_EN_S [34] por_l 0x0 RW1S Non Fatal Message Not Enabled
Secondary Error Status Bit 1 = Error
Received

TABLE 1-30 IMU Error Status Clear Register (0x00631018) (Continued)

Field Bits Reset
Name

Reset
Value

Type Description
Chapter 1 Data Management Unit (DMU) 1-29

COR_MES_NOT_EN_S [33] por_l 0x0 RW1S Correctable Message Not Enabled
Secondary Error Status Bit 1 = Error
Received

MSI_NOT_EN_S [32] por_l 0x0 RW1S MSI Not Enabled Secondary Error
Status Bit 1 = Error Received

RESERVED [31:15] Reserved field

SPARE_P [14:10] por_l 0x0 RW1S Spare Error, Primary Error Status Bit
1 = Error Received

EQ_OVER_P [9] por_l 0x0 RW1S EQ Overflow Primary Error Status
Bit 1 = Error Received

EQ_NOT_EN_P [8] por_l 0x0 RW1S EQ Not Enabled Primary Error
Status Bit 1 = Error Received

MSI_MAL_ERR_P [7] por_l 0x0 RW1S Malformed MSI Primary Error Status
Bit 1 = Error Received

MSI_PAR_ERR_P [6] por_l 0x0 RW1S MSI Data Parity Primary Error Status
Bit 1 = Error Received

PMEACK_MES_NOT_EN_P [5] por_l 0x0 RW1S PME to ACK Message Not Enabled
Primary Error Status Bit 1 = Error
Received

PMPME_MES_NOT_EN_P [4] por_l 0x0 RW1S PM PME Message Not Enabled
Primary Error Status Bit 1 = Error
Received

FATAL_MES_NOT_EN_P [3] por_l 0x0 RW1S Fatal Message Not Enabled Primary
Error Status Bit 1 = Error Received

NONFATAL_MES_NOT_EN_P [2] por_l 0x0 RW1S Non Fatal Message Not Enabled
Primary Error Status Bit 1 = Error
Received

COR_MES_NOT_EN_P [1] por_l 0x0 RW1S Correctable Message Not Enabled
Primary Error Status Bit 1 = Error
Received

MSI_NOT_EN_P [0] por_l 0x0 RW1S MSI Not Enabled Primary Error
Status Bit 1 = Error Received

TABLE 1-31 IMU Error Status Set Register (0x00631020) (Continued)

Field Bits Reset
Name

Reset
Value

Type Description
1-30 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

Note – The field could be arranged for supporting MSI-X.

TABLE 1-32 IMU RDS Error Log Register (0x00631028)

Field Bits Reset
Name

Reset
Value

Type Description TYPE

TYPE 63:58 The lowest six bits of the Type of the
errored transaction as seen by the
IMU in the RDS pipe stage 1111000 -
64 bit addressed MSI 1011000 - 32 bit
addressed MSI 0110xxx - Message
where xxx complies with the routing
code in PCIE spec

LENGTH 57:48 The Length of the errored
transaction

REQ_ID 47:32 The REQ ID of the errored
transaction

TLP_TAG 31:24 The TLP tag of the errored
transaction

BE_MESS_CODE 23:16 The message code of the Error is
associated with a Message The First
and Last Byte Enabled if the Error is
associated with a MSI

MSI_DATA 15:0 The MSI data if the Error is
associated with a MSI

TABLE 1-33 IMU SCS Error Log Register (0x00631030)

Field Bits Reset
Name

Reset
Value

Type Description TYPE

TYPE 63:58 The lowest six bits of the Type of the
errored transaction as seen by the
IMU in the RDS pipe stage 1111000 -
64 bit addressed MSI 1011000 - 32 bit
addressed MSI 0110xxx - Message
where xxx complies with the routing
code in PCIE spec

LENGTH 57:48 The Length of the errored
transaction
Chapter 1 Data Management Unit (DMU) 1-31

1.5 Record Management Unit (RMU)

1.5.1 RMU Function Description
The RMU is responsible for the orderly movement of the transaction records into
and out of this unit on both ingress and egress pipelines. It talks to the IMU to deal
with all the interrupts and accesses the TSB for transaction flow control and
information tracking.

1.5.1.1 Link Receive Manger (LRM)

The LRM identifies MSIs and messages from other record types and accepts the
Mondo requests from IMU. It arbitrates the Mondo interrupt requests from IMU and
the interrupt requests from DIM and uses the local tag mechanism to manage the

REQ_ID 47:32 The REQ ID of the errored
transaction

TLP_TAG 31:24 The TLP tag of the errored
transaction

BE_MESS_CODE 23:16 The message code of the Error is
associated with a Message The First
and Last Byte Enabled if the Error is
associated with a MSI

RESERVED 00:00:00 Reserved field

EQ_NUM 5:0 por_l 6 bx RW Eq Number that the Transaction
tried to go to but was not enabled

TABLE 1-34 IMU EQS Error Log Register (0x00631038)

Field Bits Reset
Name

Reset
Value

Type Description TYPE

RESERVED 63:6 Reserved field

EQ_NUM 5:0 por_l 6 bx RW Eq Number that the Transaction
tried to go to but was not enabled

TABLE 1-33 IMU SCS Error Log Register (0x00631030)
1-32 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

command pipeline order. Then, LRM sends interrupt records back to IMU and
merges back the processed records from IMU with the other records in order and
sends them up to the SRM.

1.5.1.2 Schedule Records Manager (SRM)

The SRM calculates the byte count, accesses the TSB to build entries and posts
information on the TSB for non-posted DMA requests. It identifies and terminates
the PIO write completion, then generates PIO transaction credits accordingly and
enqueues them to the RRM. SRM builds SRM records and sends to MMU.

1.5.1.3 Retire Record Manager (RRM)

The RRM accesses TSB to read or read/clear entries to retrieve some information,
such as tlp_tag, TC, attr., byte count, and lower_addr, to form the RRM records for
compilations from the Retire Records from TCM. It identifies the Mondo replies in
Retire Records and takes them off from the pipeline and forwards them to IMU. It
forms the respective RRM records and enqueues them to DEM. The RRM sorts two
sourced release records, one pushed from SRM and the other from ILU. Then, it
passes the PIO credits directly to CLU.

If it's not the last packet of DMA completion, the remaining byte count after this
packet needs to be recalculated and written back to TSB, which is “byte count” from
TSB subtracting “byte count” from retire records. Moreover, the new value of
lower_addr needs to be updated in TSB as well by adding bcnt[11:0] from retire
record to lower_addr from TSB.

1.6 Transaction Scoreboard Unit (TSB)

1.6.1 TSB Function Description
The TSB is responsible for tagging and tracking all DMA Read requests and
unsupported transactions through the DMU in both ingress and egress pipelines.
The storage area has 32 entries of 48 bits wide, and each entry is assigned with a tag
to uniquely identify every transaction posted onto the scoreboard. The TSB manages
the issuing and retiring of all tags with a free list.
Chapter 1 Data Management Unit (DMU) 1-33

1.7 Memory Management Unit (MMU)

1.7.1 IOMMU Description
The MMU translates virtual addresses to physical addresses. The MMU has a cache
which stores a subset of translations in a Translation Storage Buffer (TSB) in main
memory. One TSB entry is called a Translation Table Entry (TTE) which is eight
bytes. Addresses are pipelined through the MMU. If a translation misses in the
cache, the pipeline is stalled until the data is fetched after the tablewalk.

When a SRM record is enqueued, the virtual address (VA) is extracted from the
record to be translated and the remaining part of the record is held in the remaining
data queue until being merged with the physical address to from schedule records.
Then, the VA is sent to the Virtual Tag Block (VTB) for comparison.

The VTB contains 64 entries of virtual tags. The Translation Data Buffer (TDB) also
has 64 entries, and each entry contains eight TTEs. If there is a hit in the VTB, one of
the eight TTEs from 64 entries in TDB will be selected and generates physical
address (PA).

1.7.1.1 IOMMU Bounds Check for Bypass Mode

Fire DMU follows the JBUS spec and uses {PA[42:41]==00, PA[40:36]==agent_id} for
cacheable space. In the IOMMU bypass mode, the logic does a bounds check with
PA[63:42]!= 0x3FFF_00. In OpenSPARC T2, only supports a 40 bit cacheable address,
with PA[39]==0 indicating cacheable. The SII and NCU have only PA[39:0], thus the
upper PA bits will be thrown away at the interface to the SII and NCU blocks. SW
must observe these address spaces when programming the IOMMU or IO devices.
The IOMMU bypass logic will be modified to detect if PA[63:39]!= 0x1FFF_800 to
conform to the new address ranges.

1.7.1.2 Customized Virtual Tag Buffer Design

Fire uses the random logic to implement Virtual Tag Buffer CAM. The synthesis
CAM logic in Fire ASIC costs a huge area. To reduce the area impact, OpenSPARC
T2 has custom designed the Virtual Tag Buffer. The following describe what have
been changed in functionality:
1-34 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

In Fire design, the lookup reference address is compared to stored data in each of the 64
entries, and generates a decoded 64-bit vector, hit[63:0]. The hit output is registered in the
next cycle. In OpenSPARC T2 Design CAM design, the lookup reference address is
registered at the input of the CAM, The registered key is compared to stored data in each of
the 64 entries, and generates a decoded 64-bit vector, hit[63:0]. The hit output is
unregistered.

In Fire design, the lookup reference address is 16-bit wide (pcie[31:16]). In
OpenSPARC T2 CAM design, the lookup address is increased to 29-bit (5-bit table-id
plus pcie[39:16]).

1.7.1.3 Customized Physical Tag Buffer Design

Fire uses the random logic to implement Physical Tag Buffer CAM. The synthesis
CAM logic in Fire ASIC costs a huge area. To reduce the area impact, OpenSPARC
T2 has custom designed the Physical Tag Buffer. The followings describe what have
been changed in functionality:

In Fire design, the lookup reference address is compared to stored data in each of the
64 entries, and generates a decoded 64-bit vector, hit[63:0]. The hit output is
registered in the next cycle. In OpenSPARC T2 Design CAM design, the lookup
reference address is registered at the input of the CAM, The registered key is
compared to stored data in each of the 64 entries, and generates a decoded 64-bit
vector, hit[63:0]. The hit output is unregistered.

1.8 Context Manager Unit (CMU)

1.8.1 CMU Function Description
The CMU is responsible for managing DMU pipelines and serves as the ordering
point for transactions in both ingress and egress pipelines. The CMU keeps the order
of DMA completions in the egress pipeline and the order of DMA requests and PIO
completions in the ingress pipeline. The CMU contains three sub blocks.

1.8.1.1 Receive Context Manager (RCM)

The RCM dequeues Schedule Record from its input schedule record queue. It
translates them into an ordered sequence of Packet Records which carry a payload
segment of the requested data length in the Schedule Record with a maximum size
Chapter 1 Data Management Unit (DMU) 1-35

of MaxPayload. It builds and manages a context entry for each DMA Read Schedule
Record and assigns a unique Context Number to the Packet Record. The RCM builds
Packet Records and enqueues them in strong order to the output Packet Record
queue in the ingress pipeline destined for the Packet Record Manager (PRM).

From the Schedule Record, the RCM determines the number of Packet Record to be
built, the packet sequence number for each Packet Record, the length of each Packet
Record, the physical address of each Packet Record. If the Schedule Record is a DMA
Mem Rd, one unique Context Record is requested from the context block. A packet
sequence list array allocation is requested and a packet sequence list is constructed
containing packet sequence entries for each Packet Record. The packet sequence list
is bound to the unique context number.

1.8.1.2 Transmit Context Manager (TCM)

The TCM dequeues Packet Records from its input record queue, processes the record
according to its referenced context and generates Retire Records to enqueue to its
output record queue to RRM. The TCM builds and maintains a context ordering for
a series of Packet Records until completion by updating the Context Entry associated
with the context and current packet sequence being processed.

The Packet Record is parsed to obtain the context number, packet sequence number.
The context number is used to look up the context entry and the pointer to the
packet sequence list. The packet sequence number is used to locate the associated
entry in the packet sequence list. All type of transactions except DMA Rd
Completion bypass the context lookup. If the packet satisfies the ordering bit in the
context entry, the Retire Record is built and issued. If the Packet Record is returned
out of order, the current Packet Record is stored to the context list pointed by its
packet sequence list entry until prior Packet Records are returned. When all packet
sequence for a context have been sent, the packet sequence numbers and the context
number are retired. There is a strong ordering between packet sequence of the same
context, but no ordering between different context.

1.8.1.3 Context Record (CTX)

The CTX contains the context record, the packet sequence list entry, and the context
list entry. They are responsible for sequencing data in incremental address order for
a DMA Rd Completion from SIU, which can be returned out of order. The context
record contains the context number and the pointer to the beginning of the packet
sequence entry list and the ordering bits to guarantee the packet order. Each packet
sequence list belongs to a specific context and each packet sequence entry records
the completion status and the pointer to the context list entry if necessary. The
context list is a temporary storage which contains the Packet Records returned out of
order.
1-36 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

1.9 Packet Manager Unit (PMU)

1.9.1 PMU Function Description
The PMU interfaces with the CMU and CLU in the ingress pipeline. It segments
packets issued by CMU into a series of cacheline oriented requests to CLU. It also
interfaces with the PSB to manage and track packet transactions in the pipeline. The
PMU contains only one sub-block, the Packet Receive Manager (PRM).

1.9.1.1 Packet Receive Manager (PRM)

The PRM dequeues the Packet Records in the ingress pipeline. From the address,
byte enables, and length of the Packet Records, it determines the number of
Cacheline Command Records to build and the physical address of each Cacheline
Command Record. The PRM requests a packet tag from the PSB to put in each
Cacheline Command Record of the same packet group along with the length and
cacheline status. It the Packet Record carries a DMA Wr, PIO Rd completion, Mondo
Interrupt Wr request, or MSI Wr request, no packet tag is required and no packet
scoreboard entry is written. In case of a PIO completion, the PRM looks up the PSB
to retrieve thread id and includes them in the Cacheline Command Record sent to
CLU. For DMA Rd requests, the sbd_tag is replaced with pk_tag from PSB in the
Cacheline Command Record.

1.10 Packet Scoreboard (PSB)
The PSB encapsulates the functions necessary to tag and track the internal packet
transactions in the DMU pipelines. It is composed of two scoreboards, one tracks
PIOs and another for DMAs.

1.10.1 Add JTAG to Thread ID
The PIO scoreboard has an entry for each PIO. In the existing code, bit jbc_tag[9:0]
held the transaction number, agent_id and jbus_id. The agent_id and jbus_id are
concatenated to form a thread_id for OpenSPARC T2. However this is only 64 id's,
one more bit is to be added to account for JTAG access by the NCU.
Chapter 1 Data Management Unit (DMU) 1-37

1.11 Cache Line Unit (CLU)

1.11.1 CLU Function Description
The CLU manages the DMU-DSN interface. It consists of two sub-blocks, Cacheline
Transmit Manager (CTM) and Cacheline Receive Manager (CRM).

1.11.1.1 Cacheline Transmit Manager (CTM)

The CTM transmits requests to DSN for DMA MWr, DMA MRd, and Interrupts. It
also returns PIO Rd completions to DSN. It moves data associated with these
transactions from the DIU to DSN. CTM fully manages DOU DMA Rd buffer space
and works with the DIM sub-block to manage the DIU buffer space for DMA Wrs,
PIO Cpls, and INTs. It also issues tablewalk requests received from the MMU to
DSN. Lastly, it forks unsupported requests and PCIE requests with error s to the
Cacheline Receive Manager (CRM) for completion return to PCIE.

CTM release buffer space to the DIM for all transactions with data except for
Mondo, which is managed by IMU. CTM exports to DIM the last DIU read pointer
for DMA Wr and INT transaction data pulled from the DIU. DIM exports to CTM
the last write pointer for DMA Wr and PIO Cpl transaction data writes to the DIU.
CTM uses the read/write pointers to determine if the DIU is empty for a current
data pull operation. CTM stalls the pipeline until the appropriate section of the DIU
is not empty for either a DMA Wr or PIO Cpl data pull operation.

1.11.1.2 Cacheline Receive Manager (CRM)

The CRM receives DMA Rd/INT responses, tablewalk data responses, and PIO
Rd/Wr requests form DSN. It moves data associated with these transactions to
either the DOU (for DMA Rd responses and PIO Wr requests) or to the MMU (for
tablewalk data responses). It manages out-of-order cacheline responses for DMA
Rds using the PSB to track packet build status. It formulates Packet Records for
DMA Rd/INT responses and PIO Rd/Wr requests. It generates error completion
packet records for unsupported/faulted PCIE requests forked from CTM.

For DMA Rd response, CRM uses the d_ptr field of the dmu_tag returned to quickly
route the data to the DOU DMA data buffer. Data is moved independently of CRM's
command processing pipeline. For PIO Wrs, the PIO Wr data buffer space in the
DOU is dedicated and maximally sized. PIO Wr data is quickly moved by CRM to
the DOB PIO data buffer.
1-38 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

CRM accesses the PSB for each PCIE DMA Rd response record received from DSN.
It performs a read/modify/write operation to the PSB for tracking the responses
associated with a packet. For each record response, CRM uses the pk_tag to index
into PSB to check the cl_total field. If cl_total is 1, CRM builds a packet record issues
it to the TCM and clears the PSB entry. It it's not, CRM decrements the cl_total field
and writes the updated value back to the PSB. When 1st_cl field is set in the
response, CRM updates the d_ptr field to the value of the d_ptr from the dmu_tag of
the cacheline response.

1.11.1.3 Mondo Interrupt -> One Data Beat

The CTM block currently only extracts 1 data beat from the DIU ram, and then
constructs the last three data beats and inserts 0's. The CTM block state machine
which generates these extra beats will change to only output the first data beat
which contains the Mondo payload.

1.12 Data In Unit (DIU)

1.12.1 DIU Function Description
The DIU is the storage buffer for all data associated with the ingress transactions
and is composed of one synchronous dual port RAM and a set of storage flops.
These are the DMA Wr/PIO Rd RAM and flops for the INT data. There are two
separate write interfaces and one unified read port interface for the two storage
elements. The DIM utilizes a write interface to the DMA Wr/PIO Rd RAM and IMU
utilizes the second write interface directly to the INT DATA. The CLU will interface
these elements via the unified read port interface.

For the INT data, 16 separate transactions can be stored in the registers since there
are 16 entries. The storage is divided into two regions, one for 12 EQ writes and the
other for 4 Mondos. In the RAM, 128 rows of total 192 rows are dedicated for DMA
Wr data and the remaining are for PIO Rd completions.
Chapter 1 Data Management Unit (DMU) 1-39

1.13 Data Out Unit (DOU)

1.13.1 DOU Function Description
The DOU is the storage buffer for all data associated with the egress transactions
and is composed of two synchronous dual port RAMs They are the DMA Rd RAM
and PIO Wr RAM. There are two write interfaces and one unified read post interface
for the two RAMs. The EIL in PEU utilizes the read interface to the DMA Rd and
PIO Wr RAMs and the CRM utilizes the write interfaces to the two RAMs.

The data RAM store data and parity. The EIL uses the two most significant bits of
the address supplied to select which RAM to be read from. The DMA Rd RAM has
2176 bytes available and is organized into 128 rows. The PIO Wr RAM has 1088
bytes that are organized into 64 rows for up to 16 separate transactions.

1.13.2 SRAM

1.13.2.1 Adding Test Features

Modify the SRAMs by adding JTAG and BIST functionality. Also add the required
JTAG and BIST pins and logic external to the SRAMs.

The current SRAMs are TDB, DIU, and two DOU rams. The existing synthesized
cam in the MMU will be implemented as a custom cam/ram block.

There will be two BIST controllers at the DMU top level, 1 for rams and another for
cams. The control/data wires into DMU will be added into the rtl. Control of the
BIST engines will be external to the DMU with these wires being added at the DMU
top level. DFT will be responsible for the BIST engines and the external control and
registers which will be outside of the DMU.

Modify the srams to clear the inputs flops on reset, and implement the hold
functionality for scan test.
1-40 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

1.14 DMU SIU/NCU Interface Unit (DSN)

1.14.1 DSN Overview
This is the specification for the interface block between the PCI-ex controller
sub-block DMU and the core blocks NCU and SIU. The DMU<->NCU interface is for
PIO read and write commands, interrupt acknowledges, DMU MMU snoop
invalidate vectors and CSR reads/writes.

The DMU <-> SIU interface is for DMA reads/writes, inbound interrupts (Mondo
and MSI) from the PIC-EX bus and PIO read completions.

The existing DMC (renamed DMU for OpenSPARCT2) remains unchanged, the
DMU will interface through the SIU to the Level 2 cache thus there are some
interface modifications needed. These modifications will be implemented in a new
sub-block placed between the DMU and SIU/NCU blocks, to be called the DSN
block.

The interfaces will be converted in this new block. The existing interfaces typically
had separate command and data buses. The new interface adds a header cycle at the
beginning of each transfer, which multiplexes the command info onto the data bus in
the first cycle, thus there will be 1 extra cycle for each transaction. The following
sections describes the various interfaces.

The interfaces to the DMU expect a data push model with unique credit ids, and the
DSN will exploit this when modifying the transaction behaviors.

It appears that the DMU, SIU and NCU are all big endian, with byte_sel[0] matching
data_bits[127:120] for all interfaces.

Also regarding the address buses:

1. The DMU address bus is from [42:6] always cache line aligned, the DSN block
will drop address bits[42:40].

2. The DSN PIO logic expects the NCU to send PA[35:0], always double work
aligned, with the byte mask in the header.

The above address buses are then consistent with what the OpenSPARC T2
Programmer’s Reference Manual allows if the SIU and DMU manage the upper bits.
SW must manage DMA addresses so they fall into the cacheable range, and for PIOs
the NCU must manage PA[39:36] such that they always map to the PA[35:0]
expected by the DMU.
Chapter 1 Data Management Unit (DMU) 1-41

1.14.2 DSN Block Diagrams

FIGURE 1-4 Interface Block Diagram
1-42 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

1.14.3 DSN Detailed Block Diagram

FIGURE 1-5 Detailed Block Diagram
Chapter 1 Data Management Unit (DMU) 1-43

1.14.4 DSN Interface Descriptions

1.14.4.1 DSN-SIU Interface

The DSN-SIU interface will be used for all DMAs, sending Interrupts and PIO rd
completions. It will have the following features:

1. It is expected that on all SIU responses it will return the dmc_tag[15:0] exactly as
sent in the DMU->SIU command header.

2. DMAs and Interrupts will be credit id based with the DMU managing a total of
16 outstanding credits. The SIU will return the credit id for DMA writes (MSIs
will be write packets) on the wrack bus, and the credit id for read completions
will be returned with the data. When the credit id is returned the DMU will
remove it from its credit vector and free it up for reuse. Mondo interrupts also use
a credit and the SIU must forward the credit id of a Mondo interrupt to the NCU
which will return this credit id along with the mondo id in the mondo ack bus,
the DSN will form a completion packet and forward back to the CRM block
which will update the DMU credit vector.

3. PIO read completions will first be routed through the SIU so that PIO reads can
pull all preceding DMA writes into the L2 cache. The NCU will maintain a 16
entry credit scheme to limit the number of PIOs in the DMU/SIU to 16. The
DMU/DSN will return the NCU credit id and thread id back to the SIU on PIO rd
completions, and the SIU must pass this information on to the NCU. This
information is needed by the NCU to remove the entry from its outstanding credit
list and to know which thread to return the read PIO data.

4. The SIU must have sufficient buffering to hold 16 DMA writes and 16 PIO rd
completions.

5. The interface from DSN to SIU will consist of control lines and a 128 bit data bus.
The first 128 bits sent will be a header which contains the command information
etc. subsequent cycles will contain the data.

6. The DSN block will take the information from the pins between the DSN and
DMU blocks and use it to generate the header driving to the SIU, and when the
SIU drives a header, it will take that information and create the pin data toward
the DMU.

7. On eight byte PIO rd cpls the DSN block must detect which 64 bits the return data
should be located and replicate these 64 bits onto the opposite 64 bits. This can be
done by keeping a two bit scoreboard of pio_addr[3] indexed by the credit_id,
written on NCU vld, and reading on pio_rd_cpls. The duplication of the relevant
64 bits onto both halves of the 128 bit return data bus is a requirement of the core.
1-44 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

In addition the scoreboard must track whether the returning PIO is a 16 byte read
or eight byte, if 16 byte then the data is not replicated, with a second bit in the
scoreboard.
Chapter 1 Data Management Unit (DMU) 1-45

1.14.4.2 DSN-SIU Interface List

TABLE 1-35 DSN-SIU Interface List

Signal Name I/O Size From/To Description

DSN to SIU Signals

dmu_sii_hdr_vld O 1 DMU->SIU Asserted during the header phase of any requests from
DMU to SIU. Not asserted during the data transfer phase.

dmu_sii_reqbypass O 1 DMU->SIU Asserted for PIO rd cpls

dmu_sii_datareq O 1 DMU->SIU Valid during the header phase only.
0: Current request is a read, with no payload;
1: Current request is a write, with 1 or 4 cycles of data
payload

dmu_sii_datareq16 O 1 DMU->SIU Valid during the header phase only. Don’t care if
dmu_sii_datareq is 0.
0: Current write request has 64B data payload;
1: Current write request has 16B data payload. (meant for
NCU - int/PIO read data)

dmu_sii_data[127:0] O 128 DMU->SIU Packet header/data for L2/NCU.
(Big-endian)
For PIO read completions, there are two cases, 16 byte
and <=8byte cpls, in the case of 8byte PIO cpls the data
will be replicated on both halves of the bus, DSN keeps a
scoreboard to determine which 64 bits to replicate.

dmu_sii_be[15:0] O 16 DMU->SIU Packet data byte enables/errors. Only valid during data
transfer phase. (dmu_sii_be[0] is for dmu_sii_data[7:0]).

dmu_sii_parity[7:0] O 8 DMU->SIU Parity of data payload cycles (127:0)

dmu_sii_be_parity O 1 DMU->SIU Parity for dmu_sii_be[15:0]

Note: detected parity errors on d2j_data[127:0] will be signaled by flipping dmu_sii_parity[0] to SII

SIU to DSN Signals

sii_dmu_wrack_tag[3:0] 1 4 SIU->DMU j2d_d_wrack_tag[3:0] DSN/DMU name
Transaction credit id for dma wrack

sii_dmu_wrack_par 1 1 SIU->DMU Odd parity ^sii_dmu_wrack_tag[3:0]

sii_dmu_wrack_vld 1 1 SIU->DMU j2d_d_wrack_vld DSN/DMU name
Valid signal for j2d_d_wrack_tag
1-46 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

1.14.4.3 SIU to DSN Egress Commands

These are the commands as defined at the DSN/DMU boundary, and must be
generated from the SIU to DSN header. Thus the DSN logic will take in the SIU
header and generate the following commands back to the DMU.

sio_dmu_hdr_vld 1 1 SIU->DMU Envelops the header of any requests from SIU to DMU.
Not asserted during the data transfer phase. DSN
determines from the header if and how much data will
follow.

sio_dmu_data[127:0] 1 128 SIU->DMU Packet header/data for DMU

sio_dmu_parity[7:0] 1 8 SIU->DMU Parity of payload cycles (128:0).

TABLE 1-36 SIU to DSN Egress Commands

Transaction type Cmds ctag

Bit width
18

2
[17:16]

16
[15:0]

DMA Rd Return 2’b00 dmc_tag[15:0]

DMA Rd Return Err 2’b01 dmc_tag[15:0]

Interrupt Nack 2’b10 N/A for OpenSPARC T2

Interrupt Ack 2’b11 N/A for OpenSPARC T2

TABLE 1-37 DMC_TAG Field Definitions

Field Bits Description

DMA transactions

dmc[15] type 0b-indicates DMA/Int transactions

dmc_tag[14:11] cl_tag[3:0] Dmc transaction number for tracking credits

dmc_tag[10:6] d_ptr[4:0] Used for DMA Rds only-dou dma rd buffer address

dmc_tag[5:1] pkt_tag[4:0] Used for DMA Rds only-PSB index for building packet
records

dmc_tag[0] cl_sts Used for DMA Rds only-indicates 1st cacheline in packet
sequence

TABLE 1-35 DSN-SIU Interface List (Continued)

Signal Name I/O Size From/To Description
Chapter 1 Data Management Unit (DMU) 1-47

Note – The NCU will distinguish interrupts from PIO cpls by using dmc_tag[15].
And the NCU will use the thread_id from the mondo data to determine which
thread to interrupt.

Int Transactions

dmc_tag[15] type 0b-indicates DMA/Int transactions

dmc_tag[14:11] cl_tag[3:0] Dmc transaction number for tracking credits

dmc_tag[10:3] Rsv[7:0] reserved

dmc_tag[2:1] mdo_tag[1:0] mondo_tag for mondo-reply to IMU

dmc_tag[0] rsv reserved

MMU Tablewalk Transactions

dmc_tag[15] type 1b-indicates MMU Tablewalk transactions

dmc_tag[14:11] cl_tag[3:0] Dmc transaction number for tracking credits

dmc_tag[10:6] Rsv[4:0] reserved

dmc_tag[5:0] Mtag[5:0] Used for MMU tablewalks only-MMU tag for tracking
tablewalks

PIO Cpl Transactions

dmc_tag[15:12] Rsv[3:0] Must be 4’b1000

dmc_tag[11:8] jbc_trans_#[3:0] PIO transaction credit id

dmc_tag[7] Rsv

dmc_tag[6:0] thread_id[6:0] Thread id of PIO read request. If thread_id[6]==0, then
thread_id[5:0] is the thread id, if thread_id[6]==1 then it is a
JTAG txn.

TABLE 1-37 DMC_TAG Field Definitions (Continued)

Field Bits Description
1-48 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

1.14.4.4 SIU to DSN Outbound Header sent by SIU
(DMA rd cpls only)

TABLE 1-38 SIU to DSN Header Bit Definitions

Header cycle
siu_dsn_data Name Description

[127] Command
- DMA read response

1000_00

[127] = response bit 1 = DMA read response, this can be a PCI-ex DMA read or
a DMU MMU tablewalk response.

[126:122] reserved Ignore, may be 0 or 1

[121:84] reserved Must be 0

[83] reserved Must be 0

[82] reserved Must be 0

[81] UE 1 = error detected on dmc_tag or address accumulated
throughout the DSN->SII->l2$->SIO->DSN path. If this bit
is a 1 the DSN will block the return of the current packet
back to DMU. At this point SW must intervene and correct
because now this packet will never retire.
If this bit is set, the DMU will not return an error on
dmu_ncu_ctag_ue

[80] DE 1 = data payload has a detected uncorrectable error this
could be:
1. timeout error
2. unmapped error
3. data ue error from dram

[79:64] dmc_tag[15:0] Returned dmc_tag extracted from the DSN to SIU
command and returned without changes

[63:62] reserved Must be 0

[61:56] Ctagecc[5:0] Ecc on dmc_tag[15:0]

[55:37] reserved Must be 0

[36:0] reserved SIU does not return the DMA read address with the
completion.
Chapter 1 Data Management Unit (DMU) 1-49

1.14.4.5 Bit Mapping from DSN to SII for DMA rd/wr Requests

dmu_sii_data[127]= d2j_cmd[3]

dmu_sii_data[126]= ~d2j_cmd[3] & ~d2j_cmd[2]

dmu_sii_data[125]= !d2j_cmd[3] && d2j_cmd[1]

dmu_sii_data[124]= !d2j_cmd[3] && !d2j_cmd[1] && d2j_cmd[0]

dmu_sii_data[123]= !d2j_cmd[3] && !d2j_cmd[2]

dmu_sii_data[122]= d2j_cmd[3] || (!d2j_cmd[3] && d2j_cmd[2])

dmu_sii_data[121:120]= 2’b00

dmu_sii_data[119:83]= 0

dmu_sii_data[84]= ~^dmu_sii_data[39,37,35,33,31,29,27,25,23,21,19,17,15,13,11,

9,7,5,3,1]

dmu_sii_data[83]= ~^dmu_sii_data[38,36,34,32,30,28,26,24,22,20,18,16,14,12,10,

8,6,4,2,0]

dmu_sii_data[82]= d2j_cmd[3] && d2j_cmd[1] & !d2j_cmd[0]

dmu_sii_data[81]= d2j_cmd[3] && d2j_cmd[1] && d2j_cmd[0]

dmu_sii_data[80]= 1’b0

dmu_sii_data[79:64]= d2j_cmd[3] ? {1’b1,d2j_ctag[14:0]} : d2j_ctag[15:0]

dmu_sii_data[62]= ~^dmu_sii_data[127:122]

dmu_sii_data[61:56]= ecc on dmu_sii_data[79:64]

dmu_sii_data[39:6]= d2j_addr[33:0] -> PA[39:6]

dmu_sii_data[5:0]= 0

1.14.4.6 Bit Mapping from NCU/SIU Header to DMU for DMA/Int
ack/nack

j2d_di_cmd[1:0]= if sio_dmu_hdr_vld = 1’b1 then 1 cycle later

j2d_di_cmd[1:0] = {1’b0, DE]

delayed by 1 clock)}

else if sio_dmu_hdr_vld 1’b0 && mondo ack/nack in
1-50 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

the return fifo in dsn then 1 cycle later

j2d_di_cmd[1:0] = {1’b1,mondo_dout[7]}

j2d_di_ctag[15:0]= if sio_dmu_hdr_vld = 1’b1 then 1 cycle later

j2d_di_ctag[15:0] = sio_dmu_data[79:64] delayed

by 1 cycle (ecc corrected).

Else if sio_dmu_hdr_vld = 1’b0 && mondo_fifo is valid

j2d_di_ctag[15:0] = {1’b0,mondo_dout[5:2],8’b0,

mondo_dout[1:0],1’b0}

j2d_di_data[127:0]= sio_dmu_data[127:0] no delay.

j2d_d_data_err= sio_dmu_data[80] delayed by 1 cycle, + any locally detected parity
errors

Note – The mondo_fifo_dout is a delayed version of ncu_dmu_mondo_id[5:0]
through a FIFO in the DSN and these bits are defined as: [5:2] = dmc_tag[14:11], [1:0]
= dmc_tag[2:1].

This FIFO is needed because a dma rd return could occur at the same time as an int
ack from the NCU, so the FIFO buffers up the int ack until a quiescent cycle in the
dma rd return. If a parity error is detected on the int ack from the NCU then this
packet is not placed in the FIFO, and will be dropped, SW must intervene and clean
up.

Note – If dmu_sii_data[81](UE) is asserted if either the SII, l2$ or SIO detect a ctag
ecc ue, or adr parity error, and the DSN will block the return of this packet, this is
done so the DMU scoreboards do not get corrupted

Note – If dmu_sii_data[80](DE) will not be asserted for errors from the l2$. Instead
the L2$ will flip a parity bit on the outbound data, and the DSN will detect this
instead of using bit 80.

1.14.4.7 DMU to SIU Ingress Commands

These are the commands as defined at the DSN/DMU boundary. They must be
decoded and used to generate the header for DSN to SIU ingress commands.
Chapter 1 Data Management Unit (DMU) 1-51

The DSN logic will build the header to the SIU using the following commands from
the DMU.

Note – 64 byte PIOs are not supported in OpenSPARCT2, and on PIO read
completions the address will not be returned.

Note – On PIO rd return with errors, the data packet will still be sent but may be
invalid.

Note – jbc_tag is 11 bits, whereas in the d2j_ctag jbc-tag[11:8] held the credit_id, the
reason is because in the rtl the width of the jbc_tag value is a parameter and is also
used to automatically size datapaths/FIFOs etc. making in jbc_tag[11:0] would have
added a bit throughout the entire crm/pmu/psb/scoreboard/ctm path.

TABLE 1-39 DMU to SIU Ingress Command Bit Definitions

Transaction type Cmds address ctag

Bit width
57

4
[56:53]

37
[52:16]

16
[15:0]

DMA Full Wr 4’b0000 PA[42:6] dmc_tag[15:0]

DMA Partial Wr 4’b0001 PA[42:6] dmc_tag[15:0]

DMA Rd 4’b0010 PA[42:6] dmc_tag[15:0]

DMA Rd Shared
(tablewalk)

4’b0011 PA[42:6] dmc_tag[15:0]

Interrupt (mondo) 4’b0100 PA[42:6] dmc_tag[15:0]

PIO Rd Return 16 4’b1000 n. a. Rsv[4:0] jbc_tag[10:0]

PIO Rd Return 64 4’b1001 PA[42:6] Rsv[5:0] jbc_tag[10:0]

PIO Rd Return Tout Err 4’b1010 n. a. Rsv[4:0] jbc_tag[10:0]

PIO Rd Return Bus Err 4’b1011 n. a. Rsv[4:0] jbc_tag[10:0]
1-52 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

1.14.4.8 DSN to SII Header as sent by DSN

The DSN block will take the DMU to DSN command information and concatenate
this and form a header which will be sent before the data. TABLE 1-40 gives the
header values:

TABLE 1-40 DSN to SII Header Bit Definitions

Header cycle
dsn_siu_data
[msb:lsb] Name Description

[127:122] Command
- PIO Read return
- DMA read Request
- Interrupt Mondo Write
- Dma Write full cacheline
- DMA write Merge 64 bytes

1010_01
0010_10
0000_01
0100_10
0101_10

[127] = response bit 1 = response, 0= request
Only set on PIO rd cpls, this tells the SIU which queue to
enter the DMA write data or PIO rd cpl data.

[126] Posted bit, 1=dma write

[125]=read bit 1 = DMA read request
0 = DMA write request, interrupt mondo request, write
response

[124] = write bytemask active Ignored by SIU if response bit is set or if read bit is set
1 = use byte enables
0 = all bytes active

[123] = l2 bit 1 = to l2
set for DMA write request, DMA read request

[122] = NCU bit 1 = to NCU
set for Interrupt mondo request, PIO read response

[121:85] reserved Must be 0

[84:83] address_par[1:0] Address parity, ap[0] for even bits of PA, ap[1] for odd bits

[82] timeouterror 1 = this packet had timed out, PIO completions only

[81] UnmappedAddressError 1 = this packet’s address mapped to a nonexistent, reserved,
or erroneous address
PIO completions only

[80] UncorrectableError 1 = data payload has a detected uncorrectable error
This bit is always 0
Chapter 1 Data Management Unit (DMU) 1-53

1.14.4.9 DSN-SII Header RAS

The header from DSN to SII will incorporate ecc and parity on all significant bits
because the SII inserts the header into the same FIFO ram which holds the data. RAS
guidelines call for protection on all significant rams, therefore the DSN will generate
these RAS bits before sending to the SII.

The header is to be divided into three fields, ctag, address and command/status.
Each group will have its own protection, ecc on the ctag and parity on the other two.

The ctag ecc will use a SECDCD code with six extra check bits. The check bits are an
XOR of a series of bits generated as follows:

chk[0] = ^{di[15],di[13],di[11],di[10],di[8],di[6],di[4],di[3],di[1],di[0]};

chk[1] = ^{di[13],di[12],di[10],di[9],di[6],di[5],di[3],di[2],di[0]};

chk[2] = ^{di[15],di[14],di[10],di[9],di[8],di[7],di[3],di[2],di[1]};

chk[3] = ^{di[10],di[9],di[8],di[7],di[6],di[5],di[4]};

chk[4] = ^{di[15],di[14],di[13],di[12],di[11]};

chk[5] = ^{di[15],di[14],di[13],di[12],di[11],di[10],di[9],di[8],

di[7],di[6],di[5],di[4],di[3],di[2],di[1],di[0],

chk[0],chk[1],chk[2],chk[3],chk[4]};

[79:64] dmc_tag[15:0] for PIO read completions this is PIOID
Bits [11:8] will be the credit id returned on PIO rd
completions, bits [6:0] will be the thread ID.

For DMAs this will be the dmc_tag value from the DMU
interface

[63] reserved Must be 0

[62] cmd_par Odd Parity on bits {[127:122]}

[61:56] Ctagecc[5:0] SECDED ecc on bits[79:64]

[55:40] Reserved Must be 0

[39:6] PA[39:6] Valid for DMA requests only

[5:0] PA[5:0] 0s Always cache line aligned

TABLE 1-40 DSN to SII Header Bit Definitions (Continued)

Header cycle
dsn_siu_data
[msb:lsb] Name Description
1-54 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

where di[15:0] = dmc_tag[15:0];

chk[5:0] will be placed on header bits [61:56];

Odd parity will be used for the address and control/status. Header bit [84:83] will
hold odd parity for the address (header bits [42:6]), where [84] is for the odd address
bits, [83] for even. And header bit [62] will hold odd parity for header bits {[127:122]}
Chapter 1 Data Management Unit (DMU) 1-55

1.14.4.10 DSN-SII Interface Timing Diagrams

FIGURE 1-6 Ingress Interface Timing Diagram
1-56 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

FIGURE 1-7 Egress Interface Timing Diagram

Only DMA rd cpls and wracks.

1.14.4.11 DSN-NCU Interface Description

The DSN-NCU interface will be used for all PIO read/write command requests,
interrupt ack/nack, DMU MMU snoop invalidate vectors and CSR read/writes, but
the PIO rd completions will return through the SIU block. It will have the following
features:

1. The NCU will send a PIO read or write request along with a transaction credit id
and the thread id for read return.
Chapter 1 Data Management Unit (DMU) 1-57

2. The NCU will only request eight bytes or less for writes and up to 16 bytes for
reads. The DSN will need to extract this information from the header and PA and
construct the rest of the 16 bytemasks to the DMU. And on PIO writes, the DSN
will need to replicate the eight bytes sent by the NCU on the 16 byte SIU bus and
set the bytemask correctly. The DMU does not allow eight byte requests to cross
eight byte boundaries.

3. The DMU will store the thread id sent by the NCU in a ram structure indexed by
the transaction credit id. On read completions the DMU will then return the
thread id back to the SIU along with the data and the transaction credit id, the
SIU must pass this along to the NCU when it returns the PIO read data to the
NCU.

4. A PIO wrack from DSN to NCU will inform the NCU which write transaction
credit id it may remove from its local PIO 16 entry scoreboard.

5. Interrupt egress traffic (ACK/NACK) will originate in the NCU and directly
interface to the DSN. Since the data into the DMU is multiplexed onto 1 bus for
dma read return data and mondo acks the DSN will have to account for
simultaneous dma read return and mondo acks. The DMU will only have 4
outstanding mondo interrupts and returning dma read returns have been
stretched to include an extra cycle at the beginning for a header multiplexed onto
the data bus. The DSN will exploit this and queue up mondo acks if they collide
with returning dma reads, and multiplex the mondo acks into this DMU dead
cycle created by the new interface. A FIFO of 4 entries should be sufficient since
the DMU can only have 4 outstanding mondo interrupts, and cannot issue
another until an ack is returned.

6. The NCU block will also be used to invalidate entries in the DMU MMU. The
existing interface was used to snoop the jbus, but for OpenSPARCT2 the NCU
will have a CSR writable register which when written to by SW, will trigger
sending the value as a PA to be invalidated. The DMU MMU will take this value,
match it against its current PA entries, and invalidate any line which matches. To
save pins, the invalidate address will be multiplexed onto the NCU 64 bit data
bus and a separate valid sign for invalidates will be used to distinguishing PIO
commands from MMU invalidate commands.

7. DMU CSR read/writes will be interfaced through the DSN.
1-58 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

1.14.4.12 DSN-NCU Interface Pin List

TABLE 1-41 DSN to NCU Interface Pin List

Signal name direction Description

DMU PIO commands

ncu_dmu_pio_hdr_vld input NCU to DMU pio_data header is valid

ncu_dmu_mmu_addr_vld input NCU to DMU pio_data mmu invalidate vector is valid

ncu_dmu pio_data[63:0] input NCU to DMU pio_data bus

DMU to NCU PIO write completions

dmu_ncu_wrack_vld output Release credit id valid bit

dmu_ncu_wrack_tag[3:0] output 4-bit release credit id

dmu_ncu_wrack_par output Odd parity on dmu_ncu_wrack_tag[3:0]

DMU Mondo acks

ncu_dmu_mondo_ack input Mondo Interrupt ack

ncu_dmu_mondo_nack input Mondo Interrupt nack

ncu_dmu_mondo_id[5:0] input [5:2] = cl_tag[3:0], [1:0] = mdo_tag[1:0]

ncu_dmu_mondo_id_par input Odd parity ^ncu_dmu_mondo_id[5:0]

This Signals are not needed, tie off between DSN/DMU blocks

d2j_tsb_base[42:13] n. a.

d2j_tsb_enable n. a.

d2j_tsb_size[3:0] n. a.

DSN to NCU error reporting Signals

dmu_ncu_d_pe output Indicates parity error on DMA rd data

dmu_ncu_siicr_pe output Indicates parity error on dma write credit ack

dmu_ncu_ctag_ue output Indicates ue error on dma read return ctag

dmu_ncu_ctag_ce output Indicates ce error on dma read return ctag

dmu_ncu_ncucr_pe output Indicates parity error on mondo ack

dmu_ncu_ie output Indicates parity error on DMU internal, tbd

Note: the error reporting Signals to the ncu are single pulse per error.

NCU to DSN error injections Signals

ncu_dmu_d_pei input Force DMA read return pe

ncu_dmu_siicr_pei input Force DMA write credit return pe

ncu_dmu_ctag_uei input Force DMA read return header ctag ue
Chapter 1 Data Management Unit (DMU) 1-59

1.14.4.13 NCU-DSN Egress PIO Commands

Note – PIO blk operations are not supported. The NCU will implement a CSR
register which when written to will force a snoop invalidate to the DMU MMU. The
Signals will go through the DSN block simply to be renamed.

ncu_dmu_ctag_cei input Force DMA read return header ctag ce

ncu_dmu_ncucr_pei input Force NCU mondo ack pe

ncu_dmu_iei input Force pe on DMU/MMU rams (deviostb & tdb

Note: the error injection Signals are levels, thus will force errors on all transactions until undriven

TABLE 1-42 NCU to DSN PIO Command Bit Definitions

Transaction type Cmds address bytemask ctag

Bit width
66

4
[65:62]

36
[61:26]

16
[25:10]

10
[10:0]

PIO Wr Blk Mem -64 4’b0000 A[35:0] rsv jbc_tag[9:0]

PIO Wr Blk Mem-32 4’b0001 A[35:0] rsv jbc_tag[9:0]

PIO Wr 16b Mem-64 4’b0100 A[35:0] bmsk jbc_tag[10:0]

PIO Wr 16b Mem-32 4’b0101 bmsk jbc_tag[10:0]

PIO Wr 16b IO 4’b0110 A[35:0] bmsk jbc_tag[10:0]

PIO Wr 16b Config 4’b0111 A[35:0] bmsk jbc_tag[10:0]

PIO Rd Blk Mem-64 4’b1000 A[35:0] rsv jbc_tag[9:0]

PIO Rd Blk Mem-32 4’b1001 A[35:0] rsv jbc_tag[9:0]

PIO Rd 16b Mem-64 4’b1100 A[35:0] bmsk jbc_tag[10:0]

PIO Rd 16b Mem-32 4’b1101 A[35:0] bmsk jbc_tag[10:0]

PIO Rd 16b IO 4’b1110 A[35:0] bmsk jbc_tag[10:0]

PIO Rd 16b Config 4’b1111 A[35:0] bmsk jbc_tag[10:0]

TABLE 1-41 DSN to NCU Interface Pin List (Continued)

Signal name direction Description
1-60 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

Note – Only 7 bits are used for the thread id, the full eight bits of thread id are not
sent by the NCU to the DSN for PIOs, only Cores can send PIOs, bit thread_id[6]==
1 implies JTAG access.

1.14.4.14 Bit Mapping from NCU Header to DMU for PIO rd/wr

j2d_p_addr[35:0]= ncu_dmu_pio_data[35:0]
j2d_p_cmd[3]= ncu_dmu_pio_data[60]
j2d_p_cmd[2]= 1’b1
j2d_p_cmd[1]= !ncu_dmu_pio_data[37] && ncu_dmu_pio_data[36] ||

 !ncu_dmu_pio_data[37] && !ncu_dmu_pio_data[36]
j2d_p_cmd[0]= ncu_dmu_pio_data[37] && !ncu_dmu_pio_data[36] ||

 !ncu_dmu_pio_data[37] && ncu_dmu_pio_data[36]
j2d_p_ctag[10:0]= {ncu_dmu_pio_data[59:56],ncu_dmu_pio_data[46:40]}
j2d_p_bmsk[15:0]= if ncu_dmu_pio_data[60] == 0 {// writes

if ncu_dmu_pio_data[3] == 1 then
{8’b0,ncu_dmu_pio_data[55:48]}

 else if ncu_dmu_pio_data[3] == 0 then
{ncu_dmu_pio_data[55:48],8’b0}
}

else ncu_dmu_pio_data[60] == 1 {// reads
if ncu_dmu_pio_data[3] == 1 && ncu_dmu_pio_data[50] = 0 then

{8’b0,bytemask}
else if ncu_dmu_pio_data[3] == 0 && ncu_dmu_pio_data[50] == 0 then

{bytemask,8’b0}
else if ncu_dmu_pio_data[50] == 1 then// 16 byte pio reads

 16’b1;
}

where bytemask is a string of 1’s equal to the byte count in
ncu_dmu_pio_data[50:48] starting at the address specified in
ncu_dmu_pio_data[35:0].

TABLE 1-43 jbc_tag[10:0] Descriptions

Field Bits Description

PIO transaction tag

jbc_tag[10:7] jbc_trans_#[3:0] Pio transaction number

jbc_tag[6:0] thread_id[6:0] Thread id used by NCU to return PIO read data to the
requesting thread. thread_id[6] indicates a JTAG operation.
thread_id[5:0] is the cpu/thread id if thread_id[6]==0
Chapter 1 Data Management Unit (DMU) 1-61

Note – The bmsk for reads is used by the DSN to determine how to align the
returning PIO read data, on writes only eight byte writes are allowed.

Note – j2d_p_xx(cmds only, not data) are delayed by 1 clock from
ncu_dmu_piodata[63:0]
1-62 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

1.14.4.15 NCU-DSN Timing Diagram

FIGURE 1-8 NCU-DSN Timing Diagram
Chapter 1 Data Management Unit (DMU) 1-63

1.14.4.16 NCU to DSN Command Header Info

1.14.4.17 NCU to DSN Header for MMU Invalidates

When the NCU sends an IOMMU invalidate the ncu_dmu_data[63:0] contains the
physical address to invalidate. The wires [39:6] will directly connect to
j2d_mmu_addr[39:6].

TABLE 1-44 NCU to DSN Command Header Bit Definitions

Header cycle
ncu_dmupio_data
[msb:lsb] Name Description

[63:61] reserved Must be zero

[60] PIO read 1 = PIO reads
0 = PIO write

[59:56] Credit id Credit id issues with the PIO command, returned
dmu_ncu_wrack_tag[3:0] for PIO writes, and in
the SIU header for rd completions

[55:48] Byte count/Byte mask[7:0]
data is big endian, but bmsk[0] is
for bits[7:0]
even though data byte 0 is
data[127:120]

This field is identical to size’ field from pcs packet
For PIO read case:
8’bxxxx_x000: 1 Byte
8’bxxxx_x001: 2 Byte
8’bxxxx_x010: 4 Byte
8’bxxxx_x011: 8 Byte
8’bxxxx_x100: 16 Byte
For PIO write case the 8bit mask indicates which
of the 8B of store data should be updated.

[47:40] NCU PIO ID {1’b0,cpu_thrid[6:0]}

[39:38] reserved Must be 0

[37:36] Command Mapping 11 = Memory space 64
10 = Memory space 32
01 = IO space(PA[28]==1’b1)
00 = Configuration space (PA[28]==1’b0)

[35:0] PA[35:0] 36 bit PA address from CPU, note this is a full
byte address
1-64 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

.

1.14.5 DSN-DMU Interface
The DSN-DMU interface is left as is, TABLE 1-46, and the DSN block adapts the new
SIU and NCU interfaces to this existing set of Signals.

TABLE 1-45 NCU to DSN Header Bit Definitions

Header cycle
ncu_dmupio_data
[msb:lsb] Name Description

[63:40] N/A

[39:6] PA[39:6] 39 bit PA address from NCU CSR
write

[5:0] N/A Assumed 0

TABLE 1-46 DSN-DMU Interface Pins

Signal Name Direction Description

Command Port

d2j_cmd[3:0] input Dma/int request or pio rd completion command

d2j_addr[36:0] input Address of dma/int request

d2j_ctag[15:0] input Transaction tag for dma/int request or pio rd completion

d2j_cmd_vld input Valid signal for d2j_(cmd,addr,ctag)

Data Port

d2j_data[127:0] input Data for dma wr/int request or pio rd completion

d2j_bmsk[15:0] input Bytemask for dma wr/int request

d2j_data_par[4:0] input Parity for dma wr/int request or pio rd completion data/bmsk

d2j_data_vld input Valid signal for d2j_(data,bmsk,data_par)

CTM: DMA Wrack Port

j2d_d_wrack_tag[3:0] input Transaction tag for dma wrack

j2d_d_wrack_vld input Valid signal for j2d_d_wrack_tag

CTM: PIO Wrack Port

d2j_p_wrack_tag[3:0] output Transaction tag for PIO wrack
Chapter 1 Data Management Unit (DMU) 1-65

d2j_p_wrack_vld output Valid signal for d2j_p_wrack_tag

CRM Command Completion Port

j2d_di_cmd[1:0] output Dma/int response cmd

j2d_di_ctag[15:0] output Transaction tag for dma/int response

j2d_di_cmd_vld output Valid signal for j2d_di_(cmd,ctag)

CRM Command Request Port

j2d_p_cmd[3:0] output Pio req cmd

j2d_p_addr[35:0] output Address of pio req

j2d_p_bmsk[15:0] output Bytemask for pio req

j2d_p_ctag[10:0] output Transaction tag for pio req

j2d_p_cmd_vld output Valid signal for j2d_p_(cmd,addr,bmsk,ctag)

CRM Data Completion Port

j2d_d_data[127:0] output Dma rd response data

j2d_d_data_par[3:0] output Parity for dma rd response data

j2d_d_data_err output Status of dma rd response data

j2d_d_data_vld output Valid signal for j2d_d_(data,data_par,data_err)

CRM Data Request Port

j2d_p_data[127:0] output Pio wr data

j2d_p_data_par[3:0] output Parity for pio wr data

j2d_p_data_vld output Valid signal for j2d_d_(data,data_par)

Ring Interface (csrs are accessed through the NCU to DSN ucb interface, the DSN converts the ucb protocol to
the ring protocol)

j2d_csr_ring_out[31:0] output Csr ring input from JBC

d2j_csr_ring_in[31:0] input Csr ring output to JBC

Interrupts (these will need to be tied off in the DMU, the NCU will handle these functions)

j2d_jbc_int_l output Jbu interrupt

j2d_i2c0_int_l output Internal interrupt

j2d_i2c1_int_l output Internal interrupt

j2d_jid_sel output

j2d_ext_int_l[19:0] output External interrupts from pins

Interrupts (interrupts are concentrated in the IMU and then sent out as data packets on the cmd interface.)

TABLE 1-46 DSN-DMU Interface Pins (Continued)

Signal Name Direction Description
1-66 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

1.15 Interface Layer Unit (ILU)

1.15.1 Overview
The following is a list of core, block and sub-block abbreviations which are
frequently used throughout this chapter and should be used as a reference for
increased readability:

Mondo and MSI interrupts are sent as data packets on the same wires as dma writes

MMU snoop interface (only needs to support CSR invalidates)

j2d_mmu_addr_vld ncu_dmu_mmu_addr_vld

d2j_tsb_base[42:13] n. a.

d2j_tsb_enable n. a.

d2j_tsb_size[3: 0]

TABLE 1-47 Abbreviation List

core block sub-block description

DMU Data Manager Unit

DSN DMU SIU/NCU Interface Unit

CRU CSR Register Unit with all the DCCs

CLU Cache Line Unit

CRM Cache Line Receive Manager

CTM Cache Line Transmit Manager

CMU Context Manager Unit

RCM Receive Context Manager

TCM Transmit Context Manager

IMU Interrupt Manager Unit

RMU Record Manager Unit

LRM Link Receive Manager

TABLE 1-46 DSN-DMU Interface Pins (Continued)

Signal Name Direction Description
Chapter 1 Data Management Unit (DMU) 1-67

The ILU operates at the IO clock rate, as opposed to the PTL where a time domain
crossing is implemented. The ILU provides the interface between the DMU and the
PEU core’s transaction layer and the header and data buffers in the PEU core. The
ILU interfaces with the TMU, CMU, IMU, CRU blocks in the DMU and the PTL in
the PEC. The main function of the ILU block is processing TLP header records,
moving payload data between the DMU, PEC cores’ data buffers, releasing and
processing data buffer credits, keeping track of the header and data buffer credits as
a receiver of a PCI Express device, providing a CSR interface for the PTL to the
OpenSPARC T2 PEU CSR rings, acting as an agent for the PTL to interface with the
IMU and CMU.

The ILU block functions are accomplished by the following four sub-blocks.

■ Ingress Interface Layer (IIL) - It supports the transfer of TLPs from the PTL to
the TMU. It pushes transaction records to the TMU and supports the pulling of
payload data by the TMU from the IDB within the PTL. It collects and processes

RRM Receive Record Manager

TMU Transaction Manager Unit

DIM Data Ingress Manager

ILU Interface Layer Unit

IIL Ingress Interface Layer

EIL Egress Interface Layer

CIB CSR Interface Block with DCCD, DCCS

ISB Interface Score Board

PEU PCI Express Core

PTL PCI-Express Transaction Layer

IDB Ingress Data Buffer

IHB Ingress Header Buffer

ITL Ingress Transaction Layer

EDB Egress Data Buffer

EHB Egress Header Buffer

ETL Egress Transaction Layer

CTB CSR Transaction Block with DCCD, DCCS, DCM

RSB Request Score Board

PLP PCI-Express Link/Physical Layer

TABLE 1-47 Abbreviation List (Continued)

core block sub-block description
1-68 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

the release records from the TMU to keep track of the PCI Express receiver’s
header and data credits and passes the information down to the PTL. It checks
and reports the data parity correctness of TLP headers from the IHB.

■ Egress Interface Layer (EIL) - An analogous header-push/data-pull protocol
transfers packets from the TMU to the ILU. It manages the spaces of the EDB,
EHB buffers within the PTL. It pushes TLP headers and payload into the EHB and
EDB. It generates PIO transaction credit and DMA read buffer release records and
pushes them to the RMU. It is responsible for aligning data pulled from the cache
line oriented data buffer in the DMU to the packed data buffer in the PEC.

■ CSR Interface Block (CIB) - It provides an synchronous interface for the CSR ring
connection between the two clock domains. It provides CSRs to log errors and
generates interrupt request. It acts as an agent for the PTL to interface with the
IMU and CMU.

■ Interface Score Board (ISB) - It tracks outstanding non-posted PIO requests. It
stores outgoing non-posted PIO requests two low address bits addr[3:2] to
substitute the low_addr[3:2] in the corresponding PIO completion, which is used
for data alignment in TMU. It’s used to form timed out PIO completions when it’s
in a drain state.
Chapter 1 Data Management Unit (DMU) 1-69

1.15.2 Block Diagram

FIGURE 1-9 ILU Block Diagram

ILU IIL EIL

p2d_ech_rptr

y2k_mps

TMU

DIM

IDB

Buffer

EDB

DMA RD
Buffer

PIO WR
Buffer

EHB

CPL
Buffer

IHB

Buffer
CTB

ITL ETL

(PH,
NPH,
CPLH)

(PD,
(CPLH)

(PH,
NPH)

(CPLD)

(PD,
NPD)

REQ
Buffer

k2y_rcd_enqy2k_rcd_enq y2k_rcd_deq

y2
k_

re
l_

en
q

y2
k_

re
l_

rc
d

y2
k_

bu
f_

ad
d

r

k2y_rcd

k2y_buf_data

y2k_rcd
y2k_buf_data

k2y_buf_addr
k2y_rel_enq
k2y_rel_rcd

k2y_rcd_deq

RCM TCM

CMU

d
2p

_e
ch

_w
pt

r

p2d_ihb_wptr

p2d_ihb_data

p2d_mps

p2d_ihb_dpar

d
2p

_i
d

b_
ad

d
r

p2
d

_i
d

b_
d

at
a

p2
d

_i
d

b_
d

pa
r

d2p_ibc_nhc
d2p_ibc_phc
d2p_ibc_pdc
d2p_ibc_req

p2d_ibc_ack

d2p_ihb_addr

PTL

d
2p

_e
rh

_w
pt

r

d2p_ehb_data
d2p_ehb_dpar

d2p_edb_addr
d2p_edb_data
d2p_edb_dpar

p2d_drain200 MHz

250 MHz

IMU

y2k_int_l

p2d_ue_int

CIB

CRU

DCC DCC

... ...

RMULRM RRM

p2d_cto_req
p2d_cto_tag

d2p_cto_ack

p2d_erh_rptr

DOU

DMA RD
Buffer

PIO WR
Buffer

k2y_buf_dpar

ISB

p2d_ce_int
p2d_oe_int

d2p_ehb_addr
d2p_ehb_we d2p_edb_we

y2k_buf_dpar

CPLD)

CLUCTM CRM

k2y_dou_vld
k2y_dou_dptr
k2y_dou_err

p2d_ecd_rptr
p2d_erd_rptr

RSB

d
eb

ug
 p

or
t

d2p_ihb_clk

d
2p

_i
d

b_
cl

k

d2p_ehb_clk d2p_edb_clk
1-70 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

1.15.3 Functional Description
The ILU block has the following responsibilities in the PEC core:

■ Provides a synchronous DCC ring connection between the two clock domains for
the PEC core to talk to the DCCs in the DMU CRU block, provides CSRs to log
errors and generates interrupt request, acts like an agent for the PTL for interrupt
request processing

■ On the ingress side of the pipeline:

■ Pulls and processes the TLP header records from the IHB in the PTL block and
pushes the new formed records to the TMU

■ Converts all different types of non-posted unsupported requests into one type
just called unsupported request to the DMU (data is dropped by the PTL if
there is payload associated)

■ Converts all types of unsuccessful PIO Cpl status to "unsupported req" status

■ Checks the pulled header record’s parity, loges and reports an error if there is
an error

■ Accepts the PIO completion time out request from the PTL and generates
appropriate completion record to be arbitrated by the ingress record pipeline

■ Provides an interface for the TMU block to pull payload data out of the IDB

■ Processes data buffer release records from the TMU block

■ Keeps track of the header and data buffer credits for different types and passes
the information to the PTL block for PCI-E transaction layer flow control

■ Passes the value of the max. payload size to the CMU from the PEC core
control CSR

■ When it’s in the drain state, generates PIO completions for all the outstanding
non-posted PIO requests with "unsupported request" status, no more
processing of IHB record and completion time out request from PTL until it
comes out of the drain state

■ On the egress side of the pipeline:

■ Manages the buffer allocation for the EHB and EDB in the PTL

■ Processes the header records pushed from the TMU and computes the data
parity for the header records, then pushes them together to the EHB

■ Keeps track of DOU DMA Rd buffer status (data availability and error status
on cache line basis)

■ Pulls the payload (if data is available on DOU for DMA read return) from the
DOU and pushes them to the EDB in the PTL

■ Aligns the data from the cache line oriented non-packed DMU data to the
packed 16-byte wide data in the EDB

■ Generates release records to the TMU for PIO transaction credit and DMA read
data buffer credit
Chapter 1 Data Management Unit (DMU) 1-71

■ Set "EP" bit in "DMA Rd CplD" record to EHB if any of the associated payload
cache lines is marked as "error" on DOU DMA Rd buffer status

■ When it’s in the drain state, drain the records in the record FIFO (posts them
on the SBD if they are non-posted PIO requests, drops them on the floor
otherwise, the associated payload is also drained from DOU and dropped on
the floor)

1.15.4 Interface Signals
The following signal interface table summarizes the connections between the ILU
and other blocks, sub-blocks, and cores with which it communicates. The src/dest
field of the interface table specifies the connection to the sub-block level. All signals
into and out of the ILU source or terminate within sub blocks IIL, EIL, CIB, ISB or
block ILU.

TABLE 1-48 ILU Signal Interface

Signals Width Direction Src/Dst Function/Comment

ILU-DMU Interface

ILU-TMU Interface (please refer to OpenSPARC T2 Soc Microarchitecture Specification, Part 1 of 2

CSR Ring Interface

k2y_csr_ring_out 32 In CRU/CIB CSR ring

y2k_csr_ring_in 32 Out CIB/CRU CSR ring

ILU-RMU Interface

y2k_rel_rcd 9 In ILU/DEM The credit release record

y2k_rel_enq 1 In ILU/DEM The enqueue signal for the y2k_rel_rcd

ILU-CLU Interface

k2y_dou_vld 1 In CRM/ILU Valid of a Cacheline in Egress DOU DMA Cpl Buffer

k2y_dou_dptr 5 In CRM/ILU Egress DOU DMA Cpl Buffer Cacheline address

k2y_dou_err 1 In CRM/ILU Data error status in k2y_dou_dptr cacheline

ILU-CMU Interface

y2k_mps 3 Out CSR/CMU max payload size passed from PEC CSR, the encoding is
as same as specified in the PCI Express spec.

ILU-IMU Interface

y2k_int_l 1 Out CSR/IMU interrupt req for PEC core (level based)

ILU-DOU Interface

y2k_buf_addr 8 Out EIL/DOU The DMU egress data buffer read address
1-72 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

k2y_buf_data 128 In DOU/EIL 16 byte data from DMU egress data buffer

k2y_buf_dpar 4 In DOU/EIL 4-bit parity from DMU egress data buffer

Debug Interface

k2y_dbg_sel_a 6 In CRU/ILU port a debug select

k2y_dbg_sel_b 6 In CRU/ILU port b debug select

y2k_dbg_a 8 Out ILU/CRU port a debug vector

y2k_dbg_b 8 Out ILU/CRU port b debug vector

ILU-PTL Interface

Ingress Header Buffer Interface

d2p_ihb_clk 1 Out IIL/PTL IHB clk from 200MHz domain

d2p_ihb_addr 6 Out IIL/PTL binary read address to IHB

p2d_ihb_wptr 7 In PTL/IIL gray-coded write pointer to IHB

p2d_ihb_data 128 In PTL/IIL 4DW (or 3DW + 1DW reserved TLP header

p2d_ihb_dpar 4 In PTL/IIL parity bits for p2d_ihb_data

Ingress Data Buffer Interface

d2p_idb_clk 1 Out IIL/PTL IDB clk from 200MHz domain

d2p_idb_addr 8 Out IIL/PTL read pointer for IDB

p2d_idb_data 128 In PTL/IIL payload data from IDB

p2d_idb_dpar 4 In PTL/IIL parity bits for p2d_idb_data

Ingress Buffer Credit Interface

d2p_ibc_req 1 Out IIL/PTL req for ingress buffer credits

p2d_ibc_ack 1 In PTL/IIL ack for ingress buffer credits

d2p_ibc_nhc 8 Out IIL/PTL ingress buffer credit for non-posted header (NPH)

d2p_ibc_phc 8 Out IIL/PTL ingress buffer credit for posted header (PH)

d2p_ibc_pdc 12 Out IIL/PTL ingress buffer credit for posted data (PD)

Completion Timeout Interface

p2d_cto_req 1 In PTL/IIL req for PIO cpl time out rcd generation

p2d_cto_tag 5 In PTL/IIL lower five bits PIO tlp tag for cpl timeout rcd generation

d2p_cto_ack 1 Out IIL/PTL ack for p2d_cto_req

Status Interface

TABLE 1-48 ILU Signal Interface (Continued)

Signals Width Direction Src/Dst Function/Comment
Chapter 1 Data Management Unit (DMU) 1-73

p2d_drain 1 In PTL/CIB drain state

p2d_mps 3 In PTL/CIB max payload size from PEC control CSR

p2d_ue_int 1 In PTL/CIB uncorrectable error interrupt request

p2d_ce_int 1 In PTL/CIB correctable error interrupt request

p2d_oe_int 1 In PTL/CIB other error interrupt request

Egress Header Buffer Interface

d2p_ehb_clk 1 Out EIL/PTL EHB clk from 200MHz domain

d2p_ech_wptr 6 Out EIL/PTL gray-coded write pointer to EHB-CPL buffer

d2p_erh_wptr 6 Out EIL/PTL gray-coded write pointer to EHB-REQ buffer (PIOs)

p2d_ech_rptr 6 In PTL/EIL gray-coded read pointer to EHB-CPL buffer

p2d_erh_rptr 6 In PTL/EIL gray-coded read pointer to EHB-REQ buffer

d2p_ehb_we 1 Out EIL/PTL write strobe for EHB

d2p_ehb_addr 6 Out EIL/PTL binary write pointer for EHB

d2p_ehb_data 128 Out EIL/PTL 4DW (or 3DW + 1DW reserved TLP header

d2p_ehb_dpar 4 Out EIL/PTL parity bits for d2p_ehb_data

Egress Data Buffer Interface

d2p_edb_clk 1 Out EIL/PTL EDB clk from 200MHz domain

p2d_ecd_rptr 8 In PTL/EIL gray-coded read pointer to EDB Cpl buffer. MSB is roll
over bit, reset value is 8’b0

p2d_erd_rptr 8 In PTL/EIL gray-coded read pointer to EDB Req buffer. MSB is roll
over bit, reset value is 8’b0

d2p_edb_we 1 Out EIL/PTL write strobe for EDB

d2p_edb_addr 8 Out EIL/PTL write pointer for EDB

d2p_edb_data 128 Out EIL/PTL payload data to EDB

d2p_edb_dpar 4 Out EIL/PTL parity bits for d2p_edb_data

CSR Interface

d2p_csr_req 1 Out CIB/PTL CSR ring request

p2d_csr_ack 1 In PTL/CIB CSR ring acknowledge

d2p_csr_rcd 96 Out CIB/PTL CSR ring

p2d_csr_req 1 In PTL/CIB CSR ring request

d2p_csr_ack 1 Out CIB/PTL CSR ring acknowledge

TABLE 1-48 ILU Signal Interface (Continued)

Signals Width Direction Src/Dst Function/Comment
1-74 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

1.15.5 Transaction Flow
The major functions in processing the pulled header records from the IHB in the PTL
on the ingress side are

■ clear SBD entry

■ record type out vs. the type in

■ setting align addr[5:2] = {00, low_addr[3:2]} for PIO Cpl/CplD

■ PCIE flow control header buffer credit collection

■ convert PIO Cpl status (other than successful) to "unsupported request" status

Please note, the low_addr[3:2] mentioned above is its corresponding non-posted PIO
requests low_addr[3:2], which is saved on the scoreboard ISB.

p2d_csr_rcd 96 In PTL/CIB CSR ring

Spare interface

d2p_spare 5 Out ILU/PTL Spare DMU to PEC connections

p2d_spare 5 Out PTL/ILU Spare PEC to DMU connections

ILU internal sub block interface

eil2isb_log 1 EIL/ISB valid tag to set on the ISB

eil2isb_tag 5 EIL/ISB PIO request’s tlp_tag[4:0]

eil2isb_low_addr 2 EIL/ISB PIO request’s two low address bits addr[3:2]

iil2isb_tag 5 IIL/ISB PIO response’s tlp_tag[4:0]

isb2iil_vld 1 ISB/IIL valid bit output from ISB to IIL

iil2isb_clr 1 IIL/ISB clear scoreboard entry indexed as iil2isb_tag

isb2iil_low_addr 2 ISB/IIL corresponding low address from ISB to IIL

iil2cib_par_err 1 IIL/CIB IIL informs CIB for header record data parity error

cib2iil_drain 1 CIB/IIL CIB tells IIL to go to drain state

cib2eil_drain 1 CIB/IIL CIB tells EIL to go to drain state

TABLE 1-48 ILU Signal Interface (Continued)

Signals Width Direction Src/Dst Function/Comment
Chapter 1 Data Management Unit (DMU) 1-75

The major transaction flow functions on the ingress side of the pipeline are
summarized in TABLE 1-49.

TABLE 1-49 Transaction Summary on the Ingress Side flowing in/out of the ILU Block

transaction
type in

encoded
type in

transaction
type out

encoded
type out

clear
SBD

align
addr[5:2]

header
buffer credit

modify PIO
Cpl status

DMA MRd 0x00000b DMA MRd 0x00000b NO n/a YES - NPH
type

n/a

DMA MRdLk 0x00001b DMA
MRdLk

0x00001b NO n/a YES - NPH
type

n/a

DMA MWr 1x00000b DMA MWr 1x00000b NO n/a YES - PH type n/a

DMA IORd 0000010b unsupporte
d
request

0001001b NO n/a YES - NPH
type

n/a

DMA IOWr 1000010b unsupporte
d
request

0001001b NO n/a YES - NPH
type

n/a

DMA CfgRd 000010xb unsupporte
d
request

0001001b NO n/a YES - NPH
type

n/a

DMA CfgWr 100010xb unsupporte
d
request

0001001b NO n/a YES - NPH
type

n/a

Msg 0110xxxb Msg 0110xxxb NO n/a YES - PH type n/a

PIO Cpl (other than
successful)

0001010b PIO Cpl 0001010b YES YES NO YES,
convert to
"unsupporte
d request"

PIO Cpl (successful
status)

0001010b PIO Cpl 0001010b YES YES NO NO

PIO CplD 1001010b PIO CplD 1001010b YES YES NO n/a

PIO Cpl (timeout status)
through p2d_cto_req
interface

n/a PIO Cpl 1001010b YES n/a NO n/a

PIO Cpl (unsupported
request status) when it’s
in drain state

n/a PIO Cpl 1001010b YES n/a NO n/a
1-76 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

Note – According to the PCI-Express spec, all reserved status values (i.e. 011, 101,
110, and 111) must be treated as "Unsupported Request". Moreover, CLU maps the
two unreserved status (unsupported request and completer abort) to one type - JBUS
bus error. Therefore, ILU converts PIO Cpl with status other that successful to
unsupported request status.

Note – OpenSPARC T2 PEU as a HW will NOT retry the PIO config request if the
associated completion’s status is "cfg retry", but set a CSR config retry status bit and
log both PIO request header and associated cpl header. At meantime, the Cpl record
is trapped in PTL and a PIO timeout Cpl generation is requested from PTL to ILU
through p2d_cto_req. Therefore, ILU will NOT receive a PIO Cpl with "cfg retry"
status.

Note – The original PCI Express completion packets include the associated
requesting lower address[6:0]. However, the lower address is 7’b0 if the Cpl/CplD is
resulted from an io/cfg rd/wr request. Therefore, ILU substitutes the low address
[3:2] with the value retrieved from ISB for correct data alignment which is done in
the TMU block in DMU. In order to align the PIO partial read completion data to the
first row (16-byte) of a cache line, the IIL sets the align address [5:4] to 2’b0. If it’s a
PIO block read completion, the formula is still true. This way, there is no need to
propagate the align address up to the CTM in the header records and the CTM will
always pull PIO partial read completion data from the first row of the cache line.

The major functions in processing the header records dequeued from the EIL record
FIFO on the egress side are

■ determine which buffer in the EHB to push the header record to

■ log the tlp tag and low_addr[3:2] on the ISB for non-posted PIO requests

■ pull data from DOU

■ align data (all data pulled from DOU need data alignment, thus it’s not shown in
TABLE 1-50)

■ determine which buffer in the EDB to push the payload to

■ generate release record for DMA RD buffer in the DOU

■ generate release record for PIO transaction credit
Chapter 1 Data Management Unit (DMU) 1-77

The major transaction flow functions on the egress side of the pipeline are
summarized inTABLE 1-50.

Note – For "DMA CplD" record written into EHB, the "EP" bit is set if any of the
associated payload cache lines in DOU is in error.

Note – There are two cases which would cause an error in a cache line in DOU
DMA RD buffer: (1) DMA Rd response error from JBC to DMU (no data written into
DOU); (2) j2d_d_data_err is asserted for any data cycles associated with a DMA Rd
response. Therefore, it doesn’t guarantee the data parity correctness for a DOU cache
line in error. However, when ETL pulls data out of DOU DMA Rd data buffer, it
checks data parity and reports and logs the error if a data parity error is detected.
Moreover, JBC detects the two error cases, reports and logs the error when the error
is detected. Thus, it might cause two place to report and log the same error for those
two error cases.

1.15.6 Passing Data Across Clock Domains
There are four mechanisms used here to pass data across the clock domains at the
ILU-PTL across clock domain interface.

TABLE 1-50 Transaction Summary on the Egress Side flowing in/out of the ILU Block

transaction
type in

encoded
type in log to ISB

the buffer in EHB
record is pushed to

pull data
& the buffer in EDB
data is pushed to

DMA buffer
release

PIO credit
release

PIO MRd 0x00000b YES REQ buffer NO NO NO

PIO MWr 1x00000b NO REQ buffer YES, PIO WR buffer NO YES

PIO IORd 0000010b YES REQ buffer NO NO NO

PIO IOWr 1000010b YES REQ buffer YES, PIO WR buffer NO NO

PIO CfgRd 000010xb YES REQ buffer NO NO NO

PIO
CfgWr

100010xb YES REQ buffer YES, PIO WR buffer NO NO

DMA Cpl 0001010b NO CPL buffer NO NO NO

DMA
CplD

1001010b NO CPL buffer YES, DMA RD buffer YES NO

DMA
CplLk

0001011b NO CPL buffer NO NO NO
1-78 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

■ Synchronizer scenario

■ gray-coded buffer pointers

■ Auto-update req-ack interface

■ Demand-based req-ack interface

1.15.6.1 Synchronizer Scenario

This scenario is used to pass data of

■ p2d_ue_int

■ p2d_ce_int

■ p2d_oe_int

■ p2d_mps[2:0]

■ p2d_drain

from the PTL to ILU because these data are stable after they are set.

FIGURE 1-10 Asynchronous Clocks & Synchronizer Scenario

1.15.6.2 Gray-Coded Buffer Pointers

The both ingress and egress header buffers (IHB and EHB) are accessed through
binary buffer pointers. The buffer access signals are d2p_ihb_addr, d2p_ehb_addr,
d2p_idb_addr, and d2p_edb_addr. However, the buffer pointers across the clock
domain for buffer management are gray-coded.

Here is the list of signals across the clock domains in gray-code:

■ p2d_ihb_wptr

Synchronizer

pec-clk

DMU-clk

drain

*_int

mps
p2d_*_int
p2d_mps

p2d_drain drain1
*_int1
mps1

ILUPTL

drain
*_int
mps
Chapter 1 Data Management Unit (DMU) 1-79

■ d2p_ech_wptr

■ d2p_erh_wptr

■ p2d_ech_rptr

■ p2d_erh_rptr

■ p2d_ecd_rptr

■ p2d_erd_rptr

1.15.6.3 Auto-Update Req-Ack Interface

On the ingress side of the pipeline, the IIL collects the credits for the PCI-E
transaction flow control variable CREDITS_ALLOCATED for the behavior of the
PCI-E receiver (please refer to the PCI Express spec for the definition of the variable
CREDITS_ALLOCATED in PCIE Standard Specification Version 1.0a).

It collects credits for the header types of posted (PH), non-posted (NPH); for the
data type of posted (PD). There is no credit collection for non-posted data type
(NPD) because the non-posted payload is not stored in the IDB at all (the non-posted
TLP requests are unsupported requests and the PTL drops them). There is no credit
collection for completion header (CPLH) and data (CPLD) because OpenSPARC T2
PEU advertises them as infinite. All the credit counters are initialized as zero after
reset. The PTL will take the credit values received from the ILU, plus the credit
values collected by itself, and plus the corresponding initial credit, then pass them to
the Data Link Layer.

On the egress side, the PCI Express transaction flow control mechanism is adopted
to manage the TLP RD buffer segment of the EDB. The PTL collects the credit
whenever it transmits completion payload to the link layer. Then the PTL passes the
credit to the EIL for TLP RD buffer credit tracking.

The credit values mentioned above are passed across the clock domains by means of
an auto-update req-ack interface. The signals are listed below:

On the ingress side:

■ d2p_ibc_req

■ d2p_ibc_nhc[7:0]

■ d2p_ibc_phc[7:0]

■ d2p_ibc_pdc{11:0]

■ p2d_ibc_ack

FIGURE 1-11 shows the schematic block diagram of the req-ack interface.
1-80 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

Note – It’s a auto-update req-ack interface if the new_req is tied to 1b in FIGURE 1-11,
schematic req-ack interface block diagram. Otherwise, it’s a demand-based req-ack
interface.

FIGURE 1-11 Schematic req-ack Interface across Clock Domains

clock 1

clock 2

xxx_xxx_req

xxx_xxx_ack

xxx_xxx_data

new_req
Chapter 1 Data Management Unit (DMU) 1-81

FIGURE 1-12 Auto-update req-ack on the Ingress Side Timing Diagram

1.15.6.4 Demand-Based Req-Ack Interface

When the timer is expired in the PIO scoreboard in the PTL for a outstanding
non-posted PIO request before it receives a corresponding completion, the PTL
requires the IIL to generate a corresponding PIO time out error completion record to
propagate up to JBus. The completion time out request is passed from the PTL to the
ILU across the clock domains by the mean of demand-based req-ack interface. The
signals are listed below:

■ p2d_cto_req

■ p2d_cto_tag[4:0]

■ d2p_cto_ack

Please refer to FIGURE 1-11 for the schematic block diagram.

0ns 25ns 50ns

DMU_clk

DMU_rst

d2p_ibc_req

p2d_ibc_ack

d2p_ibc_xxx
1-82 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

FIGURE 1-13 Demand-based req-ack Timing Diagram

1.15.7 IIL Sub Block
In the ingress direction the IIL reads a header records out of the IHB and checks its
data parity. If there is a parity error, it’s a fatal error (the IHB is trashed), the IIL
drops the record and reports the error to the CIB sub block, at meantime, the ILU
goes into a drain state (this will be discussed in more detail later). Otherwise, the IIL
pushes the processed header records to the TMU record FIFO if the FIFO is not full,
and increases the appropriate header buffer credit counters. The IIL clears the ISB
entry for completions. The IIL services PIO completion timeout request from PTL by
generating PIO completion record with an internal encoded timeout status value.
For PIO Cpl records, IIL converts all types of unsuccessful PIO Cpl status to
"unsupported req" status. The TMU pulls payload data out of the IDB through the
ILU. The TMU sends a release record to the ILU after pulling the payload from the
IDB to release the IDB’s packet allocation. The IIL uses the release records to update
the appropriate data buffer credit counters.

0ns 25ns 50ns 75ns 100ns

pec_clk

pec_rst

new_req

p2d_cto_req

d2p_cto_ack

p2d_cto_tag
Chapter 1 Data Management Unit (DMU) 1-83

1.15.7.1 IIL Block Diagram

FIGURE 1-14 IIL Block Diagram

xfr_fsm

type decoder

hdr_buf_mng

credit_counter

rcd_builder

parity_check

cib2iil_drain

iil2isb_tag

isb2iil_vld

iil2cib_par_err

p2d_ihb_dpar p2d_ihb_data

p2d_idb_data

d2p_idb_addr

p2d_ibc_ack

d2
p_

ih
b_

ad
dr

p2
d_

ih
b_

w
pt

r

y2k_buf_data

k2y_buf_addr

k2y_rel_rcd

k2y_rcd_deq

y2k_rcd

d2p_cto_ackp2d_cto_req
p2d_cto_tag

d2p_ibc_req
d2p_ibc_nhc
d2p_ibc_phc
d2p_ibc_pdc

p2d_idb_dpar

y2k_buf_dpar

k2y_rel_enqy2k_rcd_enq

ih
b_

rp
tr

_i
nc

credit_type
ih

b_
em

pt
y

IIL
iil2isb_clr

is_ihb_rcd
is_cto_rcd

ihb_rcd_is_cpl
is_unsupported_req

pio_tag_gen

is_iihb_rcd
1-84 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

1.15.7.2 IIL Timing Diagram

FIGURE 1-15 IIL Timing Diagram

1.15.7.3 Assumptions

Note – OpenSPARC T2 PEU will use "Infinite" flow control advertisement for types
of CPLH, CPLD, and NPD. Thus, there is no need for the IIL to collect credits for
CPLH and CPLD (the IIL will never see NPD type payload).

cpl cd

cpl

msg mrd mwr ur

PH NPH PH NPH

mrd urcd msg mwr

cpl - PIO Cpl
cd - PIO CplD
msg - Msg
mrd - DMA MRd
mwr - DMA MWr
ur - unsupported request (DMA io/cfg rd/wr)

0ns 25ns 50ns

clk1

d2p_ihb_addr

p2d_ihb_data/dpar

credit_type

iil2isb_tag

iil2isb_clr

k2y_rcd_deq

y2k_rcd_enq

y2k_rcd
Chapter 1 Data Management Unit (DMU) 1-85

1. The PTL will trap (drop on the floor) incoming unsupported posted request
(MsgD) header records and associated payload.

2. The PTL will trap the associated payload (not stored in the IDB) for the incoming
unsupported non-posted requests, which are transaction types of DMA IOWr,
DMA CfgWr.

3. The PTL will identify and trap unsolicited, malformed, and "cfg retry" error
completion header records and associated payload.

4. The DIM makes data buffer release on a row basis (16 bytes data), which means it
sends a release record to the IIL every time the DIM pulls a row of data out of the
IDB.
1-86 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

1.15.8 ILU PEU Interface

1.15.8.1 Block Diagram

FIGURE 1-16 ILU-PTL Connection Diagram

IIL

DMU

ILU

PTL

IHB IDB

ISB

PEC

EIL CIB

EHB EIDB

IH
B

ID
B

E
H

B

E
D

B

Chapter 1 Data Management Unit (DMU) 1-87

1.15.8.2 ILU-PTL Signal Interface

1.15.8.3 Data Buffers

There are four data buffers modelled as part of the PTL, which are

■ ingress header buffer (IHB)

■ ingress data buffer (IDB)

■ egress header buffer (EHB)

TABLE 1-51 ILU-PTL Signal Interface

Signals Width Direction Src/Dst Function/Comment

IHB-ILU interface

d2p_ihb_clk 1 In ILU/IHB DMU clock

d2p_ihb_addr 6 In ILU/IHB IHB read address

p2d_ihb_data 128 Out IHB/ILU IHB read data

p2d_ihb_dpar 4 Out IHB/ILU IHB read data parity

IDB-ILU interface

d2p_idb_clk 1 In ILU/IDB DMU clock

d2p_idb_addr 8 In ILU/IDB IDB read address

p2d_idb_data 128 Out IDB/ILU IDB read data

p2d_idb_dpar 4 Out IDB/ILU IDB read data parity

EHB-ILU interface

d2p_ehb_clk 1 In ILU/EHB DMU clock

d2p_ehb_we 1 In ILU/EHB EHB write enable

d2p_ehb_addr 6 In ILU/EHB EHB write address

d2p_ehb_data 128 In ILU/EHB EHB write data

d2p_ehb_dpar 4 In ILU/EHB EHB write data parity

EDB-ILU interface

d2p_edb_clk 1 In ILU/EDB DMU clock

d2p_edb_we 1 In ILU/EDB EDB write enable

d2p_edb_addr 8 In ILU/EDB EDB write address

d2p_edb_data 128 In ILU/EDB EDB write data

d2p_edb_dpar 4 In ILU/EDB EDB write data parity
1-88 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

■ egress data buffer (EDB)

1.15.8.4 Buffer Management

IHB And IDB

IHB and IDB are treated as a single circular buffer.

As a consumer of IHB, ILU needs to detect IHB’s emptiness.

The IHB’s emptiness detection is through its read/write pointers. There are 64
entries in IHB. Therefore, it’s 6-bit IHB write address (d2p_ihb_addr). However, the
IHB write pointer passed from PTL to ILU is 7-bit (p2d_ihb_wptr) with the MSB as a
roll-over bit. ILU keeps its own 7-bit IHB read pointer with the MSB as a roll-over bit
too. It’s empty if the 7-bit read/write pointers are the same.

The IHB’s fullness detection is through global PCIE flow control credit mechanism.
It’s managed on the transmit’s device side. It’s out of scope of this spec.

There is no need for IDB emptiness detection because it’s guaranteed that the
transaction associated payload is ready to pull in IDB when the transaction header is
processed down the pipeline.

The IDB’s fullness detection is through global PCIE flow control credit mechanism.
It’s managed on the transmit’s device side. It’s out of scope of this spec.

EHB And EDB

EHB and EDB are treated as two circular buffers (half/half). The low address space
(one half) is partitioned for completion (DMA Cpl/CplD) records and their
associated payload (named as ECH & ECD buffer); the high address space (the other
half) for request (PIOs) records and their associated payload (named as ERH & ERD
buffer).

For each header circular buffer, ILU passes its write pointer to EIL (d2p_ech_wptr
for ECH and d2p_erh_wptr for ERH); ETL passes its read pointer to ILU
(p2d_ech_rptr for ECH and p2d_erh_rptr for ERH). The MSB in these read/write
pointers is a roll-over bit.

For each data circular buffer, ETL passes its read pointer to ILU (p2d_ecd_rptr for
ECD and p2d_erd_rptr for ERD). The MSB in these read pointers is a roll-over bit.
Chapter 1 Data Management Unit (DMU) 1-89

As a producer of EHB and EDB, ILU needs to detect their fullness for both circular
buffers. ILU keeps its own set of write pointers to ERD and ECD with the MSB as a
roll-over bit. A circular buffer is full if their roll-over bits in read/write pointers vary
and the rest are the same.

As a consumer of EHB and EDB, ETL needs to detect the emptiness for the two
header circular buffers. However, there is no need to detect the emptiness for the
two data circular buffers because it’s guaranteed that the transaction associated
payload is ready to pull in EDB when the transaction header is processed in ETL. A
circular buffer is empty if their read/write pointers are the same.

The PEC record from the IIL to the DIM in the TMU (across ILU-TMU interface) at
TABLE 1-48.

1.15.8.5 IIL Type Decoder

The type decoder block takes the 7-bit type field, the completion status field in the
records pulled from the IHB in the PTL as inputs to sort the transaction as:

■ unsupported non-posted requests (DMA IO/Cfg Rd/Wr)

■ PIO Completions (Cpl)

■ non-posted requests (DMA MRd)

■ posted requests (DMA MWr)

If it’s a IHB record header data parity error, the record will be discarded. Different
actions will be taken when the transaction falls into a different type, which is
notified by the outputs of the type decoder. The outputs are

■ ihb_rcd_is_cpl

■ is_unsupported_req

■ credit_type[1:0] - encoding for three types of PCI-E header

TABLE 1-52 Encoded Signal Credit_type[1:0]

signal encoding

credit_type[1:0] 10 - non-posted header (NPH)

01 - posted header (PH)

00 - completion header (CPLH)

11 - illegal
1-90 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

1.15.8.6 Drain State

The purpose of the drain state is to unstall the egress pipeline from JBC to PEC. This
is required to enable internal PIOs issued by software to propagate to the CSR ring.
In JBC, external and internal PIOs are stored in a single queue. If the pipeline stalls,
internal PIOs could be blocked in the queue. Software would then be unable to
read/clear the internal CSRs. The drain state alleviates this blockage and allows CSR
access to Software.

There are three scenarios, which will get the IIL and EIL into a drain state.

■ The PTL detects an egress header/data parity error from EHB/EDB.

TABLE 1-53 IIL Type Decoder Block Functions

record type
input
type[6:0]

output
ihb_rcd_is_cpl

output
is_unsupported_req

output
credit_type
[1:0]

action
modify type
field value

action
modify status
value

DMA MRd 0x00000b 0 0 10b No n/a

DMA MRdLk 0x00001b 0 0 10b No n/a

DMA MWr 1x00000b 0 0 01b No n/a

DMA IORd 0000010b 0 1 10b Yes, to
0001001b

n/a

DMA IOWr 1000010b 0 1 10b Yes, to
0001001b

n/a

DMA CfgRd 000010xb 0 1 10b Yes, to
0001001b

n/a

DMA CfgWr 100010xb 0 1 10b Yes, to
0001001b

n/a

Msg 0110xxxb 0 0 01b No n/a

PIO Cpl (unsuccessful
status)

0001010b 1 0 00b No yes, to "UR"

PIO Cpl (successful status) 0001010b 1 0 00b No no

PIO CplD
(status must be 3’b000)

1001010b 1 0 00b No no
Chapter 1 Data Management Unit (DMU) 1-91

■ The IIL detects an ingress header parity error from IHB. The IIL signals the error
to CIB sub block. Then, the CIB sub block sends "drain" to the IIL through the
block internal interface signal cib2iil_drain. At meantime, the CIB sub block sends
"drain" to the EIL also through the signal cib2eil_drain, which is connected from
an internal flop inside of CIB.

When it’s in the drain state, on the egress side the EIL will process the records
normally except that the dequeued header records and pulled payload data are not
stored in the EHB and EDB, instead, they are dropped on the floor.

When it’s in the drain state, on the ingress side the IIL will stop pulling any header
records from the IHB. The xfr_fsm block will run into an infinite loop to look into
the ISB block to take off the outstanding PIOs and generate PIO completion header
records with the completion status field as "unsupported request". The completion
records will be pushed to the record FIFO in the DIM by the xfr_fsm. The reason of
completing PIOs is to free the processors who issued the PIOs from waiting PIO
completions and be able to issue new PIOs to internal CSRs.

When any one of the three scenarios happens, the detector of the error will set its
corresponding CSR error status bit if enabled and request for interrupt if enabled.
Here are the steps SW will take when it receives the interrupt:

■ a PIO read to the CSR to find out the problem

■ a PIO write to the CSR to clear the interrupt enable bit to prevent further
interrupt requests sourced from the same error

■ a PIO write to the CSR to clear the error status bit

■ reset the chip (it will get the ILU out of the drain state after the link is up)

■ a PIO write to the CSR to set the interrupt enable bit

Normal operations will then resume.

Note – Any new PIO completion timeout generation request from PTL
(p2d_cto_req) will be ignored by ILU when it’s in the drain state. No more IHB
records processing after it goes into the drain state. The only way coming out of the
drain state is through a SW reset.

1.15.8.7 PCI-E Flow Control Credit Processing

For PCI-E flow control credit, the IIL only collects two types of header credit, which
are non-posted header (NPH) and posted header (PH), 1 type of data credit, which is
posted data (PD).
1-92 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

Note – The PTL will collect PCI-E flow control credit for PH header type and PD
data type by receiving unsupported posted requests. Then, as a receiver, the PTL
adds its own collected PH and PD credits (the counters are initiated as the initial
credits and the collected credits are increased) and the ILU collected PH and PD
credits accordingly as the total PH and PD PCI-E flow control credits. The PTL adds
the ILU collected NPH credit with the initial credits as the total NPH PCI-E flow
control credit.

The credit counter block serves this purpose.

The header credits are sourced internally. There are two separate header type credit
incrementing counters to accumulate the header releases by processing the input
signal credit_type[1:0] from the type decoder along with the signal is_ihb_rcd from
the xfr_fsm. The two header credit counters are d2p_ibc_phc (posted header credit),
d2p_ibc_nhc (non-posted header credit).

The PD data credit is collected when the TMU sends the buffer release record to the
ILU after the TMU pulls the data out from the IDB on a DMA MWr operation. The
PD data credit counter is d2p_ibc_pdc (posted data credit). No data credit is
collected when the TMU sends the buffer release record to the ILU after the TMU
pulls the data out from the IDB on a PIO CplD operation.

Note – The TMU sends DMA write buffer release record down to the ILU whenever
it pulls a row of data out of the IDB (essentially, the k2y_rel_enq is asserted). Thus,
it’s one data credit for one release record. The IIL will consume one release record by
incrementing the data credit counter by one if it’s a PD type.

1.15.8.8 PIO Completion Time Out

PTL determines if there is a need to time out an outstanding non-posted PIO
request. If the answer is yes, it sends a request with the timed out PIO associated tag
to the IIL through the signals p2d_cto_req and p2d_cto_tag[4:0]. When the IIL sees
the request, it will generate a completion header record with the completion status
field set as time out error (value of 3’b111, which is for OpenSPARC T2 PEU internal
use only).

The IIL arbitrates this generated timeout PIO completion record with higher priority
over the records in the IHB (by the way, the drain state has the highest priority) and
inserts it to the record pipeline by pushing it to the record FIFO resident in the DIM
if there is space in the FIFO. After pushing the timeout PIO completion record to the
FIFO, the IIL will acknowledge it back to the PTL by asserting d2p_cto_ack. At
meantime, the IIL will clear the ISB entry with the associated tag.
Chapter 1 Data Management Unit (DMU) 1-93

Note – The PTL will NOT request another PIO completion timeout generation to the
ILU before it gets the acknowledge back from the ILU for the current request.

1.15.9 EIL Sub Block
In the egress direction, the header records are pushed by the DMU to an record FIFO
resident in the EIL. These records include a pointer to the first payload cacheline
address to the DMU’s DOU. Using this pointer, the EIL manages the pulling of data
and parity from the DOU. The EIL manages the buffer credit and allocation for the
EHB and EDB. The EIL keeps track of DOU DMA Rd buffer status (data availability
and error status on cache line basis). The EIL pushes the header records to the EHB
and pulls the associated payload out of the DOU if it’s available in DOU and aligns
the data from the cache line oriented format to a 16-byte packed format, then pushes
them to the EDB. The "ep" bit in the "DMA CplD" header record is set when any of
the associated payload cachelines’ DOU status is in error. The EIL logs the
tlp_tag[4:0] and two low address bit addr[3:2] to the ISB sub block if the processed
record is an non-posted PIO. The ILU sends a release record for transaction type of
DMA CplD to the RMU after a cache line payload has been pulled from DMA Rd
buffer to release DOU DMA Rd buffer space. The ILU also sends a release record to
the RMU for PIO transaction credit if the processed record is a PIO MWr.

Note – There is no need to send release records to the RMU after pulling PIO write
associated data because the PIO write buffer in the DOU is globally managed by the
JBC to only issue up to 16 PIO requests and the size of the PIO write buffer is 16
cache lines.
1-94 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

1.15.9.1 EIL Block Diagram

FIGURE 1-17 EIL Block Diagram

NOTES:

■ The size of rcd_fifo queue is a depth of 4.

eil2isb_tag

k2y_rcd

rcd_fifo

y2k_rcd_deq

data_fsmxfr_fsm

EIL

data_aligner

type_decoder

rd_addr
incrementor

buffer_manager

rcd_builder

release_generator

cib2eil_drain

d2p_ehb_data

d2p_ehb_addr

d2p_edb_we
d2p_edb_addr

y2k_rel_rcd
y2k_buf_addr

k2y_buf_data

eil2isb_log

rcd_empty

edb_full

ehb_full

data_done

data_start

d_ptr_in

align_addr

type

align_addr
payld_len
d_ptr_in

k2y_rcd_enq

payld_len

y2k_rel_enq

k2y_buf_dpar

d2p_edb_data
d2p_edb_dpar

p2d_ech_rptr
d2p_ech_wptr
d2p_erh_wptr

p2d_erh_rptr
p2d_ecd_rptr
p2d_erd_rptr

d2p_ehb_we
d2p_ehb_dpar

k2y_dou_vld
k2y_dou_dptr
k2y_dou_err

rcd_is_pio_mwr
rcd_is_cpl

do
u_

sb
d_

vl
d_

da
ta

fs
m

dou_sbd_vld_rcdbldr
dou_sbd_err_rcdbldr

rcd_is_cpl

non_posted_pio

ha
s_

pa
yl

d

Chapter 1 Data Management Unit (DMU) 1-95

1.15.9.2 EIL Timing Diagram

FIGURE 1-18 EIL Timing Diagram: PIO requests

mr mw icr icw

p

mwmr

mr

icr icw

icw

mr - PIO MRd
mw - PIO block MWr
icr - PIO IORd / CfgRd
icw - PIO IOWr / CfgWr

p - release record for PIO transaction credit

icr

0ns 25ns 50ns 75ns

clk

y2k_rcd_full

k2y_rcd_enq

k2y_rcd

eil2isb_log

eil2isb_tag

data_start

data_done

y2k_buf_addr

k2y_buf_data/dpar

d2p_edb_we

d2p_edb_addr

d2p_edb_data/dpar

d2p_ehb_we

d2p_ehb_addr

d2p_ehb_data/dpar

y2k_rel_enq

y2k_rel_rcd
1-96 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

FIGURE 1-19 EIL Timing Diagram: DMA Completions

1.15.9.3 EIL Record Format

For the record formats in/out of the EIL, please refer to:

The PEC record from the RMU/RRM to the EIL (across DMU-ILU interface) at
Transaction Manager Unit (TMU).

d_ptr field is the starting DOU’s cache line address for the associated record’s
payload.

The EHB record from the EIL to the EHB in the PTL (across PTL-ILU interface) at
Interface Layer Unit (ILU)

In forming EHB record,

cpl

2

cpl cd-1

cd-1 - DMA CplD with one cacheline payload, dptr = 2
cd-2 - DMA CplD with two cacheline payload, dptr = 3
cpl - DMA Cpl

cd-1

3 4

cd-2

2 3 4

cd-2

1-0 1-1 1-2 1-3

1-0

2-0

1-1

2-1

1-2

2-2

1-3

2-3

2-0

1-0

1-0

1-1

1-1

1-2

1-2

1-3

1-3

2-1

2-0

2-0

2-1

2-1

2-2

2-2

2-2

2-3

2-3

2-3

2-4

2-4

2-4

2-4

2-5

2-5

2-5

2-5

2-6

2-6

2-6

2-6

2-7

2-7

2-7

2-7

0ns 25ns 50ns 75ns 100ns

clk

k2y_rcd_enq

k2y_rcd

y2k_rcd_deq

k2y_dou_vld

k2y_dou_dptr

data_start

data_done

y2k_buf_addr

k2y_buf_data/dpar

d2p_edb_we

d2p_edb_addr

d2p_edb_data/dpar

d2p_ehb_we

d2p_ehb_addr

d2p_ehb_data/dpar

y2k_rel_enq

y2k_rel_rcd
Chapter 1 Data Management Unit (DMU) 1-97

■ TD field is zero filled for all types of records;

■ EP field is zero filled for all types of records except CplD. For CplD record, if
there is no errors in the associated payload read out from DOU, EP field is 1’b0,
otherwise, EP field is 1’b1. Please refer to Data Out Unit (DOU) for DOU data
status interface between CLU and ILU.

■ Reserved fields are zero filled for all types of records except the last DW header
(bits [31:0]) in 3-DW TLP headers, which are don’t cares because PTL doesn’t
transmit this DW header for 3-DW TLP headers.

Along with a EHB record being pushed to EHB is 4-bit header data parity. The
header data parity is calculated in EIL from the newly-formed EHB record and it’s
odd parity.

1.15.9.4 EIL Type Decoder

The type decoder block takes the 7-bit type field in the current record of the rcd fifo
in the EIL to determine the outputs

■ if it is a completion (DMA completion with/without data) (rcd_is_cpl)

■ if it has associated payload (has_payld)

■ if it’s a non-posted PIO request (non_post_pio).

■ if it’s a PIO memory write request (rcd_is_pio_mwr)

Output rcd_is_cpl tells release generator block to generate DMA read data buffer
release record at the time when a release record is enqueued; tells buffer manager
block which buffer space in EHB/EDB to allocate for the record and the associated
data if the record has payload.

Output has_payld tells xfr_fsm to assert data_start to trig data_fsm to move data.

Output non_post_pio tells rcd_builder to log the pio_tag and two bits of
lower_addr[3:2] to scoreboard ISB.

Output rcd_is_pio_mwr tells release generator block to generate PIO credit release
record at the time when a release record is enqueued;

TABLE 1-54 EIL Type Decoder Block Functions

transaction
type in

input
type[6:0]

output
has_payld

output
rcd_is_cpl

output
non_post_pio

output
rcd_is_pio_mwr

PIO MRd 0x00000b 0 0 1 0

PIO MWr 1x00000b 1 0 0 1

PIO IORd 0000010b 0 0 1 0

PIO IOWr 1000010b 1 0 1 0
1-98 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

1.15.9.5 EIL Buffer Manager

The buffer manager manages buffer space and allocation for both the EHB and EDB.

The EHB is segmented into completion header buffer (Cpl, CplD, and CplLk header
records go here) and request header buffer (PIO requests go here). To manage the
EHB, the buffer manager:

■ keeps track of its binary write pointers to each header buffers called ech_wptr &
erh_wptr;

■ converts its write pointers ech_wptr & erh_wptr to gray-code pointers
d2p_ech_wptr & d2p_erh_wptr to be passed to PTL for header buffer emptiness
determination in PTL;

■ converts gray-coded header buffer read pointers p2d_ech_rptr & p2d_erh_rptr
passed from PTL to binary read pointers ech_rptr & erh_rptr;

■ compares the binary read/write buffer pointers to determine header buffers’
fullness ech_full & erh_full;

■ tells xfr_fsm about the header buffer fullness through the signals ehb_full by
muxing out of ech_full & erh_full based on the in-processing transaction type.

The EDB is segmented into completion data buffer (DMA read data) and request
data buffer (PIO write data). PTL can always assume that at the time when PTL
processes a record from EHB, its associated payload is in EDB. Thus, no EDB buffer
write pointers passed from ILU to PTL since there is no need for EDB buffer
emptiness check in PTL. To manager the EDB, the buffer manager:

■ keeps track of its binary write pointers to each data buffers called ecd_wptr &
erd_wptr;

■ converts gray-coded data buffer read pointers p2d_ecd_rptr & p2d_erd_rptr
passed from PTL to binary read pointers ecd_rptr & erd_rptr;

■ compares the binary read/write buffer pointers to determine data buffers’
fullness ecd_full & erd_full;

PIO CfgRd 000010xb 0 0 1 0

PIO CfgWr 100010xb 1 0 1 0

DMA Cpl 0001010b 0 1 0 0

DMA CplD 1001010b 1 1 0 0

DMA CplLk 0001011b 0 1 0 0

TABLE 1-54 EIL Type Decoder Block Functions (Continued)

transaction
type in

input
type[6:0]

output
has_payld

output
rcd_is_cpl

output
non_post_pio

output
rcd_is_pio_mwr
Chapter 1 Data Management Unit (DMU) 1-99

■ tells data_fsm about the data buffer fullness through the signals edb_full by
muxing out of ecd_full & erd_full based on the in-processing transaction type.

When it’s in the drain state, the buffer manager always informs the xfr_fsm and
data_fsm that there is room to process more records to let the EIL to drain the record
fifo and pull data out of the DOU. However, the processed records and pulled data
from DOU are discarded in EIL when it’s in the drain state. Therefore, the
d2p_ehb_we will be deasserted right away at the time it goes into the drain state and
d2p_edb_we will be deasserted at most three cycles later since data path is pipe
lined.

FIGURE 1-20 illustrates some signal relations involved within the buffer manager
block.

FIGURE 1-20 Signal Relations in Buffer Manager

1.15.9.6 EIL Finite State Machines

There are two finite state machines in EIL, which are xfr_fsm and data_fsm. If there
is payload in the current processing record, the xfr_fsm trig data_fsm through signal
data_start. The data_fsm starts to read data out of DOU, to align the pulled data,
and to push the data to EDB in a pipeline fashion. In order to stream line the data
path when it’s in steady state, data_fsm asserts data_done before last write to EDB.
At the time when last DOU read is injected into the pipeline and there are enough
space in EDB for the remaining writes, or the last EDB write is injected into the
pipeline, the data_fsm tells the xfr_fsm that it’s ready to process next record by
asserting data_done.

erh_wptr

ech_wptr 1

0 d2p_ehb_addr

rcd_is_cpl

erd_wptr

ecd_wptr
1

0 d2p_edb_addr

rcd_is_cpl

{1’b1, erh_wptr}

{1’b0, ech_wptr}

{1’b1, erd_wptr}

{1’b0, ecd_wptr}
1-100 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

At the next cycle of data_done asserted from the data_fsm, the xfr_fsm enqueues the
EHB record along with its data parity to EHB if there is space in EHB. Since
data_done is asserted ahead of the time of last data beat write to EDB, the EHB
record may be written into EHB early than the last data beat to EDB.

The worst case is that the EHB record is pushed to EHB three cycles earlier than the
first; 4 cycles earlier than the last write to EDB since there are three more stages in
data pipeline than the record pipeline and the earliest time data_fsm can assert
data_done is at the time of last read to DOU and two more writes to EDB. However,
d2p_ech_wptr/d2p_erh_wptr is updated 1 cycle later than d2p_ehb_we asserted.
Therefore, from ETL side point of view, header arrives EHB is two cycles earlier than
the first; three cycles earlier than the last data beat write to EDB in DMU clock
speed.

1.15.9.7 EIL Data Alignment

The payload is stored differently in the DMU-DOU and PEC-EDB data buffers. In
the EDB, the data is stored in packed 16 byte wide format. In the DOU the data is
stored in non-packed 16 byte wide format and it’s a cache line oriented data buffer.

Before the payload, which is pulled from DOU by EIL, is pushed to EDB, data
alignment is needed.

A double word (DW) is 4-byte, a term from PCI Express spec. For a DOU buffer
read, there are 4-DW (16-byte) data (k2y_buf_data[127:0]) and 4-bit parity
(k2y_buf_dpar[3:0]). The 4-bit parity covers the 4-DW data in the way of

k2y_buf_dpar[3] <--> k2y_buf_data[127:96]

k2y_buf_dpar[2] <--> k2y_buf_data[95:64]

k2y_buf_dpar[1] <--> k2y_buf_data[63:32]

k2y_buf_dpar[0] <--> k2y_buf_data[31:0]

The length in the transaction records is in DW and the virtual address is DW aligned
address. Therefore, the data alignment is on the DW granularity. Since the parity is a
DW parity, parity bits are aligned with the data.

Note – When pulling data from the DOU, the EIL will only read to the row entries
in the DOU which has valid data. The valid DW data stored in the DOU is
contiguous for each transaction record.
Chapter 1 Data Management Unit (DMU) 1-101

Note – Since CLU always writes the single data beat for a PIO Wr 16 transaction
into the first row of a cache aligned data block in the PIO data buffer, EIL will
always pull only one data beat from the first row of a cache aligned data block in the
PIO data buffer for PIO non-block writes (less than a cacheline).

The number of data beats to pull from the DOU for the transaction is

■ NUM_DB_DOU = (length + addr[3:2]) >> 2 + (|end_addr[3:2])

where length is the value of the length field from the PEC record, addr[3:2] is the A[3:2]
for PIO request and lower_addr[3:2] for DMA completion from the PEC record. The
end_addr[3:2] = addr[3:2] + length and "|" is the "Reduction OR" operator.

The number of data beats to write to the EDB for the transaction is

■ NUM_DB_EDB = length >> 2 + (|length[1:0])

The first four DWs data pulled from the DOU is saved in the "saved four DWs"
flops. For cases of NUM_DB_DOU > 1, when the second four DWs data pulled from
the DOU is arrived at the "current four DWs" the first row of data will be pushed to
the EDB. Thereafter, the "current four DWs" is loaded to "saved four DWs" flop and
the next new read is loaded to "current four DWs". This pattern continues until all
the payload is transferred.

For cases of NUM_DB_DOU = 1, only one data beat written to EDB for that
transaction. However, in order to stream line the data path, the "current four DWs"
flop might loaded with the next transaction’s associated payload. Thus, the data
written into EDB will be the combination of the payload for that transaction and the
next one if the align address is not 16-byte aligned.

Note – For a transaction in a case of NUM_DB_DOU = 1 and not 16-byte aligned
address, if a parity error happens on the next transaction’s associated payload, it
might affect this transaction’s associated payload being pushed to EDB. Since the
ETL does not distinguish between valid data DWs and non valid and it expects that
ALL parity is good for all four DWs, ETL will detect the parity error one packet too
early. This is not the end of the world because parity errors are fatal so if we detect
the error one packet too early it is still okay, we just stop transmitting one packet
ahead of where we would have.

The data pattern written into the EDB from the "saved four DWs" and "current four
DWs" is shown in FIGURE 1-21.
1-102 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

FIGURE 1-21 Data Pattern written to the EDB

1.15.9.8 EIL Release Generating

The PIO write data buffer in the DOU is maximum sized (16 cache lines) and it’s
global controlled by the JBC which will only issue up to 16 outstanding PIO
requests. Therefore, there is no need to manage the space and the EIL will NOT
make releases when it pulls the data out from the PIO write buffer in the DOU.

However, the DMA read data buffer in the DOU is managed by the CLU and the EIL
will make releases whenever it finishes pulling the data out of a cache line in the
DMA read data buffer in the DOU. Thus, the releases for the DMA read data buffer
will always be a cache line.

The EIL will not only generate release record for DMA read data buffer in the DOU,
but also generate release record for PIO transaction credit when it finishes
processing a posted PIO write request (PIO memory write). Thus, there are two
portions in the release record generated from the EIL, one of which is PIO
transaction credit, the other is DMA read data buffer release. The release records are
sent to the RMU block for further processing.

For the release record format from the ILU to the RMU, please refer to Record
Management Unit (RMU).

E F G HA B C D

saved 4 DWs current 4 DWs

A B C D D E F GC D E FB C D E

00 01 10 11

addr[3:2]

The data pattern written to the EDB
Chapter 1 Data Management Unit (DMU) 1-103

When the signal rcd_is_pio_mwr from the type decoder and the data_done from the
data_fsm are asserted at same time, a release record for PIO transaction credit only is
generated from the EIL.

When rcd_is_cpl from the type decoder is asserted, whenever the read address bit[2]
to the DOU (y2k_buf_addr[2]) flips, which implies a cache line is done, a release
record will be generated for one cache line DMA read buffer. A release record of one
cache line DMA read buffer will also be generated when data_done is asserted. The
following summarizes the two cases that the release_generator generates a DMA
read data buffer release record.

■ rcd_is_cpl is asserted (it means that the EIL is processing a DMA CplD record),
the y2k_buf_addr[2] flips.

■ rcd_is_cpl is asserted, data_done is asserted.

Note – The ILU releases DMA read buffer on one cache line bases.

1.15.10 CIB Sub Block
The CIB provides an synchronous interface for the CSR ring connection between the
two clock domains (ILU-PTL). The CIB provides CSRs to log its own header record
data parity error and generates interrupt request to the IMU. Moreover, the CIB
mirrors the PTL status registers and generates interrupt request to the IMU on the
behavior of the both ILU and PTL (acts like an agent for the PTL).

Note – Data parity is NOT checked when the EIL moves payload from the DOU in
the DMU to the EDB in the PEC. Data parity is checked when the IIL pulls header
records out of the IHB in the PEC and error is logged in the CSR and reported
through interrupt request to the IMU if there is a header record data parity error.

The number of CSRs which need to be accessible by software is contained in the
DCM. An interface is provided for the CRU block to perform read and write accesses
to the registers inside the DCM. This interface connects directly to the DCC in the
DMU/CRU Block.

The SYNC block is for synchronizing some data passed from a different clock
domain.

The DCCS (synchronizing DCC Source), DCCD (synchronizing DCC Destination),
and DCCB (DCC Bypass) blocks are specialized DCCs from CSRtool.

The CIB logics are shown in FIGURE 1-22.
1-104 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

FIGURE 1-22 CIB Block Diagram

On errors, TABLE 1-55, ILU status bits will be set and an interrupt will be generated.

TABLE 1-55 ILU Status

Status Reset*

* Only on hard reset

Description

HEADER_PAR_ERR 0 Header data parity error

PEC_UE_ERR 0 Uncorrectable error from PEC

PEC_CE_ERR 0 Correctable error from PEC

PEC_OE_ERR 0 Other error from PEC

d2p_csr_rcd

CIB

k2y_csr_ring_out y2k_csr_ring_in

p2d_csr_rcd

SYNC

DCCDDCCS

DCM

p2d_mps

csrbus_mapped

csrbus_valid

p2d_ue_int
p2d_ce_int
p2d_oe_int

csrbus_addr
csrbus_write_data
csrbus_wr
csrbus_src_bus

csrbus_acc_vio
csrbus_done
csrbus_read_data

y2k_mpsy2k_int

ue_int
ce_int
oe_int

iil2cib_par_err

cib2iil_drain

cib2eil_dtain

DCC

DCCB

dcd2byp_csr_ringbyp2dcs_csr_ring

byp2dcc_csr_ring

d2p_csr_req p2d_csr_req d2p_csr_ack

p2d_csr_ack
Chapter 1 Data Management Unit (DMU) 1-105

1.15.11 ISB Sub Block
The ISB block is used to keep track of the outstanding non-posted PIO requests and
store their two-bit lower address[3:2]. The tlp_tag[4:0] in the header record is used as
an index to the score board. Thus, there are 32 entries on the ISB. The ISB provides
an interface to set the entry indexed by a tag, which is connected to the EIL block.
The ISB provides another interface to feed back the status of the entry and clear the
entry indexed by a tag, which is connected to the IIL block.

Based on the PCI-E spec, 7-bit lower address field in Cpl/CplD is always 7’b0 for
Cpl/CplD resulted from IO/Cfg read/write requests. Thus, DMU can’t rely on the
original value in this field to align data from IDB to DIU. Therefore, the two-bit
lower address[3:2] is saved for egress PIO non-posted requests and read out from IIL
for the corresponding Cpl/CplD to be substituted to lower address[3:2] in the
Cpl/CplD for ingress PEC records.

Note – The ISB is sized as 32 entries because the tlp_tag[4:0] is used as an index to
access the score board. The tlp_tag[4] tells the PIO read from the PIO write requests.
Thus, no additional information needs to store on the score board to tell PIO read
from PIO write. Due to the fact that there is only up to 16 outstanding PIO requests
global controlled by the JBC, the ISB will never be full, will only be half full at the
most.

The interfaces of the ISB are shown in FIGURE 1-23.

FIGURE 1-23 ISB Block Diagram

ISB

iil2isb_tag

eil2isb_tag[4:0]

eil2isb_log

isb2iil_vld

iil2isb_clr

eil2isb_low_addr[3:2]

isb2iil_low_addr[3:2]
1-106 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

1.15.12 ILU Idle Check
ILU is in idle state under the following conditions:

■ IIL sub block:

■ IHB is empty

■ xfrfsm is in idle state

■ EIL sub block:

■ xfrfsm is in idle state

■ datafsm is in idle state

■ record FIFO is empty

■ ISB sub block

■ no PIO transaction pending

The idle status flop ilu_is_idle is at the ILU top module and it’s fed to a debug port.

1.16 Pin Mapping
This table shows the signal mapping between the DMU pin name and the new SIU
or NCU name.

TABLE 1-56 Pin Mappings from Existing DMU to DSN

DMU name SIU/NCU name Description

Command Port

d2j_cmd[3:0] dmu_sii_data[127:0] These DMU Signals are placed in a header when
d2j_cmd_vld is asserted.

d2j_addr[36:0]

d2j_ctag[15:0]

d2j_cmd_vld dmu_sii_hdr_vld

Data Port

d2j_data[127:0] dmu_sii_data[127:0]

d2j_bmsk[15:0] dmu_sii_be[15:0]

dmu_sii_be_parity

d2j_data_par[4:0] dmu_sii_parity[7:0] Newly constructed and interleaved

d2j_data_vld dmu_sii_hdr_vld

CTM: DMA Wrack Port
Chapter 1 Data Management Unit (DMU) 1-107

1.17 RAS
The DSN will follow the SOC RAS ERROR Reporting Specification.

Most of the functionality required for this specification will be implemented in the
DSN block. DMU internal errors such as parity on the internal rams will be reported
through the existing DMU mondo interrupt mechanism (tbd and devtsb rams). Also
note that the parity is generated on an interleaved basis, i.e. p0 = parity on d0,
d2,d4... p1 = parity on d1,d3,d5....

1.17.1 DSN/SII-SIO RAS Interface
The RAS features for this interface include:

j2d_d_wrack_tag[3:0]

j2d_d_wrack_vld

CRM Command Completion Port

j2d_di_cmd[1:0] Derived from sio_dmu_data[127:0] header when
sio_dmu_hdr_vld is asserted.

j2d_di_ctag[15:0]

j2d_di_cmd_vld

CRM Data Completion Port

j2d_d_data[127:0] sio_dmu_data[127:0]

j2d_d_data_par[3:0] sio_dmu_parity[1:0]

j2d_d_data_err Returned in the header

j2d_d_data_vld

CRM Data Request Port

j2d_p_data[127:0] ncu_dmu_pio_data[63
:0]

DSN must gather 64 bit data from the NCU and translate
into 128 bit data for the DMU.

j2d_p_data_par[3:0] Will the NCU provide parity?

j2d_p_data_vld

TABLE 1-56 Pin Mappings from Existing DMU to DSN (Continued)

DMU name SIU/NCU name Description
1-108 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

1. The DMA write and PIO rd return FIFOs have 1 parity bit per 32 data bits, and
the SOC RAS spec requires two parity bits per 32. Thus parity will be checked on
this bus, errors signaled and new 16 bit parity regenerated before sending the
data to the SII. Any parity errors discovered at the DMU-DSN interface on data
from the diu rams will be signaled by re-generating correct 32 bit parity and then
flipping parity bit 1. The SII will then discover this and signal an error to the
NCU.

2. DMA read return data will have two parity bits per 32 bits of data, so parity will
be checked in the DSN, errors signaled and 1 parity bit per 32 bits will be
regenerated. The dmu_sii_be[15:0] will have a separate parity bit.

3. ECC will be generated on the CTAG to the SIO, and parity on the address in the
header.

4. Parity will be checked on the returning DMA write credit.

5. ECC will be checked on the CTAG DMA read return. If a ue is discovered on the
ctag and bit 81 of the siu to dmu hdr is set, this error will not be signaled to the
ncu on dmu_ncu_ctag_ue because a previous block has already signaled a ue for
this condition.

6. Dedicated error and force error wires from the NCU will be added

7. Any ue on returning credit_ids will cause the DSN to block the return of that
particular transaction back to the DMU, i.e. Dma write credit return, interrupt
credit return, or dma read return header UE or ctag ue. This may cause the DMU
to hang and should be considered a fatal error. SW will then have to sort out any
fixes. This will mean these credits which have ues will not get removed from the
scoreboard. SW can read the syndrome register in the NCU but it may not
accurately reflect the bad credit_id, since it may have been the corrupted data
which caused the error. SW can also read the scoreboard registers in the DMU.

1.17.2 DSN/NCU RAS Interface
The RAS features for this interface include:

1. Interrupt response parity will be checked. If an error is encountered, the return
from DSN to DMU for this interrupt response will be dropped.

2. Dedicated error and force error wires from the NCU will be added
Chapter 1 Data Management Unit (DMU) 1-109

1.17.3 DMU Internal RAS
Internal ram parity errors, those on the devtsb or tdb rams will be signaled to the
NCU as mondo interrupts with an internal csr register logging which error occurred.

1.17.4 RAS Interface Signals
These are Signals between DSN and NCU/SII/SIO, in addition there are RAS bits in
the header from DSN to SII and returning completion headers, and in the header
from NCU to DSN. The Signals are listed here for the convenience of the reader, they
are also listed previously in the section where there are used.

TABLE 1-57 RAS Signals

Signal name direction Description

DSN to SII RAS Signals

dmu_sii_parity[7:0] output two odd parity bits per 32 bits calculated as follows:
dmu_sii_parity[0] on dmu_sii_data[0,2,4.30]
dmu_sii_parity[1] on dmu_sii_data[1.3.5.31]
dmu_sii_parity[2] on dmu_sii_data[32,34,36...62]
dmu_sii_parity[3] on dmu_sii_data[33,35,37...63]
dmu_sii_parity[4] on dmu_sii_data[64....94]
dmu_sii_parity[5] on dmu_sii_data[65...95]
dmu_sii_parity[6] on dmu_sii_data[96...126]
dmu_sii_parity[7] on dmu_sii_data[97....127]

dmu_sii_be_parity output dmu_sii_be_parity is on dmu_sii_be[15:0]

Note: d2j_data[127:0] parity errors will be signaled to the SII by flipping dmu_sii_parity[1]

SII to DSN RAS Signals

sii_dmu_wrack_par input Odd parity on sii_dmu_wrack_tag[3:0]

SIO to DSN RAS Signals

sio_dmu_parity[7:0] input two odd parity bits per 32 bits calculated as follows:
sio_dmu_parity[0] on sio_dmu_data[0,2,4.30]
sio_dmu_parity[1] on sio_dmu_data[1.3.5..31]
sio_dmu_parity[2] on sio_dmu_data[32,34,36...62]
sio_dmu_parity[3] on sio_dmu_data[33,35,37...63]
sio_dmu_parity[4] on sio_dmu_data[64...94]
sio_dmu_parity[5] on sio_dmu_data[65....95]
sio_dmu_parity[6] on sio_dmu_data[96....126]
sio_dmu_parity[7] on sio_dmu_data[97....127]
1-110 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

The ncu_dmu_iei bit is used for parity errors on the rams within the
dmu_dmc/dmu_mmu block. These are the devtsb and tdb rams. If this bit is
asserted a parity error is forced when a csr write occurs to these rams. Then when
the entry within these rams is accessed a parity error will be generated when the
ram is read. This allows the test to more easily control what and when to cause a
parity error. The tsb ram is programmed using the MMU TTE CACHE DATA
REGISTER (0x648000-0x6448ff8), the devtsb ram is programmed using the MMU
DEV2IOTSB Registers (0x649000-0x6449078).

Note: any detected parity errors will be signaled to DMU by asserting j2d_d_data_err synchronous with
j2d_d_data

NCU to DSN RAS Signals

ncu_dmu_mondo_id_par input Odd parity on ncu_dmu_mondo_id[5:0]

dmu_ncu_wrack_par output Odd parity on dmu_ncu_wrack_tag[3:0]

DSN to NCU error reporting Signals

dmu_ncu_d_pe output Indicates parity error on DMA rd data

dmu_ncu_siicr_pe output Indicates parity error on dma write credit ack

dmu_ncu_ctag_ue output Indicates ue on dma read return ctag, signaled only if
ncu_dmu_ctag_uei is asserted, or if a ue was discovered on
the ctag bits and bit 81 of the siu to dmu header was 0. only
asserted during valid transactions.

dmu_ncu_ctag_ce output Indicates ce on dma read return ctag

dmu_ncu_ncucr_pe output Indicates parity error on mondo ack

dmu_ncu_ie output dmc internal error (not used in OpenSPARC T2)

NCU to DSN parity error injection Signals

ncu_dmu_d_pei input Force DMA read return pe

ncu_dmu_siicr_pei input Force DMA write credit return pe

ncu_dmu_ctag_uei input Force DMA read return header ctag ue

ncu_dmu_ctag_cei input Force DMA read return header ctag ce

ncu_dmu_ncucr_pei input Force DMA read return header ctag ce

ncu_dmu_iei input Force pe on DMU internal, forces parity errors on the devtsb
and tdb rams in DMU/IOMMU. The error reporting is done
with mondo 62 and status bits within the DMU.

TABLE 1-57 RAS Signals (Continued)

Signal name direction Description
Chapter 1 Data Management Unit (DMU) 1-111

1.17.5 Error Cases

TABLE 1-58 DSN Error Cases

Event Detector Information Capture Reporting Mechanism Impact

DMA write data parity
error

None in DMU Generate bad parity on
DMU->SII data, SII
reports DMA write errors,
logs address

DMA write is squashed with bad
ecc on data

PIO rd return/Interrupt
parity error

None in DMU Generate bad parity on
DMU->SII data, SII passes
to NCU which logs, sends
back to core

PIO loads get precise trap in core,
interrupts are logged in NCU

ECC error on CTAG from
DMU to SII

None in DMU SII checks DMA and logs,
passes to NCU for PIO
read and interrupts which
logs.

Single bit ecc errors are corrected,
double bit errors cause writes to be
squashed.

Parity on address in
header from DMU to SII

None in DMU SII reports, destination is
guessed and packet is
passed on in error.

DMA writes are squashed by
clearing byte enables in SII

Parity on cmd field of
DSN->SII header

None in DMU SII reports, destination is
guessed and packet is
passed on in error.

SII squashes any writes

DMU->SII TO
PIO rd cpl only

None in DMU SII Sends to NCU PIO rd cpl has timed out NCU
handles

DMU->SII UnMapped
PIO rd cpl only

None in DMU SII Sends to NCU PIO rd cpl with address errors are
reported back to the NCU here,
NCU interfaces with cores to
handle.

DMA read data return
parity error, pe detected
locally, bad parity was
forced by l2$.

Poison bit sent to
ILU

Single error bit to NCU,
which logs, optional
interrupt, poisoned data is
detected at endpoint
which reports back to
initiating thread.

Parity is regenerated correctly,
poison bit forwarded to ILU

DMA write credit return
parity error

None in DMU DSN Signals NCU with
error bit. DSN drops this
ack back to DMU

One less credit id to use in DMU,
no corruption but possible DMU
hang.
1-112 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

1.17.6 IOMMU RAS

Note – To force a parity error out of the devtsb or tdb ram, use the NCU force error
bit.

ECC error in header
CTAG from SIO to DMU
on DMA rd return

None in DMU two error bits sent to NCU
for logging and optional
interrupt Packet is never
returned, endpoint detects
this and notifies the
thread.

Note that if an ecc ue is detected
locally and bit 81 of the siu to dmu
header is set the error from dmu to
ncu (dmu_ncu_ctag_ue) will not
be set.

Parity on PIO write credit
return to NCU

None in DMU NCU checks and logs On error the credits are not
released within the NCU.

Parity error on MONDO
ACK from NCU

None in DMU Single error bit to NCU
which logs, optional
interrupt. DSN drops
credit return to IMU

One less interrupt credit in IMU,
interrupts slow down.

TABLE 1-59 IOMMU Error Cases

Event Detector Information Capture Reporting Mechanism Impact

Parity on devtsb ram read Single error bit, with
secondary

Error bit in DMU status
register, with optional
interrupt if enabled.

Ingress transaction is
nullified

Parity error on tdb ram Single error bit, with
secondary

Error bit in DMU status
register with optional
interrupt if enabled.

Ingress transaction is
nullified

Error on tablewalk return. Multiple error bits, with
secondary

Error bits in MMU Error
register.

Ingress transaction is
nullified

TABLE 1-58 DSN Error Cases (Continued)

Event Detector Information Capture Reporting Mechanism Impact
Chapter 1 Data Management Unit (DMU) 1-113

1.17.7 No Syndrome Register in DSN
Consider these cases:

1. DMA write data parity error.

SII logs address, write completes to l2$ with byte enables off, SW can determine
what the device was doing during the write from SII address syndrome.

2. PIO rd cpl and interrupt data parity error.

rd cpl, data is passed back to core and load buffer and it would log the address
for reads (precise trap).

For interrupts the NCU logs

3. DMA rd data return

DMU poisons the data, and the endpoint which gets the data should report this to
the thread it is working for. nothing is hung or dropped. endpoint reports.

4. Header address, cmd and ctag ecc ue’s,

On ingress NCU will log

On egress (DMA rd cpls) the DSN drops this cacheline and does not return the
credit id and data to the DMU. Since the DMU orders the DRCs it is possible
multiple transactions will accumulate and thus lock up the DMU, thus these
errors are fatal from the DMU perspective.

5. Interrupt mondo ack parity error

The DSN drops this mondo ack, the interrupt id never gets returned to the IMU
so it cannot be reused and we have 1 less(4 total) id to process interrupts. sw
knows from the NCU interrupt the DMU has 1 less interrupt credit

6. Dma write credit ack,

The DSN drops this ack back to DMU and the DMU has 1 less credit id to use, but
should not cause any error corruption since the DMA write itself has already
gone before.

7. Pio write credit ack

The NCU drops it, and does not reuse that credit it, so it will have 1 less credit id
to work with, should not cause any corruption

For the IOMMU ram parity errors the address is logged in the MMU translation
fault register.
1-114 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

1.18 Resets
The DSN block will need reset to clear the CSR logic, headers, valid bits and the
interrupt FIFO pointers on POR and WMR.

Refer to the individual CSR definitions in the OpenSPARC T2 Programmer’s Reference
Manual for information on any particular CSR bit as to POR or WMR reset.

1.19 Content and Status Registers (CSRs)
The DSN block will not have any internal control/status registers, but will include a
ccc controller for the DMU csr ring. The DSN will incorporate the ucb logic common
to the NIU (with slight modifications). The ccc logic from the jbc will then be
interfaced to the ucb logic, and the DMU csr ring will be generated out to the DMU.

The NCU will decode all CSR accesses from the cores and only send transactions to
the DSN which fall within the DMU/PEC CSR ring. The offsets for these registers
will remain the same. The decode for fast/med/slow will also move to the DSN
block.

Refer to the PCI-ex Programmer’s Reference Manual for register definitions and
addresses.

The ucb interface accepts CSR requests, buffers them and presents these requests in
order to the CCC interface. The CCC interface will have only 1 outstanding CSR
transaction on the DMU/PEC CSR ring at any given time. Writes complete without
response, CSR reads will always respond, either with data or error packet.

There will be no JTAG interface to the DSN CSR block, JTAG access will be provided
in the NCU block.

Note – The buf_id_in[1:0] = 2’b00 for cpu access, buf_id_in[1:0]= 2’b01 for JTAG
access.

1.19.1 CSR Address Decoding
The DMU address decoding will be in three steps.
Chapter 1 Data Management Unit (DMU) 1-115

1. First the NCU will decode PA[39:32] == 0x88 as a CSR access intended for the
DMU blocks and only send these CSR accesses to the DMU/DSN.

2. Then the DSN block will decode PA[19:16] as follows for the ring:

3. Then as the packet flows around the ring, each DCC will sample PA[26:0] to
determine if a particular packet is meant for itself and respond.

Note – See the OpenSPARC T2 Programmer’s Reference Manual for a description of
each register and its address.
1-116 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

1.19.2 Content and Status Register (CSR) Related Pins

1.19.3 CSR Block Diagram

FIGURE 1-24 CSR Block Diagram

TABLE 1-60 Content and Status Register (CSR) Related Pins

Signal name direction Description

Ucb interface downs-tread

ncu_dsn_vld input ncu_dsn_data[31:0] is valid,

ncu_dsn_data[31:0] input Csr hdr/data

dsn_ncu_stall output Dsn csr buffers are full, 1=0 stop sending to NCU

Ucb interface ups-tread

dsn_ncu_vld output Valid on csr read return

dsn_ncu_data[31:0] output Csr read return data from DMU/PEU

ncu_dsn_stall input NCU stalls DMU/PEU csr read return data when asserted

CSR ring to DMU/PEU

j2d_csr_ring_out[31:0] output Csr ring to DMU

d2j_csr_ring_in[31:0] input CSR ring return from DMU
Chapter 1 Data Management Unit (DMU) 1-117

1.20 Transaction Ordering
This section describes the PIO and CSR ordering within the DSN and DMU blocks.
The ordering between PIOs/CSRs and DMA read/writes is not defined except that
an outstanding PIO read will "pull" in all outstanding DMA writes.

It appears that the cores/crossbar/NCU follow TSO for all loads and stores for a
particular thread up until the point at which an entry is dequeued from the main
FIFO in the NCU. There is no ordering between threads.

The DMU has two interfaces from the NCU block after its main ld/st FIFO:

1. PIO reads and writes

2. CSR reads and writes

The PIO and CSR interfaces are independent to the DSN/DMU blocks. But, since the
core logic load unit only supports one outstanding load per thread, PIO and CSR
loads are by definition ordered within a thread. However, the cores support multiple
outstanding stores. CSR stores are all placed in a FIFO prior to being dispatched
onto the CSR ring and the CSR ring only supports 1 outstanding transaction at a
time thus all CSR stores will be ordered with respect to each other, but not PIO
stores or loads.

The only exception is the MMU PA invalidates which are PIO stores directly from a
decode in the NCU, these do not go through the CSR ring. The MMU PA invalidates
will have a deterministic pipeline through the DSN/DMU which is "tbd" cycles.
Thus SW may determine ordering of invalidates and other PIO/CSRs.

Also note, that a CSR read from a particular CSR ring will guarantee that all
previous CSR writes to that particular ring will have completed.

1.21 DEBUG Features
This will consist of three new features:

1. Quiescing of the DMU/SII,SIO interfaces based on a request initiated from
debug.v.

2. Implement debug busses A,B for DMU and send out to debug.v. The existing
Signals used in the DMU debug busses will continue to be used and new Signals
from DSN will be sent to the DMU block and muxed out. New DSN Signals are
listed in TABLE 1-62.
1-118 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

3. On any PCI_EX error, qualify with Debug_Trig_en (new csr bit in DMU) and send
out to debug.v.

Refer to the OpenSPARC T2 Programmer’s Reference Manual register ERR NONFATAL
Mapping register address 0x630008 bit 62.

1.21.1 Quiescent DMU/SII/SIO Interface
It is assumed that the NCU will be drained before the DMU is quiescent. Then the
debug.v block will send a signal to the DMU to become quiescent. To manage this
the DSN block will keep a 4 bit counter to track the number of outstanding DMA
reads and writes, and a two bit counter to track the number of outstanding mondo
interrupts. The DSN will signal the CLU block to stop sending transactions to the
DSN. The DSN will then monitor the responses from the SII, SIO and NCU blocks,
i.e. Wait for all write acks, mondo acks and DMA read responses to complete, by
checking the outstanding transaction counters. It will then signal the debug.v block
that the interface is quiescent by asserting the signal dmu_dbg1_stall_ack.

1.21.2 Debug Busses
The DMU has existing A and B debug busses. These are eight bit busses which are
muxed together in the DMU CRU block. Additionally new Signals will be driven
from the DSN block and muxed into the same outputs using spare decodes.

See the OpenSPARC T2 Programmer’s Reference Manual DMU registers DMU debug
select definitions (OpenSPARC T2 Programmer’s Reference Manual registers DMU
Debug Select Register for Ports A and B addresses 0x653000 and 0x653008) and the
list of debug Signals in the OpenSPARC T2 Programmer’s Reference Manual.

In addition the DMU will implement a test feature enabling a training sequence. The
debug busses A and B will be forced to output a pattern of alternating three 1’s and
one 0 when the debug select busses are set to 0101.

1.21.3 All PCI-Ex Error Output
Within the DMU/IMU block a new signal will be created by "OR’ing" mondo 62 and
63, "AND’ing" with Debug_trig_en and sending out to the debug.v block a signal
which indicates an error within the DMU, called dmu_dbg_err_event.
Chapter 1 Data Management Unit (DMU) 1-119

1.21.4 Debug Interface Signals

The debug ports are simply mux’ed versions of internal DMU/DSN Signals, which
are then flopped and driven out to the dbg block.

The signal dbg_dmu_stall is asserted for 1 cycle by the dbg block, when the DMU is
quiescent, it will assert dmu_dbg_stall_done for 1 cycle. At some later time the dbg
block will assert the signal dbg_dmu_resume for 1 cycle to inform the DMU to
resume normal operation.

1.21.5 DSN Debug Signals

TABLE 1-61 Debug Ports

Signal name direction Description

Debug Signals to dbg.v block

dmu_mio_debug_bus_a[7:0] output DMU debug bus A

dmu_mio_debug_bus_b[7:0] output DMU debug bus B

dmu_dbg1_stall_ack output Ack from DMU indicating DMU -> SII interface has
quiesced.

dmu_dbg1_err_event output An error event occurred in DMU

Debug Signals from dbg.v block

dbg1_dmu_stall input Request to stall/quiesce DMU -> SII interface

dbg1_dmu_resume input Request to resume packets on DMU -> SII interface

TABLE 1-62 DSN Debug Signals

Signal name
Bit
number Description

Debug Signals for dbg a[7:0] sub_sel[01]

ncu_dmu_vld 7 Ncu request CSR access

dmu_ncu_stall 6 Dmu stalls ncu csr read req

read_pending 5 Internal dsn csr read pending

write_pending 4 Internal dsn csr write pending

dmu_ncu_stall_a1 3 Internal dsn csr stall at head of queue

rd_nack_vld 2 Dsn to ncu csr read nack

dmu_ncu_vld 1 Dsn to ncu csr read return
1-120 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

ncu_dmu_stall 0 ncu_to dsn stall returning csr read data

Debug Signals for dbg b[7:0] sub_sel[01]

arb_vld 7 Internal dsn csr pending to csr ring

req_vld 6 Csr ring req return, starts timer

acc_vio 5 Csr access violation (address)

rsp_vld 4 Csr read return

timeout 3 Csr read timeout

Cmnd[2] 2 Csr ring data0 cmd

Cmnd[1] 1 Csr ring data0

Cmnd[0] 0 Csr ring data0

Debug Signals for dbg a[7:0] sub_sel[02]

dmu_sii_hdr_vld 7 dmu_header to sii, dma req, or pio cpl

dmu_sii_reqbypass 6 Asserted for pio rd cpls

dmu_sii_datareq 5 Valid during hdr, 0=dma 1=write

dmu_sii_datareq16 4 0=write_64, 1=write_16byte

dsn_sii_hdr[126] 3 See dsn spec for values

dsn_sii_hdr[124] 2 See dsn spec for values

dsn_sii_hdr[123] 1 See dsn spec for values

dsn_sii_hdr[122] 0 See dsn spec for values

Debug Signals for dbg b[7:0] sub_sel[02]

sio_dmu_hdr_vld 7 Sio dma rd return

sii_dmu_wrack_vld 6 Dma write ack, credit_id returned

ncu_dmu_mondo_ack 5 Mondo ack

ncu_dmu_mondo_ack 4 Mondo nack

ncu_dmu_pio_hdr_vld 3 Ncu pio req

pio_read 2 Ncu pio req is a read

dmu_ncu_wrack_vld 1 dmu_returns pio write credit id

1’b0 0 spare

Debug Signals for dbg a[7:0] sub_sel[00],[03]-[3f] = 8’b0

Debug Signals for dbg b[7:0] sub_sel[00],[03]-[3f] = 8’b0

TABLE 1-62 DSN Debug Signals (Continued)

Signal name
Bit
number Description
Chapter 1 Data Management Unit (DMU) 1-121

1-122 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

CHAPTER 2

Miscellaneous I/O (MIO)
Specification

This chapter contains the following sections:

■ Overview

■ Debug Port

■ MIO RTL Hierarchy

2.1 Overview
This document describes OpenSPARC T2 MIO (Miscellaneous I/O) block which
holds majority of non-SERDES I/Os of the chip. The I/Os in MIO block fall broadly
under the functional categories of clock, reset, test (scan and ramtest), ssi interface,
process control (PCM) and eFuse program enable. Most of the outputs in MIO are on
Boundary Scan chain under control of TCU. All the functional flops in MIO are
connected on regular scan chain with scanin,scanout and flush reset capabilities
under the control of TCU.

2.1.1 MIO Interface with System and Rest of
OpenSPARC T2
MIO block interfaces with the system on one side and OpenSPARC T2 clusters on
the other. MIO interfaces with the following clusters of OpenSPARC T2: db0, db1,
tcu, efu, fsr, psr, esr, ccu, ncu, rst.
2-1

The I/Os in MIO fall under the broad categories of clock, reset, test (scan and
ramtest), ssi interface, PLL test, process control (PCM), eFuse program enable, Power
Throttle and debug. TABLE 2-1 shows all the I/Os in MIO along with the I/O type,
direction, destination/src clusters in OpenSPARC T2 along with signal names and
functional category of the I/Os.

TABLE 2-1 MIO Pinlist

Pin Name I/O
Type

Direction Function Share
d

Description &
Frequency

Src/Dest OpenSPARC T2 Block
& Signal name(s)

XAUI0_LINK_LED cmos
1.1v

output 10G Enet
Status

No link status led, port
0.
0 Hz: A level
Signal

Mac
xaui_link_led_0

XAUI0_ACT_LED cmos
1.1v

output 10G Enet
Status

No activity led, port 0
5 Hz
core_clk/2to26

Mac
xaui_act_led_0

XAUI1_LINK_LED cmos
1.1v

output 10G Enet
Status

No link status led, port
1.
0 Hz: A level
Signal

Mac
xaui_link_led_1

XAUI1_ACT_LED cmos
1.1v

output 10G Enet
Status

No activity led, port 1
5 Hz
core_clk/2to26

Mac
xaui_act_led_1

XAUI_MDC cmos
1.1v

output 10GEnet
Clock Signal

No Clock Signal
2.5 Mhz

Mac
mdc

XAUI_MDIO Open
drain
1.1 v

Bidi 10G Enet
OD Tristate
Config
signal

No OD Tristate signal
2.5 Mhz Data Rate

Mac
mdoe, mdi
Requires external pull-up
resister.
Mdoe connects to
pulldown enable of the
output driver.
Input of the output buffer
grounded.
Mdi connected to output of
input buffer .

TCK cmos
1.1v

Input Test No JTAG Test Clock
200 mhz

Tcu
mio_tcu_tck

TDI cmos
1.1v

Input Test No JTAG Test Data In
200 mhz

Tcu
mio_tcu_tdi

TDO cmos
1.1v

Output Test No JTAG Test Data Out
200 mhz

Tcu
tcu_mio_tdo
2-2 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

TMS cmos
1.1v

Input Test No JTAG Test Mode
Select
200 mhz

Tcu
mio_tcu_tms

TRST_L cmos
1.1v

Input Test No JTAG Test Reset 200
mhz

Tcu mio_tcu_trst_l

STCIQ cmos
1.1v

Output SERDES Test No SERDES STCI Scan
Chain Data Out
200 mhz

Tcu tcu_mio_stciq

STCID cmos
1.1v

Input SERDES Test No SERDES STCI Scan
Chain Data In
200 mhz

Tcu mio_tcu_stcid

STCICFG[1:0] cmos
1.1v

Input SERDES Test No SERDES STCI Scan
Configuration
200 mhz

Tcu mio_tcu_stcicfg

STCICLK cmos
1.1v

Input SERDES Test No SERDES
ATPG/STCI Scan
Clock
200 mhz

Tcu mio_tcu_stciclk

TESTCLKT cmos
1.1v

Input SERDES Test No SERDES Bypass
Clock for Transmit
200 mhz

FSR[7:0],ESR,PSR
mio_fsr_testclkt[7:0]mio_ps
r_testclkt mio_esr_testclkt

TESTCLKR cmos
1.1v

Input SERDES Test No SERDES Bypass
Clock for Receive
200 mhz

FSR[7:0],ESR,PSR
mio_fsr_testclkr[7:0]mio_ps
r_testclkr mio_esr_testclkr

TESTMODE cmos
1.1v

Input Test No Puts OpenSPARC
T2 in ATPG Scan/
Manufacturing Test
Mode
200 mhz

TCU
mio_tcu_testmode

PLL_TESTMODE cmos
1.1v

Input PLL test No Puts OpenSPARC
T2 in PLL
Testmode
200 Mhz

CCU
mio_pll_testmode

DIVIDER_BYPASS cmos
1.1v

Input Test No Bypasses Clock
Tree Dividers
200 mhz

TCU
mio_tcu_divider_bypass

TABLE 2-1 MIO Pinlist (Continued)

Pin Name I/O
Type

Direction Function Share
d

Description &
Frequency

Src/Dest OpenSPARC T2 Block
& Signal name(s)
Chapter 2 Miscellaneous I/O (MIO) Specification 2-3

PLL_CMP_BYPASS cmos
1.1v

Input Test No CMP Clock PLL
Bypass
200 mhz

TCU
mio_tcu_pll_cmp_bypass

PLL_DR_BYPASS cmos
1.1v

Input Test No DR Clock PLL
Bypass
200 mhz

TCU
mio_tcu_pll_dr_bypass

IMP_MON_PU cmos
1.1v

Output Debug No Imped. Monitor for
pull-up Drivers.

Within MIO

IMP_MON_PD cmos
1.1v

Output Debug No Imped. Monitor for
pull-down Drivers.

Within MIO

TRIGIN cmos
1.1v

Input Debug No Stop clock based on
external event
(asynchronous, to
be synchronized in
TCU)

TCU
mio_tcu_trigin

TRIGOUT cmos
1.1v

Output Debug No Dbg Event Signal To
Logic Analyzer

700 Mhz

TCU
tcu_mio_trigout

PMI[1:0] cmos
1.1v

Input PCM No process control
monitor input
Level Signal

PCM ??
mio_pcm_pmi[1:0]

PMO cmos
1.1v

Output PCM No process control
monitor output
Level Signal

PCM ??
pcm_mio_pmo

PGRM_EN cmos
1.1v

Input eFuse No eFuse Program
enable
Level Signal

EFU
mio_efu_prgm_en

PB_RST_L cmos
1.1v

Input Reset No Like OpenSPARC
J_RST_L
Level Signal

RST
mio_rst_pb_rst_l

BUTTON_XIR_L cmos
1.1v

Input Reset No Externally Initiated
Reset
Level Signal

RST
mio_rst_button_xir_l

PEX_RESET_L cmos
1.1v

Output Reset No Reset to External
PCI Express switch
and devies
Level Signal

RST
rst_mio_pex_reset_l

TABLE 2-1 MIO Pinlist (Continued)

Pin Name I/O
Type

Direction Function Share
d

Description &
Frequency

Src/Dest OpenSPARC T2 Block
& Signal name(s)
2-4 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

PWRON_RST_L cmos
1.1v

Input Reset No Power On Reset
Level Signal

RST
mio_rst_pwron_rst_l

FATAL_ERROR cmos
1.1v

Output Reset No Fatal Error has
occurred in
OpenSPARC T2
Duration of
warm_reset @
sys_clk

RST
rst_mio_fatal_error

VREG_SELBG_L cmos
1.1v

Input PLL Control.
When
selected
makes PLL
use
BandGap
Voltage
Source

No BandGap Select
Static (on or off)

CCU
mio_ccu_vreg_selbg_l

SSI_MOSI cmos
1.1v

Output SSI Boot No SSI Master Out,
Slave In
50 Mhz

NCU
ncu_mio_ssi_mosi

SSI_MISO cmos
1.1v

Input SSI Boot No SSI Master In, Slave
Out
50 Mhz

NCU
mio_ncu_ssi_miso

SSI_SCK cmos
1.1v

Output SSI Boot No SSI Clock
50 Mhz

NCU
ncu_mio_ssi_sck

EXT_INT_L cmos
1.1v

Input SSI Boot No External Interrupt
Pin
50 Mhz

NCU
mio_ncu_ext_int_l

BURNIN cmos
1.1v

Input PCM No Sets Burn-in Mode
for PCM Modules
Level Signal

PCM ??
mio_pcm_burnin

PLL_CHAR_OUT[1
:0]

cmos
1.1v

Output PLL Test No PLL Char Out bus
?

CCU
ccu_mio_pll_char_out[1:0]

PWR_THRTTL_0[2:
0]

cmos
1.1v

Input Power
Throttle

No Power Throttle for
SPARCs: 0,1,5,4
4 Hz (50 mhz clk
from SP)

SPC's:
mio_spc_pwr_throttle_0[2:
0]

TABLE 2-1 MIO Pinlist (Continued)

Pin Name I/O
Type

Direction Function Share
d

Description &
Frequency

Src/Dest OpenSPARC T2 Block
& Signal name(s)
Chapter 2 Miscellaneous I/O (MIO) Specification 2-5

TABLE 2-2 shows the sharing of pins between debug and other functionality.

PWR_THRTTL_1[2:
0]

cmos
1.1v

Input Power
Throttle

No Power Throttle for
Sparcs: 2,3,7,6
4 Hz (50 mhz clk
from SP)

SPC's:
mio_spc_pwr_throttle_1[2:
0]

DBG_CK0 cmos
1.1v

Output Debug No Debug Port Output
Clock
350 Mhz

Within MIO

DBG_DQ[165:0] cmos
1.1v

Bidi Debug Yes* OpenSPARC T2
Debug Port
700 Mhz

DBG1
dbg1_mio_dbg_dq

TABLE 2-2 Sharing of Debug Pins with Other Pins

Pin Name Shared With Pin:/Pin Description Select & Drive Enable Src/Dest OpenSPARC T2 Block &
Signal name(s)

165:161 RST_STATE[4:0]: Output
Reset State from RST block.

Drive En:
dbg1_mio_drv_en_op_o
nly

DBG1
dbg1_mio_sel_soc_obs_mode

160 Not Shared

159 SCAN_OUT31: Output
SERDES ATPG Scan Chain Data
Out

Sel: mio_tcu_testmode
Drive En:

dbg1_mio_drv_en_muxt
est_op

TCU
tcu_mio_scan_out31

158 SCAN_IN31: Input
SERDES ATPG Scan Chain Data In

Drive En:
dbg1_mio_drv_en_muxt
est_inp

TCU
mio_tcu_scan_in31

157 NIU_DBG_DAT[31]:Output
PLL_CHAR_IN:
Input
Niu Debug port bit 31.
PLL Char In

Sel:
dbg1_mio_sel_niu_debu
g_mode

Drive En:
dbg1_mio_drv_en_muxt
estpll_inp

NIU
niu_mio_debug_data[31]
CCU:
mio_ccu_pll_char_in

TABLE 2-1 MIO Pinlist (Continued)

Pin Name I/O
Type

Direction Function Share
d

Description &
Frequency

Src/Dest OpenSPARC T2 Block
& Signal name(s)
2-6 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

156:149 Shared with both output and input
pins.

Output Pins:
NIU_DBG_DAT[30:23]
Input Pins:
PLL_DIV2[5:0]
PLL_TRST_L
PLL_CLAMP_FLTR

Drive en =
dbg1_mio_drv_en_muxt
estpll_inp for 156:149
and 146: 103.

NIU:
niu_mio_debug_data[30:0]
niu_mio_debug_clock[1:0]
DMU:dbg0_mio_debug_bus_a[7:0]
dbg0_mio_debug_bus_b[7:0]
PEU:peu_mio_debug_bus_a[7:0]p
eu_mio_debug_bus_b[7:0]peu_mi
o_debug_clk
CCU:
mio_ccu_pll_div2[5:0]

mio_ccu_pll_trst_l
mio_ccu_clamp_fltr
mio_ccu_pll_div4[6:0]mio_ext_dr_
clk mio_ext_cmp_clk

TCU:
mio_tcu_io_ac_testmode
mio_tcu_io_ac_testtrig
mio_tcu_io_aclk mio_tcu_io_bclk
mio_tcu_io_scan_in[30:0]

148:147 Shared between output pins only
NIU_DBG_DAT[22:21]

102:85, 148:147 have
dbg1_mio_drv_en_op_o
nly

146:103 Shared between output and input
pins.
Output pins:
NIU_DBG_DAT[20:0]
NIU_DBG_CLK[1:0]
DMU_DBG_BUS_A[7:0]
DMU_DBG_BUS_B[7:0]
PEU_DBG_BUS_A[7:3]
Input Pins:
PLL_DIV4[6:0]
PLL_EXT_DR_CLK
PLL_EXT_CMP_CLK
AC_TESTMODE
AC_TESTRIG
ACLK
BCLK
SCAN_IN[30:0]

Sel:
156: 124 -
dbg1_mio_sel_niu_debu
g_mode

TABLE 2-2 Sharing of Debug Pins with Other Pins (Continued)

Pin Name Shared With Pin:/Pin Description Select & Drive Enable Src/Dest OpenSPARC T2 Block &
Signal name(s)
Chapter 2 Miscellaneous I/O (MIO) Specification 2-7

102:91 Shared between output pins only
PEU_DBG_BUS_A[2:0]
PEU_DBG_BUS_B[7:0]
PEU_DBG_CLK

123:91 -
dbg1_mio_sel_pcix_deb
ug_mode

90:85 Not shared

84 Input: PEU_CLK_EXT
Scan Test Captures @ PEU

dbg1_mio_drv_en_muxt
est_inp

TCU:
mio_tcu_peu_clk_ext

83 Not shared dbg1_mio_drv_en_op_o
nly

82:77 Input: NIU_CLK_EXT[5:0].Scan
Test Captures @ NIU

dbg1_mio_drv_en_muxt
est_inp

TCU:
mio_tcu_niu_clk_ext[5:0]

76:75 Not shared

74 Input: SCAN_EN dbg1_mio_drv_en_muxt
est_inp

TCU:
mio_tcu_io_scan_en

73:43 Outputs:
SCAN_OUT[30:0]
Scan Out Dat

Sel:
mio_tcu_testmode
Drive_en:
dbg1_mio_drv_en_muxt
est_op

TCU:
tcu_mio_pins_scan_out[30:0]

42:0 Outputs:
DMO_SYNC
DMO_DATA[39:0]
Ram Test (Membist) Output
MBIST_DONE
Membist Status
MBIST_FAIL
Membist Fail

Sel:
tcu_mio_jtag_membist_
mode

Drive En:
dbg1_mio_drv_en_mux
bist_op

TCU:
tcu_mio_dmo_sync
tcu_mio_dmo_data[39:0]
tcu_mio_mbist_done
tcu_mio_mbist_fail

TABLE 2-2 Sharing of Debug Pins with Other Pins (Continued)

Pin Name Shared With Pin:/Pin Description Select & Drive Enable Src/Dest OpenSPARC T2 Block &
Signal name(s)
2-8 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

TABLE 2-3 shows the functional categories and frequencies of the pins that are shared
with the Debug Pins.

TABLE 2-3 Shared Pins Functionality and Frequencies

Pin Name Functionality Data Change rate

RST_STATE[4:0] Debug System Clock (in Rst block)

SCAN_OUT31 SERDES Test 200 Mhz

SCAN_IN31 SERDES Test 200 Mhz

NIU_DBG_DAT[31:0] Debug As specified by NIU_DBG_CLK[1:0]

NIU_DBG_CLK[1:0] Debug Up to 2 clks: 350 Mhz nominal, any of MAC clocks

DMU_DBG_BUS_A[7:0] Debug 350 Mhz nominal

DMU_DBG_BUS_B[7:0] Debug 350 Mhz nominal

PEU_DBG_BUS_A[7:0] Debug 250 Mhz

PEU_DBG_BUS_B[7:0] Debug 250 Mhz

PEU_DBG_CLK Debug 250 mhz PEU clock

PLL_CHAR_IN PLL Test and
Characterization (CCU)

100 Mhz

PLL_DIV2[5:0] PLL Test and
Characterization (CCU)

100 Mhz

PLL_TRST_L PLL Test and
Characterization (CCU)

100 Mhz

PLL_CLAMP_FLTR PLL Test and
Characterization (CCU)

100 Mhz

PLL_DIV4[6:0] PLL Test and
Characterization (CCU)

100 Mhz

PLL_EXT_DR_CLK PLL Test and
Characterization (CCU)

100 Mhz

PLL_EXT_CMP_CLK PLL Test and
Characterization (CCU)

100 Mhz

AC_TESTMODE Test 200 Mhz

AC_TESTRIG Test 200 Mhz

ACLK Test 200 Mhz

BCLK Test 200 Mhz

SCAN_IN[30:0] Test 200 Mhz

PEU_CLK_EXT Test 200 Mhz

NIU_CLK_EXT[5:0] Test 200 Mhz
Chapter 2 Miscellaneous I/O (MIO) Specification 2-9

2.1.2 Internal Pullups/Pulldowns in MIO for Inputs
TABLE 2-4 shows the inputs in MIO that have pullups/pulldowns on them

SCAN_EN Test 200 Mhz

SCAN_OUT[30:0] Test 200 Mhz

DMO_SYNC DMO cmp_clk/1, 2, 4, 8, or 16 (Programmed in TCU)

DMO_DATA[39:0] DMO cmp_clk/1, 2, 4, 8, or 16 (Programmed in TCU)

MBIST_DONE Ramtest (Membist) cmp_clk/1, 2, 4, 8, or 16 (Programmed in TCU)

MBIST_FAIL Ramtest (Membist) cmp_clk/1, 2, 4, 8, or 16 (Programmed in TCU)

TABLE 2-4 Inputs with Pullups/Pulldowns in MIO

Pin Name Pullup/
Pulldown

Boundary Scan Shared/Dedicated

TESTMODE Pulldown Yes Dedicated

STCID Pulldown Yes Dedicated

STCICFG[1:0] Pulldown Yes Dedicated

STCICLK Pulldown Yes Dedicated

TESTCLKT Pulldown Yes Dedicated

TESTCLKR Pulldown Yes Dedicated

PLL_TESTMODE Pulldown Yes Dedicated

PLL_CHAR_IN Pulldown Yes Shared

PLL_CLAMP_FLTR Pulldown Yes Shared

PLL_DIV4[6:0] Pulldown Yes Shared

PLL_DIV2[5:0] Pullup Yes Shared

PLL_TRST_L Pullup Yes Shared

TDI Pullup No Dedicated

TMS Pullup No Dedicated

TRST_L Pullup No Dedicated

TABLE 2-3 Shared Pins Functionality and Frequencies (Continued)

Pin Name Functionality Data Change rate
2-10 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

2.1.3 MIO Clocking
MIO would be clocked off of cmp clock with io2x sync enables and with iol2clk.
Both cmp clock,iol2clk and io2x sync enables would be generated from cluster
headers in MIO out of gclk and ccu_cmp_io2x_sync enable input signals from global
clock tree CCU repectively. The signals that would get flopped in MIO fall under the
following three categories:

1. Debug port signals from db1 module (166 wires @ cmp_clk launched off of io2x
sync enables in db1).

2. Ramtest signals from tcu module (41 wires @ cmp clk /10 launched off of io2x
sync enables in tcu).

3. Debug signals from DMU (16 wires @ iol2clk from db0 module).

Each I/O cell in MIO that is bi-directional or output only will contain two flops both
clocked by the cmp_clk generated by MIO's cluster header(s): one to latch the debug
port signal on the io2x sync enable, the other to latch the ramtest signal on the io2x
sync enable. Since the ramtest pins are shared with the debug pins, only one of these
two flops will drive the output driver of the I/O cell at any time depending on
whether the debug port has been enabled or testmode has been enabled (debug
mode and testmode are mutually exclusive).

Note that there is a 3rd input to the driver which is a feedthrough path from certain
OpenSPARC T2 clusters like NCU and TCU where the signal gets driven straight out
of the source block in OpenSPARC T2 without any flop in MIO. With respect to
DMU, this 3rd leg also gets used after the DMU debug wires are retimed in MIO.

Thus each MIO output only or bi-di I/O cell will have a 3:1 mux before the
functional input to the driver, with two legs of the mux coming from flops (debug
and ramtest paths) and the 3rd leg coming as a feedthrough from some source block
in OpenSPARC T2 or from retiming flops in MIO for DMU signals. This will be
further illustrated in the descriptions of the I/O cells in subsequent sections of this
document.

Since MIO contains 217 I/O cells which may be distributed over as much as 17 mm
(depending on how the floorplan turns out to be), MIO will incorporate 4 cmp
cluster headers with each cmp cluster header driving cmp_clk and io2x sync_enables
to a group of I/Os. There will be 4 gclk inputs to MIO from the global clk tree
feeding these 4 cluster headers. Also the cmp_clk coming out from each cluster
header will be distributed to all the I/Os being served by that cluster header over a
clock distribution network with clock skews being maintained within a certain value
consistent with other clusters in OpenSPARC T2.
Chapter 2 Miscellaneous I/O (MIO) Specification 2-11

FIGURE 2-1 IO2X Sync Enable Timing with respect to l2clk

Each cmp cluster header incorporates two staging flops for the io2x sync enable. In
addition, the io2x sync enable generated from each cmp cluster header will be
flopped once in MIO before being distributed to all the I/Os in that group. This is
also consistent with the usage model of sync enables in OpenSPARC T2. (Please refer
to OpenSPARC T2 CCU Spec). This staging will get done in the module called
mio_syncreg_ctl. There are 4 instances of this module, one per cmp cluster header.

The FIGURE 2-1 shows io2x sync enables w.r.t l2clk (cmp_clk).

FIGURE 2-2 shows the global clocking and sync enable distribution (from CCU) to
DB1/TCU and MIO blocks.
2-12 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

FIGURE 2-2 Global Clock and Sync Enable Distribution to DB1/TCU and MIO

FIGURE 2-3 shows the scheme of launch of data from DB1/TCU off of cmp_clk with
io2x sync enable and capture of same data in MIO I/O cell on cmp_clk with io2x
sync_en.
Chapter 2 Miscellaneous I/O (MIO) Specification 2-13

FIGURE 2-3 Data Transfer from DB1 to MIO

Note – The membist data transfer mechanism from TCU to MIO is identical. The
only difference is that since the membist data would be changing at the rate of
cmp_clk/10 = 1.4 Ghz/10 = 140 mhz in TCU, each membist data beat from TCU to
MIO will be valid for a period of 5 cmp_io2x_sync_en pulses (5x140 = 700 mhz).

In addition to the cmp_clk cluster headers, MIO also incorporates a iol2clk cluster
header by which iol2clk (350 mhz nominal) gets which also gets generated off of
gclk_2 connected to MIO. This clock is used to retime the 16 DMU debug wires in
MIO and is also directly fed as data input to the feedthrough leg of one of the I/Os
in MIO to generate the debug port reference clock (DBG_CK0).
2-14 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

The idea is that the logic analyzer should use this clock as the reference clock when
sampling the debug port signals. Eventhough the debug port signals are generated
off of cmp_clk in DB1 which is generated from the same gclk tree, due to skew
between the two gclks to MIO and DB1 and also skew across clock distributions in
MIO and DB1, these data signals would have a skew among each other and also w.r.t
DBG_CK0. Using training sequences on the debug port, the logic analyzer will be
calibrated to account for this skew. Please refer to Timing Spec for Debug Port
Signals for Reliable Logic Analyzer Sampling for description of the training
sequence. This de-skewing in the logic analyzer has to be done only once and should
hold valid across PVT variations as the propagation variations of the debug port
wires across PVT and capacitive coupling related variations @ 700 mhz (nominal) is
largely mitigated due to retiming of the debug signals in each I/O.

2.1.4 DFT Support for MIO
MIO implements the following DFT support for its I/Os:

Boundary Scan: All I/Os in MIO other than TCK,TDI,TMS,TRST_L, TDO,
IMP_MON_PD, IMP_MON_PU,PMI, PMO,BURNIN,PGRM_EN implement
boundary scan. Boundary scan is controlled by TCU through the following signals
from TCU:

tcu_mio_bs_scan_in

tcu_mio_bs_highz_l

tcu_mio_bs_scan_en

tcu_mio_bs_clk

tcu_mio_bs_aclk

tcu_mio_bs_bclk

tcu_mio_bs_uclk

tcu_mio_bs_mode_ctl

All output only and bi-di I/Os of MIO that would be on Bscan chain would have
Bscan cell on data out and output enable paths (as all output only I/Os in MIO
would have tri-state control). Input only I/Os and bi-di I/Os that are on Bscan chain
would have Bscan cell on receiver data in path.

The Bscan scheme in the MIO I/O cells is captured in detail in the descriptions of
the MIO I/O cells in subsequent sections of this document. The Bscan cell is a library
cell (cl_sc1_bs_cell2_4x) composed of a Boundary Scan Flop and a Mux to select the
Chapter 2 Miscellaneous I/O (MIO) Specification 2-15

functional input vs. Bscan flop output. Also incorporated in the Bscan scheme is
support for wrap-back testing of the output driver by feeding the receiver output to
the “d” input of the Bscan cell on the data out path.

FIGURE 2-4 shows the schematic for the cl_sc1_bs_cell2_4x cell which is the Bscan cell
being used in MIO.

FIGURE 2-4 MIO's Boundary Scan Cell (cl_sc1_bs_cell2_4x) Schematic

Note – For all the dedicated input pins in MIO with Bscan, the “mode” port of the
BS cell on the receiver is tied to 1'b1(enabling the “q” output of the cell to be only
driven by the pin and not by the Bscan cell on an update). Thus the Bscan cell can
perform a shift or capture, but can never do an update during Boundary Scan. Also,
for the inputs that are shared with the debug pins, TCU will drive the
tcu_mio_bs_moce_ctl as follows:

TESTMODE==1'b1 ==> TCU drives bs_mode_ctl to 1'b1

TESTMODE==1'b0 ==> bs_mode_ctl is under control of JTAG, so normal boundary scan
can occur

This way, when we are in TESTMODE, all of the shared pins will bypass the
boundary scan cells coming into the chip logic. This allows scan to operate correctly.
When we are not in TESTMODE, bs_mode_ctl will normally be 1'b1 anyway and so
2-16 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

the mux will be bypassed. Only if JTAG is programmed for a boundary scan test will
bs_mode_ctl be 1'b0; TCU will block the effects since TESTMODE==0, and PLL
should block its shared pins with PLL_TESTMODE ==0.

Manufacturing/Automatic Test Pattern Generator (ATPG) Scan:

All flops in MIO are on manufacturing scan chain and would support regular scan
features like scanin, scanout, scandump, flush reset under control of TCU through
the following signals from TCU:

tcu_aclk

tcu_bclk

tcu_scan_en

tcu_pce_ov

scan_in

scan_out

tcu_mio_clk_stop

2.2 Debug Port
OpenSPARC T2 debug port width is defined by 166 signals for repeatability to
complement Checkpoint/Replay. When not being used to monitor the repeatability
signals, the port would get used to monitor various other signals in OpenSPARC T2
in five different modes: SoC Observability, Tester charac/CPU debug, and Core-SoC
debug.

These modes are programmable by SW by writing to the OpenSPARC T2 Debug Port
Configuration register. In all the above five modes other than the NIU debug mode
and PCI_EX debug modes, the debug port will be driven @ 2 x iol2clk frequency (2 x
350 mhz = 700 mhz nominal), with iol2clk being sent out on DBG_CK0 pin to the
logic analyzer for sampling and aligning the data. In essence this is equivalent to
data being driven on both edges of iol2clk. Commercially available logic analyzer's
(like Tektronix) do have the ability to support DDR signal sampling with the
Tektronix logic analyzer currently being able to support a max of 900 mhz DDR
(both edges of 450 mhz clk). OpenSPARC T2 's debug port would employ double
pumping CMOS signals @ 1.1 V and would not need to meet the timing and skew
specs associated with traditional memory multi-drop DDR2 interfaces. Also the
Tektronix logic analyzer probes would be connector less thereby reducing the load
on the debug port drivers.
Chapter 2 Miscellaneous I/O (MIO) Specification 2-17

As mentioned before, the debug port pins would be shared with manufacturing scan
test and membist signals so that with the debug ports disabled, some of these pins
can be used for manufacturing scan and Membist of OpenSPARC T2. The muxing of
the debug port signals with the manufacturing scan test and membist signals would
happen in the I/O cell itself in the mio.v block.

Upon chip reset, the debug port would come up disabled thereby saving power on
the I/Os. The debug port can be enabled by writing to the Debug_en bit of the
Debug Port Configuration Register (either by SW or by JTAG CREGs access). The
effect of the write would take place immediately and not after the next warm reset.

The muxing of the debug signals in OpenSPARC T2 on the debug port and also
muxing of the debug port signals with the manufacturing scan test signals, membist
signals and other miscellaneous signals is shown in FIGURE 2-5.

The I/Os in OpenSPARC T2 debug port can be thus broadly classified as falling
under five categories:

1. I/Os which are shared between debug port and DMO/membist signals that are
outputs. For this group of signals, the Drive_en to the I/Os would get generated
as:

assign dbg_mio_drv_en_muxbist_op = debug_en |
tcu_dbg_jtag_membist_mode;

2. I/Os which are shared between debug port and Manufacturing Scan test signals
that are outputs. For this group of signals, the Drive_en to the I/Os would get
generated as follows:

assign dbg_mio_drv_en_muxtest_op = debug_en | mio_dbg_testmode;

3. I/Os which are shared between debug port and Manufacturing Scan test signals
that are inputs. For this group of signals, the Drive_en to the I/Os would get
generated as follows:

assign dbg_mio_drv_en_muxtest_inp = debug_en & ~mio_dbg_testmode;

4. I/Os which are shared between debug port and PLL test /char signals that are
inputs. For this group of signals, the Drive_en to the I/Os would get generated as
follows:

assign dbg_mio_drv_en_muxtestpll_inp = debug_en &
~mio_pll_testmode;

5. I/Os which are always driven as outputs in the debug mode. For this group of
signals, the Drive_en to the I/Os would get generated as follows:

Assign dbg_mio_drv_en_op_only = debug_en.

Where “debug_en” is “Debug_En” bit in Debug Port Config register.
2-18 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

FIGURE 2-5 OpenSPARC T2 Debug Port Layout across DBG0,DBG1 and MIO
Chapter 2 Miscellaneous I/O (MIO) Specification 2-19

2.2.1 DTM Support in MIO
MIO I/O cells (n2_mio_cell_out_bscan,n2_mio_cell_bi_bscan,
n2_mio_cell_bi_pd_bscan, n2_mio_cell_bi_pu_bscan) contains a 2:1 mux before the
A flop to support DTM capability in OpenSPARC T2. Under control of CCU, the
ccu_mio_serdes_dtm signal would be asserted to configure MIO in two different
DTM modes. Also CCU would be driving the cmp_io2x_sync_en to MIO with
cmp_dr_sync_enable timing in these two modes.

2.2.2 Timing Spec for Debug Port Signals for Reliable
Logic Analyzer Sampling
For the Tektronix P6860 logic analyzer, the 166 pin debug port of OpenSPARC T2
would be connected to (166/16) = 11 pods (where each pod has 32 data connections
and two clock connections). With the data being driven @ 700 mhz on both edges of
a 350 mhz clock, the logic analyzer would be configured in a half channel mode with
11 pods providing a total of 332 memory locations storing data over every 350 mhz
clock. 166 of these memory locations would be written on +ve edge of 350 mhz
clock, and the other 166 on the negative edge of the clock on every cycle.

Minimum time for which data should be valid for (eye width) to be sampled reliably
by the 8 Ghz internal clock of the logic analyzer is 625 psec (325 setup, 300 hold)
which is a period of five 8 Ghz clocks (5 x 125 = 625 psec).

Data sampling window w.r.t 350 mhz external clk is pretty wide from -16 nsec to +
8.75 nsec. i.e. signal to signal skew is 24.75 nsec max. At the beginning, the skew of
each bit can be manually cancelled out before being displayed on the analyzer. This
is the calibration process and would be typically done only once at the beginning on
a bit by bit basis based on a training sequence being sent out on the debug port. The
training sequence would be a repetitive pattern of three one's, followed by 1 zero:
this asymmetrical pattern would ease the alignment and de-skewing of the data bits
in the logic analyzer in case the skew for some bits is as large as one cycle.

Note that once a calibration is done, the maximum cycle to cycle PVT skew that the
logic analyzer can tolerate before it stops reliably sampling data across different PVT
corners is measured as: clock period for data change rate – minimum eye width (625
psec). So for the 700 mhz data rate, the max PVT skew that the clock and data need
to maintain through the chip, package and board is 1.4ns – 0.625 ns = 0.775 nsec.
This jitter would cover PVT variations and bit to bit capacitive coupling effect
related variations through the package and board. To reduce the PVT skew
component within the chip, the 700 mhz debug signals would get retimed in the i/o
cell (mio.v) as shown in Illustration 6.
2-20 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

2.3 MIO RTL Hierarchy
The MIO block (mio.v) would consist of the following design sub-blocks:

1. 1 io cluster header (module name: clkgen_mio_io, instance name:
mio_clk_header_iol2clk).

This would generate iol2clk in MIO which would be fed as data input to I/O which
drives the DBG_CK0 pin.

2. 4 cmp cluster headers (module name: clkgen_mio_cmp, instance names:
mio_clk_header_l2clk_0,mio_clk_header_l2clk_1,mio_clk_header_l2clk_2,
mio_clk_header_l2clk_3).

Each cluster header provides the cmp_clk for a group of I/Os in MIO and staged
version of ccu_cmp_io2x_sync_en from CCU to that I/O group. This
sync_en(cmp_io2x_sync_en_out) gets further flopped in the mio_syncreg_ctl module
to generate the final sync enable to the group of I/Os.

3. Sync Enable Staging Module (module name: mio_syncreg_ctl, instance names:
io2xsyncen_reg0,io2xsyncen_reg1,io2xsyncen_reg2,io2xsyncen_reg3).

This module contains a staging flop for the io2x sync enable generated from the
corresponding cmp cluster header.

4. MIO glue logic (module name: mio_muxsel_ctl, instance name: muxsel).

This is a very small module in MIO which would contain small amount of glue logic
like inverters to generate mux selects to different MIO I/O groups. It would also
contain retiming flops for the 16 DMU debug wires coming from db0 module.

Process Monitor Control Pins: PMI[1:0] and PMO. These do not have any drivers or
receivers but are modelled as “assign” statements in rtl.

MIO I/O cells. There are 9 different flavors of I/O cells. Thee total number of
instantiations of I/O cells equals 214. These five flavors of I/O cells are as follows:

1. Output Only (No Bscan). Module name: n2_mio_cell_out

Pins driven: TDO,IMP_MON_PU,IMP_MON_PD

2. Input Only (No Bscan). Module name: n2_mio_cell_in

Pins driven: TCK,PGRM_EN,BURNIN

3. Output Only (With Bscan). Module name: n2_mio_cell_out_bscan
Chapter 2 Miscellaneous I/O (MIO) Specification 2-21

Pins Driven:
XAUI1_ACT_LED,XAUI1_LINK_LED,XAUI0_ACT_LED,XAUI0_LINK_LED,STCI
Q,DBG_CK0,DBG_DQ[165:158],DBG_DQ[148:147],DBG_DQ[102:85],
DBG_DQ[71:0],TRIGOUT,PEX_RESET_L,
SSI_MOSI,SSI_SCK,FATAL_ERROR,XAUI_MDC, PLL_CHAR_OUT[1:0]

4. Input Only (with Bscan). Module name: n2_mio_cell_in_bscan

Pins driven: DIVIDER_BYPASS, PLL_CMP_BYPASS,PLL_DR_BYPASS, TRIGIN,
PB_RST_L, BUTTON_XIR_L, PWRON_RST_L,
SSI_MISO,SSI_EXT_INT_L,VREG_SELBG_L,PWR_THRTTL_0[2:0],PWR_THRTTL
_1[2:0]

5. Bidi (with Bscan). Module name: n2_mio_cell_bi_bscan

Pins Driven: DBG_DQ[139:103],DBG_DQ[84:72],XAUI_MDIO

6. Input Only (No Bscan) with Pullup. Module Name: n2_mio_cell_in_pu

Pins Driven: TDI,TMS,TRST_L

7. Input Only (with Bscan) with pulldown. Module name: n2_mio_cell_in_pd_bscan

Pins Driven:
PLL_TESTMODE,TESTMODE,STCID,STCICFG[1:0],STCICLK,TESTCLKT,TESTC
LKR

8. Bidi (with Bscan) with Pullup. Module Name: n2_mio_cell_bi_pu_bscan

Pins Driven: PLL_DIV2[5:0](shared with DBG_DQ[156:151]),PLL_TRST_L(shared
with DBG_DQ[150])

9. Bidi (with Bscan) with pulldown. Module Name: n2_mio_cell_bi_pd_bscan

Pins Driven: PLL_CHAR_IN (shared with DBG_DQ[157]),
PLL_CLAMP_FLTR (shared with DBG_DQ[149]),
PLL_DIV4[6:0](shared with DBG_DQ[146:140])

XAUI_MDIO pin hookup is shown in the mio.sv rtl snippet below:

n2_mio_cell_bi_bscan cell_211 (

.data_to_core (mdi),

.bs_scan_in (1'b0),

.bs_scan_out (),

.pad (XAUI_MDIO),

.data_oe (mdoe),

.ain_mux_data (1'b0),

.bin_mux_data (1'b0),
2-22 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

.cin_mux_data (1'b0),

.ain_mux_sel (1'b0),

.bin_mux_sel (1'b0),
Chapter 2 Miscellaneous I/O (MIO) Specification 2-23

2-24 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

CHAPTER 3

Debug

This chapter contains the following sections:

■ Overview

■ OpenSPARC T2 Debug Features

■ Core Interface with the TCU

■ Debug Block Interface Signals

■ Debug Blocks (dbg0.v and dbg1.v)

3.1 Overview
This document describes OpenSPARC T2 hardware (HW) features for post silicon
debug ability which involves debugging any issues that interfere with early
bring-up as well as debugging the difficult, complex bugs that eluded pre-silicon
verification, and are unexpected or unusual corner cases. The overall goal of
implementing these features is to make silicon debug more efficient, shortening the
time to root cause complex bugs and thereby reducing time to remove and replace.
3-1

3.2 OpenSPARC T2 Debug Features

3.2.1 Observability

3.2.1.1 CLK/PLL Observability

OpenSPARC T2 will provide clk/pll observability on pll_char_out[1:0] pins
connected to pll_charc block in PLL. There will be two pairs of pll_char_out[1:0] pins
coming out of OpenSPARC T2: one for CMP PLL, and the other for MCU/DRAM
PLL. In normal mode when the PLLs are not being characterized, these pins will be
driven to 2'b0. The following tables show how the pll_char_out[1:0] pins will be
driven for the respective PLLs.

TABLE 3-1 CMP PLL pll_char_out[1:0]

of pll_char_in pulses
= x

pll char decode pll_char_out[1] pll_char_out[0]

x< 64

x mod 64 = 0 0xxx000 fvco/4 = 350MHz pll_lock

x mod 64 = 1 0xxx001 fvco/4 = 350MHz fvco/4 = 350MHz

x mod 64 = 2 0xxx010 raw_clk fb_clk

x mod 64 = 3 0xxx011 fb_clk raw_clk

x mod 64 = 4 0xxx100 ref fb

x mod 64 = 5 0xxx101 fb ref

x mod 64 = 6 0xxx110 up dn

x mod 64 = 7 0xxx111 dn up

x > or = 64

64 - 95 10xxxxx fl1clk/4 = 350MHz fl1clk/4 = 350MHz

96 - 255 11xxxxx fvco/4 = 350MHz fvco/4 = 350MHz
3-2 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

3.2.1.2 Debug Port

OpenSPARC T2 will have a 166 pins wide debug port which will be used as an
observability vehicle to promote repeatability, tester characterization, chip hang
debug and general CPU and SoC debug. The debug port can be enabled through SW
CSR access and Joint Test Action Group (JTAG) Configuration Register (CREG)
access. The debug port can be configured into any one of five observability modes
based on CSR bits (Dbg_conf[2:0]bits in OpenSPARC T2 Debug Port Configuration
register: which are accessible by SW and also JTAG through CREG access. The
following are the different observability modes of the debug port:

000: SoC observability mode, OpenSPARC T2 Reset State (Reset State Machine
Output), MCU, SII->L2,L2->SIO signals to help debug chip hangs (sent out on 159
pins)

001: Tester charac/cpu debug mode,{cpu_id,thread_id} on per L2 bank basis and
cpu instruction commit status on per CPU basis, sent out on 160 pins

010: Repeatability mode, SII and NCU inputs from DMU and NIU on debug port
double pumped on 166 pins

011: Core & SoC Debug, SII and NCU inputs from DMU and cpu instruction
commit status on per CPU basis.

100 – 111: Reserved for future use

These modes will be described in detail in the following sub-sections

TABLE 3-2 MCU/DRAM PLL pll_char_out[1:0]

of pll_char_in pulses
= x

pll char decode pll_char_out[1] pll_char_out[0]

x< 64

x mod 64 = 0 0xxx000 Fvco/5 = 333 MHz pll_lock

x mod 64 = 1 0xxx001 Fvco/5 = 333 MHz Fvco/5 = 333 MHz

x mod 64 = 2 0xxx010 raw_clk fb_clk

x mod 64 = 3 0xxx011 fb_clk raw_clk

x mod 64 = 4 0xxx100 ref fb

x mod 64 = 5 0xxx101 fb ref

x mod 64 = 6 0xxx110 up dn

x mod 64 = 7 0xxx111 dn up

x > or = 64

64 - 95 10xxxxx Fl1clk/5 = 333 MHz Fl1clk/5 = 333 MHz

96 - 255 11xxxxx Fvco/5 = 333 MHz Fvco/5 = 333 MHz
Chapter 3 Debug 3-3

Repeatability Mode

In this mode, a total of 353 signals (in iol2clk clk domain: cmpclk/4 or 350 MHz
nominal) will be routed to debug.v (from NIU and DMU) From debug.v, 166 wires
will get driven @ 700 MHz to the debug pins. These signals capture both inbound
DMA and PIO returns from NIU and PCI_EX blocks in OpenSPARC T2 to SII and
NCU and will be used as bus trace for checkpoint/replay scheme in OpenSPARC T2.
These 353 signals and rate conversion to debug port frequency are shown below.

dmu_ncu_wrack_vld;

dmu_ncu_wrack_tag[3:0];

dmu_ncu_stall;

// total 6 bits @ 350 MHz = 3 pins @ 700 MHz (DDR)

dmu_ncu_vld;

dmu_ncu_data[31:0];

// 33 bits get driven over four clocks. Eight clocks minimum before next set of four
clks

// so total of 132 bits to be emptied over 12 350 MHz clks, i.e. 66 bits DDR over

// 12 clocks, i.e. 6 pins @ 700 MHz (DDR)

niu_ncu_stall;

niu_ncu_vld;

niu_ncu_data[31:0];

// 34 bits @ 350 MHz == 17 pins @ 700 MHz (DDR)

dmu_sii_hdr_vld;

dmu_sii_reqbypass;

dmu_sii_datareq;

dmu_sii_datareq16;

dmu_sii_data [127:0];

dmu_sii_be[15:0];

// 148 bits @ 350 MHz = 74 pins @ 700 MHz (DDR)

niu_sii_hdr_vld;

niu_sii_reqbypass;
3-4 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

niu_sii_datareq;

niu_sii_data [127:0];

niu_sio_dq;

// 132 bits @ 350 MHz = 66 pins @ 700 MHz (DDR)

total = 66 + 74 + 17 + 3 + 6 = 166 pins @ 700 MHz (DDR)

Note – {dmu_ncu_vld,dmu_ncu_data[31:0]} take five iol2clk cycles to be seen on
the debug port at the output of the chip from the time they are driven from dmu to
ncu.

All other signals in the repeatability list take three iol2clk cycles to be seen on the
debug port output at the output of the chip from the time they are driven to SII and
NCU.

Tester Characterization/CPU Debug mode

The signals that will be observed on the debug port in this mode will be used for
general CPU debug and tester characterization of multi-threaded diags and also for
CPU speed binning on the tester. Each CPU will have four signals driven to debug.v
and each L2 bank will have six signals driven to debug.v. All these signals will be at
CMP clk frequency i.e. 1.4 GHz nominal. Since there are eight cores and eight L2
banks, this will lead to a total of (4+ 6) x 8 = 80 signals @ 1.4 GHz driven to debug.v.
Since the debug port will drive the signals out @ 700 MHz, debug.v block will
sample two consecutive cycles of these 80 bit wires and drive out 160 signals @ 700
MHz to the debug pins for LA sampling.

For each CPU, these four wires are chosen as follows:

There are two pipes/core and two thread groups per core. Since each core has two
thread grps, there can be two bits per thread grp/core: (i.e. total of 4 bits /core):

00: Instruction non committed

01: Control Transfer instruction committed in pipe

10: Integer or FPU instruction committed in pipe

11: Ld/Store instruction committed in pipe

i.e. it is possible to observe every instruction committed per cycle in each thread
group. it is not necessary to know which thread each instruction belongs.

For each L2 bank, the six wires are VCID[5:0] {CPU_ID[2:0],Thread_ID[2:0]} of each
crossbar packet to that bank on every cycle.
Chapter 3 Debug 3-5

The combination of these two groups of signals will be adequate to keep track of
execution of instructions in both single and multi-threaded diags on the tester and
also could be useful for CPU speed binning on the tester.

SoC Observability Mode

This mode will be used to capture a variety of critical SoC signals which will be
helpful to debug chip hangs and also general debug of PCI_EX logic in OpenSPARC
T2. The following is the breakup of the signals in this mode:

Five bit encoded state for Reset State Machine (has 20 states) from rst.sv to mio.sv to
monitor reset state on the tester and LA. Sent out at sys_clk frequency from Reset
block in OpenSPARC T2 (feedthrough in MIO) on five pins.

Each MCU will send the following NEW signals to debug.v which will be useful to
debug MCU hangs/scheduler issues or MCU error handling issues on both
FBDIMM channel errors and ECC errors.

These signals will all be synchronized by MCU to the iol2clk domain (350 MHz
nominal) and sent to debug.v. This leads to a total of 21 wires/per MCU. Since there
are four MCUs, this will lead to a total of 84 wires to debug.v from all MCUs
together.

Debug.v will drive this information out on 84/2 = 42 pins of the debug port at 700
MHz.

mcu_dbg_rd_req_in_0 [3:0] Read Request from L2 bank 0 to MCU (id + valid)

mcu_dbg_rd_req_in_1 [3:0] Read Request from L2 bank 1 to MCU (id + valid)

mcu_dbg_rd_request_out[4:0] Read ack from MCU to L2 bank 0 or 1 (id + valid + dest_L2_bank)

mcu_dbg_wr_req_in_0 Write req valid from L2 bank 0

mcu_dbg_wr_req_in_1 Write req valid from L2 bank 1

mcu_dbg_wr_req_out[1:0] 0,1,2,3 Writes completed at DRAM indication
(MCU dispatches up to a max of three writes on any cycle on two FBDIMM
channels: then samples information coming FBDIMM channels to see if there
were any errors, if no errors reported, MCU interprets as all writes
completed)

mcu_dbg_mecc_err MCU has detected an mecc error on a L2 read or scrub

mcu_dbg_secc_err MCU has detected a secc error on a L2 read or scrub

mcu_dbg_fbd_err MCU has detected a FBDIMM channel error

mcu_dbg_err_mode FBDIMM interface logic has gone into error handling mode. This bit stays on
until error handling complete.
3-6 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

SII and SIO will send the following signals to debug.v which will be useful to debug
L2 hang cases (SII sent DMA request to L2, L2 never sends an ack or data return
back):

sii_dbg_l2t[0-7]_req[1:0]: Req type encoded on two bits from sii to each l2t bank

(00: no request, 01: RDD, 10: WRI, 11: WR8)

l2t[0-7]_dbg_sii_iq_dequeue: L2 dequeue from IQ

l2t[0-7]_dbg_sii_wib_dequeue: L2 dequeue from IOWB

l2b[0-7]_dbg_sio_ctag_vld: response valid from L2 to SIO

l2b[0-7]_dbg_sio_ack_type: Read or Wr ack from L2 to SIO

l2b[0-7]_dbg_sio_ack_test: Ack to DMU or NIU

Which leads to a total of (7x8) = 56 wires for all L2 banks together @ 1.4 GHz to
debug.v. debug.v will drive this information out on 56x2 = 112 pins of the debug
port @ 700 MHz.

Thus total number of debug pins that will be used up in the SoC observability mode
will be (42 + 112) = 154.

3.2.2 Repeatability
In order to effectively run processor tests in the post-silicon phase with or without
the presence of I/O and debug them, it is necessary to have a high level of
repeatability within OpenSPARC T2's synchronous clock domains. These include the
CPU clock domain (cmp clk domain: 1.4 GHz nominal covers SPARCs, crossbar,
L2's, portions of SII,SIO,NCU), the DRAM domain(266/333/400 MHz covers MCU
logic before SerDes), and the I/O clock domain (350 MHz nominal covers rest of SII,
SIO, and NCU).

This will allow us to run a group of tests many times, with slightly different starting
parameters (e.g. SPARC threads starting at slightly different times, or with different
cache initialization) that shouldn’t affect the outcome, looking for failing corner
cases. When a failing case is found, the test and the particular seed parameters will
be used to simulate the test in the pre-silicon environment, to see what caused the
failure.

Not only that in case there are failures in some systems in the lab after days and
weeks of system stress testing, this approach of recreating the failing condition in the
chip RTL can reduce weeks of effort to root cause the problem which in past Sun
chips has invariably resulted in push-out of RR schedules.
Chapter 3 Debug 3-7

The overall approach involves very close interaction between some Debug Software
(part of Hypervisor SW) and OpenSPARC T2 chip hardware. This is commonly
known as checkpoint/replay mechanism where the debug software will periodically
put the synchronous portion of the chip (as described before) into an idle state (idle
all threads other than one, and also stall I/O into the synchronous domain) at what
are called checkpoints. Once the synchronous portion of the chip is put into this idle
state, the debug SW will dump all SW visible state of the machine to memory, and
then initiate a “debug reset” of OpenSPARC T2.

The debug software will initiate by writing a 1 to the DBR_GEN bit in RESET_GEN
register. The RESET_GEN and RESET_SOURCE registers are shown in Debug
Appendix.

The Debug Reset is a flavor of Warm Reset in OpenSPARC T2 which is identical to
the functionality of Warm Reset.

This Debug_Reset will put a majority of the synchronous domain of the OpenSPARC
T2 chip into known state (all SW invisible state and some of the SW visible state
also). So before invoking this reset, SW should dump the SW visible state that loses
value over debug_reset to memory, and retrieve it back from memory after the reset.

Note – OpenSPARC T2, like previous Sun processors, keeps a fair amount of
architecture unchanged for warm reset. Also contents of arrays (TLBs, L1/L2 caches,
etc.) are unchanged. Please refer to Debug Appendix for a list of OpenSPARC T2 SW
visible state that will be lost over Debug Reset and will need to be retrieved after
debug_reset.

The duration of the debug reset is small enough (in the range of 40 microsecs), so
that to address the data integrity in DRAM during the debug reset OpenSPARC T2
will either (1) address it through self refresh during the debug reset or (2)
auto-refresh in small intervals before going to debug reset and then doing some in
small intervals after coming out of debug reset. (this way we can compensate for
missing about 6 or 7 refreshes over the 40 microsecs).
3-8 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

Note – Self refresh will take additional time for link re-initialization which is:
200 mcu clks (end of self refresh -> dll lock on sdram) == 600 nsec at 333 MHz
+12 microsecs (to re-initialize fbdimm channel: included in this is 100 nsec time for
bitlock of Serdes.

After debug_reset, the reset vector will be fetched from memory from a different
location (0x000000020) than a regular reset. This is because the boot code for a
debug_reset will be different than a regular reset. The boot code will do several
things at the beginning including program the memory refresh registers, re-instate
the SW visible state to the state before reset for those states that lose value over
debug reset), remove the stall of inbound I/O to the synchronous domain of the chip
from NIU and PCI_EX, before enabling all threads to start executing.

In normal operation POR and warm reset both trap to the RSTVaddr | 0x20
(0xFFFFFFFFF0000020) which maps to ROM. To enhance repeatability, OpenSPARC
T2 will have the capability of directing POR,WMR or DBR to RAM. In order to POR
or WMR or DBR from RAM at location, (0x000000020), hyperprivileged software can
set the ASI_WMR_VEC_MASK register.

The idea is that by capturing the SW visible state of OpenSPARC T2 (in the
synchronous domain of the chip) on the last checkpoint prior to the failure and by
initializing the synchronous portion of OpenSPARC T2 to known state, we can create
a common starting point between silicon and the synchronous portion of the chip rtl.
Then by running the same code sequence on the SPARCs from the last checkpoint to
the failure point and capturing the I/O traffic to the SII, and NCU inputs
(synchronous I/O interface of OpenSPARC T2: debug port mode 000) from DMU,
NIU on the debug port lossless and feeding it back to the same nodes in the rtl, we
can create the event sequence in rtl leading to the failure.

Note – For Checkpoint/Replay, we do not need to observe the FBDIMM interface
on the debug port. This is because once the links are trained data will always come
back to the MCU data return FIFO in a fixed latency from the time of issue of the
request. After training, MCU logic will record this latency (in terms of MCU clocks)
in MCU Channel Read Latency Register. So the debug software can probe this value
and feed that same latency to the equivalent point in the rtl and thereby achieve
cycle accurateness with respect to silicon without having to probe the fbdimm
interface.

Thus this checkpoint/replay approach is intrusive on the state of the machine in the
context of the tests, applications running on the chip in that it periodically halts all
threads and I/O and takes the machine to reset state. This might change the timing
of events to cause the bug to manifest itself later in time than usual, but eventually it
will with millions of cycles of instructions executed in between checkpoints. And
when it does, it can be recreated in rtl.
Chapter 3 Debug 3-9

3.2.2.1 FBDIMM Link training after Debug Reset

Since debug reset will reset MCU, the FBDIMM links will have to be re-trained after
reset deassertion and this will change the FBDIMM data round trip latency for
subsequent requests till the next debug reset. Debug software can either live with
this by reading the MCU Channel Read Latency Register after every debug reset or
MCU needs to keep sending sync pulses during the debug reset.

To support the latter, MCU will keep a small amount of logic running during
warm/debug reset while the rest of it gets reset through flush mechanism. This logic
will comprise of (i) Logic to keep the links enabled and generate sync pulses in a
fixed repetitive manner under SW control and (ii) logic to keep incrementing the
read pointers of the northbound MCU FIFOs and two synchronizers per FIFO (this
way during debug/warm reset, the read and the write pointers constantly increment
and are always offset by two: delay through the two synchronizers). All this logic
will be physically implemented in a control block in MCU, whose clock tree will be
synthesized and skew matched with the rest of MCU fed by the MCU clk grid.

Also TCU would send a separate stop signal to this block in MCU. This Stop would
be asserted by TCU only during PWR_ON reset and during scandump. It will NOT
be asserted during Warm /Debug Reset. Also all the flops in this block would be on
the regular MCU scan chain but would be warm reset protected, so that during
warm reset: (i) the functional clock would keep on running (as Stop is not asserted)
(ii) while the flush happens, the flops in this block would not be affected as they are
warm reset protected. The A clk going to this block for Scan would be the same as
the aclk_wmr going to the rest of MCU. The B clock would be the same as the B clk
going to the rest of MCU. Thus only during PWR_ON and scan dump would the
flops in this block be flushed and scanned respectively.

Also MCU would support two new CSR bits for SW to control this feature. These
two CSR bits are located in DRAM Debug Trigger Enable register. The two bits are as
follows:

1. KP_LNK_UP.

When written to 1'b1:

(i) Keeps the Southbound Links enabled during the duration of the Debug reset to
send out the sync pulses.

(ii) Selects the output of the sync pulse gen logic in the new MCU control module
to generate sync pulses.

When written to 1'b0:

(i) Selects the output of the regular sync pulse gen logic in MCU

(ii) Clears the counter for the regular sync pulse gen logic in MCU.

(iii) Takes MCU fbdimm interface state machine to L0 state, where it is ready to
dispatch new read/write requests to the DIMMs.
3-10 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

2. MASK_ERR.

When written to 1'b1:

Makes MCU mask all the errors it normally detects on LFSR mismatches on
ALERT frame patterns coming in from AMB.

Cleared by MCU Hardware 4K cycles after reset when the LFSRs are re-aligned
by MCU.

Note – Both of KP_LNK_UP and MASK_ERR bits are protected on warm reset.

SW-HW interaction to achieve determinism on FMDIMM interface after debug reset:

1. After making sure no pending transactions in MCU, SW sets KP_LNK_UP and
MASK_ERR right before initiating debug reset.

2. Debug reset happens. Whole of MCU gets reset other than the control logic
module which has its clock running keeping the sync pulses going and the FIFO
read pointer incrementing every cycle

3. Debug Reset finishes. MCU fbdimm interface State machine comes up in
DISABLED state. Sync acks keep coming but since MASK_ERR bit is set, no errors
are flagged. MCU logic counts 4K cycles after reset and realigns the LFSRs and
clears the MASK_ERR bit.

4. After a certain time T1 (but always fixed from the deassertion of debug reset), SW
writes a 0 to KP_LNK_UP bit. This clears the sync pulse gen counter, takes the
FBDIMM interface state machine to L0 state, and selects the sync pulse gen
counter output to generate the sync pulses.

5. After a time T2 from the point where SW wrote KP_LNK_UP with 0, the first
fetch is issued on the southbound link. T2 should be the same all the time.

FBDIMM Interface behavior on Warm reset

The FBDIMM links would be re-trained after every warm reset. The behavior of
MCU during and after warm reset is as follows:

1. Warm reset gets triggered due to PB_RST_L assertion or fatal error in
OpenSPARC T2 or SW writing a CSR bit in Reset_Gen register. KP_LINK_UP and
MASK_ERR = 1'b0 before OpenSPARC T2 goes into warm reset.

2. Warm reset happens. Since KP_LNK_UP = 0, the Southbound Links are shut
down by MCU sometime during the duration of the warm reset. Clocks keep
running to the control module in MCU while rest of MCU gets reset through
flush.

3. Warm reset finishes. The MCU state machine comes up in Disabled state and SW
puts it into link training state.
Chapter 3 Debug 3-11

4. Link re-training happens.

3.2.2.2 I/O Quiescent in OpenSPARC T2 During Checkpoint

An inherent requirement for checkpoint/replay in OpenSPARC T2 is to stall I/O to
the synchronous domain of the chip (SII and NCU inputs) from NIU and PCI_EX
blocks. This is part of the effort to get the chip to a quiescent state on every
checkpoint before dumping SW visible state and asserting debug reset to get the
synchronous portion of the chip to a known state.

This I/O quiescing will get implemented in OpenSPARC T2 under SW control by
having debug.v module contain a couple of CSR bits (NIU_STALL and
DMU_STALL) in OpenSPARC T2 I/O Quiesce Control Reg which SW can set to 1's
by writing a 1 to them. Once these bits are set, debug.v will assert a couple of signals
called dbg_niu_stall and dbg_dmu_stall to NIU and DMU respectively. On seeing
the assertion of these two signals, NIU and DMU should suspend all transactions to
SII and NCU at any convenient point (for NIU can be at a packet boundary,
whatever is easy to implement and creates least corner cases) and send back
niu_dbg_stall_ack and dmu_dbg_stall_ack to debug.v after they have received all
pending acks and data returns back from SIU and NCU. At the point at which these
two acks are sent to debug.v, the NIU->SII,NCU and DMU->SII,NCU interfaces will
be considered as having quiesced. This applies to interrupts also. Neither DMU nor
NIU should send any interrupt requests to NCU or SII after having sent the acks. On
sampling “niu_dbg_stall_ack and dmu_dbg_stall_ack” signals, debug.v will set
“NIU_STALL_DONE” and “DMU_STALL_DONE” bits in the OpenSPARC T2 I/O
Quiesce Control Regs. The debug software which will have been polling these status
bits will then see that both bits are set and will proceed to dump SW visible state of
machine to memory and then initiate a debug reset.

Note – During the time this interface is quiesced, the Xaui and PCI_EX interface
SERDES links are active and running.

After debug reset, the reset code will clear the NIU_STALL and DMU_STALL csr
bits in debug.v which will cause debug.v to assert a couple of signals to NIU and
DMU called dbg_niu_resume and dbg_dmu_resume. On receiving these “resume”
signals, NIU and DMU will unquiesce their respective interfaces with SII and NCU
and continue issuing transactions to SII and NCU.

3.2.3 Debug Events
OpenSPARC T2 will implement several debug events in SPARC Cores and SoC to
aid debug. The purpose of these debug events is to communicate with the external
Logic Analyzer to start or stop taking LA traces on the debug port (in any one of the
3-12 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

four modes) based on these events or to stop clocks in the chip and have the service
processor initiate a full scan dump. These events are generally address matches in
SPARC and L2 (which are typically repeatable by running the same code sequence)
or occurrence of error events in different blocks in OpenSPARC T2.

3.2.3.1 Debug Events in SPARC Cores

Following are the different debug events in Core, under enable/disable control of
SW:

Instruction Breakpoint Match (on a group of four threads basis: if hpstate.ibe =1 and
a thread executes an instruction that matches the contents of any enabled fields of
ASI_INST_MASK_REG)

Instruction VA Match (on a per thread basis, if ifetch VA matches against content of
ASI_WATCHPOINT_REG, with “match on Instruction VA” enabled in
ASI_LSU_CONTROL_REG)

Data Access VA Match (on a per thread basis, if data access VA matches against
content of ASI_WATCHPOINT_REG, with “match on Data VA” enabled in
ASI_LSU_CONTROL_REG).

Data access PA match (on a per thread basis, if data access PA matches against data
PA watchpoint address stored in ASI_WATCHPOINT_REG, with “match on Data
PA” enabled in ASI_LSU_CONTROL_REG).

Taken Control Transfer Instruction (if pstate.tct =1 and a control transfer instruction
has been executed like conditional branch, jmps, retry, done)

Precise Error Event (recorded in I-SFSR or D-SFSR)

Disrupting Error Event (recorded in DESR)

Deferred Error Event (recorded in DFESR)

Performance Monitor Event (Counter wrap condition)

Each core will contain DECR register (Debug Event Control Register) which will
give SW the ability (on a per CPU debug event basis) to do either one of the
following:

Do nothing. Debug Event Disabled

Soft Stop, scan, resume (under control of TCU and CCU)

Hard stop, scan (under control of TCU and CCU)

Pulse TRIGOUT pin to trigger LA or JTAG Scan
Chapter 3 Debug 3-13

Note – Soft-stop waits for OpenSPARC T2 core processor activity to quiesce, puts
the processor or domain interfaces in an error-free but unresponsive state, then stops
the clocks. Clocks turn off at the same cycle to all latches, flops and arrays within the
stop domain. The quiescent conditions are domain-specific.

For the OpenSPARC T2 core, a typical sequence of activity is the following.
The TCU activates a soft-stop request signal to the processor core.
In response the processor stops executing instructions and waits for all activity to
complete.
Then it deactivates any non-TCU external core interfaces (such as the L2 interface).
The processor then informs the TCU that it has achieved a soft-stop condition.
The TCU then stops the processor's clocks.
The main advantage of soft-stop over hard-stop is that it minimizes the likelihood
that the system or chip hangs as a result of the processor terminating an in-flight
command. So in case we want to resume execution in cores, soft stop should be used
and not hard stop. TCU can initiate soft stop to cores on a per core basis (separate
scan enables from TCU). No soft stop will be initiated to the SoC and L2 because we
need to keep memory refresh running for DRAM and the PCI_EX and XAUI
SERDES links running.

However during the period when the clock is stopped after a soft stop, the core will
be missing invalidations coming across the crossbar to it from the L2 cache due to
memory operations initiated either by another core or I/O. This will result in the
core losing coherence with memory so soft stop can be used with restart if there is
no I/O activity in the system and the code running on the cores is partitioned in a
way that there is no sharing across the L1's of different cores or if all cores are soft
stopped in unison.

3.2.3.2 Debug Events in SoC

Similar to the SPARC cores. SoC portion of OpenSPARC T2 will have its own set of
debug events and DECR register located in the Debug block (debug.v) in SoC. The
following are the list of debug events in SoC:

■ L2 PA Match in Bank 7

■ L2 PA Match in Bank 6

■ L2 PA Match in Bank 5

■ L2 PA Match in Bank 4

■ L2 PA Match in Bank 3

■ L2 PA Match in Bank 2

■ L2 PA Match in Bank 1

■ L2 PA Match in Bank 0
3-14 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

■ L2 Error (an error has occurred in any of eight L2 banks)

■ MCU Error (An error has occurred in any of 4 MCU's)

■ SoC Error (An error has occurred in any of SII,SIO,DMU,PEU,NCU)

The Debug Block (debug.v) will contain the SOC_DECR register (SoC Debug Event
Control Register) which will give SW the ability to configure the debug event to do
either one of the following:

■ Do nothing. Debug Event Disabled

■ Hard stop, scan (under control of TCU and CCU)

■ Pulse TRIGOUT pin to trigger LA or JTAG Scan

Note – There will not be any soft stop initiated to the SoC and L2 because it is
necessary to keep memory refresh running for DRAM and the PCI_EX and XAUI
SERDES links running: Certain logic sections in MCU,PEU and NIU/MAC cannot be
kept from running.

Note that each L2 bank will support a pair of registers to detect PA and VCID match.
These two registers are called L2 Match Mask Register and L2 Compare Register and
will be located within each L2 (l2t.sv) bank. The condition for asserting a debug
event based on these two registers will be as follows:

If ((DATA & MASK == COMPARE) && Valid_data) then assert debug event.

For each of the error related debug events in MCU, L2,NCU, and DMU, there will be
a similar DEBUG_TRIG_EN CSR bit located in those modules to cover the SoC
errors. Each of those blocks will assert a wire to debug block (debug.v) when they
encounter any error if the corresponding DEBUG_TRIG_EN bit is set to 1.

The debug block will accept those inputs and either initiate a hard stop request or
issue a LA trigger request to TCU.

3.2.4 Joint Test Action Group (JTAG) Access
OpenSPARC T2 provides several debug capabilities through its JTAG interface. It
implements a JTAG block in its TCU (Test Control Unit) block which will be used to
access not only standard JTAG services but also provides specific debug features.

The JTAG architecture is designed to be compliant with IEEE 1149.1 standard. The
system usage model of this JTAG access capability will be to have a Service
Processor or external JTAG agent connected to OpenSPARC T2, under whose control
the following Debug Features will be possible in OpenSPARC T2:

JTAG scan out: This can be done in system, but is destructive. The whole chip will be
scanned out to get a scan dump. Very useful for debugging chip hang cases.
Chapter 3 Debug 3-15

JTAG Shadow Scan: Allows for inspection of specific registers while part is running
in system, and is non-destructive. This feature is accessible through private JTAG
instructions.

JTAG Boundary Scan: Done in the system. Can either monitor I/O signals
non-intrusively, or can over-write signals to test interconnects between components
on the board. This feature is accessible through private JTAG instructions.

JTAG CREG/UCB: This allows for read or write of specific registers while part is
running in system. Reads are non-destructive. This allows instructions to be sent to
the NCU which then intermixes the transaction with normal requests from the
CPUs. The NCU can then take the results and pass them back to the TCU which can
then send the data serially out on TDO. This feature is accessible through private
JTAG instructions but relies on the NCU to be working in the chip.

Clock Stretch: This feature is accessible through private JTAG instructions. A 32 bit
counter called Reset Counter (address TBD) in TCU will be programmed through
SW or JTAG with the required number of CMP clks in between the first and second
warm reset. The counter will start counting down after the de-assertion of the
second warm reset. When it reaches zero, TCU will initiate clock stretch. There will
be a two bit DECR in TCU (address TBD) which SW/JTAG will program for Clock
Stretch for this to happen. The programming of this register can happen around the
same time that the Reset Counter is getting programmed (anytime between first and
second warm reset). The DECR will support four encodings: Do Nothing, Hard Stop,
Pulse Trigout and Clock Stretch.

Clock Stop: This feature is also accessible through a private JTAG instructions. With
this feature the chip can be frozen (no clocks running) so the contents are left
unchanged, viewable via scan. Two types of clock stop are supported: hard stop and
soft stop. Soft stop is supported only for cores, while hard stop is supported both for
the cores and OpenSPARC T2 as a whole.

Under control of JTAG, TCU can directly initiate Hard stop of OpenSPARC T2 after
the Reset Counter has expired if TCU DECR was programmed for Hard Stop.
Alternatively TCU can also directly request a hard stop if the TRIGIN pin is asserted
in the system.

TCU can also be made to put individual cores in hard stop or soft stop mode
through dedicated instructions from JTAG specifying hard or soft stop
(TAP_CLOCK_HSTOP and TAP_CLOCK_SSTOP).

Hard and soft stop will be described in more detail later in Clock Stop.

The purpose of hard stop is to stop as fast as possible, though due to di/dt concerns
clocks in different clock domains will be stopped in a staggered fashion. After a hard
stop the chip will probably need a reset before it can be started again. A hard stop
can be used on the entire chip or for individual SPARC cores.
3-16 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

The second method of stop, called “soft stop”, is applicable only to SPARC cores; it
will let the core(s) settle into a quiescent state before stopping clocks. This allows the
cores to be scanned out non-destructively for examination then started up again
from the point code execution left off. During the period when the core clock is
stopped after a soft stop L1 cache invalidations from other cores or the I/O
subsystem will be dropped, leading to a loss of data integrity unless all cores are soft
stopped simultaneously and I/O operations are quiesced.

Single Stepping, Disable Overlap, Cycle Step, Run N Instructions: These are core
specific execution sequences useful for debug and are available through JTAG
interface for stand alone SPARC debug. More details are in OpenSPARC T2 Core
Debug Features.

3.2.4.1 JTAG Scan out

There are two types of scan, manufacturing scan and in-system scan. Manufacturing
scan is totally controlled by the pins, while the in-system scan is done through the
JTAG controller.

In-system scan is done through JTAG instructions. The scan chains are configured
into a single long chain and placed between TDI and TDO. The chains used to
construct the long chain will be configurable.

3.2.4.2 JTAG Shadow Scan

Shadow scan for the cores and L2 will be controlled via JTAG. The core shadow scan
architecture is shown in FIGURE 3-1. The header is a conceptual view of both the
cluster and flop headers combined. Each core shadow scan will be contained in a
separate scan chain, with its own clock headers and controls coming from the TCU.
The following Core and L2 State flops have been identified for Shadow Scan for
OpenSPARC T2:

■ PC[47:2]: 46 bits (OpenSPARC T2 does not implement VA[63:48])

■ PSTATE & HPSTATE: 11 bits

■ TL(Trap Level): 3 bits

■ TT (Trap Type): 9 bits

■ TPC (Trap PC)[47:2]: 46 bits

■ TL_for_TT: 3 bits

■ L2 Error Status register

■ L2 FE/UE/CE Error Address Register

■ L2 Notdata Error register
Chapter 3 Debug 3-17

FIGURE 3-1 Core Shadow Scan Architecture

OpenSPARC T2 core will have TT, TPC, and a synchronized TL capture (TL_for_TT)
to the core shadow scan with the following limitations:

TT, TPC, and TL_for_TT will update ONLY when a trap occurs. (The normal TL field
will update for every change in the actual TL register.)

Software writes to TL and done/retry will NOT affect the shadow scan captured
values of TT, TPC, and TL_for_TT. So, if the processor traps from TL==0 to TL==1 to
TL==2 and then uses done and/or retry to get back to TL==0, shadow scan will still
reflect TT[2], TPC[2], and TL_for_TT will still be 2. Similarly, if the processor traps
out to TL==2 and then software writes TL to 1 or 0, shadow scan will still show
TT[2], TPC[2], and TL_for_TT will still be 2.
3-18 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

If multiple traps occur while the shadow scan is being scanned, the TT, TPC, and
TL_for_TT updates due to all traps but the last trap will be lost.

The signals shscan_se, shscan_ce and shscan_stop are sourced from the TCK clock
domain in JTAG; typically this requires synchronization using a megacell with
metastability-hardened flops in a two-flop sequence to achieve an acceptable MTBF.
Assuming l1clk is stopped low, controlling bclk inactive before transitioning se will
maintain the slave latch state that is captured with ce, although this allows the
master latch to be exposed to metastability. This can be tolerated (since scanning
with aclk will overwrite the master) so no special synchronization is required for se.
The ce and stop signals will be passed through a synchronizer.

During a shadow-scan operation, the PLL is running and JTAG is used to capture
the desired values into the shadow scan register. Then, JTAG turns on the stop signal
into the header which drives the l1clk low, puts soclk inactive (high) and then
transition se to the active state (high). The contents are then scanned-out via TDO.
The core shadow scan can only be read, although any value may be scanned into it.
Because TCK is specified to be at a much slower frequency than cpu_clk, the two
cycles required for synchronization will not cause any overlapping.

All eight core shadow scans are scanned serially as one chain, with core 0 closest to
TDI and core 7 closest to TDO. Any core marked unavailable in the CMP
core_available register will not be included when scanned via TDI to TDO. The
shadow scan chain for a given core is placed in that cores second scan chain during
ATPG test mode.

JTAG instructions to support Core Shadow Scan:

■ TAP_SPCTHR0_SHSCAN Thread 0 contents for all available cores

■ TAP_SPCTHR1_SHSCAN Thread 1 contents for all available cores

■ TAP_SPCTHR2_SHSCAN Thread 2 contents for all available cores

■ TAP_SPCTHR3_SHSCAN Thread 3 contents for all available cores

■ TAP_SPCTHR4_SHSCAN Thread 4 contents for all available cores

■ TAP_SPCTHR5_SHSCAN Thread 5 contents for all available cores

■ TAP_SPCTHR6_SHSCAN Thread 6 contents for all available cores

■ TAP_SPCTHR7_SHSCAN Thread 7 contents for all available cores

3.2.4.3 JTAG Boundary Scan

The boundary scan will allow through the use of JTAG instructions the testing of the
I/O cells. The interface will provide the following instructions: Sample/Preload,
Extest, HighZ, and Clamp. The boundary scan cells have also been designed such
that they will be included as part of the scan chain. Separate clock headers will be
used for boundary scan cells in order to scan enable the flops without disturbing
output of original flops.
Chapter 3 Debug 3-19

Note – The BS_aclk is a pulse, width is to be determined, that is triggered by the
rising edge of TCK. The BS_bclk is a pulse that is triggered by the negative edge of
TCK.

3.2.4.4 JTAG CREG/UCB Access

The UCB interface is implemented inside the TCU and allows access via JTAG to IO
mapped registers. A register's address and data in the case of writes are loaded via
JTAG into holding registers in the TCU. The TCU then uses its UCB interface to
communicate to the NCU which puts the new transaction (packet) into the data flow.
The interface allows both reading and writing.

Note that in OpenSPARC T2 there is no way to access any SPARC CSR or L2 CSR
through this NCU UCB interface. OpenSPARC T1 could access L2 CSRs and some
SPARC CSRs by routing the packet through the crossbar to the lowest-numbered
available SPARC physical core as specified by the CORE_AVAIL register, which then
forwarded the packet to the L2. This mechanism is not supported in OpenSPARC T2.

So with this NCU UCB protocol all the SoC CSRs (NCU,MCU,PCI_EX and NIU) are
accessible from JTAG.

For a WRITE, a 40-bit address and 64 bits of data must be provided by JTAG to the
UCB. For a READ, a 40-bit address is needed, with the data received from the NCU
captured into a register in the TCU. To implement a READ, a sentinel bit is used
since the exact timing of the read return is not deterministic. The system is only
allowed to have one read outstanding at one time. There is no protection built in
against this, adherence is left to the user. The buffer ID programmed through the
JTAG data coming in needs to be set to 2'b01. This tells the NCU that the data is
returned to the TCU.

For details on the JTAG CREG/UCB Access please refer to the OpenSPARC T2 TCU
Specification.

Note – The UCB interfaces of NCU should not hang with respect to any access to
MCU,PCI_EX or NIU, i.e. JTAG CREG accesses should be able to make forward
progress.

MCU will never hang on on-chip CSR accesses. Also, off chip PIO accesses MCU will
send backs nacks on illegal addresses and also for channel errors. Even in error
mode, MCU will wait to send out the off chip PIOs after recovering from the error.
In case of a fatal error, it will send back a Nack to the PIO access and not wait for the
error recovery. Architecturally there are no cases where MCU will not send back
response to NCU for CSR/PIO accesses.
3-20 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

3.2.4.5 Clock Stretch

This feature is accessible through private JTAG instructions. A 32 bit counter called
Reset Counter in TCU will be programmed through SW or JTAG with the required
number of CMP clks in between the first and second warm reset. The counter will
start counting down after the desertion of the second warm reset. When it reaches
zero, TCU will initiate clock stretch. There will be a two bit DECR in TCU which
SW/JTAG will program for Clock Stretch for this to happen. The programming of
this register can happen around the same time that the Reset Counter is getting
programmed (anytime between first and second warm reset). The TCU DECR will
support four encodings: Do Nothing, Hard Stop, Pulse Trigout, and Clock Stretch.

3.2.4.6 Clock Stop

Clock stop is the ability to stop the part after a given event. The part may or may not
be in a state where it can continue operation. After the stop data can then be scanned
out for debug. This allows the user to determine the state of the chip at meaningful
times.

There are two types of clock stop a hard stop, and a soft stop.

The purpose of the hard stop is to stop as fast as possible, but because of di/dt
concerns this will mean that there will be some delay because the chip will stop in a
staggered fashion. Because of the immediate stop the chip is now in a state that it
cannot be restarted in system. It must be started from a reset again.

The second method, soft stop, only applies to the cores and upon receiving a request
the TCU will wait for the requesting core to settle into a quiescent state (via the
core_running register) before stopping the clock to that core. This allows the core the
possibility to start up again given the right system circumstances. Because of
constraints such as keeping DRAM refresh running and XAUI and PCI_EX SERDES
interfaces running on the chip. On OpenSPARC T2 only the SPARC cores will have
the ability for soft stop.

Soft stop should only be used on all cores at once if one wishes to start the cores
after a soft stop.

Hard stop will be supported for both SPARC cores and OpenSPARC T2 chip as a
whole.

To trigger a stop a debug register must first be set. Examples of these debug registers
are instruction address breakpoint register, data address breakpoint register,
architectural event (errors, performance register), and possibly others. These
registers will then have fields that say what action should be taken if this event is
enabled and occurs. The two different stops are two of the possible actions.
Chapter 3 Debug 3-21

On OpenSPARC T2 the ability to stop clocks to various sections of the chip is
provided via the TCU. Clocks can be stopped via JTAG directly or as a result of a
debug event in SoC or Cores.

Under control of JTAG, TCU can directly initiate Hard stop of OpenSPARC T2 after
Reset Counter has expired and the TCU DECR was programmed for Hard Stop.
Alternatively, TCU can also request a direct hard stop if the TRIGIN pin was
asserted in the system.

TCU can also be made to directly put individual cores in hard stop or soft stop mode
through dedicated instructions from JTAG specifying hard or soft stop
(TAP_CLOCK_HSTOP and TAP_CLOCK_SSTOP).

Clocks for the chip can be stopped either in parallel or serially across clock domains.
After a clock stop, data can then be shifted out for debug via JTAG which allows the
user to determine the state of the chip.

Serial and Parallel Clock Stop Modes

Stopping all clock domains in parallel may not be advisable due to excessive current
fluctuations across the chip. Because of these di/dt concerns there is a serial clock
stop mode where the clocks are stopped over several predefined clock domains with
128 CPU clock cycles between each clock stop activation. Stopping the clocks in such
a staggered fashion with intervening delays is expected to lessen the di/dt concern.
In the serial mode, via JTAG or software the user can update a clock domain register
to specify which clock domain should be stopped first. Subsequent domains will
then be stopped in a predetermined order, but the order is fixed.

During a parallel clock stop, the clocks will all be stopped at the same CPU clock
cycle from the TCU. For both the serial and parallel clock stop methods, due to
varying division ratios between the CPU and other clock domains, the actual CPU
clock cycle at which a non CPU clock domain stops may vary between those
domains, although it should be repeatable. To specify a parallel stop, all bits in the
clock domain register should be set to 1, signifying they should all stop first. There
is currently no provision for mixing serial and parallel clock stop modes across the
clock domains.

Hard Stop

A hard clock stop request will result in the clocks being stopped without waiting for
the chip to quiesce. The clocks may be stopped either in serial or parallel mode and
will be stopped over all the chip
3-22 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

Soft Stop

A soft clock stop request will be handled as if it was a hard clock stop but will not be
serviced until the domain requesting the soft clock stop is quiesced. The cores are
the only domains that can request a soft clock stop, and only the clocks to the cores
will be stopped by any soft stop request.

Data integrity will be lost after a soft stop unless all cores are stopped in unison.

Clock Stop Domains

Clock domains are partitioned so that control is achieved and that there is some
commonality in the respective scan chains, and to minimize interactions because of
the staggered stop. The sequence of stopping the clocks serially will always be the
same given a specific start point and defaults to the order given in TABLE 3-3. The
user can program the starting point, but then the domains will stop in the
predetermined order and wrap around until reaching the first domain stopped. For
instance, stopping with spc7 first will result in spc6 being stopped last.

An 8-bit counter provides a delay of 128 CPU clock cycles between generation of
successive clock stop signals from the TCU. This may be bypassed by setting all 18
bits in the clock domain register via JTAG, so that all clocks stop in parallel. The
general structure of the clock stop control logic in the TCU is shown in FIGURE 3-2.
Chapter 3 Debug 3-23

FIGURE 3-2 TCU Clock Stop Logic
3-24 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

FIGURE 3-3 Clock Stop Sequencing through Clock Domains

All clock stop control logic in the TCU is in CMP clock domain. At this time the
non-CMP clock domain stop signals are synchronized before leaving TCU. If this
synchronization moves into the respective units, the outputs from TCU will be
relative to the global clock grid. Clocks are restarted by turning off clk_stop signals.
When started serially, the 128 CMP cycle delay is used again to reduce di/dt
concerns.

3.2.4.7 Single Stepping, Disable Overlap, Cycle Step, Run N
Instructions

These are core specific execution sequences useful for debug and are available
through JTAG interface for stand alone SPARC debug. More details are in
OpenSPARC T2 Core Debug Features.

3.2.5 Fatal Error Indication on Pin
OpenSPARC T2 has a FATAL_ERROR pin that will get asserted when any of
OpenSPARC T2 logic blocks encounter a Fatal Error. This will notify the Service
Processor about OpenSPARC T2's error state. On a fatal error, OpenSPARC T2
asserts Warm Reset and also asserts PCI_EXPRESS_RESET_L pin to reset the
external PCI-Express devices. The sources of Fatal Error in OpenSPARC T2 are L2
Chapter 3 Debug 3-25

cache (each L2 bank can detect its own VUAD Uncorrectable ECC and Directory
Parity fatal errors) and NCU (SoC errors in blocks like SII, SIO, DMU, NIU, and
MCU which can be turned fatal by SW enabling fatal_error reporting for them in
SoC Fatal Error Enable Register at location 0x80-0000-0018).

3.2.6 TRIGIN and TRIGOUT pins
TRIGOUT and TRIGIN pins will be asserted and sampled by TCU.

TRIGIN when asserted from the system will require TCU to do a hard stop of
OpenSPARC T2 after it cycle counter expires, followed by a scan dump.

TRIGOUT will be asserted by TCU also after the cycle counter in TCU expires under
any of the following conditions:

TCU gets a Pulse Trigger Pin request from any of the cores or the debug block based
on some debug event having happened either in any of the cores or any SoC block.

TCU DECR has been programmed for Pulse Trigger and the Reset Counter has
expired. (In this case first the reset counter will expire, then the cycle counter will
count down to zero and then TRIGOUT will be asserted)

Debug SW (as part of Checkpoint/Replay) chooses to pulse the TRIGOUT pin after
taking a checkpoint to start taking LA traces from OpenSPARC T2's debug port. To
support this one, TCU will have a CSR bit that SW can write to pulse TRIGOUT.

3.2.7 DTM Support in DB1,MIO modules
DB1 and MIO modules would contain logic to support DTM capability in
OpenSPARC T2. Under control of CCU, the ccu_dbg1_serdes_dtm and
ccu_mio_serdes_dtm signals would be asserted to configure DB1 and MIO in two
different DTM modes.
3-26 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

CCU is has a pair of CSR bits (serdes_dtm1, serdes_dtm2 in PLL_CTL reg) which
will control DTM mode 1 and 2 respectively as follows:

FIGURE 3-4 and FIGURE 3-5 show the paths through DB1 and MIO modules to get the
DTM mode signals out of the chip in DTM modes 1 and 2 respectively.

TABLE 3-3 OpenSPARC T2 DTM Modes

Serdes_DTM
1

Serdes_DT
M2

ccu_mio_
serdes_dtm

ccu_dbg1_
serdes_dtm

Description/Comments

0 0 0 0 Normal Mode (DTM off)

1 0 1 1 DTM mode 1 (MCU ECC and PEU TX info sent
out at dr_clk frequency of ~100 mhz on debug
port). In MIO, the data is clocked at cmp_clk with
dr sync enables. Debug port to be configured in
any mode other than modes: 3'b000,3'b100,3'b101
On debug port:
87:0: MCU CRC data
93:88: Don’t care
165:94: PEU TX Data
ccu_serdes_dtm asserted to all other blocks in
OpenSPARC T2 by CCU.

0 1 0 0 DTM mode 2 (Debug port to be configured in any
of the six debug modes. Debug data sent out at
cmp_clk with dr sync enables in all modes other
than NIU debug mode and PEU debug signals in
PEU debug modes). So there would be data loss
but should be repeatable.
On debug port: Debug signals for the debug mode
chosen.
ccu_serdes_dtm asserted to all other blocks in
OpenSPARC T2 by CCU.

1 1 1 1 Invalid Programming by SW. HW treats it as DTM
mode 1.
Chapter 3 Debug 3-27

FIGURE 3-4 DTM Mode 1 Configuration for db1,mio in OpenSPARC T2
3-28 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

FIGURE 3-5 DTM Mode 2 Configuration for db1,mio in OpenSPARC T2
Chapter 3 Debug 3-29

Note – For DTM mode 2 to be used effectively on the tester, the relationship
between cmp_clk and dr_sync_en from CCU has to be the same all the time after
every reset. This has to be guaranteed by CCU.

The DTM mode control CSR bits, the timing diagram of dr_sync_en with respect to
cmp_clk and also the mechanism of OpenSPARC T2 entering DTM modes would all
be covered in the CCU MAS.

3.2.7.1 MCU DTM Mode Signals

The MCU's DTM debug information is 22 bits of CRC information from the
southbound (transmit) link. The MCU communicates with the AMBs with 120-bit
frames. Each frame consists of two sections, a 26-bit commandA section with 14-bit
CRC and a 72-bit commandBC/data section with 22-bit CRC. 14 bits of the
commandBC/data CRC is XORed with the 14-bit commandA CRC from the
preceding frame to reduce the total number of CRC bits to 22.

Each MCU has two southbound FBD channels, and each channel has 22 bits of CRC
per frame. The 22 bits from each channel are bit wise XORed to provide 22 bits total
to the debug port.

On debug port:

DBG_DQ[87:0] = {MCU3_CRC[21],MCU0_CRC[20:0],

MCU2_CRC[21],MCU1_CRC[20:0],

MCU1_CRC[21],MCU2_CRC[20:0],

MCU0_CRC[21],MCU3_CRC[20:0]}

3.3 OpenSPARC T2 Core Debug Features
From a system and business perspective, the features goal is to minimize
time-to-revenue by providing means to speed silicon and system bring-up and
debug. If a failure occurs at a customer site, these features can be used to capture
and analyze the failure, so that customer downtime is minimized. From a chip and
core perspective, these features are simple, general, and powerful enough to enable
debug both in stand-alone test fixtures as well as in-situ systems.
3-30 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

The OpenSPARC T2 core is a full-scan design: every latch (in arrays) and register bit
is concatenated into a scan string. The core has three scan string inputs and outputs.
The length of each scan string is limited, but the scan strings can be connected by the
Test Control Unit (TCU) to form one long scan chain for each physical core.

The TCU can flush the scan strings by holding the scan clocks active and forcing a '0'
at the input of each string.

It can also serially scan data into or out of the long scan chain.

Data can be scanned out of the long scan chain non-destructively by logically
wrapping the scan chain output to the scan chain input: once the scan-out has been
completed, all latch and flop bits contain their pre-scan values.

Data can also be scanned into the long scan chain with any arbitrary subset of the
bits being altered with respect to their pre-scan value.

TCU will provide scan chain control on a per core basis (three scan chains per core)
for non-destructive scan out after a core soft stop without disturbing other cores or
the rest of OpenSPARC T2. So whatever can be done on a long scan chain from the
TCU can be done on a per core basis over three scan chains also.

The flush and scan operations can be controlled externally to the OpenSPARC T2
chip via commands sent to the TCU's JTAG interface. Scan string data can be
observed or loaded via the JTAG interface. This allows an external agent (such as a
PC or workstation with a JTAG interface card) to observe and change any storage
location in the chip. By using several sequences of scan in and scan out commands
and appropriate clock control, any on-chip memory location (flops through scan and
arrays through Macrotest) can be read out non-destructively or changed.

Full-scan and flush capabilities gives OpenSPARC T2 core a solid foundation to
support more sophisticated debug features. These features complement and
augment traditional Sun debug features and do not preclude their use. For example,
OpenSPARC T2 core includes debug features such as instruction watchpoint virtual
address, data watchpoint virtual and physical address, instruction breakpoint, and
software traps on hardware-detected error conditions.

The features described in this chapter are more useful for hardware or system
designers debugging possible chip functional or circuit failures as opposed to
software designers debugging code errors.

3.3.1 Basic Features
The TCU has a JTAG interface. The TCU can be controlled via this interface. In
particular, an external agent connected to the JTAG port can issue commands to the
TCU and the TCU provides data in response.
Chapter 3 Debug 3-31

The following basic features either currently exist (are defined architecturally), or
come as a side-effect of having full-scan:

1. Existing architecturally visible debug capabilities. Existing means specified by
V9/JPS1 or other SPARC processors, such as Millennium or OpenSPARC T1.
These include instruction breakpoints, instruction watchpoint virtual address,
data watchpoint virtual and physical address, trap-on-taken-control transfer, and
trap on hardware-detected errors. These debug features are visible to and
primarily used by software and can be invoked by programs running on the chip.
In OpenSPARC T2, these debug features can be activated via scan also. However,
instead of causing a trap, one of these debug events either stops the clocks (soft or
hard stop) or pulses an external pin.

Since these features are shared with S/W, using them via scan may conflict with
programs running on the core.

2. Start and stop clocks to the core. Stopping OpenSPARC T2 core clocks is
performed via the TCU clock enable function in the core clock network.

3. Configure scan chains for non-destructive scan-out and scan-out those chains. The
data scanned out appears on the JTAG interface. When performing a
non-destructive scan, logic which may be affected by random scan values must be
conditioned. For example, the TCU gates off write-enable lines to non-scannable
arrays to prevent data corruption. If it is useful to scan a processor core
independent of other cores and the L2 interface, then that processor's interfaces
must be conditioned not to create phantom interface transactions while the
interface registers are being scanned.

4. Configure scan chains for scan-in. In conjunction with scan-out, this can be used
as a read-modify-write operation to update machine state. The data to be scanned
in is presented over the JTAG interface as part of the scan-in command. In the
past this approach has been used for speed path analysis on silicon or to validate
logic bug fixes in silicon even before change is made in RTL.

5. Ability to read and write any non-scannable array location in the OpenSPARC T2
core. This capability is provided as a macro of scan-out and scan-in commands
issued over the JTAG interface. The TCU translates these commands to sequences
of scan operations and core functional clock cycles to read or write OpenSPARC
T2 core array contents.

Ability to configure various debug features via JTAG scan or direct commands.
These features and commands are the subject of the next section.

Shadow scan facility: The shadow scan facility allows an external agent to query
a subset of the state of the chip without requiring the chip clocks or domain
clocks to be stopped. Due to hardware cost only a small fraction of the on-chip
registers have shadow scan capability.
3-32 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

3.3.2 Enhanced Features
The following is a list of enhanced debug features. Each of these features is only
available via the JTAG interface. These features are not visible to or configurable by
software running on a core.

Hard-stop: Hard-stop is used as a noun and an adjective. As an adjective it describes
the stop type; namely the clocks are stopped immediately without regard to any chip
or system activity. The core comes to an immediate, synchronized stop (all
latches/flops/arrays see the clock stopped at the same cycle) when clocks are shut
off. As a noun hard stop is a command to immediately stop functional clocks to the
entire chip or perhaps an individual clock domain. It is issued as a command over
the JTAG interface to the TCU, which in turn disables the functional clocks. It is used
as a prelude to other commands, such as a scan-out. In general, hard-stop is not
recoverable. In particular, if a processor's clocks are stopped during an external bus
cycle or memory cycle, it won't respond to further requests. This can cause other
system errors. Usually hard-stop is used in a stand-alone debug environment or as a
last resort due to the core/chip not responding to a soft-stop. TCU will implement
hard stop to stop clocks to all blocks of OpenSPARC T2 (including SoC blocks).

Soft-stop: Soft-stop is used as a noun and an adjective. As a noun it refers to a
soft-stop command issued via JTAG to the TCU. As an adjective it describes a more
graceful stop than hard stop.

For the OpenSPARC T2 core a typical sequence of activity is the following. The TCU
activates a soft-stop request signal to the processor core. In response the processor
stops executing instructions and waits for all activity to complete. Then it
deactivates any non-TCU external core interfaces (such as the L2 interface). The
processor then informs the TCU that it has achieved a soft-stop condition. The TCU
then stops the processor's clocks.

Soft stop can also be initiated via soft stop requests from the core due to certain
events occurring. Soft-stop waits for OpenSPARC T2 core processor activity to
quiesce, puts the processor or domain interfaces in an error-free but unresponsive
state, then stops the clocks. Clocks turn off at the same cycle to all latches, flops and
arrays within the stop domain. The quiescent conditions are domain-specific.

Data integrity will be lost unless all cores are stopped in unison.

TCU will initiate soft stop only to cores on a per core basis (separate scan enables
from TCU). There will not be any soft stop initiated to the SoC and L2 because we
need to keep memory refresh running for DRAM and the PCI_EX and XAUI
SERDES links running: so cannot stop certain logic sections in MCU,PEU and
NIU/MAC from running.

Stop-clocks on event: This feature allows triggers to be set up so that if one of them
is activated, the TCU stops the clocks to the core in as few cycles as possible. Each
processor core has an event list consisting of the overflow of a performance
Chapter 3 Debug 3-33

monitoring counter, any core-specific error reflected in setting an ESR bit, or other
events. The event(s) to be enabled for stopping can be specified by setting a bit in a
core-specific control register during a scan-in operation. Each bit in the control
register is associated with a particular event. Multiple bits may be set at once. Each
cycle the contents of the control register are ANDed with the corresponding events
in that domain and the output is ORed together and fed to the TCU. The TCU
collects domain stop signal outputs. If any stop signal is asserted, it stops the
corresponding domain's clocks.

Cycle counter: This feature tunes when clocks are stopped/stretched or TRIGOUT
pin pulsed relative an event occurring. A decrementing counter is used in
conjunction with:

1. JTAG initiated hard-stop/soft-stop, pulse TRIGOUT, clock-stretch request.

2. TRIGIN initiated hard-stop request and

3. A debug event based hard-stop, soft-stop, pulse TRIGOUT request.

Once the debug event trigger or JTAG stop command or TRIGIN pin has been
activated, the counter starts decrementing and debug action is initiated when the
counter reaches 0.

With respect to clock stops, by programming this counter (32 bits wide) and
knowing the minimum round trip delay from core to TCU to core and then issuing a
hard-stop or soft-stop command through JTAG, one has control over when the
clocks are stopped. This is useful since once the clock-stop order has been received
by the TCU, it takes several cycles to stop the clocks to the domain. The counter
allows an earlier triggering event to be specified, delaying the clock stop to line up
with the later (desired) event. The counter enables fine-grain control to isolate a
failing cycle. The counter is located in the TCU.

Debug Event Counter: In addition to the cycle counter, TCU will support a 32 bit
event counter at address TBD ahead of it, which is also SW/JTAG programmable to
count a specific debug event (decrement on every occurrence of the event). When
this event counter decrements to zero, TCU will start decrementing the cycle
counter, and when the cycle counter decrements to zero TCU will take the debug
action (soft stop, hard stop or TRIGOUT assertion). TCU will just OR the event
sources and use the result of the OR to decrement the event counter. when using this
event counter, SW/JTAG will make sure that only one debug event is enabled so that
the event counter will decrement for only one event. The debug event counter works
only in conjunction with SoC and Core Debug Events, and NOT with TRIGIN pin or
JTAG initiated Debug actions associated with Reset Counter in TCU.

Usage model:

Assume only one event is enabled for debug as instruction breakpoint match in one
of eight cores, all other debug events are disabled in core and SoC DECRs. Assume
the debug action programmed for instruction breakpoint match is hard stop. So
3-34 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

depending on the value programmed in the event counter, TCU will keep sampling
hard stop requests from that core which has the instruction breakpoint debug event
enabled and keep decrementing the event counter every time it gets a hard stop
request.

When the counter decrements to zero, TCU starts decrementing the cycle counter
and when that decrements to zero, TCU asserts hard stop and shuts off the clock to
that core.

Hard-stop and pulse TRIGOUT are the two debug actions with which this event
counter can be used. It cannot be used for a soft-stop request originating from the
core as the core quiesces before asserting soft-stop request.

So SW/JTAG will make sure of the following when using this event counter
(normally it will always be programmed to zero, so that the TCU will simply ignore
it):

1. Only one debug event enabled in OpenSPARC T2

2. Debug action for that event programmed as hard stop or pulse TRIGOUT

3. TCU will not detect these two conditions, this is a requirement from SW/JTAG
programmer.

External pulse on triggered event: TRIGOUT pin asserts on the occurrence of a
configured event. Like the stop-clocks on event, an event (or set of events) may be
scanned in to an event control register. If the event occurs and this feature is
configured, an external, dedicated pin (TRIGOUT) is pulsed when the event occurs.
This pin is pulsed at some low frequency generated off of the core clk: can pulse at
core clk frequency. It gives an external indication that the event has occurred and
allows external logic to sync up or start capturing bus cycles for further debug or
analysis.

Single instruction step: This feature allows the debug agent to execute one processor
instruction among the available, enabled, and running threads, then report quiesce
state. Each physical OpenSPARC T2 core can be configured by JTAG to have a
single-instruction step feature through hyperprivileged ASI_OVERLAP_MODE reg
located at ASI 45, VA 0x10. Typically this feature is used by the user issuing a
single-instruction step command via the JTAG interface. This feature allows
designers to debug possible instruction execution problems by checking that the
results of an instruction's execution match expected values (by non-destructive scan
out and comparing with expected values in simulation). In conjunction with external
frequency, temperature and voltage control, it can provide some evidence or
information to help determine the critical path.

Run N instructions: This is a sequence of single instruction step commands, and will
be controlled by a sequence of JTAG single instruction step commands issued to
TCU from the service processor. The usage model is specified in Joint Test Action
Group (JTAG) Access.
Chapter 3 Debug 3-35

Disable overlap mode: This feature causes each of the available, enabled, and
running threads to execute one instruction and quiesce all activity before fetching
the next instruction (essentially pipe-lining is disabled).

Cycle step: This feature allows one to sequence the domain pipeline N cycles at a
time, where N can be 1 to the value of the cycle counter in TCU described
previously. With N set to 1, it is typically used to non-destructively scan out the
domain pipeline for loading into a logic simulator and comparing the simulator
values with the hardware values. It can also be used to check for critical paths. The
feature is controlled by the TCU, which enables domain clocks for N cycles.

The usage model for cycle step is:

1. User writes to a counter in TCU through JTAG interface, N number of cycles
which TCU will use to cycle step core(s).

2. User reads back counter making sure counter has been written correctly.

3. User issues a TAP_CLOCK_HSTOP to hard stop the core(s) that need to be cycle
stepped. TCU will stop clocks low for selected cores.

4. User issues a JTAG Command to do Cycle step.

5. TCU turns the clock on for the selected core(s) and starts decrementing counter.

6. TCU counter reaches zero.

7. TCU sets a bit in a TBD register indicating Cycle Stepping done and stops the
clocks to the cycle stepped cores.

8. User reads this TBD register and sees Cycle Stepping done.

9. User issues a TAP_Serial_scan instruction to the core(s) that were cycle stepped to
serially scan out the contents of the core non-destructively (by using the scan
loopback scheme).

10. If user wants to continue execution on the cycle stepped cores, it will issue a
TAP_CLOCK_START command to the core(s) that were cycle stepped.

11. TCU turns clocks on to the cores that were cycle stepped.

12. Cores resume execution.

Note – After hard stop of cores and cycle steps, restarting without a reset will not
produce correct behavior as during clock stop period, the core will be missing all
responses from the crossbar on prior accesses. So the use of cycle step is to mainly to
do some very focused logic debug and critical timing path analysis without any
ability to restart.
3-36 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

All the modes of operation defined in the ASI_OVERLAP_MODE reg have been
implemented in OpenSPARC T2 core.

3.3.3 Details of the OpenSPARC T2 Core Debug
Features
This section details the OpenSPARC T2 core debug features.

3.3.3.1 Instruction Breakpoints

Like OpenSPARC T1 the OpenSPARC T2 core provides an instruction breakpoint
capability. Each thread group has a hyperprivileged, read-write
ASI_INST_MASK_REG at ASI 0x42, VA 0x8. Threads 0, 1, 2, and 3 share one register,
and threads 4, 5, 6, and 7 share another register. The contents of this register are
described inTABLE 3-5. All bits are initialized to 0 at POR. Reserved bits read as
zeroes and are ignored on writes.

If HPSTATE.IBE is set to '1', instruction breakpoints are enabled. If a thread executes
an instruction which matches the contents of all enabled fields in the INST field of
the ASI_INST_MASK_REG, the thread takes an Instruction_Breakpoint trap.
Non-privileged accesses to this register cause a Privileged_Action trap; supervisor
accesses cause a Data_Access_Exception trap.

Additionally, if Core DECR is configured for ASI_VA_BREAKPOINT events, the
OpenSPARC T2 core will take a debug action as configured by that register.

TABLE 3-4 ASI_INST_MASK_REG Contents

Bit Index Register Field Name Description

63:39 - Reserved

38 ENB31_30 Enable matching on bits 31:30 of the instruction

37 ENB29_25 Enable matching on bits 29:25 of the instruction

36 ENB24_19 Enable matching on bits 24:19 of the instruction

35 ENB18_14 Enable matching on bits 18:14 of the instruction

34 ENB13 Enable matching on bit 13 of the instruction

33 ENB12_5 Enable matching on bits 12:5 of the instruction

32 ENB4_0 Enable matching on bits 4:0 of the instruction

31:0 Instr The instruction pattern to match (opcode, reg address: whole instruction)
Chapter 3 Debug 3-37

Since this register is shared between software and scan, debug agents should take
care to ensure that only one agent (software: Software debugger/Emulator or
hardware: Service Processor) is configured to use this facility at a time.

3.3.3.2 Instruction and Data Address Watchpoints

Each thread has a hyperprivileged ASI_WATCHPOINT register located at ASI 0x58,
VA 0x38 which controls address watchpoint traps. The OpenSPARC T2 core can take
a Instruction_VA_Watchpoint trap when this register is configured for an instruction
fetch whose fetch address matches. The OpenSPARC T2 core takes a VA_watchpoint
trap when this register is configured for a data access, and the core executes a
memory reference instruction whose memory reference virtual address matches.
Each thread can be configured to match only on instruction virtual addresses or data
virtual address at one time.

Additionally, a physical address watchpoint for data accesses is implemented, the
data PA watchpoint address will be stored in ASI_WATCHPOINT register bits 39:3.
The contents of the ASI_WATCHPOINT register are described in TABLE 3-6i.

Reserved bits read as zeroes and are ignored on writes.

TABLE 3-5 ASI_WATCHPOINT Contents

Bit Index Register Field Name Description

63:48 - Reserved

47:40 VA_47_40 Virtual Address bits to match for Instruction or Data Virtual Address
comparison; ignored for data physical address comparisons

39:3 Addr_39:3 Virtual or Physical address bits 39:3 to match

2 VA_2 Instruction Virtual Address bit to match; ignored for Data comparisons

1:0 - Reserved
3-38 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

Matching is controlled by the ASI_LSU_Control_Register as shown in TABLE 3-7.
Each virtual core has a hyperprivileged, read/write ASI_LSU_Control_Register
located at ASI 0x45, VA 0x0. Reserved bits read as zeroes and are ignored on writes.

Other details of masking are described in the OpenSPARC T2 Programmer’s Reference
Manual. Virtual address matches are never enabled in hyperprivileged mode.

PSTATE.AM masks instruction and data virtual addresses (so that bits 47:32 of the
virtual address are '0') before being presented to the ASI_WATCHPOINT register for
comparison. Thus, bits 47:31 of the VA in the ASI_WATCHPOINT register must be
set to '0' to match instruction or data virtual addresses when PSTATE.AM is set to '1'.

Additionally, if Core DECR is configured for ASI_WATCHPOINT events the
OpenSPARC T2 core will take a debug action as configured by that register.

Since this register is shared between software and scan, debug agents should take
care to ensure that only one agent (software or hardware) is configured to use this
facility at a time.

TABLE 3-6 ASI_LSU_CONTROL_REG Contents

Bit Index Register Field Name Description

63:35 - Reserved

34:33 Mode 00 - Disabled
01 – Match on Instruction VA
10 – Match on Data PA
11 – Match on Data VA

32:25 ByteMask Byte mask to be used with data VA or PA; ignored for instruction virtual
address comparison

24 ReadEnable If 1, enable comparisons for Ifetch or Read accesses

23 WriteEnable If 1, enable comparisons for data writes

22:5 - Reserved

4 SpecEnable If 1, the OpenSPARC T2 core operates in speculative mode (predicts
branches not taken, predicts loads to hit in L1, predicts no FP exceptions)

3 DM If 1, DMMU is enabled

2 IM If 1, IMMU is enabled

1 DC If 1, Data Cache is enabled

0 IC If 1, Instruction Cache is enabled
Chapter 3 Debug 3-39

3.3.3.3 Trap on Taken Control Transfer

If PSTATE.TCT is set to '1', the OpenSPARC T2 core will take a
Control_Transfer_Instruction_Trap each time it executes a taken control transfer
instruction. These include conditional branches, jumps, retry, and done instructions.
The trap occurs before the instruction has been executed (e.g., is precise). TPC
contains the VA of the CTI; TNPC contains the NPC of the CTI. PSTATE.TCT is
cleared if the trap is taken.

Additionally, if Core DECR is configured for TCT events the OpenSPARC T2 core
will take a debug action as configured by that register.

3.3.3.4 Single Instruction Step

The usage model of Single Instruction Step along with the low level hardware
protocols between TCU and OpenSPARC T2 core is described in Core Interface with
the TCU.

Each physical OpenSPARC T2 core can be configured to have a single-instruction
step feature through hyperprivileged ASI_OVERLAP_MODE reg located at ASI 45,
VA 0x10. This register is shown in Debug Appendix. When single step is enabled (on
a per core basis), and when the user has issued a Single Step JTAG instruction to
TCU, the selected OpenSPARC T2 core(s) will execute one instruction among the
available, enabled, and running threads, then stop. The OpenSPARC T2 core will not
execute additional instructions until the TCU issues a “resume” command to the
core. After a sequence of single steps executed this way, the user might issue a hard
stop request to the core being single stepped (as all of the threads of the single
stepped core will have been parked at the end of the single steps), and when TCU
has turned the clock off to that core, will scan out the core through TAP_SERSCAN
instruction non-destructively (by looping back the scan out values). Then the user
will restart the clocks of the core by issuing a TAP_CLOCK_START command. After
the clocks have started to run in the single stepped core, the user will issue a JTAG
command to Stop Single Step to TCU. TCU will disable the single step mode to the
core, unpark all the threads in the core and the core will resume operation on all
enabled threads.

Note that OpenSPARC T2 core executes instructions pick, decode, and execute one
instruction from each enabled and running thread in series.

Since the ASI_OVERLAP_MODE register is shared between software and scan,
debug agents should take care to ensure that only one agent (software: Software
debugger/Emulator or hardware: Service Processor) is configured to use this facility
at a time.
3-40 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

3.3.3.5 Disable Overlap

Each physical OpenSPARC T2 core can be configured to have a disable overlap
feature through hyperprivileged ASI_OVERLAP_MODE reg located at ASI 45, VA
0x10. In this mode, each thread executing on that core will issue one instruction,
wait for the instruction to commit and any memory operations to be globally
observed, then fetch and execute the next instruction. This mode essentially disables
pipe-lining of all thread's operation. Usage model is same as single instruction step.

Since this ASI_OVERLAP_MODE register is shared between software and scan,
debug agents should take care to ensure that only one agent (software or hardware)
is configured to use this facility at a time.

3.3.3.6 Soft-Stop Request from TCU to Core

Soft stop is a debug feature controlled by the TCU via the tcu_core_running inputs
to the core. The TCU will transition tcu_core_running from 1 to 0 for all threads on a
physical core. Each thread will stop issuing instructions, wait for any outstanding
cache or TLB misses and SPU operations to complete, and wait for all pending
memory accesses issued by the thread to be globally observed. Then each thread will
transition spc_core_running_status from 1 to 0. The TCU uses these signals to detect
that all threads have quiesced. The TCU will then stop the clocks for that core.

Once the TCU has stopped the core clocks, the core may be scanned without regard
to in-flight operations since all crossbar activity initiated by the core will have
stopped. However, the core will not respond to any crossbar requests initiated by
other agents while it is being scanned.

Note – Invalidation requests will not be honored while the clocks are stopped or the
core is being scanned. This means that the core may become incoherent with the rest
of the system unless all cores are stopped in unison.

Following a scan operation, the TCU should restart functional clocks and transition
tcu_core_running for each thread from 0 to 1 to allow the core to resume instruction
execution.

3.3.3.7 Shadow Scan

OpenSPARC T2 core shadow scan provides access to the PC, HPSTATE, PSTATE, TL,
TT, TPC, and TL_for_TT registers for a given thread. Only one thread can be
sampled at a time. The TCU will issue a “shadow scan load” command to the
OpenSPARC T2 core. Subsequently, OpenSPARC T2 core will decode the command,
and load the appropriate state into the shadow scan string. Then the TCU can scan
out the shadow scan string.
Chapter 3 Debug 3-41

OpenSPARC T2 core will have TT, TPC, and a synchronized TL capture (TL_for_TT)
to the core shadow scan with the following limitations:

TT, TPC, and TL_for_TT will update ONLY when a trap occurs. (The normal TL field
will update for every change in the actual TL register.)

Software writes to TL and done/retry will NOT affect the shadow scan captured
values of TT, TPC, and TL_for_TT. So, if the processor traps from TL==0 to TL==1 to
TL==2 and then uses done and/or retry to get back to TL==0, shadow scan will still
reflect TT[2], TPC[2], and TL_for_TT will still be 2. Similarly, if the processor traps
out to TL==2 and then software writes TL to 1 or 0, shadow scan will still show
TT[2], TPC[2], and TL_for_TT will still be 2.

If multiple traps occur while the shadow scan is being scanned, the TT, TPC, and
TL_for_TT updates due to all traps but the last trap will be lost.

3.3.3.8 Debug Event Control Register

Each physical OpenSPARC T2 core has one hyperprivileged, read/write, Core
Debug Event Control Register located at ASI 0x45, VA 0x8, shared by all strands. The
DECR controls the stop type (hard or soft) or a trigger pin for an associated event if
that event occurs. This register is shown in Debug Appendix.

TCU Action in Response to a soft-stop request asserted by the Core:

If the Core DECR bits for a particular event are configured for a soft-stop (set to
2'b01), and that event occurs, the following sequence of operations results. The
OpenSPARC T2 waits for all core activity to quiesce. This means that all in-flight
instructions completed (or took an exception), all memory references issued by the
core been globally observed, and all SPU activity completed. Then, the OpenSPARC
T2 core asserts a spc_softstop_request[7:0] to the TCU, and the TCU subsequently
stops the OpenSPARC T2 Core's clocks after its cycle counter expires.

The cycle when the stop occurs is a function of the value of the TCU Cycle Counter
as well as the transmission delay from the core to the TCU and from the TCU to the
clock network in the core. If the TCU Cycle Counter is non-zero when the core
generates a soft-stop request, the TCU will decrement the Cycle Counter until it
reaches 0. When it reaches 0, the TCU will stop the processor core's clocks (note that
it may take several cycles before the processor clocks stop after the counter reaches 0
due to the propagation delay from the TCU to the core clock network).

TCU Action in response to a hard-stop request asserted by the core:

If the Core DECR bits for an event are set to 2'b10, and that event occurs, the
OpenSPARC T2 core requests the TCU to stop the clocks as soon as the TCU Cycle
Counter reaches 0. The core does not wait for internal core activity to quiesce before
raising the spc_hardstop_request[7:0] to the TCU.
3-42 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

TCU Action in response to a trigger request by the core:

If the Core DECR bits for an event are set to 2'b11, and that event occurs, the
OpenSPARC T2 core will issue a request on spc_trigger_pulse [7:0] bus to pulse
TRIGOUT pin.

If routed to chip I/O, and synchronized to a reasonable lower frequency, the trigger
pin may be used to trigger an external agent to begin capturing bus activity or
issuing JTAG commands. The pulsing of the pin does not affect operation of the
OpenSPARC T2 Core in any way. Currently the plan is to use TRIGOUT pin in
OpenSPARC T2 for this function.

3.4 Core Interface with the TCU
This section outlines the interface between the OpenSPARC T2 Core and the TCU for
the purposes of describing debug functions. FIGURE 3-6 shows a high-level diagram
of the relevant interface signals (per core).

3.4.1 Clock Interface
The TCU provides a clock stop signal to the flop headers in the core, and drives this
signal active when the core is unavailable. The core_enabled signal go to cluster
headers.
Chapter 3 Debug 3-43

FIGURE 3-6 OpenSPARC T2 Core to TCU Debug Interface

3.4.1.1 Tcu_spc_clk_stop

This signal is deasserted to allow the OpenSPARC T2 Core's clocks to run. This is the
main signal the TCU uses to control the OpenSPARC T2 Core's clocks. This signal
can be set to '1' at any time to cause stop the OpenSPARC T2 Core's clocks.
3-44 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

3.4.1.2 Core_available & Core_enabled

Core_available is set via eFuse at manufacturing time and determines whether the
physical core can be used in normal operation. It serves as a clock gate and if '0' will
result in the clk_stop being asserted to the core (this happens in the TCU).
Core_enabled is driven from the ASI_CMP_CORE_ENABLED register and is also
used as a clock gate via the cluster header.

3.4.1.3 Core_running[7:0] & Core_running_status[7:0]

The core_running[7:0] bus is an input from the NCU by which the TCU requests the
core to park/unpark threads. Parking does not involve stopping the clocks. But, soft
stopping requires that the threads be parked before clocks stop.

3.4.1.4 Scan_enable

Besides configuring the scan chains for scanning, this signal also gates off
OpenSPARC T2 core's interface signals so that other SoC units do not respond to
spurious OpenSPARC T2 core interface activity during scanning. At least the
crossbar PCX interface is protected in this way by the tcu_clk_stop signal.

3.4.1.5 Spc_hardstop_request[7:0] & Spc_softstop_request[7:0]

These busses are outputs to the TCU, one bit per thread, which indicate that the core
has reached either a hard-stop or a soft-stop condition based on some debug event.
These busses are OR'ed inside TCU since stopping can only be done on an entire
SPC Core. When the Spc_hardstop_request[7:0] or Spc_softstop_request[7:0] is
received, the TCU will begin decrementing the Cycle Counter; when the Cycle
Counter reaches 0 the TCU will turn clock off to the requesting core by asserting the
tcu_spc_clk_stop signal.

OpenSPARC T2 Core asserts core_running_status[7:0] to TCU when all aspects of the
instruction have completed (all memory operations globally observed, no pending
TLB/Icache misses, SPU is idle) and the physical core is completely quiescent. For
store operations, the stop will not occur until the store has been globally observed by
L2, and the thread's store queue is empty. The OpenSPARC T2 Core will not quiesce
until the SPU has completed any pending operations.

3.4.2 Debug Event Interface
This group of core outputs are used to signal either an error or that a debug trigger
event has occurred.
Chapter 3 Debug 3-45

3.4.2.1 spc_trigger_pulse[7:0]

This is a bus from the core to TCU covering the eight threads. If the OpenSPARC T2
Core is configured to trigger on an event in the DECR, and the associated event
occurs for a thread, the corresponding signal transitions from a '0' to a '1'. It then
transitions back to '0', unless another enabled DECR trigger event occurred that
cycle. The TCU will pass this signal to a TRIGOUT pin as the OR of the (64) bits
from all cores.

3.4.3 Scan Interface
Not all signals relevant to the scan interface are detailed here (e.g., not all the scan
clocks and controls are listed).

3.4.3.1 Scan_in

There are three scan chains in each core. All flops on this scan string are reset both at
POR and during warm reset unless protected via use of the
“warm_reset_flop_header”.

3.4.3.2 Scan_out

There are three external scan-out signals per core; each corresponds to a scan-in
signal. During JTAG access via scan an entire physical core may be scanned; in this
mode the TCU will concatenate the three scan chains in the core, in addition to any
JTAG private scan chains such as for shadow scan or memory BIST.

3.4.3.3 Shadow_scan_in

This is the scan-in for the shadow-scan string.

3.4.3.4 Shadow_scan_cntrl[n:0]

This is the control for a shadow scan operation which identifies which thread's state
will be sampled to the shadow scan string. The clock will be at JTAG frequency but
synchronized to the CPU block by the TCU.

When the TCU wants to do a shadow scan on a particular core, it asserts a
tcu_shscan_pce_ov capture signal to that core. At some time later, OpenSPARC T2
core will capture the state requested by the TCU on the internal shadow scan flops.
3-46 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

At that point the TCU can scan out the state by accessing the shadow scan scan
string. The shadow scan flops are normal flops dedicated to shadow scan and are
free-running. When TCU wants to sample, it stops the functional clocks for these
flops and scans them.

The signals included in this bus are:

tcu_shscanid[2:0]: selects one of eight threads

tcu_shscan_pce_ov: provides a capture signal to the shadow scan reg.

tcu_shscan_clk_stop: stops the clock to the shadow scan register to allow it to be
scanned via JTAG

tcu_shscan_aclk & tcu_shscan_bclk: shift clocks to perform the scan operation

tcu_shscan_scan_en: a separate scan_enable for the shadow scan register

3.4.3.5 Shadow_scan_out

This is the scan-out of the core's shadow-scan string.

3.4.4 Single Step Mode Signals (and Single Step Usage
Model)
Each physical core can be placed in single step mode by the TCU via JTAG. JTAG
agent can enter into single step mode at any time without stopping core clocks, but
in order to enter into the single step mode at a precise point and have knowledge of
the state of the core at that point, the JTAG agent will typically initiate a soft stop
based on some specific core debug event (e.g. Instruction VA Watchpoint), in
response to which TCU will stop the clock so that JTAG agent can scan out the core
to determine state of the core before the single step sequence. After that, putting a
physical core in single step mode sequence is controlled by the JTAG agent as
follows:

1. User writes to ASI_overlap_register in TCU (reg R/W by JTAG and SW) to
enable single step for any particular core(s), through the JTAG interface to
OpenSPARC T2.

2. User issues a JTAG command to do a Single Step (TAP_single_step)

3. TCU parks all threads to the core(s) enabled for single step by deasserting
core_running[7:0] to the core(s).

4. All threads indicate they are parked via core_running_status[7:0] to TCU.
Chapter 3 Debug 3-47

5. TCU asserts tcu_ss_mode to the core(s).

6. TCU asserts core_running[7:0] for all enabled threads to the core. The thread or
threads will not unpark at this time because the single step mode control is
asserted. At this point the physical core is in single step mode.

7. TCU pulses tcu_ss_request for one CMP clk.

8. Each enabled thread gets unparked and will fetch/execute a single instruction
(all unparked threads single step in parallel) and will park again. The TLU will
redirect fetch for a single instruction for each unparked thread. These
instructions will flow through the pipe. When all threads have quiesced
(execution and write back have completed and the store buffers are empty) and
parked, the core(s) will pulse spc_ss_complete.

9. TCU sets a bit in a TBD register visible to JTAG indicating Single Step done.

10. User reads this register through JTAG to know that Single Step done.

11. For a sequence of N single steps, execute steps 2:10 N-1 times

12. User issues a TAP_CLOCK_HSTOP to hard stop the core(s) that were single
stepped.

Note – Hard stop can be used because the cores that were being single stepped have
all threads parked/idle, so can be hard stopped.

13. User issues a TAP_Serial_scan instruction to the core(s) that were hard stopped
to serially scan out the contents of the core non-destructively (by using the scan
loopback scheme).

14. After examining the contents of the core regs this way, user issues a
TAP_CLOCK_START command to the core(s) that were hard stopped.

15. User writes to ASI_overlap_register to put the core(s) back to normal mode of
operation.

16. User reads the ASI_Overlap_register to know that core(s) have been put back to
normal mode.

17. User issues a TAP_STOP_SINGLE_STEP command to TCU to get the core(s)
out of single step mode.

18. TCU deasserts core_running[7:0] to the core(s).

19. Core(s) indicate all threads parked on core_running_status[7:0] to TCU.

20. TCU deasserts tcu_ss_mode to the core(s) taking the core(s) out of single step
mode.
3-48 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

21. TCU unparks enabled threads by asserting respective bits in core_running[7:0]
bus.

22. Core resumes execution on all enabled threads in normal mode.

Note – Data integrity may be lost unless all cores are run in single step in unison.

3.4.5 Disable Overlap Mode Signals (and Usage Model)
JTAG agent can enter into disable overlap mode at any time without stopping core
clocks, but in order to enter into the disable overlap mode at a precise point and
have knowledge of the state of the core at that point, the JTAG agent will typically
initiate a soft stop based on some specific core debug event (e.g. Instruction VA
Watchpoint), in response to which TCU will stop the clock so that JTAG agent can
scan out the core to determine state of the core before the disable overlap sequence.
After that, putting a physical core in disable overlap mode sequence is controlled by
the JTAG agent as follows:

1. User writes to Asi_overlap_register in TCU (reg R/W by JTAG and SW) to
enable disable overlap for any particular core(s), through the JTAG interface to
OpenSPARC T2.

2. User writes to Counter in TCU (could be same as the one to be used for cycle
stepping) to program a count of cycles that TCU is going to the run the cores in
disable overlap mode.

3. User issues a JTAG command to do a Disable Overlap (TAP_disable_overlap).

4. TCU parks all threads to the core(s) enabled for disable overlap by deasserting
core_running[7:0] to the core(s).

5. All threads indicate they are parked via core_running_status[7:0] to TCU.

6. TCU asserts tcu_do_mode to the core(s).

7. TCU asserts core_running[7:0] to the core(s), unparking all the enabled threads
in the core(s).

8. Core(s) keep running in disable overlap mode. The TLU will redirect fetch of a
single instruction for each unparked thread. These instructions will flow
through the pipe. When a given thread has quiesced (execution and write back
have completed and the store buffers are empty), the TLU will redirect fetch of
a single instruction for that thread.

9. TCU counter decrements to zero indicating end of disable overlap.

10. TCU parks all threads by deasserting core_running[7:0] to the core(s).
Chapter 3 Debug 3-49

11. Core(s) indicate all threads parked on core_running_status[7:0] to TCU.

12. TCU sets a bit in a TBD register visible to JTAG indicating Disable Overlap
done.

13. User reads this register to know that Disable Overlap done.

14. User issues a TAP_CLOCK_HSTOP to hard stop the core(s) that were disable
overlapped. Note that hard stop can be used because the cores that were being
disable overlapped have all threads parked/idle, so can be hard stopped.

15. User issues a TAP_Serial_scan instruction to the core(s) that were hard stopped
to serially scan out the contents of the core non-destructively (by using the scan
loopback scheme).

16. after examining the contents of the core regs this way, user issues a
TAP_CLOCK_START command to the core(s) that were hard stopped.

17. TCU turns on the clocks to the core(s) that were hard stopped.

18. User writes to ASI_overlap_register to put the core(s) back to normal mode of
operation.

19. User reads the ASI_Overlap_register to know that core(s) have been put back to
normal mode.

20. User issues a TAP_STOP_DISABLE_OVERLAP command to TCU to get the
core(s) out of disable overlap mode.

21. TCU deasserts tcu_do_mode to the core(s) taking the core(s) out of disable
overlap mode.

22. TCU unparks enabled threads by asserting respective bits in core_running[7:0]
bus.

23. Core resumes execution on all enabled threads in normal mode.

Note – Data integrity may be lost unless all cores are run in single step in unison.
3-50 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

3.5 Debug Block Interface Signals
TABLE 3-7 Debug Block Interface Signals

Signal Name I/O Size From/
To

Clk Dmn Description

DMU

dmu_ncu_wrack_ vld I 1 DMU iol2clk CSR Wr Ack from DMU to NCU

dmu_ncu_wrack_tag[3:0] I 4 DMU iol2clk CSR Wr Tag [3:0] from DMU to NCU

dmu_ncu_data[31:0] I 32 DMU iol2clk CSR read data from DMU to NCU

dmu_ncu_vld I 1 DMU iol2clk CSR Data return valid from DMU to
NCU

dmu_ncu_stall I 1 DMU iol2clk Stall asserted by DMU to NCU

dmu_sii_hdr_vld I 1 DMU iol2clk DMU requesting to send DMA/Pio
Read return/Interrupt packet to SII

dmu_sii_reqbypass I 1 DMU iol2clk DMU requesting to send packet to
bypass queue of SII

dmu_sii_datareq I 1 DMU iol2clk DMU requesting to send packet
w/data to SII

dmu_sii_datareq16 I 1 DMU iol2clk DMU requesting to send packet w/16B
only

dmu_sii_data[127:0] I 128 DMU iol2clk Packet from DMU to SII

dmu_sii_be[15:0] I 16 DMU iol2clk Packet byte enables from DMU to SII

dbg1_dmu_stall O 1 DMU iol2clk Request to stall/quiesce DMU -> NCU
and DMU -> SII interfaces

dmu_dbg1_stall_ack I 1 DMU iol2clk Ack from DMU indicating DMU ->
NCU and DMU -> SII interfaces have
quiesced

dbg1_dmu_resume O 1 DMU iol2clk Request to resume packets on DMU ->
NCU and DMU -> SII interfaces

dmu_dbg0_debug_bus_a[7:0] I 8 DMU iol2clk Debug Bus A from DMU to DBG0

dmu_dbg0_debug_bus_b[7:0] I 8 DMU iol2clk Debug Bus B from DMU to DBG0

dmu_dbg1_err_event I 1 DMU iol2clk An error event occurred in DMU

PEU

peu_mio_debug_bus_a[7:0] I 8 PEU pcl2clk Debug Bus A from PEU to MIO
Chapter 3 Debug 3-51

peu_mio_debug_bus_b[7:0] I 8 PEU pcl2clk Debug Bus B from PEU to MIO

peu_mio_debug_clk I 1 PEU Clock PEU clock to be sent out on Debug port

NIU

niu_ncu_vld I 1 NIU iol2clk CSR Data return/Interrupt valid from
NIU to NCU

niu_ncu_data[31:0] I 32 NIU iol2clk CSR data/ Interrupt packet from NIU
to NCU

niu_ncu_stall I 1 NIU iol2clk Stall asserted by NIU to NCU

niu_sii_hdr_vld I 1 NIU iol2clk NIU requesting to send packet to SII

niu_sii_reqbypass I 1 NIU iol2clk NIU requesting to send packet to
bypass queue of SII

niu_sii_datareq I 1 NIU iol2clk NIU requesting to send packet w/data
to SII

niu_sii_data[127:0] I 128 NIU iol2clk Packet from NIU to SII

niu_sio_dq I 1 NIU iol2clk flow control or credit return signal
from NIU to SIO

niu_mio_debug_clock[1:0] I 2 NIU Clock Up to two clocks that
niu_dbg_debug_data[31:0] reference

niu_mio_debug_data[31:0] I 32 NIU different NIU debug port signals, coming from
up to two different NIU clk domains

dbg1_niu_stall O 1 NIU iol2clk Request to stall/quiesce NIU -> NCU
and NIU -> SII interfaces

niu_dbg1_stall_ack I 1 NIU iol2clk Ack from NIU indicating NIU -> NCU
and NIU -> SII interfaces have
quiesced

dbg1_niu_resume O 1 NIU iol2clk Request to resume packets on NIU ->
NCU and NIU -> SII interfaces

mio_niu_io2x_clk_ext O 1 NIU Clock Ext NIU clock to NIU from MIO

dbg1_niu_dbg_sel[4:0] O 5 NIU static NIU Debug port select from DBG1

MCU 0

mcu0_dbg1_rd_req_in_0[3:0] I 4 MCU 0 iol2clk Read Request from L2 bank 0 to MCU
0 (id + valid)

mcu0_dbg1_rd_req_in_1[3:0] I 4 MCU 0 iol2clk Read Request from L2 bank 1 to MCU
0 (id + valid)

TABLE 3-7 Debug Block Interface Signals (Continued)

Signal Name I/O Size From/
To

Clk Dmn Description
3-52 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

mcu0_dbg1_rd_request_out[4:0] I 5 MCU 0 iol2clk Read ack from MCU to L2 bank 0 or 1
(id + valid + dest_L2_bank)

mcu0_dbg1_wr_req_in_0 I 1 MCU 0 iol2clk Write req valid from L2 bank 0

mcu0_dbg1_wr_req_in_1 I 1 MCU 0 iol2clk Write req valid from L2 bank 1

mcu0_dbg1_wr_req_out[1:0] I 2 MCU 0 iol2clk 0,1,2,3 Writes completed to DRAM

mcu0_dbg1_mecc_err I 1 MCU 0 iol2clk MCU 0 has detected an mecc error on a
L2 read or scrub

mcu0_dbg1_secc_err I 1 MCU 0 iol2clk MCU 0 has detected a secc error on a
L2 read or scrub

mcu0_dbg1_fbd_err I 1 MCU 0 iol2clk MCU 0 has detected a fbdimm channel
error

mcu0_dbg1_err_mode I 1 MCU 0 iol2clk Fbdimm interface logic of MCU 0 has
gone into error handling mode. This
bit stays on until error handling
complete.

mcu0_dbg1_err_event I 1 MCU 0 iol2clk An error event occurred in MCU 0

MCU 1

mcu1_dbg1_rd_req_in_0[3:0] I 4 MCU 1 iol2clk Read Request from L2 bank 0 to MCU
1 (id + valid)

mcu1_dbg1_rd_req_in_1[3:0] I 4 MCU 1 iol2clk Read Request from L2 bank 1 to MCU
1 (id + valid)

mcu1_dbg1_rd_request_out[4:0] I 5 MCU 1 iol2clk Read ack from MCU 1 to L2 bank 0 or
1 (id + valid + dest_L2_bank)

mcu1_dbg1_wr_req_in_0 I 1 MCU 1 iol2clk Write req valid from L2 bank 0

mcu1_dbg1_wr_req_in_1 I 1 MCU 1 iol2clk Write req valid from L2 bank 1

mcu1_dbg1_wr_req_out[1:0] I 2 MCU 1 iol2clk 0,1,2,3 Writes completed at DRAM

mcu1_dbg1_mecc_err I 1 MCU 1 iol2clk MCU 1 has detected an mecc error on a
L2 read or scrub

mcu1_dbg1_secc_err I 1 MCU 1 iol2clk MCU 1 has detected a secc error on a
L2 read or scrub

mcu1_dbg1_fbd_err I 1 MCU 1 iol2clk MCU 1 has detected a fbdimm channel
error

mcu1_dbg1_err_mode I 1 MCU 1 iol2clk Fbdimm interface logic of MCU 1 has
gone into error handling mode. This
bit stays on until error handling
complete.

TABLE 3-7 Debug Block Interface Signals (Continued)

Signal Name I/O Size From/
To

Clk Dmn Description
Chapter 3 Debug 3-53

mcu1_dbg1_err_event I 1 MCU 1 iol2clk An error event occurred in MCU 1

MCU 2

mcu2_dbg1_rd_req_in_0[3:0] I 4 MCU 2 iol2clk Read Request from L2 bank 0 to MCU
2 (id + valid)

mcu2_dbg1_rd_req_in_1[3:0] I 4 MCU 2 iol2clk Read Request from L2 bank 1 to MCU
2 (id + valid)

mcu2_dbg1_rd_request_out[4:0] I 5 MCU 2 iol2clk Read ack from MCU 2 to L2 bank 0 or
1 (id + valid + dest_L2_bank)

mcu2_dbg1_wr_req_in_0 I 1 MCU 2 iol2clk Write req valid from L2 bank 0

mcu2_dbg1_wr_req_in_1 I 1 MCU 2 iol2clk Write req valid from L2 bank 1

mcu2_dbg1_wr_req_out[1:0] I 2 MCU 2 iol2clk 0,1,2,3 Writes completed at DRAM

mcu2_dbg1_mecc_err I 1 MCU 2 iol2clk MCU 2 has detected an mecc error on a
L2 read or scrub

mcu2_dbg1_secc_err I 1 MCU 2 iol2clk MCU 2 has detected a secc error on a
L2 read or scrub

mcu2_dbg1_fbd_err I 1 MCU 2 iol2clk MCU 2 has detected a fbdimm channel
error

mcu2_dbg1_err_mode I 1 MCU 2 iol2clk Fbdimm interface logic of MCU 2 has
gone into error handling mode. This
bit stays on until error handling
complete.

mcu2_dbg1_err_event I 1 MCU 2 iol2clk An error event occurred in MCU 2

MCU 3

mcu3_dbg1_rd_req_in_0[3:0] I 4 MCU 3 iol2clk Read Request from L2 bank 0 to MCU
3 (id + valid)

mcu3_dbg1_rd_req_in_1[3:0] I 4 MCU 3 iol2clk Read Request from L2 bank 1 to MCU
3 (id + valid)

mcu3_dbg1_rd_request_out[4:0] I 5 MCU 3 iol2clk Read ack from MCU 3 to L2 bank 0 or
1 (id + valid + dest_L2_bank)

mcu3_dbg1_wr_req_in_0 I 1 MCU 3 iol2clk Write req valid from L2 bank 0

mcu3_dbg1_wr_req_in_1 I 1 MCU 3 iol2clk Write req valid from L2 bank 1

mcu3_dbg1_wr_req_out[1:0] I 2 MCU 3 iol2clk 0,1,2,3 Writes completed at DRAM

mcu3_dbg1_mecc_err I 1 MCU 3 iol2clk MCU 3 has detected an mecc error on a
L2 read or scrub

TABLE 3-7 Debug Block Interface Signals (Continued)

Signal Name I/O Size From/
To

Clk Dmn Description
3-54 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

mcu3_dbg1_secc_err I 1 MCU 3 iol2clk MCU 3 has detected a secc error on a
L2 read or scrub

mcu3_dbg1_fbd_err I 1 MCU 3 iol2clk MCU 3 has detected a fbdimm channel
error

mcu3_dbg1_err_mode I 1 MCU 3 iol2clk Fbdimm interface logic of MCU 3 has
gone into error handling mode. This
bit stays on until error handling
complete.

mcu3_dbg1_err_event I 1 MCU 3 iol2clk An error event occurred in MCU 3

SII

sii_dbg1_l2t0_req[1:0] I 2 SII l2clk Req type encoded on 2 bits from sii to
L2t 0
(00: no request, 01: RDD, 10: WRI, 11:
WR8)

sii_dbg1_l2t1_req[1:0] I 2 SII l2clk Req type encoded on 2 bits from sii to
L2t 1
(00: no request, 01: RDD, 10: WRI, 11:
WR8)

sii_dbg1_l2t2_req[1:0] I 2 SII l2clk Req type encoded on 2 bits from sii to
L2t 2
(00: no request, 01: RDD, 10: WRI, 11:
WR8)

sii_dbg1_l2t3_req[1:0] I 2 SII l2clk Req type encoded on 2 bits from sii to
L2t 3
(00: no request, 01: RDD, 10: WRI, 11:
WR8)

sii_dbg1_l2t4_req[1:0] I 2 SII l2clk Req type encoded on 2 bits from sii to
L2t 4
(00: no request, 01: RDD, 10: WRI, 11:
WR8)

sii_dbg1_l2t5_req[1:0] I 2 SII l2clk Req type encoded on 2 bits from sii to
L2t 5
(00: no request, 01: RDD, 10: WRI, 11:
WR8)

sii_dbg1_l2t6_req[1:0] I 2 SII l2clk Req type encoded on 2 bits from sii to
L2t 6
(00: no request, 01: RDD, 10: WRI, 11:
WR8)

TABLE 3-7 Debug Block Interface Signals (Continued)

Signal Name I/O Size From/
To

Clk Dmn Description
Chapter 3 Debug 3-55

sii_dbg1_l2t7_req[1:0] I 2 SII l2clk Req type encoded on 2 bits from sii to
L2t 7
(00: no request, 01: RDD, 10: WRI, 11:
WR8)

L2t [7:0]

l2t0_dbg1_sii_iq_dequeue I 1 L2t 0 l2clk L2t 0 dequeue from IQ

l2t1_dbg1_sii_iq_dequeue I 1 L2t 1 l2clk L2t 1 dequeue from IQ

l2t2_dbg1_sii_iq_dequeue I 1 L2t 2 l2clk L2t 2 dequeue from IQ

l2t3_dbg1_sii_iq_dequeue I 1 L2t 3 l2clk L2t 3 dequeue from IQ

l2t4_dbg1_sii_iq_dequeue I 1 L2t 4 l2clk L2t 4 dequeue from IQ

l2t5_dbg1_sii_iq_dequeue I 1 L2t 5 l2clk L2t 5 dequeue from IQ

l2t6_dbg1_sii_iq_dequeue I 1 L2t 6 l2clk L2t 6 dequeue from IQ

l2t7_dbg1_sii_iq_dequeue I 1 L2t 7 l2clk L2t 7 dequeue from IQ

l2t0_dbg1_sii_wib_dequeue I 1 L2t 0 l2clk L2t 0 dequeue from IOWB

l2t1_dbg1_sii_wib_dequeue I 1 L2t 1 l2clk L2t 1 dequeue from IOWB

l2t2_dbg1_sii_wib_dequeue I 1 L2t 2 l2clk L2t 2 dequeue from IOWB

l2t3_dbg1_sii_wib_dequeue I 1 L2t 3 l2clk L2t 3 dequeue from IOWB

l2t4_dbg1_sii_wib_dequeue I 1 L2t 4 l2clk L2t 4 dequeue from IOWB

l2t5_dbg1_sii_wib_dequeue I 1 L2t 5 l2clk L2t 5 dequeue from IOWB

l2t6_dbg1_sii_wib_dequeue I 1 L2t 6 l2clk L2t 6 dequeue from IOWB

l2t7_dbg1_sii_wib_dequeue I 1 L2t 7 l2clk L2t 7 dequeue from IOWB

l2t0_dbg1_err_event I 1 L2t 0 l2clk An Error event occurred in l2t 0

l2t1_dbg1_err_event I 1 L2t 1 l2clk An Error event occurred in l2t 1

l2t2_dbg1_err_event I 1 L2t 2 l2clk An Error event occurred in l2t 2

l2t3_dbg1_err_event I 1 L2t 3 l2clk An Error event occurred in l2t 3

l2t4_dbg1_err_event I 1 L2t 4 l2clk An Error event occurred in l2t 4

l2t5_dbg1_err_event I 1 L2t 5 l2clk An Error event occurred in l2t 5

l2t6_dbg1_err_event I 1 L2t 6 l2clk An Error event occurred in l2t 6

l2t7_dbg1_err_event I 1 L2t 7 l2clk An Error event occurred in l2t 7

l2t0_dbg1_pa_match I 1 L2t 0 l2clk A PA match detected in l2t 0

l2t1_dbg1_pa_match I 1 L2t 1 l2clk A PA match detected in l2t 1

TABLE 3-7 Debug Block Interface Signals (Continued)

Signal Name I/O Size From/
To

Clk Dmn Description
3-56 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

l2t2_dbg1_pa_match I 1 L2t 2 l2clk A PA match detected in l2t 2

l2t3_dbg1_pa_match I 1 L2t 3 l2clk A PA match detected in l2t 3

l2t4_dbg1_pa_match I 1 L2t 4 l2clk A PA match detected in l2t 4

l2t5_dbg1_pa_match I 1 L2t 5 l2clk A PA match detected in l2t 5

l2t6_dbg1_pa_match I 1 L2t 6 l2clk A PA match detected in l2t 6

l2t7_dbg1_pa_match I 1 L2t 7 l2clk A PA match detected in l2t 7

l2t0_dbg1_xbar_vcid[5:0] I 6 L2t 0 L2clk VCID[5:0] from Xbar to L2t 0

l2t1_dbg1_xbar_vcid[5:0] I 6 L2t 1 L2clk VCID[5:0] from Xbar to L2t 1

l2t2_dbg1_xbar_vcid[5:0] I 6 L2t 2 L2clk VCID[5:0] from Xbar to L2t 2

l2t3_dbg1_xbar_vcid[5:0] I 6 L2t 3 L2clk VCID[5:0] from Xbar to L2t 3

l2t4_dbg1_xbar_vcid[5:0] I 6 L2t 4 L2clk VCID[5:0] from Xbar to L2t 4

l2t5_dbg1_xbar_vcid[5:0] I 6 L2t 5 L2clk VCID[5:0] from Xbar to L2t 5

l2t6_dbg1_xbar_vcid[5:0] I 6 L2t 6 L2clk VCID[5:0] from Xbar to L2t 6

l2t7_dbg1_xbar_vcid[5:0] I 6 L2t 7 L2clk VCID[5:0] from Xbar to L2t 7

L2b[7:0]

l2b0_dbg1_sio_ctag_vld I 1 L2b 0 l2clk Ctag valid from L2b 0 to SIO

l2b1_dbg1_sio_ctag_vld I 1 L2b 1 l2clk Ctag valid from L2b 1 to SIO

l2b2_dbg1_sio_ctag_vld I 1 L2b 2 l2clk Ctag valid from L2b 2 to SIO

l2b3_dbg1_sio_ctag_vld I 1 L2b 3 l2clk Ctag valid from L2b 3 to SIO

l2b4_dbg1_sio_ctag_vld I 1 L2b 4 l2clk Ctag valid from L2b 4 to SIO

l2b5_dbg1_sio_ctag_vld I 1 L2b 5 l2clk Ctag valid from L2b 5 to SIO

l2b6_dbg1_sio_ctag_vld I 1 L2b 6 l2clk Ctag valid from L2b 6 to SIO

l2b7_dbg1_sio_ctag_vld I 1 L2b 7 l2clk Ctag valid from L2b 7 to SIO

l2b0_dbg1_sio_ack_type I 1 L2b 0 l2clk Read or Wr ack from L2b 0 to SIO

l2b1_dbg1_sio_ack_type I 1 L2b 1 l2clk Read or Wr ack from L2b 1 to SIO

l2b2_dbg1_sio_ack_type I 1 L2b 2 l2clk Read or Wr ack from L2b 2 to SIO

l2b3_dbg1_sio_ack_type I 1 L2b 3 l2clk Read or Wr ack from L2b 3 to SIO

l2b4_dbg1_sio_ack_type I 1 L2b 4 l2clk Read or Wr ack from L2b 4 to SIO

l2b5_dbg1_sio_ack_type I 1 L2b 5 l2clk Read or Wr ack from L2b 5 to SIO

l2b6_dbg1_sio_ack_type I 1 L2b 6 l2clk Read or Wr ack from L2b 6 to SIO

TABLE 3-7 Debug Block Interface Signals (Continued)

Signal Name I/O Size From/
To

Clk Dmn Description
Chapter 3 Debug 3-57

l2b7_dbg1_sio_ack_type I 1 L2b 7 l2clk Read or Wr ack from L2b 7 to SIO

l2b0_dbg1_sio_ack_dest I 1 L2b0 l2clk Read or Wr ack dest (NIU/DMU) from
L2b 0 to SIO

l2b1_dbg1_sio_ack_dest I 1 L2b1 l2clk Read or Wr ack dest (NIU/DMU) from
L2b 1 to SIO

l2b2_dbg1_sio_ack_dest I 1 L2b2 l2clk Read or Wr ack dest (NIU/DMU) from
L2b 2 to SIO

l2b3_dbg1_sio_ack_dest I 1 L2b3 l2clk Read or Wr ack dest (NIU/DMU) from
L2b 3 to SIO

l2b4_dbg1_sio_ack_dest I 1 L2b4 l2clk Read or Wr ack dest (NIU/DMU) from
L2b 4 to SIO

l2b5_dbg1_sio_ack_dest I 1 L2b5 l2clk Read or Wr ack dest (NIU/DMU) from
L2b 5 to SIO

l2b6_dbg1_sio_ack_dest I 1 L2b6 l2clk Read or Wr ack dest (NIU/DMU) from
L2b 6 to SIO

l2b7_dbg1_sio_ack_dest I 1 L2b7 l2clk Read or Wr ack dest (NIU/DMU) from
L2b 7 to SIO

TCU

tcu_mio_dmo_data[39:0] I 39 TCU L2clk
/1,2,4,8,1
6

DMO data from TCU to MIO

tcu_mio_dmo_sync I 1 TCU L2clk/1,
2,4,8,16

DMO Sync from TCU to MIO

tcu_mio_mbist_done I 1 TCU L2clk
/10

Membist done from TCU to MIO

tcu_mio_mbist_fail I 1 TCU L2clk/
10

Membist fail from TCU to MIO

tcu_mio_jtag_membist_ mode I 1 TCU Static Membist mode from TCU to MIO

tcu_mio_pins_scan_out[31:0] I 32 TCU 100 – 200
MHz
(tester)

Scan out pins during manufacturing
scan

mio_tcu_io_aclk O 1 TCU 100 – 200
MHz
(tester)

A clock during manufacturing scan

mio_tcu_io_bclk O 1 TCU 100 – 200
MHz
(tester)

B clock during manufacturing scan

TABLE 3-7 Debug Block Interface Signals (Continued)

Signal Name I/O Size From/
To

Clk Dmn Description
3-58 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

mio_tcu_io_scan_en O 1 TCU 100 – 200
MHz
(tester)

Scan Enduring manufacturing scan

mio_tcu_io_ac_test_mode O 1 TCU static AC Testmode

mio_tcu_io_ac_testtrig O 1 TCU 100 – 200
MHz
(tester)

AC TestTrig

mio_tcu_io_scan_in[31:0] O 32 TCU 100 – 200
MHz
(tester)

Scan in pins during manufacturing
scan

dbg1_tcu_soc_hard_stop O 1 TCU Iol2clk Hard Stop request to TCU from SoC

dbg1_tcu_soc_asrt_trigout O 1 TCU Iol2clk Assert TRIGOUT request to TCU from
SoC

MIO

dbg1_mio_drv_imped[1:0] O 2 MIO Static MIO driver impedance control

dbg1_mio_imped_mon O 1 MIO Static Independent monitoring on/off for
IMPED_MON_PU, IMPED_MON_PD
pins in OpenSPARC T2.

mio_dbg1_testmode I 1 MIO static Dedicated test mode pin for
manufacturing scan

dbg1_mio_dbg_dq[165:0] O 166 MIO L2clk/2 OpenSPARC T2 Debug port signals
from dbg1

dbg_mio_dbg_ck0 O 1 MIO Clock OpenSPARC T2 debug port clock, now
generated in MIO

dbg1_mio_drv_en_op_only O 1 MIO Static Drive en to pins configured only as
debug port

dbg1_mio_drv_en_muxtest_ op O 1 MIO Static Drive en to pins configured both as
debug port and scan out[31:0] pins

dbg1_mio_drv_en_muxbist_ op O 1 MIO Static Drive en to pins configured both as
debug port and mbist output pins.

dbg1_mio_drv_en_muxtest_ inp O 1 MIO Static Drive en to pins configured as debug
port and testmode input pins

dbg0_mio_debug_bus_a[7:0] O 8 MIO iol2clk Debug Bus A from DBG0 to MIO

dbg0_mio_debug_bus_b[7:0] MIO iol2clk Debug Bus B from DBG0 to MIO

CCU

mio_ccu_cmp_clk_ext O 1 CCU Clock Ext CMP Clk to CCU from MIO

TABLE 3-7 Debug Block Interface Signals (Continued)

Signal Name I/O Size From/
To

Clk Dmn Description
Chapter 3 Debug 3-59

mio_ccu_dr_clk_ext O 1 CCU Clock Ext MCU/DRAM clock to CCU from
MIO

mio_ccu_io_clk_ext[11:0] O 12 CCU Clock Ext IO clk to CCU from MIO

io_cmp_sync_en I 1 CCU Sync _
en

I/O to cmp clk Sync en consumed by
both dbg0 and dbg1

cmp_io2x_sync_en I 1 CCU Sync _
en

Cmp to io2x clk Sync En consumed by
dbg1 and MIO

SPARCs [7:0]

spc0_dbg1_instr_cmt_ grp0[1:0] I 2 SPC0 L2clk Instruction Committed in Thread
Group 0 for SPC 0

spc0_dbg1_instr_cmt_ grp1[1:0] I 2 SPC0 L2clk Instruction Committed in Thread
Group 1 for SPC 0

spc1_dbg1_instr_cmt_ grp0[1:0] I 2 SPC1 L2clk Instruction Committed in Thread
Group 0 for SPC 1

spc1_dbg1_instr_cmt_ grp1[1:0] I 2 SPC1 L2clk Instruction Committed in Thread
Group 1 for SPC 1

spc2_dbg1_instr_cmt_ grp0[1:0] I 2 SPC2 L2clk Instruction Committed in Thread
Group 0 for SPC 2

spc2_dbg1_instr_cmt_ grp1[1:0] I 2 SPC2 L2clk Instruction Committed in Thread
Group 1 for SPC 2

spc3_dbg1_instr_cmt_ grp0[1:0] I 2 SPC3 L2clk Instruction Committed in Thread
Group 0 for SPC 3

spc3_dbg1_instr_cmt_ grp1[1:0] I 2 SPC3 L2clk Instruction Committed in Thread
Group 1 for SPC 3

spc4_dbg1_instr_cmt_ grp0[1:0] I 2 SPC4 L2clk Instruction Committed in Thread
Group 0 for SPC 4

spc4_dbg1_instr_cmt_ grp1[1:0] I 2 SPC4 L2clk Instruction Committed in Thread
Group 1 for SPC 4

spc5_dbg1_instr_cmt_ grp0[1:0] I 2 SPC5 L2clk Instruction Committed in Thread
Group 0 for SPC 5

spc5_dbg1_instr_cmt_ grp1[1:0] I 2 SPC5 L2clk Instruction Committed in Thread
Group 1 for SPC 5

spc6_dbg1_instr_cmt_ grp0[1:0] I 2 SPC6 L2clk Instruction Committed in Thread
Group 0 for SPC 6

spc6_dbg1_instr_cmt_ grp1[1:0] I 2 SPC6 L2clk Instruction Committed in Thread
Group 1 for SPC 6

TABLE 3-7 Debug Block Interface Signals (Continued)

Signal Name I/O Size From/
To

Clk Dmn Description
3-60 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

3.6 Debug Blocks (dbg0.v and dbg1.v)
To mitigate wiring congestion issues in OpenSPARC T2, the debug port logic,
checkpoint replay logic and SoC debug event logic will be distributed in two top
level modules called dbg0.v and dbg1.v. Dbg1 will be located closer to the middle of
the chip (close to EFU) as this module will receive signals from all different modules
on chip like spc0[7:0],l2t[7:0],l2b[7:0],mcu[3:0],tcu,ncu and sii. While dbg0 will be
receiving the repeatability wires from DMU and NIU and will be located closer to
those modules. This will have a progressive muxing effect on the debug port signals
which will distribute the wires more uniformly over the chip mitigating wiring
congestion.

spc7_dbg1_instr_cmt_ grp0[1:0] I 2 SPC7 L2clk Instruction Committed in Thread
Group 0 for SPC 7

spc7_dbg1_instr_cmt_ grp1[1:0] I 2 SPC7 L2clk Instruction Committed in Thread
Group 1 for SPC 7

NCU

ncu_dbg1_error_event I 1 NCU Iol2clk An Error event occurred in NCU
(covers some errors in SoC blocks like
NIU,DMU,MCU,SII,SIO)

ncu_dbg1_stall I 1 NCU Iol2clk NCU back Pressure control signal to
Dbg

ncu_dbg1_vld I 1 NCU Iol2clk NCU to Dbg UCB data valid

ncu_dbg1_data[3:0] I 4 NCU Iol2clk NCU to Dbg UCB data bus

dbg_ncu1_stall O 1 NCU Iol2clk Dbg back pressure control signal to
NCU

dbg_ncu1_vld O 1 NCU Iol2clk Dbg to NCU UCB data valid

dbg_ncu1_data[3:0] O 1 NCU Iol2clk Dbg to NCU UCB data

RST

rst_mio_rst_state[4:0] I 5 RST Sys clk Reset State to MIO

TABLE 3-7 Debug Block Interface Signals (Continued)

Signal Name I/O Size From/
To

Clk Dmn Description
Chapter 3 Debug 3-61

Following are the functions performed by the dbg0.v block:

Converts signals coming from DMU and NIU for the repeatability mode to debug
port width of 166 wires @ 2xiol2clk (700 MHz nominal). This is done through rate
conversion logic shown later in the document.

Drives the resultant 166 wide bus to dbg1.v

Following are the functions performed by the dbg1.v block:

Drives and samples several manufacturing test related signals when Debug Port
is disabled. Also drives MemBIST signals when debug port is disabled.

Responds to CSR read/write requests from NCU in accordance to UCB protocol.
For this purpose it supports a 4 bit UCB interface with NCU which is identical to
NCU's UCB interface with RST module.

Hosts I/O mapped CSR to control I/O quiescing of NIU and DMU interfaces to
complement Checkpoint/Replay debug feature for OpenSPARC T2.
Communicates with NIU and DMU to control quiescing of NIU->SII,SIO,NCU
and DMU->SII,SIO,NCU interfaces for checkpoint/replay.

Hosts I/O mapped SoC DECR register to assert Hard Stop or pulse TRIGOUT
request to TCU based on various SoC debug events.

Hosts I/O mapped CSR to configure debug port in any one of five modes.
Generates mux select s to mio.sv to select between NIU debug mode, PCI_EX
debug mode and OpenSPARC T2 Repeatability/Tester Charac mode/SoC Jobs
mode.

Converts signals coming from rest of the chip for Tester charac/cpu debug mode
of debug port and SoC observability mode of debug port to debug port width of
166 wires @ 2xiol2clk (700 MHz nominal). This is done through rate conversion
logic shown later in the document.

Muxes signals coming from dbg0.v (repeatability signals: 166 wires) with the
tester charac/CPU debug mode and SoC obs mode signals and drives the 166
wire debug port bus to mio.sv at a data rate of 2xiol2clk (700 MHz nominal).
3-62 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

FIGURE 3-7 DBG0 and DBG1 in OpenSPARC T2 Floorplan
Chapter 3 Debug 3-63

3.6.1 OpenSPARC T2 Debug Port
OpenSPARC T2 debug port width is defined by 166 signals for repeatability to
complement Checkpoint/Replay. When not being used to monitor the repeatability
signals (Repeatability), the port will get used to monitor various other signals in
OpenSPARC T2 in four different modes: SoC Observability, Tester charac/CPU
debug, PCI_EX debug, and NIU Debug.

These modes are programmable by SW by writing to the OpenSPARC T2 Debug Port
Configuration register. In modes other than the NIU debug mode and PCI_EX debug
modes, the debug port will be driven @ 2 x iol2clk frequency (2 x 350 MHz = 700
MHz nominal), with iol2clk being sent out on DBG_CK0 pin to the LA for sampling
and aligning the data. In essence this is equivalent to data being driven on both
edges of iol2clk. Commercially available LA's do have the ability to support DDR
signal sampling with the LA currently being able to support a max of 900 MHz DDR
(both edges of 450 MHz clk). OpenSPARC T2's debug port will employ double
pumping CMOS signals @ 1.1 V and will not need to meet the timing and skew
specs associated with traditional Memory multi-drop DDR2 interfaces. Also the LA
probes will be connector less thereby reducing the load on the debug port drivers.

As mentioned before, the debug port pins will be shared with manufacturing scan
test and memBIST signals so that with the debug ports disabled, some of these pins
can be used for manufacturing scan and MemBIST of OpenSPARC T2. The muxing
of the debug port signals with the manufacturing scan test and memBIST signals
will happen in the I/O cell itself in the mio.v block.

Upon chip reset, the debug port will come up disabled thereby saving power on the
I/Os. The debug port can be enabled by writing to the Debug_en bit of the Debug
Port Configuration Register (either by SW or by JTAG CREGs access). The effect of
the write will take place immediately and not after the next warm reset.

The muxing of the debug signals in OpenSPARC T2 on the debug port and also
muxing of the debug port signals with the manufacturing scan test signals,
memBIST signals and other miscellaneous signals is shown in FIGURE 3-8.

The I/Os in OpenSPARC T2 debug port can be thus broadly classified as falling
under five categories:

I/Os which are shared between debug port and memBIST signals that are outputs.
For this group of signals, the Drive_en to the I/Os will get generated as:

assign dbg_mio_drv_en_muxbist_op = debug_en | tcu_dbg_jtag_memBIST_mode;

I/Os which are shared between debug port and Manufacturing Scan test signals
that are outputs. For this group of signals, the Drive_en to the I/Os will get
generated as follows:

assign dbg_mio_drv_en_muxtest_op = debug_en | mio_dbg_testmode;
3-64 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

I/Os which are shared between debug port and Manufacturing Scan test signals
that are inputs. For this group of signals, the Drive_en to the I/Os will get generated
as follows:

assign dbg_mio_drv_en_muxtest_inp = debug_en & ~mio_dbg_testmode;

I/Os which are always driven as outputs in the debug mode. For this group of
signals, the Drive_en to the I/Os will get generated as follows:

assign dbg_mio_drv_en_op_only = debug_en.

Where “debug_en” is “Debug_En” bit in Debug Port Config register.

Legend: 2x {bus} implies twice the data contained in {bus} gets driven out on debug
port on every io2xclk cycle x (bus} implies half the data contained in {bus} gets
driven out on debug port on every io2xclk cycle, with the other half following in the
next io2xclk cycle.

FIGURE 3-8 OpenSPARC T2 Debug Port layout across DBG0,DBG1 and MIO
Chapter 3 Debug 3-65

FIGURE 3-9 Rate Conversion from iol2clk to io2xclk
3-66 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

FIGURE 3-10 Rate Conversion from l2clk to io2xclk
Chapter 3 Debug 3-67

3-68 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

TABLE 3-8 Mapping

Name Field Description

000: SoC
Observability

165: 160
155:0

{rst_mio_rst_state[5:0],4'b0,
2x(sii_dbg1_l2t7_req[1:0],l2t7_dbg1_sii_iq_dequeue,l2t7_dbg1_sii_wib_dequeue,
l2b7_dbg1_sio_ctag_vld,l2b7_dbg1_sio_ack_type, l2b7_dbg1_sio_ack_dest,
sii_dbg1_l2t6_req[1:0],l2t6_dbg1_sii_iq_dequeue,l2t6_dbg1_sii_wib_dequeue,
l2b6_dbg1_sio_ctag_vld, l2b6_dbg1_sio_ack_type, l2b6_dbg1_sio_ack_dest,
sii_dbg1_l2t5_req[1:0],l2t5_dbg1_sii_iq_dequeue, l2t5_dbg1_sii_wib_dequeue,
l2b5_dbg1_sio_ctag_vld, l2b5_dbg1_sio_ack_type, l2b5_dbg1_sio_ack_dest,
sii_dbg1_l2t4_req[1:0],l2t4_dbg1_sii_iq_dequeue, 2t4_dbg1_sii_wib_dequeue,
l2b4_dbg1_sio_ctag_vld, l2b4_dbg1_sio_ack_type, l2b4_dbg1_sio_ack_dest,
sii_dbg1_l2t3_req[1:0],l2t3_dbg1_sii_iq_dequeue, l2t3_dbg1_sii_wib_dequeue,
dbg0_dbg1_l2b3_sio_ctag_vld, dbg0_dbg1_l2b3_sio_ack_type,
dbg0_dbg1_l2b3_sio_ack_dest,
sii_dbg1_l2t2_req[1:0],dbg0_dbg1_l2t2_sii_iq_dequeue,
dbg0_dbg1_l2t2_sii_wib_dequeue, dbg0_dbg1_l2b2_sio_ctag_vld,
dbg0_dbg1_l2b2_sio_ack_type, dbg0_dbg1_l2b2_sio_ack_dest,
sii_dbg1_l2t1_req[1:0],l2t1_dbg1_sii_iq_dequeue,l2t1_dbg1_sii_wib_dequeue,
dbg0_dbg1_l2b1_sio_ctag_vld,dbg0_dbg1_l2b1_sio_ack_type,
dbg0_dbg1_l2b1_sio_ack_dest, sii_dbg1_l2t0_req[1:0],
dbg0_dbg1_l2t0_sii_iq_dequeue, dbg0_dbg1_l2t0_sii_wib_dequeue,
dbg0_dbg1_l2b0_sio_ctag_vld, dbg0_dbg1_l2b0_sio_ack_type,
dbg0_dbg1_l2b0_sio_ack_dest),
2'b0,
(

mcu0_dbg1_rd_req_in_0[3:0],mcu0_dbg1_rd_req_in_1[3:0],mcu0_dbg1_rd_req_out[
4:0],
mcu0_dbg1_wr_req_in_0,mcu0_dbg1_wr_req_in_1,mcu0_dbg1_wr_req_out[1:0],mc
u0_dbg1_mecc_err,
mcu0_dbg1_secc_err,mcu0_dbg1_fbd_err,mcu0_dbg1_err_mode,mcu1_dbg1_rd_req
_in_0[3:0],mcu1_dbg1_rd_req_in_1[3:0],
mcu1_dbg1_rd_req_out[4:0],mcu1_dbg1_wr_req_in_0, mcu1_dbg1_wr_req_in_1,
mcu1_dbg1_wr_req_out[1:0],mcu1_dbg1_mecc_err, mcu1_dbg1_secc_err,
mcu1_dbg1_fbd_err, mcu1_dbg1_err_mode, mcu2_dbg1_rd_req_in_0[3:0],
mcu2_dbg1_rd_req_in_1[3:0],mcu2_dbg1_rd_req_out[4:0],mcu2_dbg1_wr_req_in_0,
mcu2_dbg1_wr_req_in_1,mcu2_dbg1_wr_req_out[1:0],mcu2_dbg1_mecc_err,
mcu2_dbg1_secc_err, mcu2_dbg1_fbd_err, mcu2_dbg1_err_mode,
mcu3_dbg1_rd_req_in_0[3:0],
mcu3_dbg1_rd_req_in_1[3:0],mcu3_dbg1_rd_req_out[4:0],
mcu3_dbg1_wr_req_in_0,mcu3_dbg1_wr_req_in_1, mcu3_dbg1_wr_req_out[1:0],
mcu3_dbg1_mecc_err,mcu3_dbg1_secc_err,mcu3_dbg1_fbd_err,mcu3_dbg1_err_mo
de) }
Chapter 3 Debug 3-69

001: Tester
Charac/CPU
Debug

159:0 {6'b0,
2x (spc7_dbg1_instr_cmt_grp1[1:0],spc7_dbg1_instr_cmt_grp[1:0],
spc6_dbg1_instr_cmt_grp1[1:0], spc6_dbg1_instr_cmt_grp[1:0],
spc5_dbg1_instr_cmt_grp1[1:0],spc5_dbg1_instr_cmt_grp0[1:0],
spc4_dbg1_instr_cmt_grp1[1:0], spc4_dbg1_instr_cmt_grp0[1:0],
spc3_dbg1_instr_cmt_grp1[1:0],spc3_dbg1_instr_cmt_grp0[1:0],
dbg0_dbg1_spc2_instr_cmt_grp1[1:0], dbg0_dbg1_spc2_instr_cmt_grp0[1:0],
spc1_dbg1_instr_cmt_grp1[1:0], spc1_dbg1_instr_cmt_grp0[1:0],
dbg0_dbg1_spc0_instr_cmt_grp1[1:0], dbg0_dbg1_spc0_instr_cmt_grp0[1:0],
l2t7_dbg1_xbar_vcid[5:0], l2t6_dbg1_xbar_vcid[5:0],
l2t5_dbg1_xbar_vcid[5:0],l2t4_dbg1_xbar_vcid[5:0],
l2t3_dbg1_xbar_vcid[5:0],dbg0_dbg1_l2t2_xbar_vcid[5:0],
l2t1_dbg1_xbar_vcid[5:0],dbg0_dbg1_l2t0_xbar_vcid[5:0])
}

010:
Repeatability

165:0 {
x (niu_ncu_vld,niu_ncu_data[31:0],niu_ncu_stall,

niu_sii_hdr_vld,niu_sii_reqbypass, niu_sii_datareq, niu_sio_dq,niu_sii_data[127:0]),
x (dmu_ncu_data_fnl[11:0],dmu_ncu_wrack_vld,

dmu_ncu_wrack_tag[3:0],dmu_ncu_stall, dmu_sii_hdr_vld,
dmu_sii_reqbypass,dmu_sii_datareq, dmu_sii_datareq16,
dmu_sii_be[15:0],dmu_sii_data[127:0])
}
where, dmu_ncu_data_fnl[11:0] = 1/3
{{dmu_ncu_vld_r,dmu_ncu_data_r[10:0],dmu_ncu_vld_r,dmu_ncu_data_r[21:11],
dmu_ncu_vld_r, 1'b0,dmu_ncu_data_r[31:22]}

TABLE 3-8 Mapping (Continued)

Name Field Description
3-70 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

3.6.2 CSR Block in Debug.v
The CSR block in debug.v will host the OpenSPARC T2 Debug port Config register,
the OpenSPARC T2 I/O Quiesce Control register and the SOC DECR register. These
registers are all defined in Debug Appendix. This module will be operating at iol2clk
frequency and will communicate with NCU, TCU, DMU and NIU.

011:
CORE_SoC
debug

149:86
82:0

{ 16'b0,
2x
(spc7_dbg1_instr_cmt_grp1[1:0],spc7_dbg1_instr_cmt_grp0[1:0],spc6_dbg1_instr_c
mt_grp1[1:0],spc6_dbg1_instr_cmt_grp0[1:0],spc5_dbg1_instr_cmt_grp1[1:0],spc5_d
bg1_instr_cmt_grp0[1:0],spc4_dbg1_instr_cmt_grp1[1:0],spc4_dbg1_instr_cmt_grp0[
1:0],spc3_dbg1_instr_cmt_grp1[1:0],spc3_dbg1_instr_cmt_grp0[1:0],dbg0_dbg1_spc2
_instr_cmt_grp1[1:0],dbg0_dbg1_spc2_instr_cmt_grp0[1:0],spc1_dbg1_instr_cmt_gr
p1[1:0],spc1_dbg1_instr_cmt_grp0[1:0],dbg0_dbg1_spc0_instr_cmt_grp1[1:0],dbg0_
dbg1_spc0_instr_cmt_grp0[1:0]),
3'b0,
x (dmu_ncu_data_fnl[11:0],dmu_ncu_wrack_vld,

dmu_ncu_wrack_tag[3:0],dmu_ncu_stall, dmu_sii_hdr_vld,
dmu_sii_reqbypass,dmu_sii_datareq, dmu_sii_datareq16,
dmu_sii_be[15:0],dmu_sii_data[127:0])
}
where, dmu_ncu_data_fnl[11:0] = 1/3 {{dmu_ncu_vld_r,dmu_ncu_data_r[10:0],
dmu_ncu_vld_r, dmu_ncu_data_r[21:11], dmu_ncu_vld_r,
1'b0,dmu_ncu_data_r[31:22]}

100: NIU
Debug

157:124 165:158 : dont care
157:124 :
{niu_mio_debug_data[31:0], niu_mio_debug_clock[1:0]}

123:0 : dont care

101: PCI_EX
Debug

123:9182:0 123:91 :
{dbg0_mio_debug_bus_a_r[7:0],dbg0_mio_debug_bus_b_r[7:0],
peu_mio_debug_bus_a[7:0],peu_mio_debug_bus_b[7:0],peu_mio_debug_clk}
82:0 :
x (dmu_ncu_data_fnl[11:0],dmu_ncu_wrack_vld,

dmu_ncu_wrack_tag[3:0],dmu_ncu_stall, dmu_sii_hdr_vld,
dmu_sii_reqbypass,dmu_sii_datareq, dmu_sii_datareq16,
dmu_sii_be[15:0],dmu_sii_data[127:0])
}
where, dmu_ncu_data_fnl[11:0] = 1/3
{{dmu_ncu_vld_r,dmu_ncu_data_r[10:0],dmu_ncu_vld_r,dmu_ncu_data_r[21:11],
dmu_ncu_vld_r, 1'b0,dmu_ncu_data_r[31:22]}

TABLE 3-8 Mapping (Continued)

Name Field Description
Chapter 3 Debug 3-71

It will have a four bit standard UCB interface with NCU similar to the UCB interface
between NCU and RST and NCU and TCU. It will be able to respond to CSR
read/write requests on this UCB interface from the NCU initiated either by the
SPARCs or JTAG (CREG access from TCU).

With respect to TCU, it will have a a pair of signals: dbg_tcu_soc_hard_stop and
dbg_tcu_soc_asrt_trigout to request hard stop and TRIGOUT pulsing respectively
due to occurrence of some SoC debug event. The SoC debug event sampling logic
will be working at iol2clk frequency. So all debug events that arrive at l2clk
frequency as pulses (e.g. L2 PA matches) will need to be synchronized to a iol2clk
pulse before being sampled @ iol2clk (first 0 to 1 transition). All debug events that
come as levels either at iol2clk or l2clk will be sampled @ iol2clk (first 0 to 1
transition). All debug events that come as pulses in iol2clk domain will also be
sampled @ iol2clk (first 0 to 1 transition). Then the result of the sampling logic for all
the respective debug events will get Ored and based on what is programmed in SOC
DECR register, will pulse either dbg_tcu_soc_hard_stop or dbg_tcu_soc_asrt_trigout
for one iol2clk cycle. If there is a request for hard stop and TRIGOUT assertion both
in the same iol2clk cycle, both wires will be pulsed simultaneously to TCU for one
iol2clk cycle.

With respect to NIU and DMU it will support separate interfaces to control I/O
quiescing of NIU and DMU individually to complement checkpoint replay.

3.7 Debug Appendix

3.7.1 Checkpoint Sequence (SW-HW interaction)
prior to booting OS:

====================

reserve at least half of system DRAM for checkpoint code/dump

enable timer tick interrupts on all threads

to take checkpoint:

===================

tick interrupt jumps into hypervisor code on each thread (this will happen at approx.
the same time on all threads as ticks are synchronized).
3-72 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

each thread does following sparcv9 state dump:

dump ARF/FRF

dump trap/pstate regs

dump hpriv state regs

dump global regs

dump MMU config regs

dump scratch regs

dump interrupt pending register

write local regs into scratch regs so we can reuse %l's

one thread from each core dumps the ITLB and DTLB

** master thread stalls IO DMA

all threads jump into spin loop waiting for others to arrive

**wait for pending DMA to complete

master thread dumps all active pages of dram (can make this multiple threads to
save time). Active pages are tagged using software tricks to minimize how much
dumping is required.

do debug init sequence - see below

**enable DMA

restore local regs

restore scratch regs

all threads jump into spin loop waiting for others to arrive

program tick compare to time of next checkpoint

retry back into normal execution

The following is required to get all the flops in the core blocks in a known state.
Careful alignment of code and reset handler is required to ensure allocation in
caches is predictable. All code from reset vector to dram refresh should hit in i$, to
avoid repeatability problems. If we plan to reset the MCU and use self refresh mode,
we'll make sure the whole reboot sequence is in the l2/l1$ before the reset.

debug init sequence:
Chapter 3 Debug 3-73

====================

halt all threads except master

put l2$ into direct mapped mode

clear VUAD bits.

flush l2$ (implies l1$ flush too)

**dump NCU interrupt state to memory.

Wait 1 microsec for all pending MCU transactions to complete to memory (The
worst case time to flush 16 writes in each MCU if no reads are present is about 660
ns)

**initiate debug reset - assume short enough to not drop excessive DRAM

refreshes - or use self refresh if we reset the MCU

** ..reboot out of dram/l2...

** write MCU refresh counters

go back to 16 way l2$ mode

** ..restore hpriv regs from saved area

** ..execute done to get back to where we were

** reload regs from dumped state that we cleared by reset (full list TBD)

** reload NCU regs.

** Probe all NIU interrupt sources and poke interrupt into NCU or cores for all
dropped interrupts.

debug port info:

================

debug port dumps NIU and PCI-ex traffic to pins

sync point is deemed to be the end of the debug reset. thus we need to be able to
observe the end of the debug reset on an external pin somehow.

clock alignment:

================
3-74 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

OpenSPARC T1 debug init ensures a known clock alignment. Need to prove
OpenSPARC T2 reset scheme will do the same, unless clocks alignment is always the
same for given ratio

3.7.2 SW Visible State Lost on Debug Reset
TABLE 3-10 shows all the SW visible registers in the synchronous portion of
OpenSPARC T2 (excluding PCI-EX and NIU blocks) that will maintain their value
over “debug_reset”.

TABLE 3-9 State that Loses Value over debug_reset (excluding NIU and PCI_EX)

Name Fields POR WMR/DBR

PSTATE TCT 0 (Trap on control
transfer)

0 (Trap on control transfer)

PSTATE MM 0 (TSO) 0 (TSO)

PSTATE RED 0 (RED_state bit is in
HPSTATE register)

0 (RED_state bit is in HPSTATE
register)

PSTATE PEF 1 (FPU on) 1 (FPU on)

PSTATE AM 0 (Full 64-bit addresses) 0 (Full 64-bit addresses)

PSTATE PRIV 0 (Hyperpriviledged
mode)

0 (Hyperpriviledged mode)

PSTATE IE 0 (Disable interrupts) 0 (Disable interrupts)

PSTATE AG 0 (Alternate globals
always 0)

0 (Alternate globals always 0)

PSTATE CLE 0 (Current not little
endian)

0 (Current not little endian)

PSTATE TLE 0 (Trap not little endian) 0 (Trap not little endian)

PSTATE IG 0 (Interrupt globals
always 0)

0 (Interrupt globals always 0)

PSTATE MG 0 (MMU globals always 0) 0 (MMU globals always 0)

HPSTATE IBE 0 (Instruction breakpoint
disabled)

0 (Instruction breakpoint disabled)

HPSTATE RED 1 (RED_state) 1 (RED_state)

HPSTATE HPRIV 1 (Hyperprivileged mode) 1 (Hyperprivileged mode)

HPSTATE TLZ 0 (TLZ traps disabled) 0 (TLZ traps disabled)

TT[TL TT[TL 1 1
Chapter 3 Debug 3-75

TPC[TL]
TnPC[TL]

TPC[TL]
TnPC[TL]

Unknown
Unknown

PC
nPC

TL TL MAXTL MAXTL

GL GL MAXGL MAXGL

TSTATE[TL GL Unknown Unknown

TSTATE[TL CCR Unknown Unknown

TSTATE[TL] ASI Unknown Unknown

TSTATE[TL PSTATE Unknown Unknown

TSTATE[TL CWP Unknown Unknown

HTSTATE[TL] IBE Unknown Unknown

HTSTATE[TL] RED Unknown Unknown

HTSTATE[TL] HPRIV Unknown Unknown

HTSTATE[TL] TLZ Unknown Unknown

TICK NPT 1 1

TICK Counter Unknown Count

PERF_CONTROL (PCR) all 0 (off) 0 (off)

PERF_COUNTER (PIC) 0 0

ASI_CWQ_HEAD 0 0

ASI_CWQ_TAIL 0 0

ASI_CWQ_FIRST 0 0

ASI_CWQ_CSR 0 0

ASI_SPU_MA_CTL 0 0

ASI_SPU_MA_PA 0 0

ASI_SPU_MA_NP 0 0

ASI_INST_MASK_REG 0 0

ASI_LSU_DIAG_REG 0 0

ASI_ERROR_INJECT_REG 0 0

ASI_LSU_CONTROL_REG 0 0

ASI_DECR 0 0

ASI_CERER 0 0

ASI_CETER 0 0

TABLE 3-9 State that Loses Value over debug_reset (excluding NIU and PCI_EX) (Continued)

Name Fields POR WMR/DBR
3-76 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

ASI_SPARC_PWR_MGMT 0 0

ASI_IMMU_TAG_TARGET 0 0

ASI_IMMU_SFSR 0 0

ASI_IMMU_TAG_ACCESS 0 0

L2 Error Injection Reg 0 0

L2 Error En Reg 0 0

DRAM Error Injection Reg 0 0

SSI Timeout Reg 0x800000 0x800000

L2 Control Reg 0x1 0x1

L2 Diag Data X X

L2 Diag Tag X X

L2 Diag VD X X

L2 Diag UA X X

L2 Bist control reg 0 0

SPARC Bist Control Reg 0 0

NCU Core running RW Reg 0 0

NCU L2 Bank Enable Reg Bank_avail Bank_avail

NCU L2 Index Hash Enable 0 0

NCU PCIE LinkA Mem32
Addr Offset Base

0 0

NCU PCIE LinkA Mem32
Addr Offset Mask

0 0

NCU PCIE LinkA Mem64
Domain Addr Base

0 0

NCU PCIE LinkA Mem64
Domain Addr Mask

0 0

NCU PCIE LinkA IOConfig
Domain Addr Base

0 0

NCU PCIE LinkA IOConfig
Domain Addr Mask

0 0

NCU PCIE Link A Flush 0 0

TABLE 3-9 State that Loses Value over debug_reset (excluding NIU and PCI_EX) (Continued)

Name Fields POR WMR/DBR
Chapter 3 Debug 3-77

3.7.3 Registers to Support Debug

3.7.3.1 Debug Port Configuration Register

This register is used to enable and configure the debug port in any one of six modes.
It is located in debug.v module at location 0x86-0000-0000. The format of this
register is shown in:TABLE 3-11

TABLE 3-10 Debug Port Configuration Register

Field Bit Position POR Value R/W Description

IMP_CTRL 63:62 0x0
Preserved on
WMR/DBR

R/W MIO Driver Impedance Control.
11: Strong Driver
10: Nominal Driver
01: Weak Driver
00: Low Power Driver

IMPED_MON_EN 61 0
Preserved on
WMR/DBR

R/W Impedence monitoring on/off for
IMPED_MON_PU, IMPED_MON_PD
pins in OpenSPARC T2.
1 : on
0 : off

RSVD 60:10 0x0 RO Reserved, Read as 0.

NIU_DBG_SEL 9:5 0x0
Preserved on
WMR/DBR

R/W NIU debug select bits ,sent out on
dbg1_niu_dbg_sel[4:0] wires

Debug_Train 4 0x0
Preserved on
WMR/DBR

R/W When set to 1, enables Training for
Debug port in modes 000,001, 010 and
011

Debug_Conf 3:1 0
Preserved on
WMR/DBR

R/W Debug Port Configuration
000 : SoCSoC Observability
001 : Tester Charac/CPU debug
010 : Repeatability
011 : CORE_SOC debug
100 : NIU Debug
101 : PCI_EX Debug
110 – 111 : Reserved

Debug_En 0 0
Preserved on
WMR/DBR

R/W When set to 1, enables debug port
drivers
3-78 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

3.7.3.2 RESET_GEN Register

The reset generation register, TABLE 3-12, is provided to allow software to generate
XIR resets to all processors specified in the ASI_XIR_STEERING register or a chip
wide warm or debug reset.

3.7.3.3 RESET_SOURCE Register

The reset source register, TABLE 3-13, allows software to identify the source of a reset.
The bits in this register are write-one to clear.

TABLE 3-11 Reset Generation Register RESET_GEN (0x89-0000-0808)

Field Bit Position Initial Value R/W Description

RSVD0 63:4 0 RO Reserved

DBR_GEN 3 0 R/W Set to one to generate Debug Reset.
Value is automatically cleared once the
DBR is complete.

RSVD1 2 0 RO Reserved (was POR_GEN on Fire).

XIR_GEN 1 0 R/W Set to one to generate a XIR. Value is
automatically cleared once the XIR is
complete.

WMR_GEN 0 0 R/W Set to one to generate a WMR. Value is
automatically cleared once the WMR is
complete.

TABLE 3-12 Reset Source Register RESET_SOURCE (0x89-0000-0818)

Field Bits Reset Name Reset
Value

Type

RSVD0 63:8 0 RO Reserved

DBR_GEN 7 0 R/W1C Software wrote a 1 to the DBR_GEN
field of the RESET_GEN register.

FATAL 6 0 R/W1C The L2 cache detected a fatal error.

PB_XIR 5 0 R/W1C The user asserted the BUTTON_XIR_
input pin.

PB_RST 4 0 R/W1C The user asserted the PB_RST_ input
pin.

POR 3 1 R/W1C The system processor asserted the POR_
input pin
Chapter 3 Debug 3-79

3.7.3.4 ASI_WMR_VEC_MASK Register

All physical cores share a hyperprivileged, read/write ASI_WMR_VEC_MASK
register located as ASI 0x45, VA 0x18. Reserved bits read as zero and are ignored on
write. The contents of this register are preserved across warm reset and debug reset.
This register will be physically located in the NCU block (ncu.sv). The format of the
register is shown in TABLE 3-14.:

3.7.3.5 MCU Channel Read Latency Register

This register is at location 0x84_0000_08B8. The format is shown in TABLE 3-15.

RSVD1 2 0 RO Reserved (was POR_GEN on Fire).

XIR_GEN 1 0 R/W1C Software wrote a 1 to the XIR_GEN field
of the RESET_GEN register.

WMR_GEN 0 0 R/W1C Software wrote a 1 to the WMR_GEN
field of the RESET_GEN register.

TABLE 3-13 ASI_WMR_VEC_MASK Reg Format

Field Bit Position Initial Value R/W Description

RSVD 63:1 0 RO Reserved

VEC_MASK 0 0 R/W If `1', trap to 0x0000000000000020
instead of 0xFFFFFFFFF0000020.
Value preserved across warm reset and
debug reset.

TABLE 3-14 MCU Channel Read latency Register Format

Field Bit Position Initial Value R/W Description

RSVD 63:32 0 RO Reserved

LATENCY1 31:16 0xFFFF RW Read Latency For Channel 1. Determined
during polling state.

LATENCY0 15:0 0xFFFF RW Read Latency For Channel 0. Determined
during polling state.

TABLE 3-12 Reset Source Register RESET_SOURCE (0x89-0000-0818)

Field Bits Reset Name Reset
Value

Type
3-80 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

3.7.3.6 MCU Sync Frame Frequency Register

This register is at location 0x84_0000_08B0. The format is shown in TABLE 3-16.

3.7.3.7 Subsystem Reset Register

The subsystem reset generation register, is provided to allow software to reset
selected IO subsystems. This register is located at (0x89-0000-0838).

TABLE 3-15 MCU Sync Frame Frequency Register

Field Bit Position Initial Value R/W Description

RSVD 63:6 0 RO Reserved

FREQ 5:0 0x2A RW Frequency at which Sync frames are
issued on the FBDIMM channels.

TABLE 3-16 Subsystem Reset Register

Field Bit Position Initial Value R/W Description

RSVD1 63:5 0 RO Reserved

RSVD0 3:2 0 RO Reserved

DMU_LINK_
TRAIN

1 0 R/W Set to one to have the DMU cause a link
reset training sequence. Value is
automatically cleared once the XIR is
complete.

NIU 0 0 R/W Set to one to generate a warm reset to
the Ethernet subsystem, both ingress
and egress. Value is automatically
cleared once the WMR is complete.
Chapter 3 Debug 3-81

3.7.3.8 I/O Quiesce Control Register

This register is used by SW to quiesce I/O to SII and NCU blocks in OpenSPARC T2
from NIU and PCI_EX blocks. It is located in debug.v module at location
0x86-0000-0008. The format of this register is shown in TABLE 3-18:

3.7.3.9 Core DECR Register

All strands of a physical OpenSPARC T2 core share a hyperprivileged, read/write,
Debug Event Control Register located at ASI 0x45, VA 0x8. The DECR controls the
stop type (hard or soft) or a trigger pin for an associated event if that event occurs.
The format of the Core DECR is described in TABLE 3-19.

TABLE 3-17 I/O Quiesce Control Register Format

Field Bit Position POR Value R/W Description

RSVD 63:4 0x0 RO Reserved

NIU_STALL_ DONE 3 X RO Status bit set to 1 when NIU stall
complete.
Cleared by hardware when NIU_STALL
cleared from 1 to 0 by SW.

DMU_STALL_DON
E

2 X RO Status bit set to 1 when DMU stall
complete.
Cleared by hardware when DMU_STALL
cleared from 1 to 0 by SW.

NIU_STALL 1 0
Preserved
across
WMR/DBR

R/W When set to 1, causes NIU traffic to stall.
When cleared to 0 from 1, causes NIU
traffic to resume.

DMU_STALL 0 0
Preserved
across
WMR/DBR

R/W When set to 1, causes DMU traffic to
stall.
When cleared to 0 from 1, causes DMU
traffic to resume.

TABLE 3-18 ASI_DECR Format

Field Bits Reset Name

63:62 IWA_DE Instruction breakpoint match debug event enable

61:60 IVA_DE Instruction virtual address match debug event enable

59:58 DVA_DE Data virtual address match debug event enable

57:56 DPA_DE Data physical address match debug event enable
3-82 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

Bits 63:62 control what type of stop occurs if an instruction watchpoint occurs on
any strand. (Each strand has independent control over instruction breakpoints via
it's HPSTATE.IBE register). Remaining bit pairs in the table similarly control their
associated event.

There are two bits in the DECR for each event type. Each pair of bits in the DECR
encode the type of stop for that event as shown in TABLE 3-20.

55:54 TCT_DE Trap on Control Transfer debug event enable

53:52 PE_DE Precise error event (an event which will be recorded in the
I-SFSR or D-SFSR) debug event enable

51:50 DE_DE Disrupting error event (an event which will be recorded in the
DESR) debug event enable

49:48 DF_DE Deferred error event (an event which will be recorded in the
DFESR) debug event enable

47:46 PM_DE Performance monitor event which causes a performance counter
to wrap debug event enable

45:0 - Reserved

TABLE 3-19 ASI_DECR bit-pair settings to achieve Debug

DECR event enable bit pair settings, bit i+1:i Response if debug event occurs

00 Debug event disabled

01 Soft-stop

10 Hard-stop

11 Pulse trigger pin

TABLE 3-18 ASI_DECR Format (Continued)

Field Bits Reset Name
Chapter 3 Debug 3-83

3.7.3.10 SoC DECR Register

All SoC Debug events will share a read/write, SoC Debug Event Control Register
located at address 0x86-0000-0010. The SOC DECR controls hard stop or a trigger pin
assertion for an associated event if that event occurs. The format of the SOC DECR is
described in TABLE 3-21. This register will be physically located in the Debug block
(debug.v).

Thus there are two bits in the SOC_DECR for each event type. Each pair of bits in
the SOC_DECR encode the type of stop for that event as shown in TABLE 3-22.

TABLE 3-20 SOC_DECR Format

Data Bits Field name Remarks

63:22 - Reserved

21:20 SE_DE SoC Error (SII, SIO, NCU, DMU, PEU) Debug Event Enable

19:18 ME_DE MCU Error Debug Event Enable

17:16 L2E_DE L2 Error Debug Event Enable

15:14 L2B7_DE L2 PA Match Bank 7 Debug Event Enable

13:12 L2B6_DE L2 PA Match Bank 6 Debug Event Enable

11:10 L2B5_DE L2 PA Match Bank 5 Debug Event Enable

9:8 L2B4_DE L2 PA Match Bank 4 Debug Event Enable

7:6 L2B3_DE L2 PA Match Bank 3 Debug Event Enable

5:4 L2B2_DE L2 PA Match Bank 2 Debug Event Enable

3:2 L2B1_DE L2 PA Match Bank 1 Debug Event Enable

1:0 L2B0_DE L2 PA Match Bank 0 Debug Event Enable

TABLE 3-21 ASI_DECR Bit-pair Settings to achieve Debug

DECR event enable bit pair settings, bit i+1:i Response if debug event occurs

00 Debug event disabled

01 Debug event disabled

10 Hard-stop

11 Pulse trigger pin
3-84 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

3.7.3.11 L2 Mask Register

This register will be located at address 0xAF-0000-0000 within l2t.sv. The format is as
shown in TABLE 3-23.

3.7.3.12 L2 Compare Register

This register will be located at 0xBF-0000-0000 within l2t.sv. The format is as shown
inTABLE 3-24.

TABLE 3-22 L2 Mask reg Format

Field Bit Position Initial Value R/W Description

RSVD 63:52 0 RO Read as Zero

TTYPE[3:0] 51:48 Preserved R/W Transaction Type

RSVD1 47:46 0 RO Read as Zero

VCID[5:0] 45:40 Preserved R/W Virtual Core ID.

RSVD2 39:34 0 RO Read as Zero

ADDR[33:2] 33:2 Preserved R/W Corresponds to addr[33:2]

RSVD4 1:0 0 RO Read as Zero

TABLE 3-23 L2 Compare Reg Format

Field Bit Position Initial Value R/W Description

RSVD 63:52 0 RO Read as Zero

TTYPE[3:0] 51:48 Preserved R/W Transaction Type

RSVD1 47:46 0 RO Read as Zero

VCID[5:0] 45:40 Preserved R/W Virtual Core ID.

RSVD2 39:34 0 RO Read as Zero

ADDR[33:2] 33:2 Preserved R/W Corresponds to addr[33:2]

RSVD4 1:0 0 RO Read as Zero
Chapter 3 Debug 3-85

3.7.3.13 DMU Core and Block Interrupt Enable Register

This register is at address (0x00631800/0x0). It will host the Debug_trig_en bit for
DMU and PEU errors.

3.7.3.14 DRAM Debug Trigger Enable Register

Each DRAM controller has a register that contains the Debug_Trig_En for all the
errors detected by that DRAM controller (Esc, mecc and fbdimm channel errors).The
register is located at address (0x97-0000-0230) in mcu.sv. The format of this register
is shown in TABLE 3-26.

TABLE 3-24 DMU Core and Block Interrupt Enable register Format

Field Bit Position Initial Value R/W Description

DMU 63 0x0 R/W The enable bit to enable all operations
from the DMU which will cause an
interrupt via mondo 62. 1 = Core Level
interrupt is enabled, 0 Core Level
interrupt is disabled

DEBUG_TRIG_EN 62 0x0 R/W DEBUG_TRIG_EN for PCI_EX Errors.

Reserved 61:2 - RO Reserved

MMU 1 0x0 R/W The enable bit to enable all operations
from the MMU which will cause an
interrupt via mondo 62. 1 = Block Level
interrupt is enabled, 0 = Block Level
interrupt is disabled.

IMU 0 0x0 R/W The enable bit to enable all operations
from the IMU which will cause an
interrupt via mondo 62. 1 = Block Level
interrupt is enabled, 0 = Block Level
interrupt is disabled.
3-86 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

3.7.3.15 NCU Debug Trigger Enable Register

The NCU has a register to contain the Debug_Trig_en for all the SoC errors logged in
SoC Error Status Register in NCU (ncu.sv). This register is located at address
0x80_0000_4000. The format of this register is as follows:

TABLE 3-25 DRAM Debug Trigger Enable Register

Field Bit Position Initial Value R/W Description

RSVD 63:3 0x0 R/W Reserved

DEBUG_TRIG_EN 2 0x0 R/W DEBUG_TRIG_EN for DRAM Controller
Errors

MASK_ERR 1 0x0 on POR,
preserved on
WMR/DBR

R/W If set to 1, MCU mask all the errors it
normally detects on LFSR mismatches
on ALERT frame patterns coming in
from AMB.

KP_LNK_UP 0 0x0 on POR,
preserved on
WMR/DBR

R/W When written to 1'b1:
(i) Keeps the Southbound Links enabled
during the duration of the Debug reset
to send out the sync pulses.
(ii) selects the output of the sync pulse
gen logic in the new MCU control
module to generate sync pulses.
When written to 1'b0:
(i) selects the output of the regular sync
pulse gen logic in MCU
(ii) clears the counter for the regular
sync pulse gen logic in MCU.
(iii) takes MCU fbdimm interface state
machine to L0 state, where it is ready to
dispatch new read/write requests to the
DIMMs.

TABLE 3-26 NCU Debug Trigger Enable Register

Field Bit Position Initial Value R/W Description

RSVD 63:1 0x0 RO Reserved

DEBUG_TRIG_EN 0 0x0 R/W DEBUG_TRIG_EN for SoC Error Status
Register Errors
Chapter 3 Debug 3-87

3.7.3.16 L2 Error Enable Register

This register contains the DEBUG_TRIG_EN bit for L2 errors. In addition it also
contains the trigger enable for PA & VCID match. It is located at address
0xAA-0000-0000 or 0xBA-0000-0000 in l2t.sv and the format is as follows:

3.7.3.17 ASI_OVERLAP_MODE Register

All physical cores share a hyperprivileged ASI_OVERLAP_MODE register located at
ASI 45, VA 0x10. The contents of the ASI_OVERLAP_MODE register are described
below. Reserved bits read as all zeroes and are ignored on write. Bits 15:0 is set to '0'
on POR.

TABLE 3-27 L2 Error Enable Register

Field Bit Position Initial Value R/W Description

RSVD 63:3 X RO Reserved

DEBUG_TRIG_EN_
ERR

2 0 RW DEBUG_TRIG_EN for L2 Errors

NCEEN 1 0 RW If set to 1, report uncorrectable errors.

CEEN 0 0 RW If set to 1, report correctable errors.

TABLE 3-28 ASI_OVERLAP_MODE Register

Field Bit Position Initial Value R/W Description

RSVD 63:16 0 RO Reserved

OVLP_7 15:14 0 R/W Overlap control for physical core 7 as
follows:
0x - Normal operation
10 - Disable overlap
11 - Single-step

OVLP_6 13:12 0 R/W Overlap control for physical core 6 as
follows:
0x - Normal operation
10 - Disable overlap
11 - Single-step

OVLP_5 11:10 0 R/W Overlap control for physical core 5 as
follows:
0x - Normal operation
10 - Disable overlap
11 - Single-step
3-88 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

3.7.3.18 PEU Debug Select A Register

The PEU debug select register selects the output on PEU debug bus A.

OVLP_4 9:8 0 R/W Overlap control for physical core 4 as
follows:
0x - Normal operation
10 - Disable overlap
11 - Single-step

OVLP_3 7:6 0 R/W Overlap control for physical core 3 as
follows:
0x - Normal operation
10 - Disable overlap
11 - Single-step

OVLP_2 5:4 0 R/W Overlap control for physical core 2 as
follows:
0x - Normal operation
10 - Disable overlap
11 - Single-step

OVLP_1 3:2 0 R/W Overlap control for physical core 1 as
follows:
0x - Normal operation
10 - Disable overlap
11 - Single-step

OVLP_0 1:0 0 R/W Overlap control for physical core 0 as
follows:
0x - Normal operation
10 - Disable overlap
11 - Single-step

TABLE 3-28 ASI_OVERLAP_MODE Register (Continued)

Field Bit Position Initial Value R/W Description
Chapter 3 Debug 3-89

3.7.3.19 PEU Debug Select B Register

The PEU debug select register selects the output on PEU debug bus B.

TABLE 3-29 PEU Debug Select A Register (0x000683000/0x0)

Field Bit Position Initial Value R/W Description

RSVD 63:9 0x0 RO Reserved

BLOCK 8:6 0x0 R/W Block select in core
000b - Constant zero
001b - Training Sequence Selection
010b - ETL block
011b - ITL block
100b - PMC block
101b - RSB block
110b - CTB block
111b - CXPL core

MODULE 5:3 0x0 R/W Module select in block

SIGNAL 2:0 0x0 R/W Signal select in sub-block

TABLE 3-30 PEU Debug Select B Register (0x000683008/0x0)

Field Bit Position Initial Value R/W Description

RSVD 63:9 0x0 RO Reserved

BLOCK 8:6 0x0 R/W Block select in core
000b - Constant zero
001b - Training Sequence Selection
010b - ETL block
011b - ITL block
100b - PMC block
101b - RSB block
110b - CTB block
111b - CXPL core

MODULE 5:3 0x0 R/W Module select in block

SIGNAL 2:0 0x0 R/W Signal select in module
3-90 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

3.7.3.20 DMU Debug Select Register for DMU Debug Bus A

The DMU debug select register A selects the output on DMU debug bus A.

TABLE 3-31 DMU Debug Select A Register (0x000653000/0x0)

Field Bit Position Initial Value R/W Description

RSVD 63:10 0x0 RO Reserved

BLOCK 9:6 0x0 R/W DMU Block Debug Selects for DMU
Debug Bus A
0000 – All Zeroes
0001 – CLU Block Selects (cache Line
Unit)
0010 – CMU Block Selects (Context
Manager Unit)
0011 – CRU Block Selects (CSR Request
Unit)
0100 – DSN Block Selects
0101 – Training Sequence Select
0110 – ILU Block Selects (Interface Layer
Unit)
0111 – All Zeroes
1000 – All Zeroes
1001 – IMU Block Selects (Interrupt
Messenger Unit)
1010 – MMU Block Selects
1011 – PMU Block Selects
1100 – PSB Block Selects (Packet
Scoreboard unit)
1101 – RMU Block Selects (Record
Manager Unit)
1110 – TMU Block Selects (Transaction
Manager Unit)
1111 – TSB Block Selects (Transaction
Scoreboard Unit)

SUB_SEL 5:3 0x0 R/W Select the sub-block for DMU Debug Bus
A

SIGNAL_SEL 2:0 0x0 R/W Select the signals for DMU Debug Bus A
Chapter 3 Debug 3-91

3.7.3.21 DMU Debug Select Register for DMU Debug Bus B

The DMU debug select register selects the output on DMU debug bus B.

TABLE 3-32 DMU Debug Select B Register (0x000653008/0x0)

Field Bit Position Initial Value R/W Description

RSVD 63:10 0x0 RO Reserved

BLOCK 9:6 0x0 R/W DMU Block Debug Selects for DMU
Debug Bus B
0000 – All Zeroes
0001 – CLU Block Selects (cache Line
Unit)
0010 – CMU Block Selects (Context
Manager Unit)
0011 – CRU Block Selects (CSR Request
Unit)
0100 – DSN Block Selects
0101 – Training Sequence Select
0110 – ILU Block Selects (Interface Layer
Unit)
0111 – All Zeroes
1000 – All Zeroes
1001 – IMU Block Selects (Interrupt
Messenger Unit)
1010 – MMU Block Selects
1011 – PMU Block Selects
1100 – PSB Block Selects (Packet
Scoreboard unit)
1101 – RMU Block Selects (Record
Manager Unit)
1110 – TMU Block Selects (Transaction
Manager Unit)
1111 – TSB Block Selects (Transaction
Scoreboard Unit)

SUB_SEL 5:3 0x0 R/W Select the sub-block for DMU Debug Bus
B

SIGNAL_SEL 2:0 0x0 R/W Select the signals for DMU Debug Bus B
3-92 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

CHAPTER 4

Electronic Fuse Unit (EFU)

This chapter contains the following sections:

■ Overview

■ EFU Block Diagram

■ EFU Logical Implementation

■ Unit-Level Interface Signals

■ Miscellaneous/Multiple Clock Domains

■ eFuse Array Specification

4.1 Overview
The eFuse (electronic fuse) unit (EFU) contains an eFuse array macro (EFA), TCU
interface and an eFuse controller (FCT). In a broad sense, the eFuse array is a
non-volatile memory used to store information that needs to be programmed at the
factory and used in the field.

On OpenSPARCT2, EFA contains the following die specific information:

Redundant array repair information for the SRAMs

Serial ID of the chip

Working processor core IDs (core available information)

Working L2 bank information (bank available information)

SERDES bits

DMU delay calibration
4-1

The eFuse array is a 64 deep and 32 bit wide array. Each cell in the eFuse array
consists of poly fuses that replace traditional laser fuses. They can be programmed
to store any value by blowing them with an electrical pulse. The eFuse controller has
the logic to read and transfer data from EFA to on and off chip components. The
TCU interface consists of logic to handle all the TCK clock domain generated signals.

The eFuse unit has only limited knowledge of ways to interpret the data stored in
the array. Most of the time the payload data is just read and passed along with little
interpretation. This document will attempt to describe some of the data uses, to aid
users.

After the power on reset sequence, a state machine in FCT reads all the 64 entries of
the EFA (one at a time). If a valid (refer to TABLE 4-3) SRAM repair row is found, it is
shifted to the destination register. If no information is programmed into the EFA, no
information will be shifted to the destination registers. Read access to the eFuse
array is available at any point (other than during power up sequence) through
TCU(TAP controller). EFA can be programmed and read via private TAP
instructions. Moreover, after power on reset, data can be shifted through TCU to any
destination register overriding either the default value of the destination register or
the previously programmed value.

Main features of the eFuse unit:

The eFuse array is organized as 32 bits wide 64 entry array.

It supports a maximum of 59 SRAM repairs.

It stores three entries of chip ID information, 1 entry for core valid information, and
1 entry for L2 bank valid information.

It interfaces with TCU: TCU can program the EFA, read any entry in EFA, and
configure EFU in bypass mode to overwrite the destination register.

It interfaces with NCU to provide serial ID, core and L2 bank available information.

It interfaces with L1 cache (instruction and data) and L2 cache (tag and data). EFU
provides information to swap defective SRAM rows and columns with redundant
spares.

Access (programming and reading) to EFA is supported at various stages:

1. Before bump: through JTAG with Vpp laser pad.

2. At wafer level: through JTAG with Vpp bump.

3. At package: through JTAG with Vpp pins.

Writing to destination registers is done only through the JTAG port. Software
running on OpenSPARC T2 cannot program the destination registers (in SRAM or
NCU) or access EFU.
4-2 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

4.1.1 Definitions of Terms Used

TABLE 4-1 Terms

Abbreviations Expansions

EFU eFuse unit

EFA eFuse array

FCT eFuse controller

ICD L1 Instruction cache

DCD L1 Data cache

RID Logical sub bank ID in the SRAM

RV Repair value.
Chapter 4 Electronic Fuse Unit (EFU) 4-3

4.2 EFU Block Diagram

FIGURE 4-1 EFU Top Level Diagram

Efuse
array
(EFA)

TCU
interface

tcu_efc_rowaddr[6:0]

tcu_efc_coladdr[4:0]

tcu_efc_read_en

tcu_efc_read_mode[1:0]

tcu_efc_rowread_start

tcu_efc_rowfuse_bypass

tcu_efc_dest_sample

tck

tcu_efc_data_in

efc_tcu_data_out

tcu_efc_updatedr

tck_efc_capturedr

tck_efc_shiftdr

Efuse
control
(FCT)

vpp

io_vpp

io_prog_en

tcu_efc_read_mode[1:0]

efu_dest_xfer_en

efu_dest_clr

efu_dest_data

dest_efu_data

efu_tcu_scan_out

dest_efu_xfer_en
4-4 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

4.2.1 Unit Functional Description of EFU
The eFuse unit (EFU) contains:

■ eFuse array (EFA)

■ eFuse controller (FCT)

■ TCU interface

4.2.1.1 eFuse Array (EFA)

The eFuse array is a 64 deep and 32 bit wide array. Each cell in the eFuse array
consists of poly-fuse that replace a traditional laser fuse. Each cell can be
programmed to store any value by blowing the fuse with an electrical pulse.

Fuse data interpretation:

We assume that EFA consists of 64 rows with 32 bits each. Each entry consists of the
fields shown in TABLE 4-2.

The eFuse controller will use EFA bits[31:22]. EFA bits [21:0] will be interpreted and
used by hardware in the cluster associated with the destination register.

TABLE 4-2 Fields in the eFuse Array Data[31:0]

Bit position Number of bits Description of fields

31:29 3 Valid bits

28 1 Parity bit

27:22 6 Block ID of destination register

21:0 22 Data

TABLE 4-3 Truth Table of EFA Programmed Data

of valid bits
at logic “1”

Computed
parity = ^efa

bits [28:0]

Row valid Row error Action on read Interpretation

2 or 3 Logic 0 Y N Shift value to
destination
register

Programmed row with valid data
Chapter 4 Electronic Fuse Unit (EFU) 4-5

Note – If any of bits[28:0] cannot be programmed successfully, the valid bits are left
un-programmed and the desired data is programmed at another row address.

4.2.1.2 eFuse Controller (FCT)

An eFuse controller reads from the eFuse array and transfers data to on and/or
off-chip components. The eFuse controller hosts the following main sub blocks:

1. Clock generator

IO clock (iol2clk) is distributed within the eFuse unit. A pair of two phase (fuse_clk1
and fuse_clk2), non-overlapping IO clock (nominally 375 MHz) divided by four
signals are used to shift values into the destination registers. This block generates
shift clocks for each destination register.

The shift clocks are active only when data is shifting to any destination register.
Qualification with either ashift or dshift (refer to FIGURE 4-2) is necessary to ensure
that only the correct destination register is being addressed.

2. Address sequencer

The address sequencer is a 0 to 63 counter. It counts through all the entries of the
eFuse array. Its initial state consists of all zeroes (reset by POR).

TCU asserts tcu_efu_read_start which starts the counter operation. The counter
increments when the shift_done signal from the shift register is asserted. When a
new address is generated, it asserts the new_addr signal to the shift register. Upon
reaching the count of 63, the next shift_done signal results in asserting the
addr_done signal to power down the EFA.

3. Shift register

0 X N N Ignore A row which was not programmed
correctly or not used

1 X N Y Log error (NCU)
and ignore data

Programmed row where 1 or 2 valid
bits have flipped from their intended
values.

2 or 3 Logic 1 N Y Log error (NCU)
and ignore data

Programmed row where a EFA bit in
position [27:0] has flipped from it's
intended value.

TABLE 4-3 Truth Table of EFA Programmed Data
4-6 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

This block contains a parallel in/serial out register. Loading of the shift register can
happen from EFA or TCU (Depending on the mode EFU is configured in eFuse
Modes of Operations . Unloading of the shift registers can be to any legal block ID
TABLE 4-5 or TCU.

Reads from EFA are loaded in parallel to a shift register called read_data_ff[31:0].
The shift register block checks the valid bits and parity of the data. If the entry is
valid, and no parity errors are detected, the shift register shifts bits [21:0] to the
destination register specified by the block ID bits[27:22]. Signals ashift and dshift are
asserted to qualify shifted data fields repair ID and repair value respectively. If a
parity error or invalid row is encountered in a row “n”, the corresponding
parity_status_reg[63:0] bit gets set. The shift states are still counted internally (no
ashift or dshift signals are asserted) and the address sequencer increments. At the
end of the sequence (after EFA entry 63's data has been determined invalid or shifted
to the appropriate destination register), the error report (parity_status_reg[63:0]) is
shifted to the NCU cluster. The parity status register in the NCU enables software to
determine if a parity error or row error occurred in EFA readout. Software can then
decide whether to fail out or continue (if for instance the device ID is potentially
incorrect). Additionally, the register can be loaded serially by TCU via
tcu_efu_data_in. Control signals used by TCU to load are tcu_efu_shiftdr,
tcu_efu_updatedr and tcu_efu_capturedr.

The serial output of the shift register is read_data_ff[31]. The serial output
(read_data_ff[31]) is shifted to the destination register defined by block ID field
bits[27:22] as efu_<destination>_fuse_data or to TCU as efu_tcu_data_out.

Destination registers are organized as repair chains. Repair chains for the L2 caches
are 22 bits long and enables are held high for 22 cycles when shifting data. Each
SPARC cluster gets two (22 bit long) repair chains, one for I and the other for D
cache.

4.2.1.3 TCU Interface

All the signals coming from the TCU clock are generated in TCK clock domain. The
TCU interface of EFU synchronizes almost all incoming TCU signals to the iol2clk
domain. (refer to Section 4.5, “Miscellaneous/Multiple Clock Domains” on page 4-41
for details).

EFU places tcu_efu_data_in from TCU at bit 0 of the tck 32 bit register. As a result
the first bit that is shifted in from TCU will end up at bit 31 of the tck 32 bit register.
MSB of the data should be shifted in first.

When EFU shifts the data back to TCU it loads bit 31 on to efu_tcu_data_out. As a
result bit 31 will go back first followed by bit 30, bit 29, and so on. MSB of the
readback data is shifted out first.
Chapter 4 Electronic Fuse Unit (EFU) 4-7

TABLE 4-4 lists all the commands, which are used by TCU to program EFU behavior.

4.3 EFU Logical Implementation

4.3.1 eFuse Modes of Operations
TCU can configure eFuse in five different modes. The following are the various
modes of operation of EFU:

4.3.1.1 Power On Reset Read Mode

In this mode, all the valid entries in EFA are shifted to the destination register.

At some point after POR_, TCU signals EFU to start shifting all valid entries in the
EFA. The sequence of events are:

TCU asserts tcu_efu_read_start valid for one TCK clock cycle. tcu_efu_read_start is
synchronized to iol2clk as local_read_start (refer FIGURE 4-2 group A).

local_read_start triggers a counter addr_cnt_ff[5:0]. This counter is used to compute
row address for reading EFA. fct_efa_read_en is asserted for a predetermined
number of clocks to read an entry in EFA. The EFA read data efa_fct_data[31:0] is
then parallel loaded to a shift register read_data_ff[31:0] (refer FIGURE 4-2 group B).

TABLE 4-4 TAP Private Instructions for Fuse Functionality

Field Bits Reset Name

TAP_FUSE_READ 6h'28 Issue Read Command and shift out the result to destination
registers

TAP_FUSE_BYPASS_DATA 6h'29 Issue Bypass command and shift in 32 bit value from TCU

TAP_FUSE_BYPASS 6'h2a Command initiates shifting of data to receiver from FCT block

TAP_FUSE_ROW_ADDR 6h'2b Shift in 7 bit Row Address for EFA access

TAP_FUSE_COL_ADDR 6h'2c Shift in 5 bit Column address (only for programming) for EFA
access

TAP_FUSE_READ_MODE 6h'2d Shift in 2 bit Read Mode for EFA access

TAP_FUSE_DEST_SAMPLE 6'h2e Tell efu to get the data and return it to tcu
4-8 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

EFU determines if the row is valid and error free (refer to TABLE 4-3). If an error is
encountered then the corresponding bit is set in the rslt_status_ff[63:0].

For a valid row, EFU interprets block ID (read_data_ff[27:22]) to determine the
destination register for the row. EFU asserts a pair of non overlapping clocks
(iol2clk/4 clocks) efu_<dest>_fuse_clk1 and efu_<dest>_fuse_clk2 for the duration
of transfer. Only the read_data_ff[21:0] is shifted to the destination register.
read_data_ff[21:0] consists of RID and RV information. Higher order bits are shifted
first. efu_<dest>_fuse_ashift is asserted and RID information (bits[21:12]) and wren
are shifted to the destination register. A unit that doesn't use the higher order bits
allow (unwanted) data to overflow. The RV (bits read_data_ff[11:0]) are shifted to the
destination register, by asserting efu_<dest>_fuse_dshift. (refer FIGURE 4-2 group C)

Upon completion of processing a row, addr_cnt_ff[5:0] is incremented (refer
FIGURE 4-2 group D). This process is repeated until the last row is processed.

EFU will shift out the rslt_status_ff[63:0] to NCU. Software will interpret this
information and decide to failout or continue. (refer to NCU interface protocol in
Section 4.3.2.3, “EFU to NCU Interface:” on page 4-19.
Chapter 4 Electronic Fuse Unit (EFU) 4-9

FIGURE 4-2 Timing Diagram showing Power On Reset Read Mode

tcu_efu_read_start

local_read_st art

fct_efa_read_en

efa_data_out[31:0]

read_data_ff[31:0]

io_clk

T
C
K

ef u_<dest>_dat a_out

efu_<dest>_ashift

efu_<dest>_dshift

efu_<dest>_fuse_clk1

ef u_<dest>_f use_clk2

addr_cntr[5:0]
4-10 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

4.3.1.2 JTAG Read Access

In this mode, a row in EFA can be read via the TAP controller in TCU. To read an
EFA row, read mode (tcu_efa_read_mode[1:0]), row address (tcu_efu_rowaddr[6:0]),
and read enable are required. The sequence of JTAG instructions to program the TAP
controller to read the fuse array are as follows:

1. TAP_FUSE_READ_MODE

2. TAP_FUSE_ROW_ADDR

3. TAP_FUSE_READ

TAP_FUSE_READ_MODE instruction is programmed to the TAP controller through
the JTAG port (this instruction configures EFU to read EFA in a particular mode).
TCU will decode the instruction and drive a two bit encoded
tcu_efa_read_mode[1:0] signal to EFU. tcu_efa_read_mode[1:0] gets registered and is
driven to EFA as fct_efa_margin0_rd and fct_efa_margin1_rd respectively. (refer
FIGURE 4-2 group A) Bit 2 of tcu_efa_read_mode bus is a power down enable mode
bit. When the internal state machine finishes all the transfers and there is no pending
transfer the EFU state machine will activate the power-down signal to EFA. When
bit 2 is low EFA is in the normal mode. When it is high EFA will power down after
the current operation finishes.

EFA can be read in 4 different modes. EFA decodes fct_efa_margin0_rd and
fct_efa_margin1_rd as 00=normal mode, 01=margin0 mode, 10=margin1A mode
and 11=margin1B and configures it's sense amplifier circuit. In different modes, EFA
sense amplifiers are supplied with different reference voltages to detect logic 1 and
logic 0.

TAP_FUSE_ROW_ADDR instruction provides EFA with a read address. TCU
provides EFU with the row address as tcu_efu_rowaddr[6:0]. tcu_efu_rowaddr[6:0]
generated in TCK domain is synchronized to the iol2clk domain and driven to
EFA.(refer FIGURE 4-2 group B) Bit[6] (when it is high; the other bits will be ignored)
of the tcu_efu_rowaddr[6:0] is to read back the stage of the power supply. The
format of the read is as follow from the efa fuse:

efa_fuseout[31:0] = {29'b0,vddc_ok,vddo_ok,vpp_ok

TAP_FUSE_READ instruction requests a read to be performed. TCU decodes this
instruction and generates a one cycle tcu_efu_read_en pulse. tcu_efu_read_en is
synchronized into iol2clk domain as local_read_en. (refer FIGURE 4-3 group C)

The logic in EFU will load a counter with read latency and assert fct_efa_read_en.
After the counter is counted down to zero, the EFA output is parallel loaded into a
shift register read_data_ff[31:0]. (refer FIGURE 4-3 group D)

TCU will wait for a predetermined period (EFA read is a multicycle operation; the
current wait time is 30 tck cycles) and issue one TCK cycle valid tcu_efu_capturedr
pulse. Shift register read_data_ff[31:0] contents are loaded to another shift register
Chapter 4 Electronic Fuse Unit (EFU) 4-11

called tck_shft_data_ff[31:0] (read_data_ff shift register is in iol2clk domain and
tck_shft_data_ff is in TCK clock domain). TCU asserts tcu_efu_shiftdr for 32 clocks
causing the shift of tcu_shft_data_ff[31] onto efu_tcu_data_out. (refer FIGURE 4-3
group E) The readback data shifted out first is bit 31 to tcu, followed by the
subsequent lower significant bits.

FIGURE 4-3 JTAG Read Access Timing Diagram.

tcu_efu_read_m
ode[1:0]

tcu_efu_row
addr[6:0]

tcu_efu_read_en

local_read_en

fct_efa_read_en

efa_dat a_out[31:0]

read_data_ff[31:0]

tcu_ef u_capturedr

tck_shf t_dat a_ff [31: 0]

tcu_efu_shiftdr

efu_tcu_data_out

io_clk

T
C
K

fct_efa_row
addr[6:0]
4-12 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

4.3.1.3 Fuse Programming Mode

In this mode, EFA is programmed one bit at a time (EFA does not support multiple
bit programming). To program a bit, row address[6:0], column address[4:0] and
fct_efa_prog_en should be valid. In order to program a fuse bit, actions required are:

1. TAP_FUSE_ROW_ADDR

2. TAP_FUSE_COL_ADDR

TAP_FUSE_ROW_ADDR instruction gets issued to the TAP controller through the
JTAG port. TCU decodes and supplies the row address as efu_tcu_rowaddr[6:0]. The
row address is synchronized from TCK to iol2clk domain as fct_efa_row_addr[6:0].
(refer FIGURE 4-5 group A)

TAP_FUSE_COL_ADDR instruction gets issued to the TAP controller through the
JTAG port. TCU decodes and supplies the column address as tcu_efa_coladdr[6:0].
(refer FIGURE 4-5 group B).

After the row and column address is supplied to EFA, fct_efa_prog_en is asserted for
as long as deemed necessary by TI. The fuse value is then read back (refer section
4.1.2) to ensure that the bit was programmed correctly. (refer FIGURE 4-5 group C).

fct_efa_prog_en chip pin must be available to all test environments, so we need a
probe pad, C4 and a package pin. From the top level, the of fct_efa_prog_en signal is
fed directly to the row and column decoders as well as the supply enable

FIGURE 4-4 Fuse Programming Mode Timing Diagram.

Chapter 4 Electronic Fuse Unit (EFU) 4-13

4.3.1.4 JTAG Fuse Bypass Mode

Fuse bypass mode is to enable bring up if there is a problem in the eFuse
functionality. In this mode, EFA is bypassed. The sequence of operations to program
the TAP controller to bypass the fuse array are as follows:

1. TAP_FUSE_BYPASS_DATA

2. TAP_FUSE_BYPASS

TAP_FUSE_BYPASS_DATA instruction gets issued to the TAP controller through the
JTAG port. TCU decodes and programs a shift register tck_shft_data_ff[31:0] serially
with efu_tcu_data_in by asserting tcu_efu_shiftdr for 32 clocks. tcu_efu_updatedr,
valid for one TCK clock will parallel load tck_shft_data_ff[31:0] to
read_data_ff[31:0]. As mention previously tcu_efu_data_in is placed at bit 0 of the 32
bit tck register, tck_shft_data_ff[31:0]. MSB of the data should be shifted in first.

TAP_FUSE_BYPASS instruction gets issued to the TAP controller through the JTAG
port. TCU decodes and asserts tcu_efu_fuse_bypass valid for one TCK clock.
tcu_efu_fuse_bypass is synchronized into iol2clk domain as local_fuse_bypass.

local_fuse_bypass triggers the shift of the contents of shift register (read_data_ff) to
destination register. EFU decodes the block ID (read_data_ff[27:22]) to determine the
destination register and determines if the row is valid and error free (refer TABLE 4-4).

For a valid row, EFU interprets block ID (read_data_ff[27:22]) to determine the
destination register for the row. It asserts a pair of non overlapping clocks (iol2clk/4
clocks) efu_<dest>_fuse_clk1 and efu_<dest>_fuse_clk2 for the duration of transfer.
Only the read_data_ff[21:0] is shifted to the destination register. Higher order bits
are shifted first.

efu_<dest>_fuse_ashift is asserted and RID information (bits[21:12]) and wren are
shifted to the destination register. A unit that doesn't use the higher order bits allow
(unwanted) data to overflow. The RV (bits read_data_ff[11:0]) are shifted to the
destination register, by asserting efu_<dest>_fuse_dshift. (refer FIGURE 4-6 group C)
4-14 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

FIGURE 4-5 JTAG Fuse Bypass Mode

4.3.1.5 Fuse Sample Mode

In this mode the destination redundancy value (RV) is read and transferred to TCU.
In order to read the destination register the following commands need to be
executed.

1. TAP_EFU_BYPASS_DATA

2. TAP_EFU_DEST_SAMPLE

io_clk

tcu_ef u_shift dr

tcu_ef u_data_in

tcu_efu_updatedr

read_dat a_ff [31: 0]

local_f use_bypass

tcu_efu_fuse_bypass

efu_<dest>_data_out

efu_<dest>_ashift

efu_<dest>_dshift

efu_<dest>_fuse_clk1

efu_<dest>_fuse_clk2

tck_shf t_dat a_ff [31: 0]

T
C
K

Chapter 4 Electronic Fuse Unit (EFU) 4-15

3. TAP_CAPTUREDR

4. TAP_SHIFTDR

TAP_FUSE_BYPASS_DATA instruction gets issued to the TAP controller through the
JTAG port. TCU decodes and programs a shift register tck_shft_data_ff[31:0] serially
with efu_tcu_data_in by asserting tcu_efu_shiftdr for 32 clocks. TCU asserts
tcu_efu_updatedr valid for one clock. tcu_efu_updatedr parallel loads
tck_shft_data_ff[31:0] to read_data_ff[31:0].

When TAP_EFU_DEST_SAMP is issued read_data_ff shift register bits[21:0] where
bit[21] is the read_en, are shifted to the destination register. efu_<dest>_xfer_en is
asserted for the duration of transfer. The redundancy registers are organized as
chains. During the efu_<dest>_fuse_xfer_en, the data is collected and forwarded to
the SRAM header after all the data has been shifted in. <dest>_efu_fuse_xfer_en is
then asserted to read the correct data into read_data_ff[31:0] shift register.

TCU will wait for a predetermined period and issue one TCK cycle valid
tcu_efu_capturedr. Shift register read_data_ff[31:0] contents are parallel loaded into
tck_shft_data_ff[31:0] by the valid tcu_efu_capturedr. tcu_efu_shiftdr asserted by
TCU for 32 clocks shifts tcu_shft_data_ff[31] onto efu_tcu_data_out (refer FIGURE 4-6
group D). Bit 31 of the tck 32 bit register, tck_shft_data_ff[31:0], will be shifted out
first.
4-16 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

FIGURE 4-6 Destination Sample Mode Timing Diagram

io_clk

tcu_ efu_shif tdr

tcu_efu_dat a_in

tcu_efu_updatedr

read_data_ff[31:0]

local_fuse_dest_sam
ple

tcu_efu_dest_sam
ple

efu_<dest>_data_out

efu_<dest>_ashift

ef u_<dest>_dshif t

efu_<dest>_fuse_clk
1

efu_<dest>_fuse_clk
2

tck_shft_da ta_f f[31:0]

<dest>_efu_data_out

T
C
K

tcu_efu_capturedr

efu_tcu_data_out
Chapter 4 Electronic Fuse Unit (EFU) 4-17

4.3.2 Interface with NCU, SRAM Header Flops and
TCU Destinations

4.3.2.1 EFU to SRAM Header Flops

Data from EFU is transferred serially to SRAM destination header from
read_data_ff[31:0]. EFU asserts efu_<dest>_xfer_en for the duration of transfer. MSB
is shifted first as efu_<dest>_fuse_data. See the FIGURE 4-7.

4.3.2.2 SRAM to EFU Interface:

The redundancy registers are organized as chains. <dest>_efu_xfer_en is asserted
and held valid to read the correct data. The valid clocks correspond to the
appropriate SRAMs with the correct sync_en signals.

FIGURE 4-7 SRAM to EFU Data Transfer Timing Diagram

4.3.2.3 EFU to NCU Interface:

EFU transfers serial number, core available, bank available information, and fuse
state information (rslt_shft_ff[63:0]) to NCU. The protocol for transfer is similar to
SRAM header. EFU asserts efu_ncu_<info>_dshift where <info> indicates serial
number, core available, bank available information, and fuse state information.
efu_ncu_fuse_clk1 is active for the duration of transfer. efu_ncu_fuse_data is
transferred.
4-18 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

FIGURE 4-8 EFU to NCU Interface Timing Diagram

4.3.2.4 TCU to EFU Transfers

The protocol for transferring data from TCU to EFU is as follows:

TCU asserts tcu_efu_shiftdr in order to initiate a transfer and keeps it asserted for
the duration of the transfer. EFU configures a shift register tck_shft_data_reg[31:0] to
accept data from TCU. This shift register receives the data in TCK clock domain.
TCU then asserts tcu_efu_updatedr. EFU transfers the data from
tck_shift_data_reg[31:0] in tck domain to read_data_ff in iol2clk domain.

4.3.2.5 EFU to TCU:

TCU asserts tcu_efu_capturedr. EFU transfers the contents from read_data_ff in
iol2clk domain to tck_shift_data_reg[31:0] in TCK domain. TCU asserts
tcu_efu_shiftdr. EFU shifts the data out from tck_shift_data_reg as efu_tcu_data_out
(tck_shift_data_reg[31]).

4.3.3 Register Formats

4.3.3.1 RV REGISTER CLEAR ID

The following are the seven bit rv register clear ID. When bit seven is high the clear
function is enable. When bit seven is low the clear function is disable. When all
seven bits are high all rv clear signals are active.

TABLE 4-5 Seven Bit Block ID for Memories

Field Bits Reset Name

Core0 I$ 1000000 Clear all bits in the rv registers

Core0 D$ 1000001 Clear all bits in the rv registers

Core1 I$ 1000010 Clear all bits in the rv registers

D21 D20 D19 D18 D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 ... D1 D0
Chapter 4 Electronic Fuse Unit (EFU) 4-19

Core1 D$ 1000011 Clear all bits in the rv registers

Core2 I$ 1000100 Clear all bits in the rv registers

Core2 D$ 1000101 Clear all bits in the rv registers

Core3 I$ 1000110 Clear all bits in the rv registers

Core3 D$ 1000111 Clear all bits in the rv registers

Core4 I$ 1001000 Clear all bits in the rv registers

Core4 D$ 1001001 Clear all bits in the rv registers

Core5 I$ 1001010 Clear all bits in the rv registers

Core5 D$ 1001011 Clear all bits in the rv registers

Core6 I$ 1001100 Clear all bits in the rv registers

Core6 D$ 1001101 Clear all bits in the rv registers

Core7 I$ 1001110 Clear all bits in the rv registers

Core7 D$ 1001111 Clear all bits in the rv registers

l2t0 1010000 Clear all bits in the rv registers

l2t1 1010001 Clear all bits in the rv registers

l2t2 1010010 Clear all bits in the rv registers

l2t3 1010011 Clear all bits in the rv registers

l2t4 1010100 Clear all bits in the rv registers

l2t5 1010101 Clear all bits in the rv registers

l2t6 1010110 Clear all bits in the rv registers

l2t7 1010111 Clear all bits in the rv registers

l2d0 1011000 Clear all bits in the rv registers

l2d1 1011001 Clear all bits in the rv registers

l2d2 1011010 Clear all bits in the rv registers

l2d3 1011011 Clear all bits in the rv registers

l2d4 1011100 Clear all bits in the rv registers

l2d5 1011101 Clear all bits in the rv registers

l2d6 1011110 Clear all bits in the rv registers

l2d7 1011111 Clear all bits in the rv registers

niu_4k_clr 1100000 Clear all bits in the rv registers (RTX VLAN)

TABLE 4-5 Seven Bit Block ID for Memories (Continued)

Field Bits Reset Name
4-20 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

4.3.3.2 Block ID

TABLE 4-6 shows the six-bit block IDs for destination:

niu_ram_clr 1100001 Clear all bits in the rv registers (TDS TDMC)

niu_ram0_clr 1100010 Clear all bits in the rv registers (RDP RDMC0)

niu_ram1_clr 1100011 Clear all bits in the rv registers (RDP RDMC1)

niu_cfifo1_clr 1100100 Clear all bits in the rv registers (RTX ZCP1)

niu_cfifo0_clr 1100101 Clear all bits in the rv registers (RTX ZCP0)

niu_mac1_sf_clr 1100110 Clear all bits in the rv registers (RTX TXE1)

niu_mac1_ro_clr 1100111 Clear all bits in the rv registers (RTX TXE1)

niu_mac0_sf_clr 1101000 Clear all bits in the rv registers (RTX TXE0)

niu_mac0_ro_clr 1101001 Clear all bits in the rv registers (RTX TXE0)

niu_ipp1_clr 1101010 Clear all bits in the rv registers (RTX IPP1)

niu_ipp0_clr 1101011 Clear all bits in the rv registers (RTX IPP0)

dmu_clr 1101100 Set the bits to 4'b0010

mcu_fclrz 1110000 Clear all bits in the rv registers

psr_fclrz 1110001 Clear all bits in the rv registers

niu_fclrz 1110010 Clear all bits in the rv registers

All rv clear active 1111111 Clear all bits in the rv registers

TABLE 4-6 Six Bit Block IDs for Memories

Field Bits Reset Name Reset Value

1 Core0 I$ 000000 SPARC core 0 Icache repair information

2 Core0 D$ 000001 SPARC core 0 Dcache repair information

3 Core1 I$ 000010 SPARC core 1 Icache repair information

4 Core1 D$ 000011 SPARC core 1 Dcache repair information

5 Core2 I$ 000100 SPARC core 2 Icache repair information

6 Core2 D$ 000101 SPARC core 2 Dcache repair information

7 Core3 I$ 000110 SPARC core 3 Icache repair information

8 Core3 D$ 000111 SPARC core 3 Dcache repair information

TABLE 4-5 Seven Bit Block ID for Memories (Continued)

Field Bits Reset Name
Chapter 4 Electronic Fuse Unit (EFU) 4-21

9 Core4 I$ 001000 SPARC core 4 Icache repair information

10 Core4 D$ 001001 SPARC core 4 Dcache repair information

11 Core5 I$ 001010 SPARC core 5 Icache repair information

12 Core5 D$ 001011 SPARC core 5 Dcache repair information

13 Core6 I$ 001100 SPARC core 6 Icache repair information

14 Core6 D$ 001101 SPARC core 6 Dcache repair information

15 Core7 I$ 001110 SPARC core 7 Icache repair information

16 Core7 D$ 001111 SPARC core 7 Dcache repair information

17 l2t0 010000 L2 bank 0 tag array repair information

18 l2t1 010001 L2 bank 1 tag array repair information

19 l2t2 010010 L2 bank 2 tag array repair information

20 l2t3 010011 L2 bank 3 tag array repair information

21 l2t4 010100 L2 bank 4 tag array repair information

22 l2t5 010101 L2 bank 5 tag array repair information

23 l2t6 010110 L2 bank 6 tag array repair information

24 l2t7 010111 L2 bank 7 tag array repair information

25 l2b0 011000 L2 bank 0 data array repair information

26 l2b1 011001 L2 bank 1 data array repair information

27 l2b2 011010 L2 bank 2 data array repair information

28 l2b3 011011 L2 bank 3 data array repair information

29 l2b4 011100 L2 bank 4 data array repair information

30 l2b5 011101 L2 bank 5 data array repair information

31 l2b6 011110 L2 bank 6 data array repair information

32 l2b7 011111 L2 bank 7 data array repair information

33 coreavail 100000 NCU SPARC Core available

34 L2 bank avail 100001 NCU L2 bank available

35 sernum0 100010 NCU Serial number row0

36 Sernum1 100011 NCU Serial number row1

37 Sernum2 100100 NCU Serial number row2

45 DMU 101100 DMU delay calibration

TABLE 4-6 Six Bit Block IDs for Memories (Continued)

Field Bits Reset Name Reset Value
4-22 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

4.3.3.3 SRAM Redundancy Register Formats:

There are four different storage formats in eFuse for SRAM. They are:

■ L2 data array

■ L2 tag array

■ L1 data array

■ L1 tag array

■ Core Available

■ L2 bank available

■ SERDES

■ DMU data

46 101101

47 101110

48 101111

49 110000

50 110001

51 110010

52 110011

53 110100

54 110101

55 110110

56 110111

57 111000

58 111001

59 111010

60 111011

61 111100

62 111101

63 111110

64 111111

TABLE 4-6 Six Bit Block IDs for Memories (Continued)

Field Bits Reset Name Reset Value
Chapter 4 Electronic Fuse Unit (EFU) 4-23

■ SERNUM0, SERNUM1, SERNUM2

The eFuse unit will read the EFA and interpret bits [31:22] and shift out bits [21:0]
into the cluster containing the destination register. Not all of the bits of the RID and
RV will be used for all arrays.

4.3.3.4 L2 Data Array EFA Entry Definition

For the L2 Data array, the EFA entry is stored in the format shown in TABLE 4-7.

TABLE 4-7 L2 Data Array Entry Description

Bits Size Description

[21] 1 DO NOT BLOW THIS BIT
Read enable: 1-read, 0-write (used in the bypass mode; must be 0 in the fuse)

[20:18] 3 Unused

[17:11] 7 RID[6:5] Selects one of the four quads
RID[4:3] Selects one of the four 32KB in the quad

RID[2:0] Selects one of eight registers in the 32KB.

[11] 1 E1 (Enable1 -Both Enable1 and Enable0 must be asserted or the repair value is ignored)

[10:9] 2 Unused RV (These bits are shifted out of the EFU and off the end of the redundancy register)

[8:1] 8 RV (Repair Value – the row (needs all the 8bits) or column (needs only 6bits) to be repaired)

[0] 1 E0 (Enable0- Both Enable1 and Enable 0 must be asserted or the repair value is ignored)

TABLE 4-8 Readback

Bits Size Description

[10] 1 Unused

[9:8] 2 Valid: always 2'b11 on the readback data

[7:0] 8 RV data
4-24 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

0.5.4 L2 Tag Array EFA Entry Definition
For the L2 Tag array, the RID/RV fields are defined for row repairs in TABLE 4-9.

For the L2 Tag array, the RID/RV fields are defined for column repairs in TABLE 4-10.

TABLE 4-9 L2 Tag Array RID/RV Field Description

Bits Size Description

[21] 1 DONOT BLOW THIS BIT
Read enable: 1-read, 0-write (used in the bypass mode; must be 0 in the fuse)

[20:15] 5 Unused

[14:11] 4 RID[3:0] (Logical subbank ID. Values 0-15 are valid.)

[11] 1 E1(Enable1- Both Enable1 and Enable 0 must be asserted or the repair value is ignored.)

[10:6] 5 Unused RV

[5:1] 5 RV (Repair Value—The row/column to be repaired)

[0] 1 E0 (Enable0- Both Enable1 and Enable 0 must be asserted or the repair value is ignored.)

TABLE 4-10 L2 Tag Array RID/RV Field Description

Bits Size Description

[21] 1 DO NOT BLOW THIS BIT
Read enable: 1-read, 0-write (used in the bypass mode; must be 0 in the fuse)

[20:15] 5 Unused

[14:11] 4 RID[3:0] (Logical sub bank ID. Values 0-15 are valid.)

[11] 1 E1(Enable1- Both Enable1 and Enable 0 must be asserted or the repair value is ignored.)

[10:6] 5 Unused RV

[5:1] 5 RV (Repair Value—The row/column to be repaired)

[0] 1 E0 (Enable0- Both Enable1 and Enable 0 must be asserted or the repair value is ignored.)
Chapter 4 Electronic Fuse Unit (EFU) 4-25

4.3.3.5 L1 INSTRUCTION CACHE (ICD) EFA Entry Definition

For the L1 ICD, the RID/RV fields are defined for column repairs in TABLE 4-12

4.3.3.6 L1 data cache array redundancy register (DCD) definition

For the L1 DCD, the RID/RV fields are defined as column repairs in TABLE 4-13.

TABLE 4-11 Readback

Bits Size Description

[10:6] 5 Unused

[5:1] 5 RV value

[0] 1 Valid: 1'b1 always on the readback unless there is a problem

TABLE 4-12 L1 ICD RID/RV Field Descriptions

Bits Size Description

[21] 1 DO NOT BLOW THIS BIT
Read enable: 1-read, 0-write (used in the bypass mode; must be 0 in the fuse)

[20:15] 6 Unused

[14:11] 4 RID select value

[11] 1 E1 (Enable1- Both Enable1 and Enable 0 must be asserted or the repair value is ignored.)

[10:6] 5 Unused RV

[5:1] 5 RV (Repair Value—The row to be repaired): 5 bits of rv and 1 bit of row/column repair select

[0] 1 Enable: tie it to both enable pins of the SRAM

TABLE 4-13 L1 DCD RID/RV Field Descriptions for Column Repair

Bits Size Description

[21] 1 DO NOT BLOW THIS BIT
Read enable: 1-read, 0-write (used in the bypass mode; must be 0 in the fuse)

[20:13] 8 Unused

[12:11] 2 RID[1:0] (register select. Values 0-3 are valid)

[11] 1 E1(Enable1- Both Enable1 and Enable 0 must be asserted or the repair value is ignored)
4-26 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

4.3.3.7 Core Available

4.3.3.8 L2 Bank Available

4.3.3.9 FSR SERDES Trimming Registers

Each time the data is written in the internal data is sent back to EFU from the output
of the last chains. There is no direct readback from the SERDES registers. RTRIM[0]
is closest to fdo. Any reprogramming of the FSR SERDES macros also requires three
EFA rows. The three row addresses are also important:

Address Row0 EFA.ROW[6:0] is arbitrary

Address Row1 EFA.ROW[6:0] > Row0 EFA.ROW[6:0]

Address Row2 EFA.ROW[6:0] > Row1 EFA.ROW[6:0]

[10:7] 4 Unused RV

[6:1] 6 RV (Repair Value—The column to be repaired)

[0] 1 E0 (Enable0- Both Enable1 and Enable 0 must be asserted or the repair value is ignored)

TABLE 4-14 Core Available

Bits Size Description

[21:8] 16 Reserved (not used)

[7:0] 8 Core available: 1 = core available; 0 = core not available (NCU initializes its core-available
register to all 1's. Upon the completion of the eFuse dump, the register will pick up the value of
this fuse.)

TABLE 4-15 L2 Bank Available

Bits Size Description

[21:8] 16 Reserved (not used)

[7:0] 8 L2 bank available: 1 = L2 bank available; 0 = L2 bank not available (NCU initializes its
bank-available register to all 1's. Upon the completion of the eFuse dump, the register will pick
up the value of this fuse.)

TABLE 4-13 L1 DCD RID/RV Field Descriptions for Column Repair (Continued)

Bits Size Description
Chapter 4 Electronic Fuse Unit (EFU) 4-27

Start: efu_mcu_fdi (out from EFU)

fsr_left.fsr0_b8_1.FDI

fsr_left.fsr0_a8.FDI

fsr_left.fsr0_b8_0.FDI

fsr_left.fsr1_b8_1.FDI

fsr_left.fsr1_a8.FDI

fsr_left.fsr1_b8_0.FDI

fsr_left.fsr2_b8_1.FDI

fsr_left.fsr2_a8.FDI

fsr_left.fsr2_b8_0.FDI

fsr_left.fsr3_b8_1.FDI

fsr_left.fsr3_a8.FDI

fsr_left.fsr3_b8_0.FDI

fsr_right.fsr4_b8_1.FDI

fsr_right.fsr4_a8.FDI

fsr_right.fsr4_b8_0.FDI

fsr_right.fsr5_b8_1.FDI

fsr_right.fsr5_a8.FDI

fsr_right.fsr5_b8_0.FDI

fsr_right.fsr6_b8_1.FDI

fsr_right.fsr6_a8.FDI

fsr_right.fsr6_b8_0.FDI

fsr_bottom.fsr7_b8_1.FDI

fsr_bottom.fsr7_a8.FDI

fsr_bottom.fsr7_b8_0.FDI

End: mcu_efu_fdo (back to efu)
4-28 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

4.3.3.10 DMU DATA Registers

4.3.3.11 SER_NUM Programming

SERNUM Format (SER_NUM reg)

SER_NUM[63:60] => DeltaVdd

SER_NUM[59:50] => DeltaT

SER_NUM[49] => TESTINFO-RESERVED

SER_NUM[48:46] => Fab

SER_NUM[45:41] => TESTINFO-RESERVED

SER_NUM[40] => Bin

SER_NUM[39:16] => Lot

SER_NUM[15:10] => Wafer

TABLE 4-16 DMU Write Data Format

Bits Size Description

[21] 1 read_enable: 1-read, 0-write (used in the bypass mode; must be 0 in the fuse)

[20:12] 9 Reserved (not used)

[11] 1 VALID bit; must be 1'b1 to write fuse data

[10:5] 6 Reserved (not used)

[4:1] 4 Fuse data, where bit 4 is the bit identified pt 3 in the iommu spec, and bit 2 is the default bit to
be on, this vector being one-hot

note: bits[4:1] correspond to fuse[3:0] and bits[2] == fuse[1] (default bit to be on)

[0] 1 VALID bit; must be 1'b1 to write fuse data

TABLE 4-17 DMU Read Data Format

Bits Size Description

[21:4] 18 ignored

[3:0] 4 Readback fuse data; when clear the data is 4'b0010
Chapter 4 Electronic Fuse Unit (EFU) 4-29

SER_NUM[9:5] => Column

SER_NUM[4:0] => Row

The SERNUM id has 64 bits. It uses three fuse rows, SERNUM0, SERNUM1, and
SERNUM2. The SERNUM id in each row can have 22 bits of data. As the result there
are possible 66 bits for SERNUM_ID in the fuse array. However the NCU register
only keep 64 LSB. The upper two bits are shifted out of the SERNUM2 register.
Those bits can be read directly from the fuse array. According to the SERNUM
format above SERNUM0, SERNUM1, and SERNUM2 formats are as shown in
TABLE 4-18,TABLE 4-19, and TABLE 4-20.

The most significant bit—DeltaVdd[3]—should be interpreted as a sign, and the bits
DeltaVdd[2:0] define eight positive (negative) increments (decrements) of the vdd.

DeltaVdd[3] = 0 means that the delta is an increment to the nominal vdd

DeltaVdd[3] = 1 means a decrement to the nominal vdd.

Each increment is a fixed value for the product typically in the order of 25mV. Not
all steps need be used. Initially it is expected that only two or three decrements of
Vdd will be allowed. Extra bits are allowed in case we need them on future
products.

In an eFuse array row, this information format is shown in TABLE 4-20,

TABLE 4-18 eFuse Row SERNUM0 Format

<31:29> <28> <27:22> <21:16> <15:10> <9:5> <4:0>

Valid Parity Block id Lot[5:0] Wafer Column Row

TABLE 4-19 eFuse Row SERNUM1 Format

<31:29> <28> <27:22> <21:19> <18> <17:0>

Valid Parity Block id TESTINFO-RESE
RVED

Bin Lot[23:6]

TABLE 4-20 Proposed eFuse Row SERNUM2 Format

<31:29> <28> <27:22> <21:20> <19:16> <15:6> <5> <4:2> <1:0>

Valid Parity Block id TESTINFO-RE
SERVED

DeltaVdd
[3:0]

DeltaT
[9:0]

TESTINF
O-RESER
VED

FAB TESTINFO-
RESERVED
4-30 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

When the test flow determines that a change from the nominal Vdd is necessary to
optimize yield, a new SERNUM2 row will be programmed into the eFuse array at a
higher row address than the previous one. Thus it overwrites the previous DeltaVdd
value.

Each time SERNUM2 is reprogrammed at least one additional row out of the eFuse
array will be consumed.
Chapter 4 Electronic Fuse Unit (EFU) 4-31

4.4 Unit-Level Interface Signals
TABLE 4-21 Unit-Level Interface Signals

Signal name Direction Size Description

io_vpp Input 1 Programming voltage

gclk Input 1 L2 Input clock

tcu_aclk Input 1 Test clock

tcu_bclk Input 1 Test clock

tcu_pce_ov Input 1 Scan - Override

tcu_clk_stop Input 1 Scan stop

tcu_scan_en Input 1 Scan enable

scan_in Input 1 Scan input

scan_out Output 1 Scan output

io_pgrm_en Input 1 Program Enable

ccu_io_out Input 1

io_cmp_clk_sync_en Input 1 IO to CMP clock sync enable

cmp_io_clk_sync_en Input 1 CMP to IO clock sync enable

rst_por_ Input 1 POR reset active low

TCU to EFU

tcu_efu_rowaddr Input 7 eFuse row address for read/write

tcu_efu_coladdr Input 5 eFuse column address for write

tcu_efu_read_en Input 1 Read enable

tcu_efu_read_mode Input 3 00=normal; 01=margin0, 10=margin1A; 11=margin1B

tcu_efu_read_start Input 1 Start SM for scanning bits out

tcu_efu_fuse_bypass Input 1 Shift data from TCU

tcu_efu_dest_sample Input 1 Destination sample from TCU

TCU EFU shift interface

tcu_efu_data_in Input 1 Serial scan in from TCU

tcu_efu_updatedr Input 1 Read reg update from shift register

tcu_efu_shiftdr Input 1 Shift data register

tcu_efu_capturedr Input 1 Shift data register captures read register value
4-32 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

tck Input 1 Shift dr data in/out from TCU

tcu_red_reg_clr Input 7 Redundancy register clear

efu_tcu_data_out Output 1 Serial scan out to TCU

EFU to outside logic in the chip

EFU and SPC interface

efu_spc1357_fuse_data Output 1 eFuse data to SPARC cores 1,3,5 and 7

efu_spc0246_fuse_data Output 1 eFuse data to SPARC cores 2,4,6 and 8

efu_spc7_fuse_iclr Output 1 SPARC core 7 I$ clear

efu_spc7_fuse_ixfer_en Output 1 SPARC core 7 I$ transfer enable

efu_spc7_fuse_dclr Output 1 SPARC core 7 D$ clear

efu_spc7_fuse_dxfer_en Output 1 SPARC core 7 D$ transfer enable

spc7_efu_fuse_idata Input 1 SPARC core 7 I$ read header data return

spc7_efu_fuse_ixfer_en Input 1 SPARC core 7 I$ read transfer enable

spc7_efu_fuse_ddata Input 1 SPARC core 7 D$ read header data return

spc7_efu_fuse_dxfer_en Input 1 SPARC core 7 D$ read transfer enable

efu_spc6_fuse_iclr Output 1 SPARC core 6 I$ clear

efu_spc6_fuse_ixfer_en Output 1 SPARC core 6 I$ transfer enable

efu_spc6_fuse_dclr Output 1 SPARC core 6 D$ clear

efu_spc6_fuse_dxfer_en Output 1 SPARC core 6 D$ transfer enable

spc6_efu_fuse_idata Input 1 SPARC core 6 I$ read header data return

spc6_efu_fuse_ixfer_en Input 1 SPARC core 6 I$ read transfer enable

spc6_efu_fuse_ddata Input 1 SPARC core 6 D$ read header data return

spc6_efu_fuse_dxfer_en Input 1 SPARC core 6 D$ read transfer enable

efu_spc5_fuse_iclr Output 1 SPARC core 5 I$ clear

efu_spc5_fuse_ixfer_en Output 1 SPARC core 5 I$ transfer enable

efu_spc5_fuse_dclr Output 1 SPARC core 5 D$ clear

efu_spc5_fuse_dxfer_en Output 1 SPARC core 5 D$ transfer enable

spc5_efu_fuse_idata Input 1 SPARC core 5 I$ read header data return

spc5_efu_fuse_ixfer_en Input 1 SPARC core 5 I$ read transfer enable

spc5_efu_fuse_ddata Input 1 SPARC core 5 D$ read header data return

TABLE 4-21 Unit-Level Interface Signals (Continued)

Signal name Direction Size Description
Chapter 4 Electronic Fuse Unit (EFU) 4-33

spc5_efu_fuse_dxfer_en Input 1 SPARC core 5 D$ read transfer enable

efu_spc4_fuse_iclr Output 1 SPARC core 4 I$ clear

efu_spc4_fuse_ixfer_en Output 1 SPARC core 4 I$ transfer enable

efu_spc4_fuse_dclr Output 1 SPARC core 4 D$ clear

efu_spc4_fuse_dxfer_en Output 1 SPARC core 4 D$ transfer enable

spc4_efu_fuse_idata Input 1 SPARC core 4 I$ read header data return

spc4_efu_fuse_ixfer_en Input 1 SPARC core 4 I$ read transfer enable

spc4_efu_fuse_ddata Input 1 SPARC core 4 D$ read header data return

spc4_efu_fuse_dxfer_en Input 1 SPARC core 4 D$ read transfer enable

efu_spc3_fuse_iclr Output 1 SPARC core 3 I$ clear

efu_spc3_fuse_ixfer_en Output 1 SPARC core 3 I$ transfer enable

efu_spc3_fuse_dclr Output 1 SPARC core 3 D$ clear

efu_spc3_fuse_dxfer_en Output 1 SPARC core 3 D$ transfer enable

spc3_efu_fuse_idata Input 1 SPARC core 3 I$ read header data return

spc3_efu_fuse_ixfer_en Input 1 SPARC core 3 I$ read transfer enable

spc3_efu_fuse_ddata Input 1 SPARC core 3 D$ read header data return

spc3_efu_fuse_dxfer_en Input 1 SPARC core 3 D$ read transfer enable

efu_spc2_fuse_iclr Output 1 SPARC core 2 I$ clear

efu_spc2_fuse_ixfer_en Output 1 SPARC core 2 I$ transfer enable

efu_spc2_fuse_dclr Output 1 SPARC core 2 D$ clear

efu_spc2_fuse_dxfer_en Output 1 SPARC core 2 D$ transfer enable

spc2_efu_fuse_idata Input 1 SPARC core 2 I$ read header data return

spc2_efu_fuse_ixfer_en Input 1 SPARC core 2 I$ read transfer enable

spc2_efu_fuse_ddata Input 1 SPARC core 2 D$ read header data return

spc2_efu_fuse_dxfer_en Input 1 SPARC core 2 D$ read transfer enable

efu_spc1_fuse_iclr Output 1 SPARC core 1 I$ clear

efu_spc1_fuse_ixfer_en Output 1 SPARC core 1 I$ transfer enable

efu_spc1_fuse_dclr Output 1 SPARC core 1 D$ clear

efu_spc1_fuse_dxfer_en Output 1 SPARC core 1 D$ transfer enable

spc1_efu_fuse_idata Input 1 SPARC core 1 I$ read header data return

TABLE 4-21 Unit-Level Interface Signals (Continued)

Signal name Direction Size Description
4-34 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

spc1_efu_fuse_ixfer_en Input 1 SPARC core 1 I$ read transfer enable

spc1_efu_fuse_ddata Input 1 SPARC core 1 D$ read header data return

spc1_efu_fuse_dxfer_en Input 1 SPARC core 1 D$ read transfer enable

efu_spc0_fuse_iclr Output 1 SPARC core 0 I$ clear

efu_spc0_fuse_ixfer_en Output 1 SPARC core 0 I$ transfer enable

efu_spc0_fuse_dclr Output 1 SPARC core 0 D$ clear

efu_spc0_fuse_dxfer_en Output 1 SPARC core 0 D$ transfer enable

spc0_efu_fuse_idata Input 1 SPARC core 0 I$ read header data return

spc0_efu_fuse_ixfer_en Input 1 SPARC core 0 I$ read transfer enable

spc0_efu_fuse_ddata Input 1 SPARC core 0 D$ read header data return

spc0_efu_fuse_dxfer_en Input 1 SPARC core 0 D$ read transfer enable

L2 and EFU shift interface

efu_l2t0246_fuse_data Output 1 eFuse data to l2t banks 0,2,4 and 6

efu_l2t1357_fuse_data Output 1 eFuse data to l2t banks 1,3,5 and 7

efu_l2b0246_fuse_data Output 1 eFuse data to l2b banks 0,2,4 and 6

efu_l2b1357_fuse_data Output 1 eFuse data to l2b banks 1,3,5 and 7

efu_l2t0_fuse_clr Output 1 l2t bank 0 fuse data clear

efu_l2t0_fuse_xfer_en Output 1 l2t bank 0 fuse data transfer enable

l2t0_efu_fuse_data Input 1 Fuse read data shift from l2t bank 0

l2t0_efu_fuse_xfer_en Input 1 Fuse read shift enable for bank 0

efu_l2b0_fuse_clr Output 1 L2b bank 0 fuse data clear

efu_l2b0_fuse_xfer_en Output 1 L2b bank 0 fuse data transfer enable

l2b0_efu_fuse_data Input 1 Fuse read data shift from l2b bank 0

l2b0_efu_fuse_xfer_en Input 1 Fuse read shift enable for l2b bank 0

efu_l2t1_fuse_clr Output 1 l2t bank 1 fuse data clear

efu_l2t1_fuse_xfer_en Output 1 l2t bank 1 fuse data transfer enable

l2t1_efu_fuse_data Input 1 Fuse read data shift from l2t bank 1

l2t1_efu_fuse_xfer_en Input 1 Fuse read shift enable for bank 1

efu_l2b1_fuse_clr Output 1 L2b bank 1 fuse data clear

efu_l2b1_fuse_xfer_en Output 1 L2b bank 1 fuse data transfer enable

TABLE 4-21 Unit-Level Interface Signals (Continued)

Signal name Direction Size Description
Chapter 4 Electronic Fuse Unit (EFU) 4-35

l2b1_efu_fuse_data Input 1 Fuse read data shift from l2b bank 1

l2b1_efu_fuse_xfer_en Input 1 Fuse read shift enable for l2b bank 1

efu_l2t2_fuse_clr Output 1 l2t bank 2 fuse data clear

efu_l2t2_fuse_xfer_en Output 1 l2t bank 2 fuse data transfer enable

l2t2_efu_fuse_data Input 1 Fuse read data shift from l2t bank 2

l2t2_efu_fuse_xfer_en Input 1 Fuse read shift enable for bank 2

efu_l2b2_fuse_clr Output 1 L2b bank 2 fuse data clear

efu_l2b2_fuse_xfer_en Output 1 L2b bank 2 fuse data transfer enable

l2b2_efu_fuse_data Input 1 Fuse read data shift from l2b bank 2

l2b2_efu_fuse_xfer_en Input 1 Fuse read shift enable for l2b bank 2

efu_l2t3_fuse_clr Output 1 l2t bank 3 fuse data clear

efu_l2t3_fuse_xfer_en Output 1 l2t bank 3 fuse data transfer enable

l2t3_efu_fuse_data Input 1 Fuse read data shift from l2t bank 3

l2t3_efu_fuse_xfer_en Input 1 Fuse read shift enable for bank 3

efu_l2b3_fuse_clr Output 1 L2b bank 3 fuse data clear

efu_l2b3_fuse_xfer_en Output 1 L2b bank 3 fuse data transfer enable

l2b3_efu_fuse_data Input 1 Fuse read data shift from l2b bank 3

l2b3_efu_fuse_xfer_en Input 1 Fuse read shift enable for l2b bank 3

efu_l2t4_fuse_clr Output 1 l2t bank 4 fuse data clear

efu_l2t4_fuse_xfer_en Output 1 l2t bank 4 fuse data transfer enable

l2t4_efu_fuse_data Input 1 Fuse read data shift from l2t bank 4

l2t4_efu_fuse_xfer_en Input 1 Fuse read shift enable for bank 4

efu_l2b4_fuse_clr Output 1 L2b bank 4 fuse data clear

efu_l2b4_fuse_xfer_en Output 1 L2b bank 4 fuse data transfer enable

l2b4_efu_fuse_data Input 1 Fuse read data shift from l2b bank 4

l2b4_efu_fuse_xfer_en Input 1 Fuse read shift enable for l2b bank 4

efu_l2t5_fuse_clr Output 1 l2t bank 5 fuse data clear

efu_l2t5_fuse_xfer_en Output 1 l2t bank 5 fuse data transfer enable

l2t5_efu_fuse_data Input 1 Fuse read data shift from l2t bank 5

l2t5_efu_fuse_xfer_en Input 1 Fuse read shift enable for bank 5

TABLE 4-21 Unit-Level Interface Signals (Continued)

Signal name Direction Size Description
4-36 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

efu_l2b5_fuse_clr Output 1 L2b bank 5 fuse data clear

efu_l2b5_fuse_xfer_en Output 1 L2b bank 5 fuse data transfer enable

l2b5_efu_fuse_data Input 1 Fuse read data shift from l2b bank 5

l2b5_efu_fuse_xfer_en Input 1 Fuse read shift enable for l2b bank 5

efu_l2t6_fuse_clr Output 1 l2t bank 6 fuse data clear

efu_l2t6_fuse_xfer_en Output 1 l2t bank 6 fuse data transfer enable

l2t6_efu_fuse_data Input 1 Fuse read data shift from l2t bank 6

l2t6_efu_fuse_xfer_en Input 1 Fuse read shift enable for bank 6

efu_l2b6_fuse_clr Output 1 L2b bank 6 fuse data clear

efu_l2b6_fuse_xfer_en Output 1 L2b bank 6 fuse data transfer enable

l2b6_efu_fuse_data Input 1 Fuse read data shift from l2b bank 6

l2b6_efu_fuse_xfer_en Input 1 Fuse read shift enable for l2b bank 6

efu_l2t7_fuse_clr Output 1 l2t bank 7 fuse data clear

efu_l2t7_fuse_xfer_en Output 1 l2t bank 7 fuse data transfer enable

l2t7_efu_fuse_data Input 1 Fuse read data shift from l2t bank 7

l2t7_efu_fuse_xfer_en Input 1 Fuse read shift enable for bank 7

efu_l2b7_fuse_clr Output 1 L2b bank 7fuse data clear

efu_l2b7_fuse_xfer_en Output 1 L2b bank 7 fuse data transfer enable

l2b7_efu_fuse_data Input 1 Fuse read data shift from l2b bank 7

l2b7_efu_fuse_xfer_en Input 1 Fuse read shift enable for l2b bank 7

NCU and EFU shift interface

efu_ncu_fuse_data Output 1 eFuse NCU data

efu_ncu_srlnum0_xfer_e
n

Output 1 eFuse NCU serial number 0 transfer enable

efu_ncu_srlnum1_xfer_e
n

Output 1 eFuse NCU serial number 1 transfer enable

efu_ncu_srlnum2_xfer_e
n

Output 1 eFuse NCU serial number 2 transfer enable

efu_ncu_fusestat_xfer_en Output 1 eFuse NCU fuse status transfer enable

efu_ncu_coreavl_xfer_en Output 1 eFuse NCU core available transfer enable

efu_ncu_bankavl_xfer_en Output 1 eFuse NCU bank available transfer enable

TABLE 4-21 Unit-Level Interface Signals (Continued)

Signal name Direction Size Description
Chapter 4 Electronic Fuse Unit (EFU) 4-37

NIU and EFU shift interface

NIU SRAM 2

niu_efu_4k_data Input 1 Niu to efu data

niu_efu_4k_xfer_en Input 1 Niu to efu xfer enable

efu_niu_4k_clr Output 1 Efu to niu clear

efu_niu_4k_data Output 1 Efu to niu data

efu_niu_4k_xfer_en Output 1 Efu to niu xfer enable

NIU SRAM 1

niu_efu_cfifo0_data Input 1 Niu cfifo0 data to efu

niu_efu_cfifo0_xfer_en Input 1 Niu cfifo0 xfer enable to efu

efu_niu_cfifo0_clr Output 1 Efu to niu cfifo0 clear

efu_niu_cfifo0_xfer_en Output 1 Efu to niu cfifo0 xfer enable

niu_efu_cfifo1_data Input 1 Niu cfifo1 data to efu

niu_efu_cfifo1_xfer_en Input 1 Niu cfifo1 xfer enable to efu

efu_niu_cfifo1_clr Output 1 Efu to niu cfifo1 clear

efu_niu_cfifo1_xfer_en Output 1 Efu to niu cfifo1 xfer enable

efu_niu_cfifo_data Output 1 Share data from efu to niu for this group of RAMs

NIU SRAM 0

niu_efu_ipp0_data Input 1 Niu ipp0 data to efu

niu_efu_ipp0_xfer_en Input 1 Niu ipp0 xfer enable to efu

efu_niu_ipp0_clr Output 1 Efu to niu ipp0 clear

efu_niu_ipp0_xfer_en Output 1 Efu to niu ipp0 xfer enable

niu_efu_ipp1_data Input 1 Niu ipp1 data to efu

niu_efu_ipp1_xfer_en Input 1 Niu ipp1 xfer enable to efu

efu_niu_ipp1_clr Output 1 Efu to niu ipp1 clear

efu_niu_ipp1_xfer_en Output 1 Efu to niu ipp1 xfer enable

niu_efu_mac0_ro_data Input 1 Niu mac0 ro data to efu

niu_efu_mac0_ro_xfer_en Input 1 Niu mac0 ro xfer enable to efu

niu_efu_mac1_ro_data Input 1 Niu mac1 ro data to efu

niu_efu_mac1_ro_xfer_en Input 1 Niu mac1 ro xfer enable to efu

TABLE 4-21 Unit-Level Interface Signals (Continued)

Signal name Direction Size Description
4-38 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

niu_efu_mac0_sf_data Input 1 Niu mac0 sf data to efu

niu_efu_mac0_sf_xfer_en Input 1 Niu mac0 sf xfer enable to efu

efu_niu_mac0_ro_clr Output 1 Efu to niu mac0 ro clear

efu_niu_mac0_ro_xfer_en Output 1 Efu to niu mac0 ro xfer enable

efu_niu_mac0_sf_clr Output 1 Efu to niu mac0 sf clear

efu_niu_mac0_sf_xfer_en Output 1 Efu to niu mac0 sf xfer enable

niu_efu_mac1_sf_data Input 1 Niu mac1 sf data to efu

niu_efu_mac1_sf_xfer_en Input 1 Niu mac1 sf xfer enable to efu

efu_niu_mac1_ro_clr Output 1 Efu to niu mac1 ro clear

efu_niu_mac1_ro_xfer_en Output 1 Efu to niu mac1 ro xfer enable

efu_niu_mac1_sf_clr Output 1 Efu to niu mac1 sf clear

efu_niu_mac1_sf_xfer_en Output 1 Efu to niu mac1 sf xfer enable

efu_niu_mac01_sfro_data Output 1 Efu to niu mac01 sfro data

NIU SRAM3

niu_efu_ram0_data Input 1 Niu ram0 data to efu

niu_efu_ram0_xfer_en Input 1 Niu ram0 data xfer enable to efu

efu_niu_ram0_clr Output 1 Efu to niu ram0 clear

efu_niu_ram0_xfer_en Output 1 Efu to niu ram0 xfer enable

niu_efu_ram1_data Input 1 Niu ram1 data to efu

niu_efu_ram1_xfer_en Input 1 Niu ram1 xfer enable to efu

efu_niu_ram1_clr Output 1 Efu to niu ram1 clear

efu_niu_ram1_xfer_en Output 1 Efu to niu ram1 xfer enable

niu_efu_ram_data Input 1 Niu ram data to efu

niu_efu_ram_xfer_en Input 1 Niu ram xfer enable to efu

efu_niu_ram_clr Output 1 Efu to niu ram clear

efu_niu_ram_xfer_en Output 1 Efu to niu ram xfer enable

efu_niu_ram_data Output 1 Efu to niu ram, ram0, ram1 data in

NIU SERDES i/f

niu_efu_fdo Input 1 Niu to efu data

efu_niu_fclk Output 1 Efu to niu fclk (100MHz)

TABLE 4-21 Unit-Level Interface Signals (Continued)

Signal name Direction Size Description
Chapter 4 Electronic Fuse Unit (EFU) 4-39

4.5 Miscellaneous/Multiple Clock Domains
The following signals coming from the TCU will have to be synchronized to the io
clock domain before use since they are generated on the tck (JTAG) clock.

tcu_efu_read_start

tcu_efu_read_en

tcu_efu_fuse_bypass
tcu_efu_updatedr

tcu_efu_rowaddr[6:0]

efu_niu_fclrz Output 1 Efu to niu clear

efu_niu_fdi Output 1 Efu to niu data in

PEU and EFU shift interface

psr_efu_fdo Input 1 Psr to efu data

efu_psr_fclk Output 1 Efu to psr clock

efu_psr_fclrz Output 1 Efu to psr clear

efu_psr_fdi Output 1 Efu to psr data

MCU and EFU shift interface

mcu_efu_fdo Input 1 Mcu to efu data

efu_mcu_fclk Output 1 Efu to mcu clock

efu_mcu_fclrz Output 1 Efu to mcu clear

efu_mcu_fdi Output 1 Efu to mcu data

DMU and EFU shift interface

dmu_efu_data Input 1 Dmu to efu data

dmu_efu_xfer_en Input 1 Dmu to efu xfer enable

efu_dmu_clr Output 1 Efu to dmu clear

efu_dmu_data Output 1 Efu to dmu data

efu_dmu_xfer_en Output 1 Efu to dmu xfer enable

TABLE 4-21 Unit-Level Interface Signals (Continued)

Signal name Direction Size Description
4-40 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

A special synchronizer library cell will be used to synchronize the above signals.
tcu_efu_rowaddr[6:0] is fed through the same synchronizer. This signal is assumed
to be stable before being used and hence is not qualified with any valid signal.

The following signals are not synchronized. They are used only on the tester and
hence are assumed to transition and settle well before they are used. They do not
need explicit synchronization.

io_pgrm_en

tcu_efu_coladdr[4:0]

tcu_efu_read_mode[1:0]

The following signals are generated and used in the tck clock domain:

tcu_efu_data_in
efu_tcu_data_out
tcu_efu_shiftdr
tcu_efu_capturedr
tck

4.6 eFuse Array Specification

4.6.1 eFuse Array Organization
In a broad sense, the eFuse array is a non-volatile memory used to store information
that needs to be programmed at the factory and used in the field. On OpenSPARC
T2, it contains the following die specific information:

■ Redundant array repair information for the SRAMs

■ Serial ID of the chip

■ Working processor core IDs (core available information)

■ Working L2 bank information (bank available information)
Chapter 4 Electronic Fuse Unit (EFU) 4-41

The eFuse array is a 64 deep and 32 bit wide array. Each cell in the eFuse array
consists of a poly fuse that replace traditional laser fuse. They can be programmed to
store any value by blowing them with an electrical pulse.

4.6.2 eFuse Array Functions
Supports the following two functions:

1. Read access: There can be two types of read access.

a. EFA row read: Contents of an entry in the array specified by
fct_efa_word_addr[5:0] are read out as fct_efa_data_out[31:0].

b. Supply detect read: efa_sup_det_rd is asserted indicating a request for supply
detect read. EFA will read out voltage levels and sense amplifier power levels
(vpp_detect, vdd_detect, vddo_detect, and sense amplifier power level detect)
as efa_sbc_data[3:0].

2. Program access: EFA array is programmed one bit at a time. The fct_efa_prog_en
needs to be asserted requesting a program access. The vpp bump pads needs to
be supplied with special voltage before fct_efa_prog_en is valid.
fct_efa_word_addr[5:0] and fct_efa_bit_addr[4:0] needs to be valid. The bit in
entry specified by fct_efa_word_addr[5:0] and fct_efa_bit_addr[4:0] is
programmed. After a entry is programmed, the entry is read back. If the desired
value is not obtained, the mismatched bits if possible are reprogrammed. The
process is repeated until desired value is read. Valid bits are then programmed
when the entry is programmed with valid data.

4.6.3 Timing Diagrams
Read access:

EFA row read:

The eFuse controller (FCT) will request a normal read operation by asserting
fct_efa_read_en along with fct_efa_row_addr[5:0].

FCT will assert fct_efa_read_en for a predetermined number of clocks (as per the
requirements of the EFA) for the read data efa_fct_data_out[31:0] to be ready.
4-42 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

FIGURE 4-9 EFA Row Read Access

Supply detect read:

FCT can perform a supply read detect by asserting fct_efa_sup_det_rd. In this case
EFA will read out various voltage levels (vpp_detect, vdd_detect, vddo_detect, and
sense amplifier power level detect) as efa_fct_data_out[3:0].

FIGURE 4-10 EFA Supply Detect Access

Program access:

fct_efa_row_addr[5:0]

[31:0]

Valid address

Multi cycle path

Multi cycle path

fct_efa_row_addr[5:0]

[3:0]

Valid address
Chapter 4 Electronic Fuse Unit (EFU) 4-43

Programming happens one bit at a time.

EFA will request a program access by asserting fct_efa_row_addr[5:0],
fct_efa_bit_addr[4:0] and fct_efa_prog_en.

EFA will zap the fuse in the bit cell identified by the row address
(fct_efa_row_addr[5:0]) and the bit address (fct_efa_bit_addr[4:0]). (The zapped bit
will be read as a zero)

FIGURE 4-11 EFA Program Access

b

g

[4:0]

Multi cycle path

Valid address

Valid address

fct_efa_row_addr[5:0]
4-44 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

4.6.4 Interface Table

TABLE 4-22 Interface Table for EFA

Signal name I/O Width Description

Vpp I 1 VPP input from I/O

fct_efa_prog_en I 1 eFuse array program enable

fct_efa_read_en I 1 eFuse array read enable

fct_efa_word_addr I 6 eFuse array word address from TCU

fct_efa_bit_addr I 5 eFuse array bit address

fct_efa_sup_det_rd I 1 eFuse array supply detect read

fct_efa_power_down I 1 eFuse array power down signal from SBC

scan_in I 1 Scan input

scan_en I 1 Scan enable

clk I 1 Clock

scan_out O 1 Scan output

efa_fct_data O 32 Data from eFuse array to SBC

fct_efa_margin0_rd I 1 eFuse array margin0 read

fct_efa_margin1_rd I 1 eFuse array margin1 read
Chapter 4 Electronic Fuse Unit (EFU) 4-45

4-46 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

CHAPTER 5

Reset Unit Specification

This chapter contains the following sections:

■ OpenSPARC T1 and OpenSPARC T2 Partitioning

■ Reset Overview

■ Types of Reset

■ Machine State after Each Kind of Reset

■ OpenSPARC T2 is a System On a Chip

■ Registers

■ Power-On Reset Sequence Overview

■ Deterministic Behavior

■ Power-On Reset Sequence

■ Warm Reset Sequence

■ Reset Sequence for DBG

■ Reset Sequence for NIU

■ Reset Sequence for XIR

■ Reset and Scan of the Reset Unit

■ Reset Unit Ports

■ Appendices
5-1

5.1 OpenSPARC T1 and OpenSPARC T2
Partitioning
Except for the system controller, OpenSPARC T2 integrates all motherboard system
circuitry on a chip. While OpenSPARC T1 writes to a register on an external IO
Bridge chip to assert WMR_RST, OpenSPARC T2 writes to the on-chip RESET_GEN
register.

5.2 Reset Overview

5.2.1 Goals
The Reset Unit asserts signals that cause other units to immediately revert to the
initial state defined by the OpenSPARC T2 Programmer’s Reference Manual.

TABLE 5-1 OpenSPARC Partitioning

OpenSPARC T1 OpenSPARC T2

Abbr. Unit Abbr. Unit

IOB (Internal) IO Bridge Unit NCU Non-Cacheable Unit

n.a. External IO Bridge chip

CTU Control and Test Unit TCU Test Control Unit

CCU Clock Control Unit

RST Reset Unit

CMP Chip MultiProcessor Unit (may be
part of NCU)

JBus System Interface DMU Data Management Unit

n.a. n.a. PEU PCI Express Unit

n.a. n.a. NIU Network Interface Unit
5-2 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

The OpenSPARC T2 team has endeavored to keep OpenSPARC T2 as much the same
as OpenSPARC T1 as possible. One major difference is that OpenSPARC T2
conforms to the CMP Programming Model.

5.2.2 Nomenclature
In the specifications relevant to OpenSPARC T2, the term reset is used in many ways.
TABLE 5-2 lists all of them except one. The exception is that the two-bit TYPE field of
the OpenSPARC T1 INT_VEC_DIS register can take on a value named reset, but that
register field named reset differs from signals named reset in the sense used here.

Exercise caution in referring to the various documents, as a single reset can have
multiple names. Power-on reset has several names: POR, cold power-on, flush, scan
flush, and hard reset. In fact, the chip-wide warm reset also goes by at least six other
names: chip, CR, full-CMP, soft, software induced warm, and system reset.

Conversely, resets that are different can have names that are similar (soft or software
induced warm differ from Software-Initiated), or have identical abbreviations
(chip-wide WMR differs from OpenSPARC T1 thread WMR). The CMP
Programming Model considers POR to be a special case of system reset.

OpenSPARC T2 retains the reset concepts and names used in OpenSPARC T1.
TABLE 5-2 presents reset functions by configuration.

5.2.3 Priority
The OpenSPARC T1 Programmer’s Reference Manual and the OpenSPARC T2
Programmer’s Reference Manual give the trap types of the resets in TABLE 5-3. Priority 1
traps, which are resets other than POR, are processed in the following order:
XIR(3) > WDR(2) > SIR(4) > RED(5).

TABLE 5-2 Reset Actions

Function Sun/Fire ASIC PCI-Express Spec OpenSPARC
T1

OpenSPARC
T2

Reset of all chip state
including errors

Hard Cold Power-On

Reset of all non-error chip
state

Soft Warm Warm
Chapter 5 Reset Unit Specification 5-3

Reset priorities from highest to lowest are:

POR(1)>WMR(1)>XIR(3)>WDR(2)>SIR(4).

*Note: WMR trap, XIR, WDR, and SIR do not cause other units to immediately
revert to the initial state defined by the Programmer’s Reference Manual. They are
interrupt traps. “Software can distinguish a chip-wide Warm Reset from a Warm
Reset [trap] by the RSET_STAT register.”

TABLE 5-3 Trap Types

Trap
Type

Abbr. Reset Name Priority Cause Scope

- TRST_ Test Reset Assert with POR TRST_ TCU only

1 POR Power-On, cold power-on,
flush, scan flush, hard

Highest PWRON_RST_L Chip-wide
except TCU

1 WMR Chip-wide warm, chip,
CR, full-CMP, soft,
software induced warm,
system

WMR < POR PB_RST_L (1st pri.), or
Fatal Error (2nd pri.), or
write Gen_Reset reg
(ctu40) or RESET_GEN
reg (ctu39) (3rd pri.)

Chip-wide,
except for
WMR-protected
flops.
See PRM, Table
11-13.

- DBG_I
NIT

debug_init_ Same as WMR rst_wmr_, or
PIO read to DBG_INIT reg
(ctu56, n1prm369,
n2prm386)

OpenSPARC T1
only. Replaced
by DBR in
OpenSPARC T2.

- DBR Debug DBR< WMR Write to DBR_GEN bit of
Reset_Gen reg

Full chip, except
NIU and
DMU-PEU

1* WMR
trap

Warm Reset trap WMR < POR Write INT_VEC_DIS reg Per thread

3* XIR Externally-Initiated XIR < WMR BUTTON_XIR_L (1st pri.),
or set bit[1] in Reset_Gen
reg (tprm190)

Virtual cores set
in ASI_XIR_
STEERING

2* WDR Watchdog WDR < XIR Write INT_VEC_DIS reg Per thread

4* SIR Software-Initiated Lowest Issue SIR (SIGM) instr in
priv mode, or write
INT_VEC_DIS reg

Per thread

- NIU NIU - Write to NIU bit of
SSYS_RESET reg

NIU
5-4 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

Software can distinguish a POR from a WMR by the RSET_STAT register, as follows:
Reset from WMR_RSTpin sets WMR bit of RSET_STAT.
Reset from PWRON_RST_pin sets PWRON_RST bit of RSET_STAT.

5.2.4 OpenSPARC T2 Structures that Hold State
OpenSPARC T2 holds state in three types of structure:

1. Latches.

2. Flip-flops. These may be:

a. Synchronously-resettable.
The Asic clusters use synchronous reset.

b. Asynchronously-resettable.
Only the CCU and the cluster headers contain asynchronously-resettable flops.

c. Resettable by flush reset.
The SPARC core clusters use flush reset.

d. Resettable by having a known value shift down a pipeline.

e. Non-resettable.

3. Array cores.

a. eFuse Array.

b. SRAM array cores.

A SRAM may use each of the three kinds of structure to hold state:

1. Latches. There are three types:

TABLE 5-4 Preemption

TRST The FPGA or tester can assert TRST_ at any time, and it will reset the JTAG Test Access Port.

POR The FPGA or tester can assert PWRON_RST_L at any time, and it will reset OpenSPARC T2
immediately.

WMR, DBR If the Reset Unit is in the engaged in servicing a prior POR, WMR, or DBR, it will defer
processing a WMR, a DBR, or an XIR until it finishes the prior one. If, at that time, it finds
more than one reset pending, it will choose the highest priority, according to TABLE 5-3.

XIR If the Reset Unit is in the engaged in servicing a Externally-Initiated Reset, it will allow any
other reset to preempt the XIR.
Chapter 5 Reset Unit Specification 5-5

a. SRAM redundant array Repair Value latches. (Not shown.) A SRAM may hold
its Repair Values in flops instead, depending upon its area requirements. See
next section.

b. Other SRAM latches.

c. Latches in the path of the clock pre-grid drivers. These latches remain, even
though multiple drivers, each controlled by its own latch, are shorted together
through the grid. describes how we avoid clock contention in Asic cluster
SRAMs without resetting these latches. SunV cluster SRAMS are held in flush
reset until gclk starts, and flush reset asserts SE, which is how we avoid clock
contention in these SRAMs.

2. Flip Flops:

a. SRAM redundant array Repair Value flops. (Not shown.) A SRAM may hold its
Repair Values in latches instead, depending upon its area requirements. See
next section.

b. SRAM input flops. The L2T CAM only has a latch at the input. All other
SRAMs have input flops.

c. SRAM output flops. Approximately 35 percent of SRAMs have an output flop.
The remaining 65 percent have a latch, instead.

3. SRAM array core contents. A special case of SRAM contents is the valid bits in the
L2 directory of L1 tags.

5.2.5 eFuse destination Flops and Latches
eFuse OpenSPARC T2 Micro-Architecture Specification lists the destinations of
information from the EFU, as shown in TABLE 5-5.

TABLE 5-5 Destination of Information from the EFU

Block ID Destination Information

00-15 SPC I-cache and D-cache Repair Values (RV)

16-31 L2T,L2D SRAM RV

32 NCU SPARC core available

33 NCU L2 bank available

34, 35, 36 NCU Serial number

37-40 NIU SRAM RV

41 PSR PSR SERDES termination resistor trimming
5-6 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

Only the destination flops in the NCU are affected by flush reset, and since they are
Warm Reset-protected, they are only reset during POR1 and POR2. Since they are
reset by POR2, the Power-On Reset sequence includes EFU2.

All of the other destination flops and latches are only set to their initial values by the
TCU via the eFuse Unit, before the transfer starts, using flash (synchronous) reset. A
SRAM may hold its Repair Values in latches or flip-flops, depending upon its area
requirements. If it holds its RVs in flops, they are not scannable, so that they are
protected from flush reset. The initial value for all SRAM RVs is 0. The initial value
for the SERDES's termination resistor trimming may be other than 0. The
DMU/IOMMU DEVTSB RAM delay chain calibration will initialize to 4'b0010.

5.2.6 Latches
TABLE 5-6 lists each kind of latch, the agent that sets it to its initial value, and
method.

42 MCU FSR SERDES termination resistor trimming

43 NIU ESR SERDES termination resistor trimming

44-62 DMU/IOMMU DEVTSB RAM delay chain calibration

TABLE 5-6 Latch Kind

Latch Agent that initializes value Method of initializing

SRAM redundant array Repair Value valid bit
latches

TCU via eFuse Unit, before the
transfer starts

Flash (synchronous) reset

Other SRAM redundant array Repair Value
latches

eFuse Unit Write to latch. (These bits
have no effect if the valid
bit is cleared.)

Other SRAM latches (Not resettable.) (See Flip-Flops Outside of
SRAMs)

Valid bits in the L2T directory of L1 tags,
implemented as latches
(a special case of SRAM core array contents.)

Reset Unit Flash (synchronous) reset
See Types of Reset.

TABLE 5-5 Destination of Information from the EFU (Continued)

Block ID Destination Information
Chapter 5 Reset Unit Specification 5-7

5.2.7 Flip-Flops Outside of SRAMs
Flip-flops may be found in special clusters, in flop stations, and in SPARC core and
ASIC clusters. Within SPARC core and ASIC clusters, they may be found in cluster
headers, in SRAMs, and in the rest of the cluster. TABLE 5-7 lists each kind of flip-flop,
except for SRAM input and output flops:

TABLE 5-7 Types of Flip-Flops

Flip-flops outside of SRAMs Agent that initializes value Method of initializing

7-bit counter in
Process Control Monitor (PCM)

Raw PWRON_RST_ input pin
(not synchronized)

Reset of unknown type.

In Test Access Port (TAP) TAP or TRST input pin Asynchronous and
synchronous reset

Boundary scan flops (Not resettable.) JTAG

In Reset Unit rst_fsm_ctl module PWRON_RST_ input pin, after
synchronized to ccu_rst_sys_clk

Synchronous reset

In Reset Unit rst_ucbflow_ctl module Reset Unit Synchronous reset

In Reset Unit rst_cmp_ctl and rst_io_ctl modules Some by Reset Unit, and some
by resettable.

Synchronous reset, or
known value shifts down
pipeline.

In global distribution flop stations
(approximately 500 flops)

(Not resettable, and
not scannable.)

Known value shifts down
pipeline
in ~5 cycles.

In SPARC core cluster headers (Not resettable, and
not scannable.)

Known value shifts down
pipeline
in ~5 cycles.

In ASIC cluster headers
(CCU, DMU, PEU, and NIU)

(Not resettable, and
not scannable.)

Known value shifts down
pipeline
in ~5 cycles.

In non-SRAM, non-cluster header portions of
ASIC clusters
(DMU, PEU, NIU, and parts of CCU)

Reset Unit Synchronous reset

In CCU Reset Unit Synchronous and
asynchronous reset

Some flops in MAC cluster of NIU (Not resettable.) Known value shifts down
pipeline.
5-8 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

Notice that the Reset Unit only resets flops in clusters, and it does not affect flops in
the following:

1. The PCM (partially in the MIO).

2. The TAP (in the TCU).

3. The boundary scan flops don't really need to be flush reset, since they are
bypassed in functional mode and must be specifically selected by JTAG to be
active. When they are selected, the chip is no longer in a functional mode.

4. SERDES clusters. The Reset Unit affects these indirectly, since for each Serdes, it
resets its configuration register in the cluster that controls it. MCU controls FSR,
PEU controls PSR, and NIU controls ESR.

5. The Reset Unit itself, except as part of normal logic operation.

6. Global distribution flop stations.

7. Some flops in some SRAMs (see next two sections).

Besides the TAP, which the Reset Unit does not affect, there are two blocks that
contain asynchronously-resettable flops

1. CCU,reset by rst_ccu_ and rst_ccu_pll_, and

2. Cluster header,reset by cluster_arst_.

The Reset Unit will suppress its rst_ccu_, rst_ccu_pll_, and cluster_rst_l output ports
when it is being scanned.

FSR SERDES MCU via config. bus LFSR has ckt to prevent
lockout value. String of 1s
flushes out bubble in the
middle.

PSR SERDES PEU via config. bus

ESR SERDES NIU vis config. bus

ESR SERDES Software resettable from SCR
MAC.

Synchronous reset

Shadow-scan flops in non-cluster header portions
of SunV clusters

(Not resettable.) Acquires value of master
flop after first clock cycle.

In non-cluster header portions of SPARC core
clusters, other than the Reset Unit

Reset Unit Flush reset

TABLE 5-7 Types of Flip-Flops

Flip-flops outside of SRAMs Agent that initializes value Method of initializing
Chapter 5 Reset Unit Specification 5-9

5.2.8 SRAM Input Flops
TABLE 5-8 lists each kind of SRAM input flop:

5.2.9 SRAM Output Flops
TABLE 5-9 lists each kind of SRAM output flop:

MBisi now performs a read after competing all writes, for the purpose of initializing
SRAM output flops. This requires twice as much time to complete MBisi, but we also
now have the JTAG POR instruction to abort MBisi, if desired.

TABLE 5-8 SRAM Input Flops

SRAM Input Flops Agent that initializes value Method of initializing

In L2T CAM (Latch, not input flop.) (Latch, not input flop.)

In DMU, PEU, and NIU (Not resettable.) Known value shifts in from
upstream logic.

In SunV clusters Reset Unit Flush reset

TABLE 5-9 SRAM Output Flops

SRAM Output Flops Agent that initializes value Method of initializing

In 65 percent of SRAMs (Latch, not output flop.) Pre-MBISI value shifts in from
core array.

In DMU and PEU (No output flops.) (No output flops.)

In NIU, 15 instances of 4 types of compiled
SRAMs that are
shared with other clusters

(Not resettable.) Pre-MBISI value shifts in from
core array.

In NIU, custom (latches) SRAMs that are
unique to the NIU

Reset Unit Synchronous reset

In SPARC core clusters Reset Unit Flush reset
5-10 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

5.2.10 Core Array Contents
TABLE 5-10 lists each kind of core array contents:

There is one reset signal (por_n) which comes to n2_efa_sp_256b_cust. The function
of the por_n in the eFuse array is to ensure the following:

1. The output of the eFuse-array is reset to zero at powerup.

2. The readpath of the eFuse-array is disabled at powerup, sustained to be in the
disable state by primary inputs.

3. The eFuse-array is precharged during the powerup with por_n and sustained to
be in the precharge state by primary inputs.

The por_n is used to reset the flops inside the eFuse-array because the eFuse-array is
NOT on the scan chain.

5.2.11 NIU, DMU-PEU, RST, and TAP Reset
Implementations Differ
The flip-flops in OpenSPARC T2's library have no reset input. Instead, each flip-flop
is reset in one of two ways:

1. Flush reset. The Reset Unit resets most flip-flops by flush reset.

2. Synchronous reset. The two IO clusters, NIU and DMU-PEU, as well as the Reset
Unit [and the TAP], use synchronous reset. Each flip-flop in these clusters has a
mux feeding its D input. The reset signal directs the mux to select either (1) an
initial value or (2) an operational value. The flip-flop loads this value at the next
rising edge of the clock.

TABLE 5-10 Core Array Contents

Core array contents Agent that initializes value Method of initializing

eFuse Array contents Factory Fuse blow

eFuse Array block Reset Unit via EFU (See note at end of this
section.)

SRAM core array contents (Not resettable.) MBISI or MBIST writes to
SRAM.

Valid bits in the L2T directory of L1 tags,
implemented as latches
(a special case of SRAM core array contents.)

Reset Unit Flash reset, a kind of
synchronous reset.
See Types of Reset.
Chapter 5 Reset Unit Specification 5-11

5.2.12 Eliminating Clock Contention
To eliminate clock contention in Asic cluster SRAMs, assert SE. (SPARC core cluster
SRAMs are held in flush reset until gclk starts, and flush reset asserts SE, which is
how we avoid clock contention in those clusters.)

To eliminate clock contention in the CCX cluster, assert cluster_arst_l.

Clock contention is only a problem at the beginning of POR1, before gclk has started
running for the first time. During later resets, even if gclk stops, since gclk has
already been running, every pair of flops and every pair of latches that are capable
of causing contention have the same value.

5.2.12.1 Before gclk starts

1. To eliminate clock contention in Asic cluster SRAMs before gclk starts, assert SE.
Also assert cluster_arst_l, for both the Asic cluster SRAMs and CCX.

The l1clk header l1clk output has an Or gate, l1clk = (other signals) | SE, so SE =
1 will cause every l1clk header to drive l1clk = 1. No contention.

Also, the cluster header l2clk output has an And gate, l2clk = (other signals) &
cluster_arst_l, so cluster_arst_l = 0 will cause every cluster header to drive l2clk =
0.

This makes the l1clk header latch transparent. Within each SRAM, the multiple
l1clk headers have the same inputs. The transparent latch will cause the multiple
l1clk headers to drive l1clk the same. No contention.

2. To eliminate clock contention in CCX cluster before gclk starts, assert
cluster_arst_l.

The cluster header l2clk output has an And gate, l2clk = (other signals) &
cluster_arst_l, so cluster_arst_l = 0 will cause every cluster header to drive l2clk =
0. No contention.

5.2.12.2 After gclk starts, Asic SE deasserts, and Asic clk_ctop
deasserts

1. In Asic cluster SRAMs: After about 5 gclk cycles, known values shifted down
pipeline to both Asic and SPARC core cluster headers. Flops in both CCX cluster
headers will then contain identical values. Can deassert multi-cycle cluster_arst_l
and give it time to propagate. After deasserted cluster_arst_l arrives at cluster
header, asserted Asic clk_stop continues to cause l2clk = 0.
5-12 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

After gclk starts, the l1clk header latch will operate. Within each SRAM, the
multiple l1clk headers have the same inputs. The operating latch will cause the
multiple l1clk headers to drive l1clk the same. No contention.

Deassert multi-cycle Asic SE and give it time to propagate. This releases l1clk
from 1 and causes it to follow l2clk = 0. Deassert Asic stop_clk. This releases l2clk
from 0 and allows it to follow gclk.

Continue to assert:

rst_dmu_peu_por_ = gl_dmu_por_ = gl_peu_por_. Allow at least 1 l1clk edge for
Asic synchronous reset.

Deassert:

rst_dmu_peu_por_ = gl_dmu_por_ = gl_peu_por_.

2. In CCX: After about 5 gclk cycles, known values shifted down pipeline to both
Asic and SunV cluster headers. Flops in both CCX cluster headers contain
identical values. No contention. Can now safely deassert multi-cycle
cluster_arst_l and give it time to propagate.

5.2.12.3 Two Signals Require Asynchronous Assert, Synchronous
Deassert.

To eliminate clock contention, (1) rst_tcu_pwronrst_l and (2) cluster_arst_l require
asynchronous assert and synchronous deassert.

1. The TCU asserts SE when the Reset Unit holds it in reset through
rst_tcu_pwronrst_l. We assert this signal asynchronously, because we wish to
eliminate clock contention even before sys_clk starts. We deassert this signal
synchronously, because we wish the behavior of OpenSPARC T2 to be
deterministic and repeatable. (Implementation note: we achieve this
asynchronous assert and synchronous deassert by providing an And gate that
bypasses a synchronization flop.)

2. The Reset Unit drives cluster_arst_l, so it drives this signal with asynchronous
assert and synchronous deassert, just as it does rst_tcu_pwronrst_l.
Chapter 5 Reset Unit Specification 5-13

5.3 Types of Reset

5.3.1 TRST_
TRST_ only involves the TCU, and not RST. The IEEE 1149.1 JTag Specification
requires five external pins:

An alternate way to reset the JTAG TAP is for the service processor to assert TMS for
five clock cycles.

5.3.2 POR
Power-On Reset clears all flip-flops in OpenSPARC T2 clusters, except the JTAG
portion of TCU, which must be reset earlier by TRST. POR also clears the valid bits
in the L2 cache directory of L1 tags.

Deassertion of PWRON_RST_L causes the Reset Unit to start the Power-On Reset
sequence.

5.3.3 DBR
OpenSPARC T2 uses Debug Reset, DBR (instead of the DEBUG_INIT that
OpenSPARC T1 uses). It is the same as WMR, but does not reset NIU nor DMU-PEU.
PCI Express resets after 50 ms, so we want to do checkpoint and watchpoint and
restore in 25 ms. Programming note: Be sure to configure MBIST not to run before
triggering DBR.

TCK Test Clock

TMS Test Mode Select

TDIT Test Data In

TDO Test Data Out

TRST_ Test Reset
5-14 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

5.3.4 WMR
By definition, Warm Reset occurs after the chip has already been running. It differs
from POR in three ways:

1. It clears flip-flops in state machines, just as POR does, to ensure the chip will be
able to run, but WMR attempts to maintain as much state as possible for error
logging. After a WMR, this state is available to enable software to determine the
cause of the reset. WMR must invalidate L2 cache to be coherent. There is no
permanent state in the L1 caches since they are write-through, so WMR
invalidates the L1 tags and parity, if WMR runs BISI. See Reset Signals Asserted
for each Kind of Reset.

2. The EFU does not scan out the EFA again.

3. MCU continues to perform refresh cycles in order to preserve main memory
contents. (It does this by placing the SDRams in self-refresh mode.) Software
enables this by setting the MCU_SELFRSH bit in the SSYS_RESET register.

Three agents can cause a Warm Reset, as follows:

1. The user can press the Warm Reset pushbutton, or the external system processor
can assert the PB_RST_L input pin.

2. Software can write to the WMR_GEN bit of the RESET_GEN register.

3. The L2 cache can detect a Fatal Error. (See A Fatal Error causes a WMR.)

5.3.4.1 A Fatal Error causes a WMR

The two OpenSPARC T2 Fatal Errors are as follows:

1. LRU: L2 cache directory Uncorrectable parity error. “During directory scrub,
parity is checked for the directory entry.”

2. LVU: L2 cache VAD array Uncorrectable parity error. “On every L2 access, parity
is checked for all 12 VAD bits in the set. (The used bit of VUAD is not covered by
parity since it only affects performance, not correctness.)”

“When an Uncorrectable parity error is detected, the error information is captured in
the L2 Cache Error Status and L2 Cache Error Address registers. In addition, a fatal
error indication is issued... to request a warm_reset trap to the entire chip.”

When the L2 cache detects either of these errors, it asserts l2t_rst_fatal. [Actually
eight signals.]

Even though the Fire documents make reference to Fatal Error, that case differs from
what this document calls Fatal Error. OpenSPARC T2 will handle that case via an
interrupt. If the interrupt handler decides a Warm Reset is needed, it can then cause
Chapter 5 Reset Unit Specification 5-15

it. For example, “Fire can initiate a Fatal Error [warm] reset...“Note: A fatal error is
an error which causes the chip to no longer function in the manner it was designed
for. A fatal error requires a reset, and there is no way to recover from it without a
reset."

Fatal Errors can be masked by a register in the NCU, Fatal Error Enable - FEE
(0x3020). "Each error type may be programmed to cause a Fatal Error. This register
enables an error to cause the signal ncu_rst_fatal_error to be asserted to the Reset
Unit. If the respective "Fatal Error Enable" bit is set, and the corresponding error
type is asserted, a fatal error will be dispatched to the Reset Unit."

We reserve the right to add a third Fatal Error, if we discover a way to detect that a
transaction queue is wedged, or has a bad address or control. (We can confine bad
data to one thread.) We wish to prevent bad data from getting off the chip.

5.3.4.2 Conflicting Demands placed on WMR

Warm reset serves two purposes:

1. Test

2. Fatal error

Test involves hundreds of functional vectors. For example, TABLE 5-11 shows the
percent of time on the tester for various steps in testing OpenSPARC T2.
Also, to make a test reproducible, it must start from a known state. This tends to
demand resetting as much of the chip's state as possible.

Since a WMR can occur due to a Fatal Error, it attempts to maintain as much state as
possible for error logging. After a WMR, this state is available to enable software to
determine the cause of the reset This tends to demand resetting as little of the
chip's state as possible.

To satisfy both of these demands, WMR keeps memory state, L2 cache, error logs,
and most architecturally-visible registers. It discards: transactions in flight, store
buffers, and FIFOs, puts each state machine into its idle state, and lets the pipeline
register drain.

TABLE 5-11 Chip Reset

Chip reset step Jclks Percent of diags

POR/PLL 34800 27

EFA 8000 6

WRM 4000 3

BISI 2600 2
5-16 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

5.3.5 WMR Trap and SPARC-V9 POR Trap
The WMR trap generates a SPARC-V9 POR trap, which has a trap type of 1.

5.3.5.1 How OpenSPARC T1 Starts its Virtual Cores at Reset

To start its virtual cores at reset, OpenSPARC T1 uses the Warm Reset trap.

1. The IOB starts the first virtual core with an interrupt.

2. That virtual core then starts each of the others with an interrupt.

From the OpenSPARC T1 Programmer’s Reference Manual:

Warm Reset [Trap] (WMR [Trap])

"A thread can be sent a WMR [Trap] via the INT_VEC_DIS register. The warm
reset [trap] generates a SPARC-V9 POR [trap], which has a trap type of 00116 at
physical address offset 2016. Software can distinguish a thread warm reset [trap]
from a chipwide warm reset by the RSET_STAT register. Since thread resets
[traps] do not set any bits in this register, and software will clear the chipwide
reset bits after the reset sequence has been completed, a RSET_STAT with all reset
source bits cleared will signal to the thread that it received a thread warm reset
[trap].”

OpenSPARC T1 and T2 both have an Interrupt/Trap Vector Dispatch Register,
INT_VEC_DIS. For OpenSPARC T1, INT_VEC_DIS is in the IOB unit. For
OpenSPARC T2, it is in the NCU.

Interrupt/Trap Vector Dispatch Register

"A thread may write to the following register to trigger an interrupt to another
thread. This is intended to support interrupts from the TAP during bring up. In
addition, any thread may be sent a reset [trap interrupt] via this register.”

SSI 27800 22

Total reset steps 77200 60

Total for 145 diags 127200 100

Diag portion other than reset 50000 40

TABLE 5-11 Chip Reset (Continued)

Chip reset step Jclks Percent of diags
Chapter 5 Reset Unit Specification 5-17

5.3.5.2 How OpenSPARC T2 Starts its Virtual Cores at Reset

1. For OpenSPARC T2, the eFuse Cluster scans out the eFuse Array to set
ASI_CORE_AVAILABLE. NCU uses ASI_CORE_AVAILABLE to set
ASI_CORE_ENABLE and ASI_CORE_ENABLE_STATUS. When the TCU finishes
BIST, NCU can then unpark one virtual core, by setting one bit of
ASI_CORE_RUNNING.

2. That virtual core then starts each of the others by unparking them, by setting the
other bits in ASI_CORE_RUNNING.

The first time each SPARC core sees its bit of ASI_CORE_RUNNING change to 1, it
does a POR trap.

“The RED_state trap handlers should be located in trusted memory, for example, in
ROM. The value of RSTVaddr may be hard-wired in an implementation, but it is
suggested that it be externally set, for instance by scan, or read from pins at
power-on reset." OpenSPARC T2 does not implement RSTVaddr as a register, so it is
not settable.

The RED_state trap vector is located at an implementation-dependent address
referred to as RSTVaddr.

"The RED_state trap vector address (RSTVaddr) is 256 MB below the top of the
virtual address space; this is, at virtual address FFFF FFFF F000 000016, which is
passed through to physical address FF F000 000016 in RED_state."

“Following the state initialization process, the TCU [NCU] instructs the machine (via
the Trap Unit) to begin fetching and executing instructions at the RSTVaddr ||
0x20.... These values may be changed by the system controller, if present, during
reset.” The system controller cannot change these values during reset.

5.3.6 XIR
OpenSPARC T2 accepts a signal on its external BUTTON_XIR_ pin, and sends a
packet for each virtual core enabled by the ASI_XIR_STEERING register. (By
contrast, OpenSPARC T1 received XIR from a write to the INT_VEC_DIS register
and did not use the ASI_XIR_STEERING register.)

“Used to... gain control of a chip. This corresponds to the L1-A key combination on
Sun machines, or Ctl-Alt-Delete on a PC”.

“7.1.3.1 Soft XIR

“By setting bit[1] in the Reset_Gen Register of Tomatillo, a processor can generate
an XIR. The Reset_Source register logs the cause of an XIR so that the XIR trap
handler can easily identify the source.
5-18 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

“Reset due to XIR does not initiate fetch of initialization code from Boot PROM,
and the memory controller continues to perform refresh cycles in order to
preserve main memory contents.”

The trap handler may initiate a reset, so it is not a reset like the others. Thus, XIR
only involves the CMP and SPG units, and not RST, except to the extent that RST
may debounce and synchronize the signal from the external input pin, and OR it
with the XIR_GEN bit in the RESET_GEN register.

The FPGA debounces BUTTON_XIR_, so OpenSPARC T2 does not need to.

1. OpenSPARC T2 implements the CMP Programming Model as defined.
OpenSPARC T1 implemented XIR as a hypervisor function, whereas OpenSPARC
T2 will do this in hardware as specified in the CMP Programming Model.”

[OpenSPARC T1 has an ASI register accessible from code and JTAG which
initiates XIR on a per thread basis.]

2. OpenSPARC T2 has a pin for XIR. (OpenSPARC T1 did not have one.)

[OpenSPARC T1 did not implement XIR via Tomatillo. Tomatillo can generate it
but OpenSPARC T2 will ignore the resulting JBus transaction (this is different
from all other JBus implementations). The only off-chip way to cause an XIR on
OpenSPARC T1 is via JTAG. The idea is that, as JTAG has access to the on-chip
CSRs, it can poke the XIR bit as if it was written to by a thread. OpenSPARC T2
could choose to do the same, but that may break the CMP Programming Model.]

3. The way the OpenSPARC T2 cores handle XIR as a trap allows restart.

4. The XIR CMP config. register is ASI and JTAG accessible

5. Application note: If a debug engineer wants to use the feature 'XIR a particular
thread', they will need to implement a debug JTAG test setup which can
dynamically modify the XIR steering register, and make sure their POST code
handles this correctly.

5.3.6.1 JTAG can cause XIR

OpenSPARC T2 has a scannable flip-flop that can cause XIR, so JTAG can cause XIR.

“A yet-to-be-specified JTAG command could cause an XIR to be steered through the
XIR_STEERING register. Since they are OR’ed the first to happen would cause the
first XIR.”
Chapter 5 Reset Unit Specification 5-19

5.3.7 WDR
Watchdog reset (WDR) is a V9-defined trap. WDR can be initiated via an event (such
as taking a trap when TL == MAXTL) which causes an entry into the V9 error state -
the processor immediately generates a watchdog reset trap to take the core to
RED_state.

On OpenSPARC T2, a WDR also can result from a fatal error condition detected by
on-chip error logic. A WDR only affects the strand which created it. When a WDR is
recognized, instruction fetching begins at RSTVaddr || 0x40.

5.3.7.1 Tomatillo SouthBridge System_watchdog Timer Signal

The Tomatillo SouthBridge system_watchdog timer signal differs from the CMP
watchdog reset, WDR.

From the Tomatillo Programmer’s Reference Manual:

"7.1.3.2 Button XIR

"For bring-up purposes, the system supports a Button XIR. This reset is triggered
through a push button which is connected to SouthBridge and is OR’ed with the
system_watchdog. This button is physically located on a dongle which is attached
to the motherboard through a header connector.

"The Button XIR feature is designed to facilitate bring-up and to provide an easy
way to get the system out of software hang through an XIR instead of a general
system reset. This allows the system to preserve most of its state and in particular
the contents of all registers in the I/O subsystem. It can prove to be useful in
identifying problems when the system hangs on I/O transfers.

"The Button XIR signal is 'OR’ed' with the SouthBridge watchdog timer signal
(inside the southbridge), and the result is connected to Tomatillo s input. When
either the Button XIR or the watchdog signal is active Tomatillo generates an XIR
transaction to all processors. Bit[5] of the Reset Source register is set to one when
a watchdog or Button XIR is generated. This allows the trap handler to identify
the cause of the XIR."

5.3.7.2 CMP Watchdog Reset, WDR

From the CMP Programming Model:

"The only resets that are limited to a single virtual core are the resets internally
generated by a virtual core.... for current SPARC processors, these are the Software
Initiated Reset, SIR, and the watchdog reset, WDR. These types of resets are
generated by a individual virtual core and are not propagated to the other virtual
cores on a CMP."
5-20 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

5.3.8 XIR, WDR, and SIR Perform No Reset
WDR and SIR are internally generated by a virtual core and are limited to a single
virtual core. They are thread-specific and not propagated to other cores or TCU.
They are independent of RST.

In conclusion, of the concepts in TABLE 5-11, only POR, DBG_INIT, WMR, and NIU
involve the reset unit. “Other reset types [XIR, WDR, SIR] are called reset for
historical reasons, but they do not actually perform a reset. Their actual behavior is
that of a Non-Maskable Interrupt (Trap) with fetch from PROM, TL = 2.”

5.4 Machine State after Each Kind of Reset
TABLE 5-12 uses 0 as a shorthand to mean that each unit in this portion of the chip
will revert to the initial state defined by the Programmer’s Reference Manual.

Notes:

1. A table entry of 0 indicates that a unit outside of the JTAG portion of TCU is reset
by TRST_ implicitly, because of the requirement that “the system must assert both
TRST_ and PWRON_RST_L to properly reset the part.”

2. The s defines the subset of the chip unchanged by WMR, and includes: integer
registers, floating-point registers, TBA, Y, PIL, CWP, CCR, ASI, CANSAVE,
CANRESTORE, OTHERWIN, CLEANWIN, WSTATE, FSR, FPRS, TICK_CMPR,

TABLE 5-12 Machine State

JTAG portion
of TCU

WMR-protecte
d portion
(Note 2)

WMR-protecte
d part of DMU,

PEU

WMR-exposed
part of DMU,

PEU

NIU Rest of chip

TRST_ 0 0
(Note 1)

0
(Note 1)

0
(Note 1)

0
(Note 1)

0
(Note 1)

POR Stable 0 0 0 0 0

WMR Stable Stable 0 0 0 0

DMU_PEU bit Stable Stable Stable 0 Stable Stable

NIU bit Stable Stable Stable Stable 0 Stable

DBG Stable Stable Stable Stable Stable 0
Chapter 5 Reset Unit Specification 5-21

VA_WATCHPOINT, I/D/L2 tags and data, L2 directory, iTLB/DTLB, SPARC
Error Status, SPARC Error Address, L2 Error Status, L2 Error Address, MCU Error
Status, MCU Error Address, and all IO Error registers.

5.4.1 Venn Diagram
Rectangles in FIGURE 5-1 represent regions of the chip affected by each kind of reset.
For example, POR resets all flops in the chip, except for those reset by TRST_. Parts
of the chip affected by WMR are also reset by POR. Registers cleared by DBG_INIT
are also cleared by WMR and POR.

TABLE 5-13 Cleared Arrays

Arrays
cleared by

WMR

Arrays cleared by
BISI on WMR

Flops cleared on WMR Flops cleared on
DBG_INIT [change to

DBG]

L2 Dcdir
Icdir

VUAD-UA,
VUAD-VD

All state machines.
(CSRs not yet defined.)

None.

SIU None. None. All. (No error logs in SIU.) None.

DMU, PEU None. None. All state machines. Some CSRs will be cleared,
and some not.

None.

MCU None. None. All except:
MCU Error Status
MCU Error Address

Refresh, scrub, &
arbiter (1 bit now)
state machines.

NCU None. None. All except: ASI_CORE_AVAILABLE
ASI_CORE_ENABLE
ASI_CORE_ENABLE_STATUS
ASI_XIR_STEERING

None.
5-22 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

FIGURE 5-1 Venn Diagram

5.4.2 Reset Signals Asserted for each Kind of Reset
The Reset Unit resets the PLL within the CCU with rst_ccu_pll_ when it is locking.
(The PLL calls this signal pll_arst_l.) Thus, the Reset Unit resets it during POR1, and
also during WMR1 if ccu_rst_change == 1. Once the PLL has locked to its new
frequency, there is no need to reset it again during WMR2.

The Reset Unit asserts rst_ccu_ to reset the CCU only during POR1. This is one of
the main differences between POR1 and POR2. It never resets the CCU during either
WMR1 or WMR2.

Each of the next six signals is one of a pair, with a por version and a wmr version.
Notice that in FIGURE 5-2, if the Reset Unit asserts the por member, it will also assert
the wmr version, so that during POR, it resets both the WMR-exposed and the
WMR-protected flops of a cluster.

TRST_ DBG_INIT NIU
rst_niu_

rst_dbg_init_

WMR rst_wmr_

integer registers, floating-point registers, TBA, Y, PIL, CWP, CCR,
ASI, CANSAVE, CANRESTORE, OTHERWIN, CLEANWIN,
WSTATE, FSR, FPRS,TICK_CMPR, VA_WATCHPOINT, I/D/L2
tags aand data, L2 directory, iTLB/DTLB, SPARC Error Status, SPARC
Error Address, L2 Error, Stastus, L2 Error Address, MCU Error Status,
MCU Error Address, and all IO Error registers.

POR rst_por_
Chapter 5 Reset Unit Specification 5-23

FIGURE 5-2 Reset Signals

The signals rst_l2_por_ and rst_l2_wmr_ differ from the others in that the L2 cache
clusters are reset by flush reset, in which these two signals play no part. Rather, they
are inputs to L2 cache intellectual property which had been reset by synchronous
reset, and these two inputs remain.

The Reset Unit will reset the MAC, rst_niu_mac_, during POR1 and POR2. It will
also reset it during WMR1 and WMR2 if ccu_rst_change == 1, but software can
suppress this last event by setting to one the MAC_PROTECT bit in the SSYS_RESET
register. FIGURE 5-2 shows two waveforms for rst_niu_mac_, one for MAC_PROTECT

XPWRON_RST_L

Xrst_l2_por_

Xrst_dmu_peu_por_

Xrst_dmu_peu_wmr_

POR1 WMR1
chg=1

DMU
_PEU

Xrst_l2_wmr_

DBR

Xrst_niu_mac_ with
MAC_PROTECT==0

NIUPOR2

Xrst_wmr_protect

Xrst_niu_wmr_

WMR1
chg=0

Xrst_ccu_pll_

Xrst_ccu_

WMR2
chg=0

WMR2
chg=1

Xrst_niu_mac_ with
MAC_PROTECT==1
5-24 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

== 0, and another for MAC_PROTECT == 1. When the Reset Unit resets the MAC
during POR1, it continues to assert rst_niu_mac_ for NIU_TIME after the TCU has
deasserted the Asic clk_stop signals.

During Subsystem Reset, the Reset Unit will treat the NIU as if it were performing a
Warm Reset when ccu_rst_change == 1. Thus it will reset the MAC by asserting
rst_niu_mac_, by default. Software can suppress this by setting to one the
MAC_PROTECT bit in the SSYS_RESET register.

To keep the link from going down while we apply reset to the NIU, software should
do the following:

1. Program MAC tx_enable and rx_enable to zero. MAC will do a graceful
shut-down, meaning it will stop transactions at a packet boundary.

2. Wait for some time to let the NIU enter a quiescent state.

3. Set to one the MAC_PROTECT bit and issue an NIU Subsystem Reset.

The Reset Unit will reset the other three NIU blocks, RTX, TDS, and RDP, by
asserting rst_niu_wmr_ during POR, WMR, and NIU Subsystem Reset.

If rst_l2_wmr_ resets a flip-flop, then WMR will clear it, as will POR.

5.4.3 POR Clears the Valid Bits in the L2T Directory of
L1 Tags CAM
To guarantee coherency and correct functionality, initialize the arrays shown in
TABLE 5-14 before enabling the L2 cache:

BISI or ASIs are used to initialize the tag array with good parity.

BISI or ASIs are used to initialize the VUAD arrays by clearing all the valid bits.

Once we enable the L2 cache, it will generate parity for each directory entry written
and check it when it reads it out, including the valid bit. However, directory hits are
independent of parity. If there's a hit in a directory CAM, it sends a packet across the

TABLE 5-14 Initialize Arrays

Structure Initialize Approximate size

tag array parity bits 28 kilobyte * 8

VUAD array valid bits 140 bits * 32 * 8

directory CAM valid bits 15 bits * 32 * 16 * 2

data array no initialization 500 kilobyte * 8
Chapter 5 Reset Unit Specification 5-25

crossbar, even with the L2 cache disabled. To prevent such spurious hits and packets
upon power-up, a signal at the time of Power-On Reset immediately clears all the
directory valid bits. This leaves the parity bits uninitialized, but parity will be set
later, by BIST, by ASIs, or by the L2 cache in operation after it is enabled. Should the
L2 cache detect a parity error at any time, it logs the event and issues an interrupt.

L2 needs to be informed of three things:

1. L2 lines are invalid.

2. L1 lines are invalid (directory in L2).

3. L2 tag array parity and valid bits are cleared.

L2 lines are invalidated with BIST or BISI instructions issued to VUAD array.

L1 lines are invalidated using immediate reset. This is straightforward. There is
already logic in the CAM which resets the valid bit when the corresponding entry is
a hit. Hence this clearing of the valid bit is just a logic OR of the immediate reset
input and the valid bit reset logic in the currently existing logic.

libs/n2sram/cams/
n2_com_cm_64x64_cust_l/
n2_com_cm_64x64_cust/rtl/
n2_com_cm_64x64_cust.sv:

cam_hit0[63] = (wr_data[12:0]== addr_array_63[12:0]);
cam_hit1[63] = ((wr_data[13]== addr_array_4[63]) | force_hit);
cam_hit [63] = (cam_hit0[63] & cam_hit1[63]) & valid_bit[63];

This mechanism prevents spurious packets dispatched to CCX. We wish to prevent
such packet, even if the SPARC cores are all parked, because L2 will retry.

BIST or BISI sets the L2 tag array with good parity and valid bits.

The L2 directories are in l2t. The Reset Unit has to assert the clear pin (rst_l2_por_?)
for 1 or 2 clock cycles. The clocks have to be running.

Each SRAM has a register at its input that is scanned and clocked at the rising edge
of the clock. It is followed by a latch that is not scanned and clocked at the falling
edge of the clock. The latch needs a clock edge to reset. The Reset Unit asserts
rst_l2_por_ to reset the latches.

/l2sat_top/cpu/l2t0/dc_row0/panel0/array/valid_bit[63:0]

/l2sat_top/cpu/l2t7/ic_row2/panel3/array/valid_bit[63:0]
5-26 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

/l2sat_top/cpu/l2t[bank#]
/[cache#]c_row[row#]/panel[panel#]/array/valid_bit[63:0]

L2 initializations:
During POR_:

1) The directories should be initialized before L2 cache is enabled to guarantee
coherency and correct functionality. The directory valid bits are cleared (flash clear)
during POR_ [rst_l2_por_].

=> When the valid bits are cleared (not valid) then the entries are don’t-care. Hence,
the parity bits does not need to be initialized to good parity.

Note – Clearing valid bits in the directory informs the L2 cache that there are no
valid lines in L1.

BISI or ASI's are used to initialize:

1. The VUAD arrays by clearing all the VUAD bits and ecc associated with it.

Note – This informs L2 cache that there are no valid lines in L2.

2. The tag array with good parity. This eliminates the possibility of any error cases
from happening. (False/true hits and misses)

3. The data array is initialized to good ecc+clean data eliminate any kind of false
error detection.

8 banks data cache, instruction cache 2 rows 4 panels

l2t[bank#] [cache#]c_ _row[row#] panel[panel#]

0 bank# 7 dc cache# ic 0 row# 2 0 panel# 3

l2t0 dc_ row0 panel0

l2t1 ic_ row2 panel1

l2t2 panel2

l2t3 panel3

l2t4

l2t5

l2t6

l2t7
Chapter 5 Reset Unit Specification 5-27

Reverse directories valid bits will be clear up by synchronous rst_l2_por_. This
ensures no pointers to L1 lines. L2 valid bits in VUAD array are reset by flush reset
only. L2 LRU initialization is achieved by using rst_l2_por_ to set the all LRU entries
to way 0.

In summary L2 uses a combination of flush reset and synchronous reset.

Before a core is turned off, all lines in the caches need to be cleared. If core enable or
bank enable status is changed, then L1 and L2 caches need to be flushed by running
BISI. If they are not changed, then you do not have to run BISI.

TABLE 5-15 shows the state of the cache lines.

5.5 OpenSPARC T2 is a System On a Chip

5.5.1 System On a Board
FIGURE 5-3 shows a possible configuration for an OpenSPARC T1 processor in a
system on a board. An external NorthBridge chip such as Tomatillo supplies the
processor with J_POR_L and J_RST_L.

TABLE 5-15 CPU State after Reset and in RED_state

Structure that holds state POR WMR

I/D cache tags All invalid Unchanged if BISI not run, else
invalid

L2 tags and data Unknown

L2 directory All invalid
5-28 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

FIGURE 5-3 System On a Board

5.5.2 System On a Chip
FIGURE 5-4 shows the external reset connections for a OpenSPARC T2 system on a
chip. The N-One initiative says there will be a service processor for any platform.

South
Bridge

sys_watchdog
BUTTON_XIR_L

North
Bridge:
Tomatillo

PB_RST_L

Processor:
Jalapeno or
OpenSPARC T1

PCI_RESET_L

POWER_GOOD

POWER_GOOD

J_POR_L

J_RST_LXTRNL_RST_L

PB_RST_L
Chapter 5 Reset Unit Specification 5-29

FIGURE 5-4 System On a Chip

5.5.3 Serial System Interface, SSI
The Serial System Interface (SSI) is defined to allow microprocessors to access
peripherals in a low-pin-count fashion. The OpenSPARC T2 chip will not directly
interface to peripherals but instead will provide a interface that can be easily
converted to peripheral protocols by an external Programmable Logic Device (PLD).
Isolating the OpenSPARC T2 chip from these peripherals allows the devices to use
higher voltage signalling and provides a mechanism for protocol conversion.

OpenSPARC T2 will always be the master of the bus.

South
Bridge

sys_watchdog

OpenSPARC
T2

FPGA

System
Processor

PROM

SSI

POWER_GOOD

BUTTON_XIR_L

PB_RST_L

PWRON_RST_L

TRST_L

EXT_INT_L

PCI_EXPRESS_RESET_
5-30 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

Addresses within the SSI address range (0xFF_F000_0000 to 0xFF_FFFF_FFFF) are
issued to the off-chip SSI interface bus. The only transactions that are supported
directly to the SSI interface are:

1. 1, 2, 4, 8 Byte aligned Reads

2. 1, 2, 4, 8 Byte aligned Writes

SSI generates interrupts for two reasons: either the EXT_INT_L pin was asserted, or
an error was detected. The external interrupt pin is intended to be used by the
FPGA, and has NO ordering protection, meaning when EXT_INT_L is asserted, an
interrupt is issued to the IOB, without checking any transactions in flight. The
interrupt is delivered to the IOB using the SSI device ID, i.e. (device ID == 2).

Current implementation of the SSI interface for OpenSPARC T2 has two issues:

1. During reset (power_on or warm or debug), the SSI_SCK and SSI_MOSI wiggle
over time and then settle to zero during flush. (SSI_SCK and SSI_MOSI are driven
by NCU which gets flush reset). This causes the SSI CLK PLL in the FPGA in the
system to see spurious transactions on SSI_MOSI and also an unstable SSI_SCK,
eventually followed by the SSI_SCK to go to zero for several microsecs. Since the
FPGA uses the SSI_SCK as one if its ref clocks, it loses lock with the SSI_SCK.

2. When the SSI_SCK starts to run again after the flush, OpenSPARC T2 sends out
the first boot fetch after only a few cycles from the time of the unparking of the
threads. This does not provide the FPGA enough time to lock against the SSI_SCK
and hence the FPGA would not be able to service the request properly. Based on
the datasheet from Xilinx, the FPGA PLL would require around 3 msec of time for
the PLL to relock against the SSI_SCK.

To solve these two issues, it has been agreed upon amongst system folks and
OpenSPARC T2 design team that OpenSPARC T2 needs to indicate to the FPGA on a
pin when it should ignore the SSI_SCK and SSI_MOSI outputs from OpenSPARC T2
during reset, and instead hold the FPGA PLL in reset. The Reset unit would assert
this new signal called SSI_SYNC_L on power-on, and keep asserting it until it
unparks the threads to NCU. Then it would deassert it, indicating to the FPGA that
it can deassert the reset to its SSI_CLK PLL and start locking against SSI_SCK
coming from OpenSPARC T2. By this point OpenSPARC T2 would be driving the
SSI_SCK properly and the PLL would get around 5 to 6 msec to lock before NCU
would assert the first SSI_MOSI.

Since we are short of functional pins, it has been agreed upon that the FATAL_ERR
pin would be renamed to this SSI_SYNC_L pin. The Service Processor would extract
fatal error information from the chip by reading on-chip registers if required.

Specific timing requirements for rst_mio_ssi_sync_l:

Deassert on power-up.

Assert after flush reset, but before rst_ncu_unpark_thread.
Chapter 5 Reset Unit Specification 5-31

Deassert before flush reset of NCU.

5.5.4 Connections between RST and Other Clusters
FIGURE 5-5 shows some connections between RST and other clusters. See the Reset
Unit Verification Test Plan for a more complete depiction.

FIGURE 5-5 Connections between RST and Other Clusters

RS T

TCU

NCU

CCU

rst_ncu_unpark_thread

PWRON_RST_L

BUTTON_XIR_L

PB_RST_L rst_wmr_protect

NIU
(IP)rst_niu_

PEU
(IP)rst_dmu_peu_por_

TRST_ scan_in_clock

scan_out_clock

scan_in_data

ccu_freq_chgd

DMU
(IP)

rst_l2b_l2t_

rst_ncu_xir_

ncu_rst_xir_done

UCB
MCUrst_mcu_selfrsh

rst_dmu_peu_wmr_
5-32 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

5.6 Registers

5.6.1 (0x89-0000-0808) Reset Generation Register,
RESET_GEN
This register allows software to generate resets. It is a copy of the Fire Reset
Generation register, Reset_Gen, with one exception. Since the service processor
drives PWRON_RST_L, the OpenSPARC T2 RESET_GEN register does not
implement the POR_GEN bit that Fire has in bit position 2.

Write 1 to only one of the bits in this register at a time.

Note that the Fire Programmer’s Reference Manual calls Soft Reset a Power-On Reset.
“Power-On Reset (Soft Reset)”, says, “When power is already on, if the 'PB_RST_L'
input to Fire gets asserted due to a push-button trigger in the system, Fire initiates a
soft reset... When power is already stable and the processor detects a transition on its
J_RST_L input pins, it takes a 'Soft Reset'. “

It is simply called a Power-On Reset in this document. It is similar to a 'Hard Reset'
except that the on-chip memory controller continues to perform refresh cycles in
order to preserve main memory contents, and clock ratio is unaffected.

Thus, the Fire Programmer’s Reference Manual calls bit 0 of Reset_Gen “PO_RST”. This
can cause confusion when speaking about both Fire in a OpenSPARC T1 or
OpenSPARC T2 context.

TABLE 5-16 Reset Generation Register

Field Bit Position Initial Value R/W Description

RSVD0 63:4 0 RO Reserved

DBR_GEN 3 0 RW Write 1 to cause a Debug Reset. This is the same as
Warm Reset, except that PCI Express and NIU keep
running. Enters Fig. 7 at WMR2. Set by software,
cleared at completion of DBR.

RSVD1 2 0 RW Reserved. (Was POR_GEN on fire, indicating that
software wrote 1 to cause a Power-On Reset.)

XIR_GEN 1 0 RW Write 1 to cause an eXternally-Initiated Reset. Set by
software, cleared at completion of XIR.

WMR_GEN 0 0 RW Write 1 to cause a Warm Reset. Enters Fig. 7 at WMR1.
Set by software, cleared at completion of WMR.
Chapter 5 Reset Unit Specification 5-33

The Fire Programmer’s Reference Manual appears internally inconsistent, however. The
section entitled “POR & Warm Reset Initialization”, implies that POR and Warm
Reset are two different things. Also, the Fire Power-On, Reset and BIST document
says, “OBP checks Reset_Source Register. a. if bit3 (Power_On)...”But the Fire
Programmer’s Reference Manual calls bit 3 “PU, Power_up (Low to High transition on
Power_Good).” It's bit 0 that the Fire Programmer’s Reference Manual calls “PO_RST”.
Reset Source Register, RESET_SOURCE.

This register allows software to identify the origin of a reset. It is a copy of the Fire
Reset_Source register.

5.6.2 (0x89-0000-0818) Reset Source Register,
RESET_SOURCE
This register allows software to identify the origin of a reset. It is a copy of the Fire
Reset Source register.

TABLE 5-17 Reset Source Register

Field Bit
Position

Initial
Value

R/W Description

RSVD0 63:16 0 RO Reserved

L2T7_FATAL 15 0 RW1C The L2T7 cache detected a fatal error, causing a WMR.

L2T6_FATAL 14 0 RW1C The L2T6 cache detected a fatal error, causing a WMR.

L2T5_FATAL 13 0 RW1C The L2T5 cache detected a fatal error, causing a WMR.

L2T4_FATAL 12 0 RW1C The L2T4 cache detected a fatal error, causing a WMR.

L2T3_FATAL 11 0 RW1C The L2T3 cache detected a fatal error, causing a WMR.

L2T2_FATAL 10 0 RW1C The L2T2 cache detected a fatal error, causing a WMR.

L2T1_FATAL 9 0 RW1C The L2T1 cache detected a fatal error, causing a WMR.

L2T0_FATAL 8 0 RW1C The L2T0 cache detected a fatal error, causing a WMR.

NCU_FATAL 7 0 RW1C One of the clusters feeding the NCU detected a fatal error,
causing a WMR.

PB_XIR 6 0 RW1C An external agent asserted the BUTTON_XIR_ input pin.

PB_RST 5 0 RW1C WMR: An external agent asserted the PB_RST_L input pin,
causing a WMR.

PWRON_RST 4 1 RW1C The System Processor asserted the PWRON_RST_L input pin.

DBR_GEN 3 0 RW1C Software wrote 1 to the DBR_GEN bit of the RESET_GEN
register to cause a Warm Reset.
5-34 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

RW1C – Read, Write 1 to Clear: Writing a 0 to a bit in this field has no effect, but
writing a 1 to a bit in this field will cause that bit to be set to 0.

The Reset Unit only recognizes an eXternally-Initiated Reset if it is processing no
other reset, since XIR has the lowest priority of the resets that the Reset Unit
handles. Thus, if an external agent asserts the BUTTON_XIR_L input pin, the Reset
Unit will set the PB_XIR bit of the RESET_SOURCE register only when it completes
any earlier reset. If software writes to the XIR_GEN bit of the RESET_GEN register,
when the Reset Unit starts to process it, it will set the XIR_GEN bit of
RESET_SOURCE.

The Reset Unit will clear a bit in the RESET_GEN register upon completion of the
corresponding reset. In the RESET_SOURCE register, by contrast, software can clear
a bit, but not the Reset Unit. It can only set a bit.

If software sets the XIR_GEN bit of the RESET_GEN register, and any other reset
occurs while the Reset Unit is waiting for the NCU to finish processing the XIR, the
Reset Unit will leave the XIR_GEN bit set.

5.6.3 (0x89-0000-0838)Subsystem Reset Register,
SSYS_RESET
This register allows software to reset a particular subsystem.

RSVD1 2 0 RW1C Reserved. (Was POR_GEN on Fire, indicating that software
wrote 1 to the POR_GEN bit of the RESET_GEN register to
cause a Power-On Reset.

XIR_GEN 1 0 RW1C Software wrote 1 to the XIR_GEN bit of the RESET_GEN
register to cause an externally-Initiated Reset.

WMR_GEN 0 0 RW1C Software wrote 1 to the WMR_GEN bit of the RESET_GEN
register to cause a Warm Reset.

TABLE 5-17 Reset Source Register (Continued)

Field Bit
Position

Initial
Value

R/W Description
Chapter 5 Reset Unit Specification 5-35

For the NIU, the minimum reset width needs to cover TI SERDES PLL lock up time
(which is 3 s)plus some extra time for synchronous reset to propagate through
various clock domain. A 10 us reset with should be good enough. (The NIU also has
registers within it that allow software to reset portions of the NIU.)

5.6.4 (0x89-0000-0810) Reset Status Register,
RSET_STAT
In order to enable or disable a functional unit's clocks, a number of L1 clock headers
must be fed from the same enable signal. OpenSPARC T2 SPG may use a “rolling
enable”, where possible, which follows the pipeline structure within the unit, which
helps with I/dt noise on the power supply.

Reset Status Register, RSET_STAT

Register Base Address 1 IOBMAN – 0x98-0000-0000

TABLE 5-18 Subsystem Reset Register

Field Bit Position Initial Value R/W Description

RSVD0 63:7 0 RO Reserved

MAC_
PROTECT

6 0 R/W Set to one to suppress the assertion of rst_niu_mac_ that
the Reset Unit would normally generate during a WMR
with ccu_rst_change==1.

MCU_
SELFRSH

5 0 R/W Set to one to have the MCUs put the DRAM info
self-refresh. (Drives clspine_mcu_selfrsh to the MCU.)

RSVD1(Was:
MCU_FBD_PRO
TECT)

4 0 R/W Reserved (Was: When 0, the FBDIMM interface logic in
MCU will get reset as usual on Warm Reset and Debug
Reset. When 1, this FBDIMM interface logic will not be
reset on Warm Reset and Debug Reset and will continue
functioning as normal.) (Now use self refresh.)

RSVD2 3:2 0 RO Reserved

DMU_PEU 1 0 RW Write 1 to send a warm reset to the PCI-Express
subsystem (DMU and PEU), both ingress and egress, for
at least 15 s.Cleared by hardware at completion.

NIU 0 0 RW Write 1 to send a warm reset to the NIU for at least 4 s.
Cleared by hardware at completion.
5-36 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

The chip reset status, shown in TABLE 5-19 is maintained for all chip-wide reset and
power management commands. The reset source bits in this register are writable to
allow software to clear them after the chip reset sequence is complete, in order for
thread warm resets to be distinguished from chip resets. HW will copy the current
reset status into a shadow status whenever a reset occurs.

The shadow versions of the bits only have meaning after a WMR, since by definition,
a reset the system controller applies after the machine has been running is a WMR.
Since the system controller only applies a POR upon applying power, the shadow
versions of the bits then will always be 0.

5.6.5 (0x89-0000-0820) Fatal Error Enable Register,
RESET_FEE
Each bit of this register allows the l2tn_rst_fatal_error signal, 0 equal or less than n
equal or less than 7, from one of the l2t banks, to cause a Warm Reset.

TABLE 5-19 Reset Status Register

Field Bit Position Initial Value R/W Description

RSVD0 63:12 0 RO Reserved

FREQ_S 11 0 R/W Shadow status of FREQ

POR_S 10 0 R/W Shadow status of POR

WMR_S 9 0 R/W Shadow status of WMR

RSVD1 8 - 5 0 RO Reserved

RSVD2 4 0 RO Reserved

FREQ 3 0 R/W Set to one if the reset is a warm reset that changed
frequency.

POR 2 1 R/W Set to one if the reset is from PWRON_RST_L pin.

WMR 1 0 R/W Set to one if the reset is from:
(1) the PB_RST_L input pin,
(2) the WMR_GEN bit of the RESET_GEN register,
(3) from a Fatal Error, or
(4) the DBR_GEN bit of the RESET_GEN register.

RSVD2 0 0 RO Reserved
Chapter 5 Reset Unit Specification 5-37

If the respective Fatal Error Enable bit is set, and the corresponding error type is
asserted, the Reset Unit will cause a Warm Reset. (The NCU contains a register
named Fatal Error Enable, FEE. That register enables a fatal error to cause NCU to
assert the signal ncu_rst_fatal_error to the Reset Unit.)

5.6.6 (0x89-0000-0860) Clock Control Unit Time
Register, CCU_TIME

The value in this register determines the length of two intervals.

1. CCU_TIME determines the interval from when the Reset Unit deasserts rst_ccu_
until it deasserts cluster_arst_l and rst_tcu_clk_stop. This interval must be long
enough for the CCU to have begun generating the sync_en pulses. (Historical
note: At some point in its operation, the CCU starts to count to 24 and then
asserts an internal signal named ccu_rst_sync_stable. The sync_en pulses are
stable well before the CCU asserts ccu_rst_sync_stable. The Reset Unit cannot
make use of ccu_rst_sync_stable during this interval, because at first the CCU has
not yet begun to drive sync_en pulses, so the Reset Unit cannot observe it.)

TABLE 5-20 Fatal Error Enable Register

Field Bit
Position

Initial
Value

R/W Description

RSVD0 63:16 0 RO Reserved

L2T7_FEE 15 0 R/W The L2T7 cache detected a fatal error, causing a WMR.

L2T6_FEE 14 0 R/W The L2T6 cache detected a fatal error, causing a WMR.

L2T5_FEE 13 0 R/W The L2T5 cache detected a fatal error, causing a WMR.

L2T4_FEE 12 0 R/W The L2T4 cache detected a fatal error, causing a WMR.

L2T3_FEE 11 0 R/W The L2T3 cache detected a fatal error, causing a WMR.

L2T2_FEE 10 0 R/W The L2T2 cache detected a fatal error, causing a WMR.

L2T1_FEE 9 0 R/W The L2T1 cache detected a fatal error, causing a WMR.

L2T0_FEE 8 0 R/W The L2T0 cache detected a fatal error, causing a WMR.

RSVD1 7:0 0 RO Reserved

TABLE 5-21 Clock Control Unit Time Register

Field Bit Position Initial Value R/W Description

RSVD 63:16 0 RO Reserved

CCU_TIME 15:0 3210 R/W CCU_TIME
5-38 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

2. CCU_TIME also determines the interval from when the Reset Unit deasserts
cluster_arst_l and rst_tcu_clk_stop, until it asserts rst_tcu_flush_stop_req. The
TCU requires some time with its clocks running until it expects to receive
rst_tcu_flush_stop_req.

The default value is 32 sys_clk cycles.

5.6.7 (0x89-0000-0870) Lock Time Register, LOCK_TIME
We need the reset sequence to be repeatable and deterministic in time for the tester
function. Thus feedback from PPL locks and the eFuse Cluster is not desirable. It is
better to have a predetermined time configured by software. Also, the pre-WMR
boot code may wish to perform Warm Reset with the same PLL config. register
values, obviating the need to wait for the l2clk PLL to lock.

The value in this register determines the length of time that the Reset Unit asserts
rst_wmr_ while various phase-locked loops lock. The Reset Unit uses this register
twice in the Power-On Reset Sequence:

1. Starting when the system controller deasserts PWRON_RST_L. During this time,
the eFuse Cluster scans the eFuse Array, and the ddr_pll and NIU PLLs lock.
[eFuse now occurs later in the sequence.]

2. Starting when the pre-WMR boot code writes a 1 into the CHIP_RESET register.
During this time, the two PLLs lock, and potentially the l2clk PLL locks as well.

Since the PLL config. register might change during WMR, the LOCK_TIME register
cannot use l2clk. It must use the system clock.

Reset causes this register to take on the longest time needed, assuming the highest
planned reference clock frequency. The longest time needed is the maximum of the
time required for the following:

1. 10 sto lock the NIU PLL.

2. 25 sto lock the l2clk PLL.

System clock is fed into the ref_clk of the cmp PLL. Internal to the PLL, the clock is
multiplied up to the VCO frequency of 3 GHz. The worst case in this context is the
highest frequency contemplated for sys_clk, 200 MHz, with a period of 5 ns.

TABLE 5-22 Lock Time Register

Field Bit Position Initial Value R/W Description

RSVD 63:16 0 RO Reserved

LOCK_TIME 15:0 512010 R/W LOCK_TIME
Chapter 5 Reset Unit Specification 5-39

lock time in cycles= 25 s 5 ns/cycle = 5,000 cycles

Thus, the initial value for this register is 5k = 5,120.

5.6.8 (0x89-0000-0880) Propagation Time Register,
PROP_TIME

This register indicates how long it takes for the longest scan chain to flush. After the
Reset Unit receives tcu_rst_flush_init_ack, it will wait PROP_TIME pll_sys_clk clock
cycles before asserting rst_tcu_flush_stop_req.

Reset causes this register to take on the longest time needed, assuming the highest
planned reference clock frequency. The longest time needed is the maximum of the
time required for the following:

1. The scan chain to flush.

2. The MAC requires at least 4,000 ns. See Network Interface Unit (NIU).

One way to estimate item (1) is to derive a back-of-the-envelope guess for the delay
for each stage of the flush reset. We do this by summing up:

(1) The mid-table delay value of si-to-siclk setup, and

(2) The soclk-to-so clock-to-q delay,

which gives 250 ps. We must consider this estimate within certain limitations, as
follows:

1. The actual flow through delay arc (si to so), when both latch stages are open, will
be different. How much, we don't know. The setup number reflects a failure point
number which doesn't necessarily relate to actual delay path condition during
flush.

2. Scan paths are a weird mix of back-to-back flops and repeated interconnects. We
might guess that the portion of gate-dominated delay is quite high though. We
might suppose an _average_ total interconnect (wire + repeater) delay of 30ps.
This could be way off.

TABLE 5-23 Propagation Time register

Field Bit Position Initial Value R/W Description

RSVD 63:16 0 RO Reserved

PROP_TIME 15:0 307210 R/W PROP_TIME
5-40 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

The physical group will eventually use static timing analysis to more rigorously
verify the overall delay. These considerations provide an initial average number as a
starting point.

Based on an estimate of 250 ps per stage, the time for flush reset to propagate
through any one scan chain would be the number of flops in the chain times 250 ps.
OpenSPARC T2 has approximately 1,000,000 flops in 32 scan chains. With reasonable
balancing, we expect the longest chain will be 45,000 to 50,000 flops long.

Flush reset time= 50,000 flops 250 ps/flop
= 12,500 ns
= 12.5 s

Flush reset time in cycles= 12,500 ns 5 ns/cycle
= 2500 cycles

Thus, the initial value for this register is 3k = 3,072, providing a 22 percent margin
over the value needed for the longest chain.

Since the physical team provided this initial estimate, the library team has provided
timing information, as follows:

/import/n2-librel/integration/release/rel_1.4/lib/c021a/cl_sc1/comp
iled/cl_sc1.SynT

 pin(so) {
 direction : output;
 connection_class : universal;
 timing() {
 related_pin : "si";
 timing_sense : positive_unate;

 cell_fall(table6_7) {
index_1 (" 0.009073, 0.018110, 0.027590, 0.049080, 0.123400,

0.245500");
index_2 (" 0.000500, 0.001000, 0.001500, 0.003500, 0.005000,

0.015000, 0.030000");
 values (\
"0.145700,0.148100,0.150300,0.158000,0.163200,0.196900,0.247000",\
"0.147500,0.149900,0.152100,0.159800,0.165100,0.198700,0.248900",\
"0.149600,0.152000,0.154200,0.161900,0.167200,0.200800,0.251000",\
"0.154200,0.156600,0.158800,0.166500,0.171800,0.205400,0.255600",\
"0.168900,0.171300,0.173500,0.181200,0.186500,0.220100,0.270300",\
"0.191900,0.194400,0.196500,0.204300,0.209600,0.243200,0.293300");
 }

 cell_rise(table6_7)
index_1 (" 0.008461, 0.017230, 0.026730, 0.048000, 0.123300,

0.249000");
index_2 (" 0.000500, 0.001000, 0.001500, 0.003500, 0.005000,

0.015000, 0.030000");
Chapter 5 Reset Unit Specification 5-41

 values (\
"0.138800,0.141600,0.144100,0.152800,0.158700,0.196800,0.253600",\
"0.141600,0.144300,0.146800,0.155500,0.161400,0.199500,0.256300",\
"0.144700,0.147400,0.149900,0.158600,0.164500,0.202600,0.259400",\
"0.151200,0.153900,0.156400,0.165100,0.171100,0.209100,0.265900",\
"0.169000,0.171700,0.174200,0.182900,0.188800,0.226900,0.283700",\
"0.192200,0.195000,0.197500,0.206200,0.212200,0.250200,0.307000");
 }

Taking the entries in the middle column and the middle rows of the cell_fall table
and the cell_rise table, the following values are obtained, in nanoseconds:
0.161900
0.166500
0.158600
0.165100

IWith an original estimate of 250 ps per stage, a 50 percent margin over the slowest
of these values is provided, in addition to the 22 percent margin already provided.

5.6.9 (0x89-0000-0890) NIU Time Register, NIU_TIME

This register indicates how long it takes for initial values to shift throughout the
NIU.

NIU time= 8 s

NIU time in cycles= 8,000 ns 5 ns/cycle = 1,600 cycles

Thus, the initial value for this register is 1.5k + 64 = 1,600.

Note – The Reset Unit must assert rst_mio_pex_reset_l for 15 s,so before Warm
Reset, software must manipulate LOCK_TIME, PROP_TIME, and NIU_TIME to
provide at least this duration of this signal. For example, the Subsystem Reset of the
DMU-PEU makes use of NIU_TIME twice (15 8 + 8 s).The Subsystem Reset of the
NIU also uses NIU_TIME (4 8 s).

TABLE 5-24 NIU Time Register

Field Bit Position Initial Value R/W Description

RSVD 63:16 0 RO Reserved

NIU_TIME 15:0 160010 R/W NIU_TIME
5-42 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

5.7 Power-On Reset Sequence Overview
This section summarizes what the following sections lay out in detail.

TABLE 5-25 shows the major types of OpenSPARC T2 structures that hold state (see
OpenSPARC T2 Structures that Hold State). It also shows, after each stage of the
Power-On Reset sequence, whether each structure:

■ holds an unknown value, "X",

■ has been reset to 0,

■ has been initialized from the eFuse Unit, "efu",

■ has taken on a value, either 0 or 1, that is deterministic and repeatable, "det".

The only actions required by the system controller are to:

1. Assert TRST_ and PWRON_RST_L,

2. Start sys_clk and the DMU-PEU and NIU SERDES clocks,

3. Deassert TRST_, and then

4. Deassert PWRON_RST_L. (Or, deassert TRST_ and PWRON_RST_L
simultaneously.)

TABLE 5-25 Types of Structures

pwr-goo
d

= 0

POR
1

EFU
1

BISI
1

POR
2

EFU
2

Pre-WMR
boot code

WMR
1

BIST
2

WMR
2

Post-WMR
boot code

WMR-prot
ected flops

X 0 det X 0 det det det det det det

WMR-expo
sed flops

X 0 det X 0 det det 0 det 0 det

SRAM
repair
latches

X X efu efu efu efu efu efu efu efu efu

SRAM
array core
contents

X X X 0 0 0 det det 0 0 det

core
available
flops

X 0 efu efu 0 efu efu efu efu efu efu
Chapter 5 Reset Unit Specification 5-43

The Reset Unit will automatically take OpenSPARC T2 through the POR1 through
the unpark_thread that fetches the pre-WMR boot code.

The typical OpenSPARC T2 powerup reset sequence is as follows:

1. On powerup of the system (shown in FIGURE 5-7 as Off-chip "pwr_good" = 0), the
system controller asserts PWRON_RST_L and RST, assisted by CCU and TCU,
asserts all other reset signals. This causes (1) the internal state of all SunV clusters
to reset, including all control registers and memory refresh state machines, (2)
causes IO outputs to reset, and (3) protects the internal tristate muxes. In
addition, as soon as the system controller applies sys_clk, the Asic clusters will
reset. The Reset Unit will hold in reset the CCU PLL during this time. The other
PLLs, in the NIU SERDES and the PEU SERDES, by contrast, will be locking to
their frequencies as soon as the system controller applies sys_clk.

2. Once power is up in the system (pwr_good = 1), the system controller then
deasserts PWRON_RST_L. The Reset Unit hold most of OpenSPARC T2 in
Power-On Reset (POR1) while the CCU PLL locks, waits while the eFuse
Controller reads out the eFuse Array (EFU1), and waits while the TCU performs
BISI (BISI1). Since the SRAM outputs are enabled during BISI, their initial,
unknown state may transfer to flip-flops that had been reset during POR1. To
correct this, the Reset Unit applies Power-On Reset a second time (POR2). The
second POR resets information in the NCU that had come from the eFuse Array,
so the eFuse Controller reads out the eFuse Array a second time (EFU2). Then the
cpu fetches reset configuration programming code from the boot PROM where
configuration registers (clock ratios, etc.) are programmed (Pre-WMR boot code).
RST must deassert all reset signals simultaneously and synchronously to their
respective clocks.

3. The boot code modifies the frequency ratio register, and then causes a Warm
Reset. The Reset Unit resets most of OpenSPARC T2 (everything except error logs)
while relocking the CCU PLL (WMR1). Then it waits while the TCU performs
BIST (BIST2), performs a second Warm Reset (WMR2), and restarts instruction
fetch of boot code running at the reprogrammed clock ratio (Post-WMR boot
code).

4. Subsequent warm resets may take place later via rst_wmr_, which do not disturb
states which are reset only by PWRON_RST_L. Any of the resets (POR, WMR, or
DBR) may be caused by a write to a RST CSR, CHIP_RESET. Warm resets may
also be generated with a system push-button.

5. A reset after BISI, and another after BIST were added. After POR1, BISI might
change some state, so POR2 resets all flops. After WMR1 comes BIST, then
WMR2. Note that BISI is required before turning on the cache.
5-44 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

5.7.1 Power-On Reset Duration in a System
TABLE 5-26 sums up the duration of each step of the Power-On Reset sequence, in
which OpenSPARC T2 is in a system:

TABLE 5-26 Power-On Reset Sequence Duration

POR step Who Start End Cycles Clock
period (ns)

Duration (ns)

Strt POR
sequence

Sys
ctlr

- POWER_GOOD - - 0.00

PLL resets Sys
ctlr

POWER_GOOD Deassert
Pwron_Rst_L

- - 2,000.00

por1,
pll locks

rst Deassert
rst_ccu_pll_

Deassert rst_ccu_ LOCK_TIME = 5,000 5.000 25,000.00

sync_stable ccu Deassert rst_ccu_ ccu_rst_sync_stabl
e

5 0.714 3.57

Deassert
Asic
clk_stop

tcu ccu_rst_sync_sta
ble

tcu_rst_flush_stop
_ack

2*128 = 256 0.714 182.86

niu pll rst tcu_rst_flush_sto
p_ack

tcu_rst_flush_stop
_req

NIU_TIME = 1,600 5.000 8,000.00

Deassert
SunV
clk_stop

tcu tcu_rst_flush_sto
p_req

tcu_rst_flush_stop
_ack

22*128 = 2,816 0.714 2,011.43

efu1 efu tcu_rst_flush_sto
p_ack

tcu_rst_efu_done
64*62 = 3,968

2.857 11,337.14

bisi1 tcu tcu_rst_efu_done tcu_bisx_done l2d:128k + l2t:8k +
l2vuad: 1k = 140,288

0.714 100,205.71

clk_stop tcu tcu_rst_flush_ini
t_req

tcu_rst_flush_init_
ack

24*128 = 3,072 0.714 2,194.29

por2 rst tcu_rst_flush_ini
t_ack

tcu_rst_flush_stop
_req

PROP_TIME = 3,000 5.000 15,000.00

Deassert
clk_stop

tcu tcu_rst_flush_sto
p_req

tcu_rst_flush_stop
_ack

24*128 = 3,072 0.714 2,194.29

efu2 efu tcu_rst_flush_sto
p_ack

tcu_rst_efu_done
64*62 = 3,968

2.857 11,337.14

ncu rst_ncu_unpark_
thread

core_running 4 2.857 11.43

spc core_running Request from spc
to ncu

10-15 0.714 10.71
Chapter 5 Reset Unit Specification 5-45

5.7.2 Power-On Reset Duration on a Tester
Second, we consider the case in which the part is on the tester, not in a system, so
there is no need for an external PLL to synchronize to the SSI.

TABLE 5-27 sums up the duration of each step of this minimal-delay Power-On Reset
sequence:

SSI pll locks ncu - - 3FFFF = 256k =
262,144

11.428 2,995,931.42

ncu Request from spc
to ncu

Data on SSI bus 7 2.857 20.00

End POR
sequence

- - - - - 3,175,439.98

TABLE 5-27 Power-On Reset Duration on Tester

POR step Who Start End Cycles Clock
period (ns)

Duration (ns)

Strt POR
sequence

Sys
ctlr

- POWER_GOOD - - 0.00

PLL resets Sys
ctlr

POWER_GOOD Deassert
Pwron_Rst_L

- - 2,000.00

por1,
pll locks

rst Deassert
rst_ccu_pll_

Deassert rst_ccu_ LOCK_TIME = 5,000 5.000 25,000.00

sync_stable ccu Deassert rst_ccu_ ccu_rst_sync_stabl
e

5 0.714 3.57

Deassert
Asic
clk_stop

tcu ccu_rst_sync_sta
ble

tcu_rst_flush_stop
_ack

2*128 = 256 0.714 182.86

niu pll rst ccu_rst_sync_sta
ble

tcu_rst_flush_stop
_req

NIU_TIME = 1,600 5.000 8,000.00

Deassert
SunV
clk_stop

tcu tcu_rst_flush_sto
p_req

tcu_rst_flush_stop
_ack

22*128 = 2,816 0.714 2,011.43

efu1 efu tcu_rst_flush_sto
p_ack

tcu_rst_efu_done
64*62 = 3,968

2.857 11,337.14

TABLE 5-26 Power-On Reset Sequence Duration (Continued)

POR step Who Start End Cycles Clock
period (ns)

Duration (ns)
5-46 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

5.7.3 Warm Reset Duration in a System
Consider the case in which OpenSPARC T2 is in a system, and software has:

1. Configured the MBIST engines to perform MBIST, and

2. Configured the Clock Control Unit to change to a new frequency.

bisi1 tcu tcu_rst_efu_done tcu_bisx_done l2d:128k + l2t:8k +
l2vuad: 1k = 140,288

0.714 100,205.71

clk_stop tcu tcu_rst_flush_ini
t_req

tcu_rst_flush_init_
ack

24*128 = 3,072 0.714 2,194.29

por2 rst tcu_rst_flush_ini
t_ack

tcu_rst_flush_stop
_req

PROP_TIME = 3,000 5.000 15,000.00

Deassert
clk_stop

tcu tcu_rst_flush_sto
p_req

tcu_rst_flush_stop
_ack

24*128 = 3,072 0.714 2,194.29

efu2 efu tcu_rst_flush_sto
p_ack

tcu_rst_efu_done
64*62 = 3,968

2.857 11,337.14

5.12 ncu rst_ncu_unpark_
thread

core_running 4 2.857 11.43

spc core_running Request from spc
to ncu

10-15 0.714 10.71

SSI pll locks ncu - - 0 11.428 0.00

ncu Request from spc
to ncu

Data on SSI bus 7 2.857 20.00

End POR
sequence

- - - - - 179,508.56

TABLE 5-27 Power-On Reset Duration on Tester (Continued)

POR step Who Start End Cycles Clock
period (ns)

Duration (ns)
Chapter 5 Reset Unit Specification 5-47

TABLE 5-28 sums up the duration of each step of this maximum-delay Warm Reset
sequence:

TABLE 5-28 Maximum Delay Warm Reset Sequence

WMR step Who Start End Cycles Clock
period (ns)

Duration (ns)

Start WMR
sequence

soft
ware

WMR_GEN bit tcu_rst_flush_init_
req

- - 0.00

clk_stop tcu tcu_rst_flush_ini
t_req

tcu_rst_flush_init_
ack

24*128 = 3,072 0.714 2,194.29

wmr1, reset
pll

rst Assert
rst_ccu_pll_

Deassert
rst_ccu_pll_

PROP_TIME = 3,000 5.000 15,000.00

pll locks rst Deassert
rst_ccu_pll_

Deassert rst_ccu_ LOCK_TIME = 5,000 5.000 25,000.00

sync_stable ccu Deassert rst_ccu_ ccu_rst_sync_stabl
e

5 0.714 3.57

Deassert
clk_stop

tcu tcu_rst_flush_sto
p_req

tcu_rst_flush_stop
_ack

24*128 = 3,072 0.714 2,194.29

bist2 tcu tcu_rst_efu_done tcu_bisx_done (128k + 8k +
1k)*8*21 = 23,568,384

0.714 16,834,560.00

9.6: clk_stop tcu tcu_rst_flush_ini
t_req

tcu_rst_flush_init_
ack

24*128 = 3,072 0.714 2,194.29

wmr2 rst tcu_rst_flush_ini
t_ack

tcu_rst_flush_stop
_req

PROP_TIME = 3,000 5.000 15,000.00

Deassert
clk_stop

tcu tcu_rst_flush_sto
p_req

tcu_rst_flush_stop
_ack

24*128 = 3,072 0.714 2,194.29

ncu rst_ncu_unpark_
thread

core_running 4 2.857 11.43

spc core_running Request from spc
to ncu

10-15 0.714 10.71

SSI PLL
locks

ncu - - 3FFFF = 256k =
262,144

11.428 2,995,931.42

ncu Request from spc
to ncu

Data on SSI bus 7 2.857 20.00

End WMR
sequence

- - - - - 19,894,314.27
5-48 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

5.7.4 Warm Reset Duration on a Tester
Finally, consider the case in which the part is on the tester, not in a system, so there
is no need for an external PLL to synchronize to the SSI. Also, software has:

1. Configured the MBIST engines to skip MBIST, and

2. Configured the Clock Control Unit to retain the same frequency.

TABLE 5-29 sums up the duration of each step of this minimal-delay Warm Reset
sequence:

TABLE 5-29 Minimum Warm Reset Duration

WMR step Who Start End Cycles Clock
period (ns)

Duration (ns)

Start WMR
sequence

soft
ware

WMR_GEN bit tcu_rst_flush_init_
req

- - 0.00

clk_stop tcu tcu_rst_flush_ini
t_req

tcu_rst_flush_init_
ack

24*128 = 3,072 0.714 2,194.29

wmr1, reset
pll

rst Assert
rst_ccu_pll_

Deassert
rst_ccu_pll_

PROP_TIME = 3,000 5.000 15,000.00

pll locks rst Deassert
rst_ccu_pll_

Deassert rst_ccu_ LOCK_TIME = 0 5.000 0.00

sync_stable ccu Deassert rst_ccu_ ccu_rst_sync_stabl
e

5 0.714 3.57

Deassert
clk_stop

tcu tcu_rst_flush_sto
p_req

tcu_rst_flush_stop
_ack

24*128 = 3,072 0.714 2,194.29

bist2 tcu tcu_rst_efu_done tcu_bisx_done 0 0.714 0.00

clk_stop tcu tcu_rst_flush_ini
t_req

tcu_rst_flush_init_
ack

24*128 = 3,072 0.714 2,194.29

wmr2 rst tcu_rst_flush_ini
t_ack

tcu_rst_flush_stop
_req

PROP_TIME = 3,000 5.000 15,000.00

Deassert
clk_stop

tcu tcu_rst_flush_sto
p_req

tcu_rst_flush_stop
_ack

24*128 = 3,072 0.714 2,194.29

ncu rst_ncu_unpark_
thread

core_running 4 2.857 11.43

spc core_running Request from spc
to ncu

10-15 0.714 10.71
Chapter 5 Reset Unit Specification 5-49

5.8 Deterministic Behavior
Any sequence of actions on OpenSPARC T2 is required to be deterministic and
repeatable. Thus, the relative alignment of the Ratioed Synchronous Clocks, cmp, dr,
io, and io2x, must be identical following any two identical resets.

The RSCs follow a pattern that repeats with a period equal to or less than the period
of the reference clock. The system clock drives the input to the divider D1 (divide by
2), which in turn drives ref_clk. Since ref_clk has a period twice that of sys_clk, the
RSCs also repeat during every sys_clk cycle.

FIGURE 5-6 Clock Cycles

The alignment of the RSCs will be the same if the Reset Unit drives its outputs at the
same time relative to ref_clk. The outputs of the Reset Unit will be the same, relative
to ref_clk, if the inputs are the same, relative to ref_clk.

The events that can initiate a reset are:

1. The FPGA (asserts and) deasserts the PWRON_RST_L chip input pin.

2. The FPGA asserts the PB_RST_L chip input pin.

3. L2 asserts an l20_rst_fatal_error-l27_rst_fatal_error signal.

SSI PLL
locks

ncu - - 0 11.428 0.00

ncu Request from spc
to ncu

Data on SSI bus 7 2.857 20.00

End WMR
sequence

- - - - - 38,822.85

TABLE 5-29 Minimum Warm Reset Duration (Continued)

WMR step Who Start End Cycles Clock
period (ns)

Duration (ns)

 sys_clk D1 ref_clk PLL vco_cmp_clk
5-50 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

4. NCU asserts ncu_rst_fatal_error signal.

5. Software sets the WMR_GEN bit in the RESET_GEN register.

6. Software sets the DBR_GEN bit in the RESET_GEN register.

7. Software sets the NIU bit in the SSYS_RESET register (only resets NIU).

8. Software sets the PIU bit in the SSYS_RESET register (only resets PIU).

For Power-On Reset, the Reset Unit deasserts rst_ccu_pll_ on the rising edge of
sys_clk. This signal will release the PLL's D1 flop from reset. That will determine the
relative phase relationship between the sys_clk and ref_clk, and in turn, between
sys_clk and the RSCs, so every Power-On Reset will be deterministic. By the way,
this sequence of events will also occur during a Warm Reset in which the frequency
changes.

The l20_rst_fatal_error-l27_rst_fatal_error signals originate in the cmp_clk domain.
ncu_rst_fatal_error comes from the io_clk domain. Software sets each CSR bit
through the UCB interface to the NCU, running at io_clk. Thus, all the other events
that can initiate a reset, except for PB_RST_L, come across a Clock Domain Crossing.
The ccu asserts each sync_en signal only once during each ref_clk period, so every
reset, except for PB_RST_L, will be deterministic.

The FPGA might assert PB_RST_L in time for the synchronizer to register it on a
sys_clk during the first half of a ref_clk cycle, or it might assert it during the second
half. These two cases would cause the Reset Unit to drives its outputs at different
times relative to the RSCs. To eliminate this possibility, after synchronizing
PB_RST_L to sys_clk, the Reset Unit re times it to the cmp_clk domain, then retimes
it back to sys_clk again. Since the ccu asserts each sync_en signal only once during
each ref_clk period, every reset due to PB_RST_L will be deterministic.
Chapter 5 Reset Unit Specification 5-51

5.9 Power-On Reset Sequence
This is the sequence we envision a machine in normal use would follow. During
debug, an engineer may choose to forgo some steps, such as the Warm Reset.

FIGURE 5-7, FIGURE 5-8, FIGURE 5-9, and FIGURE 5-10 show the entire Power-On Reset
sequence. Numbers on the figures indicate a step or steps in the reset sequence and
a step, in this section, will correspond to each number. A solid arrow from one step
to another indicates that the completion of the first step causes the second step to
begin. By contrast, there are three dashed arrows:

1. From the assertion of POWER_GOOD to deassert TRST_.

2. From deassert TRST_ to After PWRON_RST_L.

3. From PLLs lock to After PWRON_RST_L, via CCU.

These indicate not cause and effect, but rather the ordering of these steps that the
System Processor will impose.

There are six sections describing POR:

1. During PWRON_RST_L (including POR 1).

2. After PWRON_RST_L (including POR 2).

3. Pre-WMR boot code.

4. During WMR 1.

5. After WMR 2.

6. Post-WMR boot code.
5-52 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

FIGURE 5-7 Sequence - Start of POR1

Off-chip “pwr-gd”

Asic se X

2

Asic clk_stop X

X
SunV clk_stop X

SunV se (flush)

TRST_ 5 jtagX

X

PWRON_RST_L X sync
as

yn
c

rst_ccu_pll_ X

3gclk X

cluster_arst_l X

async

lock_time, niu_time lock_
time

rst_ccu_ X
ccu_rst_sync_stable X

niu_
time

3niu_pll(esr) X
rst_dmu_async_por_ X (direct multi-cycle path)

rst_tcu_asicflush_stop_req X

tcu_rst_flush_init_ack

tcu_rst_asicflush_stop_ack X

X

X

(see next fig.)

rst_tcu_flush_init_req

rst_dmu_peu_por_ X (via flops in global clock module)

rst_tcu_flush_stop_req X

tcu_rst_flush_stop_ack X
Chapter 5 Reset Unit Specification 5-53

FIGURE 5-8 Sequence - End of POR1

XL2 dir of
L1 tags

1.3 clr valid

tcu_rst_
efu_done

tcu_bisx
_done

tcu_rst_flush_
stop_ack

5.65.5 Bisi1

efu1

SunV
se (flush)

1.4 POR 1

SunV
clk_stop

5.4.8 (stag

5.4.7

5.4.2

5.4.9

rst_tcu_flush_
stop_req

rst_l2_
por_

rst_tcu_flush_
init_req

Xefu_{blk}
_clr

8cyc
dly

(To unavail
cores.)

ered)g
5-54 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

FIGURE 5-9 Reset Sequence - POR2

tcu_rst_
efu_done

tcu_bisx
_done

RSET_
STATUS

unpark_
thread

5.12

SunV se
(flush)

SunV
clk_stop

por 2

efu2

10.2 After PWRON_RST_L (cont'd)

5.8

5.10

(To unavail cores. See TCU Spec.)

rst_tcu_flush_
init_req

tcu_rst_flush_
init_ack

rst_tcu_flush_
stop_req

tcu_rst_flush_
stop_ack

10.4
during
WMR1

10.3
pre-WMR
boot code

WMR_
GEN

mstr pll
config.

6 New freq

8

POR bit

prop_time prop_
time

rst_l2_por_

Jtag POR access window
for efu overwrite

8cyc
dly
Chapter 5 Reset Unit Specification 5-55

FIGURE 5-10 Reset Sequence - Warm Reset: WMR1+WMR2

5.9.1 During PWRON_RST_L (including POR1)
1. Service processor asserts TRST_ and PWRON_RST_L. See FIGURE 5-7.

wmr1
SunV clk_stop

SunV se (flush)

rst_ccu_pll_

9gclk

cluster_arst_l

lock_time, niu_time lck
tim

rst_ccu_

ccu_rst_sync_stable

niu_pll (esr)

rst_mac_wmr_

st_tcu_flush_stop_req

prp
tim

slave pll config. 9 New freq

rst_tcu_flush_init_req

tcu_rst_flush_init_ack

tcu_bisx_done

cu_rst_flush_stop_ack

rst_l2_wmr_

unpark_thread

RSET_STATUS

9.12

9.5
bist2 9.6

9.11 WMR bit + Freq bitPOR bit

rst_dmu_peu_wmr_rst_dmu_peu_wmr_

Asic clk_stop (omit if DBR)

Asic se

prop_
time

wmr2

(omit if DBR)

rst_tcu_clk_stop
8cyc
dly

ccu
tim

ccu
tim

(omit if MAC_PROTECT)

niu
tim
5-56 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

a. TRST_ event will initialize the PLL config. register to a default setting.

Note – Note that the TCU BIST config. registers as well as the TCU BIST result
register will not be reset by the flush reset function; these registers will be reset only
by a TRST_ event. The default setting is for a divisor of 11 [now 8], the lowest
supported divisor, corresponding to the lowest supported frequency. For pll_sys_clk
= 133.33 MHz, the cmp_freq is 733.33 MHz, for 166.67 it is 916.67, and for 400 it is
1100.

b. L2 Directory (of L1 tags) is marked invalid on [Power-On] Reset. A flash clear
signal with one or two clocks clears the directory valid bits.

c. POR 1: RST asserts rst_por_, rst_wmr_, dbg_init_, rst_niu_, and
PCI_EXPRESS_RESET_. These signals will directly reset the NIU, DMU, and
PEU. Except for the JTAG registers and registers in the RST itself, the RST, in
cooperation with the TCU, will flush-reset all flip-flops in the rest of the chip.
RST and TCU cause reset by asserting both the scan_in_clk and scan_out_clk
simultaneously while driving logic 0 onto the scan_in_data of every scan chain.
FIGURE 5-8 shows this as TCU asserting se, scan enable, during the interval
labeled “POR 1”.
The NIU has at least two PLLs. They will start oscillating when (1) power is
applied and (2) rst_niu_ clears a bit in a control register. Once locked, they will
stay locked, even if the NIU is subsequently reset again.

d. TCU needs to come out of POR1 with clk_stop asserted.

2. Power ramps up.

3. PLLs start up, and clock tree = RClk (Regional Clock) = l2clk, iol2clk, and enl2clk
start toggling.

4. For debugging, service processor may supply JTAG portion of TCU with its own
clock, TCK. This is not needed in production systems.

5. Service processor deasserts TRST_. Once TRST_ is deasserted, registers in (the
JTAG portion of) the TCU may be accessed via the JTAG TAP while the service
processor holds the rest of the chip in reset.

a. Steps During WMR1 correspond to steps After WMR in During WMR1 and
After WMR, starting with PLLs lock. An exception is that the portions of After
PWRON_RST_L (including POR2) which involve the EFU only occur during
the POR portion.

b. PLLs lock.

c. CCU asserts ccu_pll_locked and dr_pll_locked. These are analog signals,
derived from l2clk, and independent of any reset signal and all other clock
signals. Despite the existence of these signals, OpenSPARC T2 ignores them.
Chapter 5 Reset Unit Specification 5-57

Instead, we rely on the external signals PWRON_RST_L and PB_RST_L, or
counting down the lock_time register, so that the chip's behavior is repeatable.
OpenSPARC T2 does, however, provide ccu_pll_locked and dr_pll_locked as
external output pins. We can use these pins to determine if it is safe to decrease
lock_time. Upon power-up, the system must assert POR for a period of time
sufficient to guarantee that power has stabilized and the on-chip PLL has
locked. The interval from the time the system asserts the Tomatillo pwr_ok
input, to the time Tomatillo deasserts J_POR_L, is 5 ms. The NIU needs 10 sfor
its PLLs to lock.

5.9.2 After PWRON_RST_L (including POR2)
d. Service processor deasserts PWRON_RST_L. Note that it must deassert

PWRON_RST_L at the same time as, or after, deasserting TRST_.

5.9.3 Power-On Reset Sequence - End of POR1
i. RST deasserts rst_por_ synchronous with the various clocks.

ii. TCU deasserts se. Deassertion of rst_por_ and se propagates.

iii. niu_pll locks. This must occur before the NIU starts.

iv. Optionally, on OpenSPARC T1, the service processor had asserted
PB_RST_L, synchronous with PWRON_RST_L. If it did, then it now
deasserts PB_RST_L synchronous with the reference clock. On OpenSPARC
T2, this forces an alignment of the rising edges of the cmpclk, ioclk, and
ddrclk clocks. Since OpenSPARC T2 has two PLLs, there is no way to
instantaneously force their outputs to align. The best we can do is to force a
reset to the IO_d1 and IO2X_d1 logic, which generate io_r, io_f, io2x_r, and
io2x_f in the CCU. In conclusion, deassert PB_RST_L upon power-up.

v. The Reset Unit waits for a number of cycles of the sys_clk. The Lock Time
register holds that number. (This could be done by the service processor.)
This allows the signals that had caused flush reset, such as se, time to
propagate. When Lock Time has passed, the Reset Unit deasserts rst_wmr_,
dbg_init_, and PCI_EXPRESS_RESET_L.

vi. TCU deasserts clock_stop to each of the 17 clock-stop domains in sequence.
This deasserting in a staggered fashion minimizes di/dt. TCU must deassert
clock_stop, even to a domain that will eventually have its bit in
ASI_CORE_ENABLE set to zero, because the eFuse Unit needs its recipient's
clocks enabled in order to communicate with it.
The valid bits in the L2 directory of L1 tags, the NIU, DMU, and PEU all
5-58 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

require a clock edge to reset. The TCU asserts tcu_rst_flush_stop_ack to
signal the Reset Unit that it has deasserted clk_stop. (The TCU will continue
with the last two POR1 sequence steps, EFU1 and BISI1.) Now that L2T,
NIU, DMU, and PEU have clocks, the Reset Unit has reset them and is able
to deassert rst_niu_, rst_dmu_, and rst_peu_. It must do so before EFU1
starts, so that L2T and other SRAM headers can receive EFU data. The
dotted line in Figure 5, from rst_l2t_ to efu1, represents this sequence
requirement.

vii. EFU 1: eFuse Unit, EFU, scans out eFuse Array, EFA. EFU asserts efu_done
after 700 [2816] io_clk clock cycles. EFU takes 44 io_clk cycles to scan out
each of the 64 locations, so it takes:
44 cycles/location * 64 locations= 2816 io_clk cycles
2816 cycles * 2.857 ns/cycle= 8045.7 ns

e. BISI 1: “If at-[default-]speed [BISI or] BIST is desired,” controlled by the service
processor setting the TCU BISI or BIST registers in Step 5, then “TCU launches
[BISI or] BIST on caches.”
“L2 Tag, Data, and VUAD arrays, when BISTed to zeros, are initialized to
empty with good parity and good ECC.”
“L1 I-cache, L1 D-cache, when BISTed to zeros, initialized to good parity”
l2dtakes 128k (131,072)cmp_clk cycles
l2ttakes 8k (8,192)cmp_clk cycles
VUADtakes 256cmp_clk cycles
“When BIST is complete, the part will store the BIST results and flush reset the
part in preparation to begin code execution.”

f. TCU asserts tcu_bisx_done.

g. POR 2: BISI or BIST may have changed the state of some flip-flops connected to
SRAM outputs. RST causes a second POR to reset those flops. Figure 5 shows
this sequence as “POR 2”. RST asserts rst_por_ and rst_wmr_, and TCU asserts
se.

h. After lock_time clock cycles, TCU deasserts se.

i. After a further lock_time clock cycles, RST deasserts rst_por_ and rst_wmr_.
This allows the signals that had caused flush reset, such as se, time to
propagate. See Section 7.6, "Propagation Time Register, PROP_TIME".
The valid bits in the L2 directory of L1 tags, the NIU, DMU, and PEU all
require a clock edge to reset. The TCU asserts tcu_rst_flush_stop_ack to signal
the Reset Unit that it has deasserted clk_stop. (The TCU will continue with the
last two POR sequence step, EFU2.) Now that L2T, NIU, DMU, and PEU have
clocks, the Reset Unit has reset them and is able to deassert rst_l2b_l2t_,
rst_niu_, rst_dmu_peu_por_, and rst_dmu_peu_wmr_. It must do so before
EFU2 starts, so that L2T and other SRAM headers can receive EFU data. The
dotted line in Figure 5, from rst_l2t_ to efu2, represents this sequence
requirement. The Reset Unit knows that EFU2 is done by tcu_rst_efu_done.
Chapter 5 Reset Unit Specification 5-59

j. EFU 2: eFuse Unit, EFU, scans out eFuse Array, EFA. EFU asserts efu_done.
This restores values that POR 2 cleared. Now that the eFuse Unit has
communicated with its recipients, TCU can stop the clock in a clock-stop
domain that has its bit in ASI_CORE_ENABLE set to zero. TCU conditionally
reasserts clock_stop to each of the 17 clock-stop domains in sequence. This
reasserting in a staggered fashion minimizes di/dt.
The EFA sets first the Core Available register, then the NCU copies this to the
Core Enable register.

k. RST sets the POR bit of the RSET_STATUS register.

l. RST asserts rst_unpark_thread to NCU. NCU asserts core_running to Trap Unit
of lowest-numbered available SPC (which will be the same as the
lowest-numbered running SPC).

5.9.4 Pre-WMR Boot Code
m. The lowest-numbered available SPC begins fetching and executing

instructions at RSTVaddr || 0x20.The MMUs are turned off, in bypass mode,
with default mapping. At first, only PROM working. Software has to enable
everything else.

6. ASI instructions “set up master configuration registers such as PLL config., BIST
program config, and I/O drive strength.”
“The new configuration will take effect when the CR [WMR] state is exited.”

7. Pre-WMR boot code “clears error logs. (Alternately, this could be moved to
later.)”

8. Pre-WMR boot code finishes by writing a 1 to the WMR_GEN bit of the Reset
Generation Register, RESET_GEN. NCU deasserts core_running. RST deasserts
rst_soc_run.

5.9.5 During WMR1
9. WMR 1: RST asserts rst_wmr_, dbg_init_, and PCI_EXPRESS_RESET_. The RST,

in cooperation with the TCU, will flush-reset all WMR flip-flops in the chip. RST
and TCU cause reset “by asserting both the scan_in_clk and scan_out_clk
simultaneously while driving logic 0 onto the scan_in_data of every scan chain.”
Figure 5 shows this as TCU asserting se, scan enable, during the interval labelled
“wmr 1”.
The NIU has at least two PLLs. Once locked, they will stay locked, even if the
NIU is subsequently reset again.
“The TCU contains a PLL config register accessible by ASI instructions. New PLL
5-60 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

configurations will take effect at the next [warm reset] event. That event must
persist sufficiently long for the PLL to stabilize at its new setting.... The assertion
of [rst_wmr_] will cause the part to load configuration registers such as PLL
config, BIST program config, and I/O drive strength.” Warm reset “will also
flush... other flip-flops in the part.”

These steps correspond to During PWRON_RST_L (including POR1), starting with
“PLLs lock.”

a. PLLs lock.

b. CCU asserts ccu_pll_locked. This is an analog signal, derived from l2clk, and
independent of any reset signal and all other clock signals. Despite the
existence of this signal, OpenSPARC T2 ignores it. Instead, we rely on the
external signals PWRON_RST_L and PB_RST_L, or counting down the
lock_time register, so that the chip's behavior is repeatable.
The NIU needs 10 sfor its PLL to lock.

5.9.6 After WMR
c. Optionally, the service processor had asserted PB_RST_L. If it did assert it, then

it now deasserts PB_RST_L synchronous with the reference clock. This forces
an alignment of the rising edges of the cmpclk, ioclk, and ddrclk clocks.

i. The Reset Unit waits for a number of cycles of the reference clock. The Lock
Time register holds that number.

ii. When both (1) the service processor has deasserted PB_RST_L and (2) Lock
Time has passed, then RST deasserts rst_wmr_, dbg_init_, and
PCI_EXPRESS_RESET_L.

d. BIST 2: “If at-speed [BISI or] BIST is desired,” by pre-WMR boot code setting
the TCU BISI and BIST registers, then “TCU launches [BISI or] BIST on
caches.”
“L2 Tag, Data, and VUAD arrays, when BISTed to zeros, are initialized to
empty with good parity and good ECC.”
“L1 I-cache, L1 D-cache, when BISTed to zeros, initialized to good parity”
l2dtakes 128k*8= 1,048,576cmp_clk cycles
l2ttakes 8k*8= 65,536cmp_clk cycles
VUADtakes 256*8= 2,048cmp_clk cycles
Total= 1,116,160cmp_clk cycles
“When BIST is complete, the part will store the BIST results and flush reset the
part in preparation to begin code execution.”

e. TCU asserts tcu_bisx_done.
Chapter 5 Reset Unit Specification 5-61

f. WMR 2: BISI or BIST may have changed the state of some flip-flops connected
to SRAM outputs. RST causes a second flush WMR to reset those flops.
FIGURE 5-10 shows this sequence as “WMR 2”. RST asserts rst_niu_, and
rst_dmu_peu_wmr_, and TCU asserts se.

g. After lock_time clock cycles, TCU deasserts se.

h. After a further lock_time clock cycles, RST deasserts rst_niu_, and
rst_dmu_peu_wmr_. This allows the signals that had caused flush reset, such
as se, time to propagate.

i. (eFuse Unit, EFU, remains idle during WMR.)

j. RST sets the WMR bit of the RSET_STATUS register. Since the frequency
changed, it also sets the FREQ bit.

k. RST asserts rst_unpark_thread to NCU. NCU asserts core_running to Trap Unit
of lowest-numbered enabled SPC.

5.9.7 Post-WMR Boot Code
l. The lowest-numbered enabled SPC begins fetching and executing instructions

at RSTVaddr || 0x20.
The MMUs are turned off, in bypass mode, with default mapping. At first, only
PROM working. Software has to enable everything else.
“Come out of warm reset, again at reset vector.”

m. Post-WMR boot code starts by reading RSET_STAT register, which indicates
WMR, with clock change.

10. TCU already launched BIST on caches, in Power-On Reset Sequence - End of
POR1.

11. Initialize the L1 tags of the lowest-numbered available processor core. [Not
necessary since TCU did BISI or BIST.]
“L1 I-tags, L1 D-tags need to be explicitly ASI written to invalid, with good
parity”.

12. Enable error detection on L1 and L2 caches.

13. Enable L1 and L2 caches.

14. Post-WMR boot code continues as outlined in Programmer’s Reference Manual.
5-62 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

5.10 Warm Reset Sequence
Since the entire Power-On Reset sequence includes a warm reset, a warm reset that
is not caused by POR is similar. In fact, if the clock divider register is changed, it is
identical to the WMR step of the POR sequence.

5.10.1 Before rst_mwr_
Three agents can cause a Warm Reset, as follows:

1. The user presses the Warm Reset pushbutton, or the external system processor
asserts the PB_RST_L input pin.

2. Software writes a 1 to the WMR_GEN bit of the RESET_GEN register, as in
Pre-WMR Boot Code.

3. NCU or the L2 cache detects a Fatal Error and asserts ncu_rst_fatal,
l2t0_rst_fatal,..., or l2t7_rst_fatal.

NCU deasserts core_running. RST deasserts rst_soc_run.

5.10.2 During rst_wmr_
RST asserts rst_wmr_, dbg_init_, and PCI_EXPRESS_RESET_L The RST, in
cooperation with the TCU, will flush-reset all WMR flip-flops in the chip. RST and
TCU cause reset by asserting both the scan_in_clk and scan_out_clk simultaneously
while driving logic 0 onto the scan_in_data of every scan chain. FIGURE 5-10 shows
this as TCU asserting se, scan enable, during the interval labelled “wmr 1”.The NIU
has at least two PLLs. Once locked, they will stay locked, even if the NIU is
subsequently reset again.The TCU contains a PLL config register accessible by ASI
instructions. New PLL configurations will take effect at the next [warm reset] event.
That event must persist sufficiently long for the PLL to stabilize at its new setting.
The assertion of (rst_wmr_] will cause the part to load configuration registers such
as PLL config, BIST program config, and I/O drive strength. Warm reset will also
flush all other flip-flops in the part.

1. PLLs lock.
Chapter 5 Reset Unit Specification 5-63

2. CCU asserts pll_locked. This is an analog signal, derived from l2clk, and
independent of any reset signal and all other clock signals. Despite the existence
of this signal, OpenSPARC T2 ignores it. Instead, we rely on the external signal
PB_RST_L, or counting down the lock_time register, so that the chip's behavior is
repeatable.

3. Optionally, the service processor had asserted PB_RST_L. If it did, then it now
deasserts PB_RST_L synchronous with the reference clock. This forces an
alignment of the rising edges of the cmpclk, ioclk, and ddrclk clocks.

4. The Reset Unit waits for a number of cycles of the reference clock. The Lock Time
register holds that number.

5.10.3 After rst_wmr_
1. When both (1) the service processor has deasserted PB_RST_L and (2) Lock Time

has passed, then RST deasserts rst_wmr_, dbg_init_, and
PCI_EXPRESS_RESET_L. If at-speed [BISI or] BIST is desired, by pre-WMR code
setting the TCU BISI and BIST registers, then TCU launches [BISI or] BIST on
caches. L2 Tag, Data, and VUAD arrays, when BISTed to zeros, are initialized to
empty with good parity and good ECC. L1 I-cache, L1 D-cache, when BISTed to
zeros, initialized to good parity. When BIST is complete, the part will store the
BIST results and flush reset the part in preparation to begin code execution.

2. TCU asserts tcu_bisx_done.

3. BISI or BIST may have changed the state of some flip-flops connected to SRAM
outputs. RST causes a second WMR to reset those flops. FIGURE 5-10 shows this
sequence as “WMR 2”. RST asserts rst_wmr_, and TCU asserts se.

4. After lock_time clock cycles, TCU deasserts se.

5. After a further lock_time clock cycles, RST deasserts rst_wmr_. This allows the
signals that had caused flush reset, such as se, time to propagate.

6. eFuse Unit (EFU) remains idle during WMR.

7. RST sets the WMR bit of the RSET_STATUS register. In addition, if the frequency
changed, it also sets the FREQ bit.

8. RST asserts rst_unpark_thread to NCU. NCU asserts core_running to Trap Unit of
lowest-numbered enabled SPC.
5-64 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

5.10.4 Post-WMR Boot Code
The lowest-numbered enabled SPC begins fetching and executing instructions at
RSTVaddr || 0x20.)
The MMUs are turned off, in bypass mode, with default mapping. At first, only
PROM working. Software has to enable everything else.

Post-WMR boot code starts by reading RSET_STAT register, which indicates WMR.

(If RSET_STAT register indicates WMR, with clock change, go to After WMR)

Check local error logs.

Post-WMR boot code continues as outlined in Programmer’s Reference Manual.

5.11 Reset Sequence for DBG
DBG is the same as WMR, except that the Reset Unit does not reset DMU, PEU, nor
NIU.

5.12 Reset Sequence for NIU
1. Software makes sure that all outstanding transactions are complete.

2. Software writes to the NIU bit of the SSYS_RESET register.

3. RST asserts rst_niu_.

4. The NIU needs 10 sfor its PLL to lock. RST waits the number of system clock
(pll_sys_clkp, soon to be ccu_rst_sys_clk+) cycles specified in the LOCK_TIME
register.

5. RST deasserts rst_niu_. RST clears the NIU bit of the SSYS_RESET register.
Chapter 5 Reset Unit Specification 5-65

5.13 Reset Sequence for XIR
1. Software writes a 1 to the XIR_GEN bit of the RESET_GEN register, or the user

presses the BUTTON_XIR_ pushbutton.

2. RST does not need to debounce BUTTON_XIR_ input pin.

3. RST asserts rst_ncu_xir_.

4. NCU asserts ncu_rst_xir_done.

5. RST deasserts rst_ncu_xir_.

6. RST clears the XIR_GEN bit of the RESET_GEN register.

5.14 Reset and Scan of the Reset Unit
Three clocks drive the four blocks in the Reset Unit:

The sys clock drives rst_fsm_ctl directly, with no cluster header. The Reset Unit gates
the .tcu_clk_stop input port of the cmp cluster header, but not that of the io cluster
header.

5.14.1 tcu_rst_clk_stop
module rst...

The Reset Unit gates tcu_rst_clk_stop with tcu_rst_scan_mode:

clkgen_rst_cmp clkgen_rst_cmp (
.tcu_clk_stop (tcu_clk_stop_scan_mode),// = tcu_rst_scan_mode ?

// rst_clk_stop : 1'b0;
...
rst_fsm_ctl rst_fsm_ctl (

1 cmp clock rst_cmp_ctl

2 sys clock rst_fsm_ctl

3
3

io clock rst_io_ctl

io clock rst_ucbflow_ctl
5-66 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

.rst_clk_stop (tcu_rst_clk_stop),// Assign stmt.

module rst_fsm_ctl ...
assign tcu_clk_stop = tcu_rst_scan_mode ? rst_clk_stop : 1'b0;
assign tcu_clk_stop_scan_mode = tcu_clk_stop;

Thus, in scan mode, the Reset Unit passes tcu_rst_clk_stop to the.tcu_clk_stop input
port of clkgen_rst_cmp, so the TCU can scan the Reset Unit. Otherwise, it passes
1'b0, so the cmp clock runs whenever the PLL is running.

Since the rst_cmp_ctl block consist only of sync_en flops, it is possible to reset that
block by simply allowing values from upstream flops to shift through it in the first
few cycles after they are reset.

5.14.2 tcu_rst_io_clk_stop
The Reset Unit does not gate the.tcu_clk_stop (tcu_rst_io_clk_stop) input port of the
other cluster header, clkgen_rst_io. The TCU is free to stop the io clock as it sees fit.
The two Reset Unit blocks that operate on the io clock, the sync_en block rst_io_ctl
and the UCB block rst_ucbflow_ctl, are reset by synchronous reset. The Reset Unit
asserts ucb_clr_io_ for a longer period of time than just the flush reset time, allowing
the io clock to run again and reset those two blocks. Since the rst_io_ctl block consist
only of sync_en flops, it is possible to reset that block by simply allowing values
from upstream flops to shift through it in the first few cycles after they are reset.

5.15 Reset Unit Ports

5.15.1 Input Ports
We consider these inputs to be asynchronous to the system clock:

1. PWRON_RST_L (mio_rst_pwron_rst_l)

2. PB_RST_L (mio_rst_pb_rst_l)

3. BUTTON_XIR_L (mio_rst_button_xir_l)

For each of these signals, to ensure that OpenSPARC T2 reliably captures it, the
FPGA must assert it for a minimum of either:
Chapter 5 Reset Unit Specification 5-67

1. The system clock period plus the set-up time of cl_sc1_clksyncff_4x, the
synchronizer cell, or

2. The system clock period plus the hold time of cl_sc1_clksyncff_4x,

whichever is longer.

In addition, the Reset Unit requires that any input signal that crosses to the sys_clk
domain must be held steady for at least two sys_clk cycles. This is because the CCU
asserts the sync_en signals only once every ref_clk cycle, and ref_clk has a period of
two sys_clk cycles. This applies to all inputs except the sync_en pulses themselves,
and the UCB signals ncu_rst_vld, ncu_rst_data[3:0], and ncu_rst_stall. The NCU
launches them on io_clk, and the Reset Unit captures them on the same clock.

TABLE 5-30 Inport Ports Clocks

Source Clock Input port

FPGA sys ccu_rst_sys_clk

ccu gclk gclk

ccu io ccu_io_out

tcu - tcu_div_bypass

tcu cmp scan_in tcu_soc6_scan_out

tcu_rst_clk_stop Not used.

tcu_rst_io_clk_stop Not used.

tcu_pce_ov

tcu_aclk

tcu_bclk

tcu_scan_en

tcu_rst_scan_mode

tcu_atpg_mode (Reset Unit ignores.)

ccu cmp ccu_io_cmp_sync_en

ccu cmp ccu_cmp_io_sync_en

ccu cmp ccu_sys_cmp_sync_en Synchronization pulse for each signal that crosses
between synchronous clock domains.

ccu cmp ccu_cmp_sys_sync_en

FPGA async mio_rst_pwron_rst_l Assert for at least 2 sys_clk cycles.
5-68 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

FPGA async mio_rst_button_xir_l Assert for at least 2 sys_clk cycles.

FPGA async mio_rst_pb_rst_l Assert for at least 2 sys_clk cycles.

tcu cmp tcu_rst_flush_init_ack

tcu cmp tcu_rst_flush_stop_ack

tcu cmp tcu_rst_asicflush_stop_ack

tcu io tcu_test_protect During mbist, lbist, JTAG scan, trans test may want
to block tcu, rst and ccu from seeing random activity
from ucb (NCU), SPC's, etc. This signal synched to
ioclk, and set via JTAG id for blocking.

ccu io ccu_rst_change Only assert rst_ccu_ and rst_ccu_pll_, and wait
LOCK_TIME, when ccu holds ccu_freq_change
high.

ccu cmp ccu_rst_sync_stable Not used.

tcu cmp tcu_bisx_done

tcu cmp tcu_rst_efu_done

l2t io l2t0_rst_fatal_error
Asserted for one clock cycle.

l2t1_rst_fatal_error

l2t2_rst_fatal_error

l2t3_rst_fatal_error

l2t4_rst_fatal_error

l2t5_rst_fatal_error

l2t6_rst_fatal_error

l2t7_rst_fatal_error

ncu io ncu_rst_fatal_error
Asserted for one clock cycle.

ncu_rst_xir_done

ncu_rst_vld

ncu_rst_data[3:0]

ncu_rst_stall

TABLE 5-30 Inport Ports Clocks (Continued)

Source Clock Input port
Chapter 5 Reset Unit Specification 5-69

5.15.2 Output Ports
TABLE 5-31 lists the output ports of the Reset Unit.

TABLE 5-31 Output Ports Clocks

Sink Clock Ultimate
clock

Output port

tcu - - scan_out rst_scan_out. Untimed.

efu,
l2b, l2t

cmp cmp rst_l2_por_ Vestige of OpenSPARC T I heritage of L2 cache.

cmp cmp rst_l2_wmr_ Vestige of OpenSPARC T I heritage of L2 cache.

fc sys asyn rst_wmr_protect

mcu io(was
cmp)

dr rst_mcu_selfrsh Equal to MCU_SELFRSH bit of SSL_RESET
register.

tcu cmp cmp rst_tcu_flush_init_req

cmp cmp rst_tcu_flush_stop_req

cmp cmp rst_tcu_asicflush_stop_req

cmp cmp rst_tcu_dbr_gen

cmp cmp rst_tcu_clk_stop FIGURE 5-10

cmp cmp rst_tcu_pwron_rst_l

niu cmp cmp rst_niu_mac_ Goes to mac. The Reset Unit will reset mac on
POR, and also on WMR1 if ccu_rst_change == 1,
unless MAC_PROTECT is set.

niu cmp cmp rst_niu_wmr_ Goes to the other niu clusters, rtx, tds, and rdp.
The Reset Unit will reset them on both POR and
WMR

dmu,
peu

cmp io, pc rst_dmu_peu_por_ Assert for 15 s.

cmp io, pc rst_dmu_peu_wmr_ Assert for 15 s.

async,
sys

async,
cmp

rst_dmu_async_por_

ncu io io rst_ncu_unpark_thread

io io rst_ncu_xir_
5-70 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

17 total clock_stop domains (increased to 24):

1. Eight SPARC cores

2. 4 mmu + l2 pair

3. 1 ddr

4. 1 IO (ncu)

5. 1 pci express

6. 1 niu

7. 1 ccx, tags

mio sys asyn rst_mio_pex_reset_l (Follows rst_dmu_peu_wmr_.) Assert for 15 us. .

sys fpga
(asyn)

rst_mio_ssi_sync_l Assert for 50-100 s.
Assert duringWMR.

(Was rst_mio_fatal_error.)

sys sys rst_mio_rst_state[5:0] Reset Unit state machine state

ncu io io rst_ncu_stall UCB

io io rst_ncu_vld

io io rst_ncu_data[3:0]

ccu sys cmp rst_ccu_

sys cmp rst_ccu_pll_

sys asyn cluster_arst_l

TABLE 5-31 Output Ports Clocks (Continued)

Sink Clock Ultimate
clock

Output port
Chapter 5 Reset Unit Specification 5-71

5.16 Appendices

5.16.1 OpenSPARC T1 Thread Suspension Differs from
CMP Suspend
At first, one might suspect that OpenSPARC T1thread suspension could have
something to do with the reset unit.

Each OpenSPARC T1thread is in one of three states:

1. halt,

2. idle, or

3. active.

The OpenSPARC T1 Programmer’s Reference Manual refers to halt and idle as
“inactive” states. The OpenSPARC T1 Programmer’s Reference Manual section
describing these states has as its title “Thread Suspension”, but that is the only place
the OpenSPARC T1 Programmer’s Reference Manual uses the term “suspension”

The two-bit TYPE field of the OpenSPARC T1 INT_VEC_DIS register can take on
values named interrupt and reset, but these differ from all other interrupts and
resets. Neither the SPARC Architecture Manual, nor the Sun SPARC Spec., nor the
Sun Microsystems Standard CMP Programming Model, mentions INT_VEC_DIS.

Halt, idle, active, inactive, and suspension, as used in the OpenSPARC T1
Programmer’s Reference Manual, differ from the disable, enable, suspend, park, and
run states described in Sun Microsystems Standard CMP Programming Model.. Due
to scheduling pressures, the OpenSPARC T1 project received an exemption from the
corporate requirement to conform to the CMP specification. The OpenSPARC T1
states are controlled by INT_VEC_DIS, whereas the CMP states are controlled by the
registers described in the next section, CMP Disabling and Parking of Virtual Cores.
5-72 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

TABLE 5-32 summarizes the meaning of each OpenSPARC T1 thread suspension term:

In conclusion, OpenSPARC T1 thread suspension has nothing to do with the reset
unit.

5.16.2 CMP Disabling and Parking of Virtual Cores
At first, one might suspect that CMP disabling and parking of virtual cores could
have something to do with the reset unit.

OpenSPARC T1 has a CORE_AVAIL register, set from the eFuse, EFU. It does not
have ASI_CORE_AVAILABLE, nor any of the following registers and state
definitions for disabling and parking virtual cores.

Shared Machine State registers TABLE 5-33, all at ASI# = 0x41, have one instance
shared among the virtual cores.

TABLE 5-32 Thread Suspension

Will respond to interrupts Execute instructions

No
Inactive

Yes

No Idle (No such status)

Yes Halt Active

TABLE 5-33 CMP Shared Machine State

Register ASI name VA Access SP? Note

ASI_CORE_AVAILABLE 0x00 RD only Yes -

ASI_CORE_ENABLE_STATUS 0x10 RD only Yes -

ASI_CORE_ENABLE 0x20 RD/RW Yes Takes effect after reset

ASI_XIR_STEERING 0x30 RD/WR Yes General access

ASI_CMP_ERROR_STEERING 0x40 RD/WR Yes -

ASI_CORE_RUNNING_RW 0x50 RD/RW Yes General access

ASI_CORE_RUNNING_STATUS 0x58 RD only Yes -

ASI_CORE_RUNNING_W1S 0x60 W1S No Write 1 to set bit(s)

ASI_CORE_RUNNING_W1C 0x68 W1C No Write 1 to clear bit(s)
Chapter 5 Reset Unit Specification 5-73

ASI_CORE_AVAILABLE is located in the CMP unit, but takes inputs from the eFuse
unit. As discussed in the section on nomenclature, XIR and the ASI_XIR_STEERING
register involve the CMP and SPG units, and not the reset unit.

TCU may choose to implement debug features for SoC units analogous to CMP
disabling and parking of virtual cores, but these features would not involve reset.

The following registers have an instance per core, and so are best implemented in
each SPARC Gasket block, SPG.

ASI_SCRATCHPAD_0_REG
ASI_SCRATCHPAD_1_REG
ASI_SCRATCHPAD_2_REG
ASI_SCRATCHPAD_3_REG
ASI_SCRATCHPAD_4_REG
ASI_SCRATCHPAD_5_REG
ASI_SCRATCHPAD_6_REG
ASI_SCRATCHPAD_7_REG
ASI_INTR_ID
ASI_CORE_ID

The CMP spec uses the terms in TABLE 5-34.

TABLE 5-34 CMP Specification Terms

CMP term Definition

disable Will complete at next system or power-on reset.

disabled Execute no instructions (suspended, parked) nor maintain cache
coherency.

enable Will complete at next system or power-on reset.

enabled Maintain cache coherency.

suspend, park Execute no instructions.
If enabled, maintain cache coherency.

running, unparked Execute instructions and maintain cache coherency
5-74 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

TABLE 5-35 summarizes the meaning of each CMP term:

In conclusion, CMP disabling and parking of virtual cores has nothing to do with the
reset unit.

5.16.3 OpenSPARC T1 Reset Sequence
OpenSPARC T2 is not strictly compliant with the letter of the JBUS spec, in regards
to reset, and specifically cold power-on reset. The "problem" is that OpenSPARC T2
receives only J_POR_L, and not the more basic POWER_OK signal, so OpenSPARC
T2 starts the PLL lock sequence on the deassertion of J_POR_L, and starts
propagating clocks to internal blocks after PLL lock is achieved. This means that
most of OpenSPARC T2 , including the JBI, does not get any clocks for microseconds
after J_POR_L deassertion.

The effects of this is that OpenSPARC T2 's JBI output is undefined for those
microseconds after POR deassertion until PLL lock. OpenSPARC T2 correctly
disables its outputs during J_POR_L assertion. After J_POR_L deassertion,
OpenSPARC T2 JBUS outputs are undefined until OpenSPARC T2 's internal PLL
locks, and the CTU starts distributing clocks. Once clocks are being distributed,
OpenSPARC T2 will correctly drive IDLE transactions, until the end of J_RST_L
assertion. Since J_RST_L was being asserted while OpenSPARC T2 's outputs were
undefined, and since this is only at cold power-on, other chips should safely ignore
OpenSPARC T2 's undefined behavior.

A second caveat on reset is that OpenSPARC T2 assumes that it will drive the first
JBUS transaction, long after J_RST_L deassertion. All non-PLL initialization of
OpenSPARC T2 occurs after J_RST_L deassertion, and OpenSPARC T2 will not be
ready to receive a transaction until that initialization is completed. Thus,
OpenSPARC T2 would not work in a system where, for example, Fire was initialized
by a PCI-Express device, which then started a DMA transaction before OpenSPARC
T2 was ready for it.

TABLE 5-35 CMP Term Meaning

Maintain cache coherency Execute instructions

No
Suspend, park

Yes

No Disabled
(implicitly suspend disabled, park
disabled)

(No such status)

Yes, enabled Suspend enabled,
park enabled

Run
(implicitly run enabled)
Chapter 5 Reset Unit Specification 5-75

We plan to work within the reset timing specified in the JBUS spec. This means
POWER_OK to POR deassertion of 5 msec, and POR deassertion to RST deassertion
of 2 msec, for cold poweron; and 5 msec from RST assertion to deassertion for warm
reset.

5.16.4 Glossary

5.16.5 Glossary of Shadow Terms
Master configuration register

Holds the value that will be placed in the slave version of the register, sometimes
called the shadow register, when the next WMR occurs. The slave register then
supplies the value to operational logic. Examples are PLL clock divider and I-O
drive strength.

Shadow scan configuration register

Used to control the scanning of the shadow scan registers.

Shadow scan register

"A number of internal states can be captured and scanned out without stopping
the clocks using the shadow scan instruction. The state of the target nodes is
captured when the JTAG state machine enters the Capture-DR state and the scan
occurs in the Scan-DR state. A great many internal states are available for
observation but a limited number of shadow scan flops are dedicated to the task
of capturing and scanning those states. The shadow scan configuration register
controls which internal nodes will be captured into the shadow scan chain. The
shadow scan config. register can be accessed with a JTAG DR scan operation."

Shadow status bits of RSET_STATUS register

“HW will copy the current reset status into a shadow status whenever a reset
occurs.”

ASI Address Space Identifier

ASR Ancillary State Register

MISR Multiple-Input Signature Register. Used in LBIST

RClk Regional Clock
5-76 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

5.16.6 Promotion among Core Available, Enable, and
Status registers
Before the first instruction executes, TABLE 5-36 shows registers that must contain
their correct values.

TABLE 5-37 shows the sequence of events during Power-On Reset. The NCU accepts
the initial, and only, value from the eFuse Unit into CA during EFU1 and then again
during EFU2. The NCU then transfers that value into CE and CES during times
labeled NCU1 and NCU2. The NCU controls NCU1, NCU2, and NCU pre-compute.

TABLE 5-38 shows the sequence of events during Warm Reset. Warm Reset skips the
EFU1 and EFU2 steps shown in the previous table, so the corresponding columns in
this table are blank..

TABLE 5-36 Register Abbreviations

Register ASI name Abbreviation in this appendix

ASI_CORE_AVAILABLE CA

ASI_CORE_ENABLE CE

ASI_CORE_ENABLE_STATUS CES

TABLE 5-37 Power-On Reset sequence of Events

POR1 EFU1 NCU1 MBisi1 POR2 EFU2 NCU2 Soft
ware

NCU
pre-compu

te

CA 0 EFU1 ->
CA

CA CA 0 EFU2 ->
CA

CA CA CA

CE 0 0 CA ->
CE1

CE1 0 0 CA ->
CE1

CE2 CE2

CES 0 0 CA ->
CES1

CES1 0 0 CA->
CES1

CES1 CES1

CESpre - - - - - - - - f(CE2,
CES1)

TABLE 5-38 Warm reset Sequence of Events

WMR1 NCU1 MBist2 WMR2 NCU2
Chapter 5 Reset Unit Specification 5-77

CA CA

CE CE2

CES CESpre
-> CES2

CE2
-> CES2

CES2 CES2 CE2
-> CES2

TABLE 5-38 Warm reset Sequence of Events
5-78 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

CHAPTER 6

Network Interface Unit (NIU)

This chapter contains the following sections:

■ Introduction

■ Chip Overview

■ Configuration and Modes of Operation

■ Effective Performance Targets for various Host Bus variants of NIU

■ Theory of Operation

■ Receive Datapath

■ Input Packet Processor (IPP)

■ Header Parser and Classification Engine (FFLP)

■ Receive DMA Engine

■ Transmit Datapath

■ Transmit DMA Controller

■ Tx Controller Interface

■ Transmit Controller

■ Ethernet MicroArchitecture Specification (MAC,MIF)

■ NIU_RXC_TOP Microarchitecture Specification

■ NIU_RXC_TOP Sub-Modules

■ NIU_IPP Microarchitecture Specification

■ NIU_PIO Microarchitecture Specification

■ FFLP Microarchitecture

■ ZCP Microarchitecture

■ RDMC Microarchitecture Specification

■ TDMC Microarchitecture Specification

■ TXC Microarchitecture Specification

■ Meta Arb Microarchitecture Specification
6-1

■ Meta Interface Microarchitecture Specification

■ Interrupt Microarchitecture Specification

■ Debug Microarchitecture Specification

■ N2 NIU Design for Test

■ SMX Microarchitecture

6.1 Introduction
The Networking Interface Unit (NIU) is an Ethernet to host bus/interface bridge.
The design supports up to four Ethernet ports. The NIU is designed to provide
scalable, high performance packet processing, optimized for Sun’s throughput
computing and networking architecture.

The primary goal of the NIU core is to provide a cost effective high performance
interface with advanced network processing functions, such as packet classification
for load balancing, checksum/CRC off loading and channelized and locatable DMA
support. The NIU core is designed to run at frequencies up to 375 MHz @ 65nm ,
based on selected process technologies that were studied at the time of product
definition. It includes an on chip 128 X 200bit TCAM, a 4K VLAN ID table shared by
all ports, store-and-forward multiple max size packets per port in each RX and TX
direction, a per port classification results FIFO, a per port TX Reorder FIFO, TID
table, retry buffer and segmentation buffers etc. using on chip SRAMs. MAC Hash
Table and DMA caches are implemented as registers due to their smaller size.

For network connectivity the, NIU includes up to two Ethernet ports, which are
grouped as two Quad speed (10/100/1000/10000) Ethernet Ports (IEEE
802.3z,802.3ae). The Physical layer I/O interfaces provided are dual XAUI interfaces.
Supported Port configurations include but not limited to dual 10/1 Gigabit Ethernet.

The NIU can connect to the system via various host busses using the patented
on-chip 128bit wide, full duplex, system error aware, host agnostic Meta Interface
bus

OpenSPARC T2 NIU supports the System Interface Unit (SIU).
6-2 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

6.1.1 Context for OpenSPARC T2
OpenSPARC T2 is Sun's third generation Chip Multi Threading (CMT) multi core
CPU that will incorporate a dual 10/1 Gigabit version of the NIU core. Having
direct network interfaces built in to the multi thread, multi core CPU will effectively
double the network bandwidth of the T2 CPU, as well as reduce latency, greatly
enhancing performance.

T2 platforms will provide PCI-E slots which will also provide early realization of the
architecture.

6.1.2 Features and Requirements
1. Packet Processing

■ Supports IEEE 802.3/Ethernet packets at Layer 2, VLAN (802.1q) packets at
Layer 2, LLC SNAP at Layer 2, AH/ESP for security, IPv4/IPv6 packets at
Layer 3, TCP/UDP packets at Layer 4 etc.

■ Layer 1 – 4 Classification and flow identification

■ Internal 128 x 200 TCAM

■ True Store and Forward Architecture on RX and TX

■ Hardware checksum for Rx and Tx paths (TCP/IP)

■ Jumbo frame support (9216 bytes)

■ IP Multicast

2. Packet Movement

■ Support for 16 Receive and 16 Transmit DMA channels

■ Support for Transmit Gather of up to 15 descriptors

■ Jumbo frame support (9216 bytes)

3. System

■ Hypervisor virtualization and partitioning

■ T2 System Interface

■ Interface loop backs (internal and external)

■ Support UCB interface to NCU
Chapter 6 Network Interface Unit (NIU) 6-3

6.1.3 Design Goals
1. Maximum aggregate throughput per direction (ingress, egress) of up to 20 Gbps

for Network receive and 20 G (for jumbo packets at 9216B).

2. Store and Forward architecture for Rx and Tx paths.

3. Buffering for 9K bytes Jumbo packets in store and forward mode.

4. Buffering in 2 port active mode for latencies and delay in round robin arbitration
and data movement into system memory.

5. Non blocking behavior for Posted Writes, Non Posted Writes and Read Requests.

6. Host bus MTU agnostic.

7. Thirty-two Non Posted Writes for updates of shadowed state for software
coherency

8. Thirty-two split transaction for Read Request, with relaxed ordering rules.

9. Handle system level errors by encompassing them into split transaction
time-outs, used by NPW and Read Request only.

10. Single code base with high level of reuse for different host connectivity.

11. Architecture and design independent of physical FIFO sizes.

12. Synchronous active low resets, with buffer tree optimization at layout.

13. No multi cycle paths for design blocks.

14. ECC and parity mechanism for protection of RAM data.

15. Little Endian design for control, data and software pios.

6.1.4 Buffering Analysis
NIU's buffering analysis assumes the following; 12 bytes Inter Packet Gap (IPG) and
100 ps/bit. Data FIFO size is normalized for 32K bytes (2048x128), which is 2048 (16
byte) entries. The control header for every packet is 16 bytes, and will be added for
the analysis.
6-4 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

6.1.5 Single 10 Gigabit Port Active
64 bytes packet case: Data plus control header is 80 bytes, which uses five entries in
the data FIFO. 2048/5 equals approximately 409 (64 byte packets) @ 67 ns per
packet, which gives us an overflow time in the order of 27+ usec.

Jumbo packets case: 9500+ (9600) bytes used in data FIFO, worst case uses

600 entries. 2048/600 equals approximately three (9600 byte packets) @ 7.68 us per
packets, which gives us an overflow time in the order of 23 usec.

Therefore for 32k on ingress buffering would give us 23+-27+ usec of overflow time
per port.

6.1.6 All 10G and 1G Ports Active
The worst case for all ports active is the jumbo packet case, since we are a single
threaded write architecture, we need to finish a complete write request before
initiating the next write request.

For this case, the 1G ports will receive jumbo frames every 76.8 usec. We will assume
that they were already there, when the 10G port completely receive their respective
jumbo frames.

In addition, we will constraint the analysis to the host bus having the same
bandwidth as the ingress port, and use a derating factor for speeds lower than that.

Port zero will get serviced every five jumbo frame the first time around, and then
every third jumbo frame after that, then back to five and so on and so on.

This gives us a buffering time of 23 usec (3x7.68) to 38.4 usec (5x7.68) requirement.
This buffering requirement decrease as the host bus speed increasesTherefore the
buffering of 23-27 usec should be sufficient for T2 implementations.

6.1.6.1 Transaction Time-Outs and System Errors

The NIU core uses a transaction time-out mechanism for all system level errors that
may be detected from the host bus. This enables the NIU core to validate its
behavior independent of the host bus connectivity. This is important, since the
semantics and error mechanism of the varied host buses can now be folded into a
simple error recovery scheme.

The NIU architecture specifies that errors are grouped into following groups:

1. Detectable and Uncorrectable Error - Recoverable
Chapter 6 Network Interface Unit (NIU) 6-5

2. Detectable and Uncorrectable Error - Fatal

3. Detectable and Correctable Errors - Recoverable

Each group mandates that the engines within the NIU core are non-blocking in
nature. For example DMA 0 detects case 2, which causes DMA 0 to go dead. This
should not affect any other DMA. However, in the event a Network Port goes dead,
multiple DMA could be affected but not other ports.

Transaction Time-Outs

Transaction time-outs apply to Split Transaction Read Request that do not complete
within a specified time interval. This time interval could be different on the multiple
host buses that NIU could bolt to.

Since the NIU core uses “The Meta Interface” to communicate with the host buses,
all host bus semantics are abstracted out. This enable the NIU core to use an
abstracted semantics for movement of data from or too system memory. For example
Read and Write Request of 4K Bytes.

To get into the specifics of transaction time-outs, we explore Split Transactions and
Transaction IDs (TIDs).

The NIU core uses TIDs as handle(s) for Split Transaction Read Request and Non
Posted Writes. These handles are unique per transaction and are recycled from a TID
bin. The depth of the bin could vary between host buses.

In the event a split transaction does not complete within the transaction time-out
period, that transaction is considered as expired or timed-out. This is indicated to
the NIU core using the TID as the handle. The NIU core will take the appropriate
action as to which engine was the originator of that transaction.

Since, we don't know whether we will receive any data for this expired or timed-out
transaction. This transaction ID needs to be marked dirty and not used any more
until told to do so by software. Further any data received for this transaction ID is to
be dropped by the host bus logic, since there is no originator any more for this
transaction.

The previous explanation covers at a high level the expected behavior of what the
host bus logic would need to support for end to end behavior. However given the
differences in host bus MTU and Read Request sizes. The host bus logic would need
to take care of the multiple corner cases that could arise.

The following are some of the examples that could occur. Please note that these
example are not meant to be taken as complete specification or as an implementation
directive.

Case 1: Host bus and Meta Interface MTU and Read Request Size are the same.
6-6 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

In this example the TIDs on the Meta and the host bus could use a one-to-one
mapping, with responses on the host bus cross referencing the same ID on the Meta
side. Any time-outs detected, would result in the same TID on the host bus and
Meta being marked dirty.

Case 2: Host bus and Meta Interface MTU and or Read Request sizes are different.

In this example, the TIDs on the Meta and the host bus cannot use a one-to-one
mapping, but a one-to-many mapping (segmented reads), with responses on the host
bus cross referencing the same ID on the Meta side. In the event any time-outs are
detected, all of the many segmented mappings have to be marked as dirty on the
host side, and the mapping removed for the Meta side.

Many examples of TIDs in flight and processing that would need to be quantified.
Two case scenarios are presented.

All of the segmented reads have been dispatched prior to responses coming back.

Some of the segmented reads have been dispatched and responses have started
coming back. Listing two of the possible cases.

1. Host system memory very fast.

2. No more credits for Split Transaction Requests.

In each case all the TIDs, dispatched or not, need to be marked dirty. This is very
implementation specific, because of the decision regarding whether to even dispatch
pending read segment requests if a time-out occurs.

In two cases time-out could occur when are receiving response:

■ Some segment not received, since it dropped along the way.

■ System level Error handling mechanism for NIU core. In the event a segment that
fails CRC is received, that packet is dropped and then falls back to a transaction
time-out behavior.

6.1.7 Data Alignment Format for Internal Datapath
FIGURE 6-1 and FIGURE 6-2 show the alignment of the internal data path of the NIU
design for Request and Response data.

6.1.7.1 Request Data Format

In the case of Requests, data and address are byte aligned, with byte enables only on
the last data phase. Where D0 and D1 are the two successive data phases, with D1
being the last data phase.
Chapter 6 Network Interface Unit (NIU) 6-7

FIGURE 6-1 Request Data Format

6.1.7.2 Response Data Format

In the case of Response, data is 16 byte aligned with the appropriate byte enable
driven, as shown in FIGURE 6-2. Where D0 and D1 are the two successive data phases.

D0

D1

D0

D1

Case 1: Write Request Address = A0, Length = 17 Bytes

Case 1: Write Request Address = A5, Length = 17 Bytes

16 Bytes Valid

16 Bytes Valid

1 Byte Valid

1 Byte Valid
6-8 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

FIGURE 6-2 Response Data Format

6.2 Chip Overview
The NIU core abstracts out the properties associated with the physical host bus used
(SIU) via Meta interface. The Meta Interface Specification details the
microarchitecture, behavior and implementation.

The NIU architecture is designed with pipeline stages that are all interlocked, each
of which meets the requirement for maximum performance as stated in the design
goals section.

Clocking: The highest NIU clock frequency is 375MHz for OpenSPARC T2. The
Ethernet sub system has multiple clock domains. For details see the MAS clock
chapter. For reference some of the key frequencies are listed below:

XAUI Serdes: 156MHz (125MHz)/62.5MHz for 10G/1G

Glue: ~312MHz/125Mhz for 10G/1G (Rx and Tx clock domain)

MAC: XMAC: 2.5MHz/25MHz/125MHz/156MHz

Receive & Transmit Datapath: 375MHz

TCAM: 375 MHz

Reset: Full chip reset is asynchronous upon assert and synchronous upon de-assert.
IO flip flops are asynchronously resettable. Software reset is supported.

D0

D1

D0

D1

Case 1: Read Response Address = A0, Length = 17 Bytes

Case 1: Read Response Address = A0 (A5), Length = 17 Bytes

16 Bytes Valid

11 Bytes Valid

6 Bytes Valid

1 Byte Valid
Chapter 6 Network Interface Unit (NIU) 6-9

The system reset gets synchronized to each sub block’s clock domain.
6-10 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

FIGURE 6-3 NIU Top Level Block Diagram

NIU_RXC

N2 IO pads

TXC TDMC

meta arb
RDMC

TCAM

esr

312.5 MHz

PIO

Serdes/ PLL

Serdes/ PLL

niu_clk
(375MHz)

CSR

SMX

PIO_UCB

srams

srams

srams

srams

srams

srams

srams

srams

Port 0 and Port 1 tx return clock, 312.5MHz

csr/mdc clock

CSR

CSR SERDES REF CLK PIN

MDC

Port 0 and Port 1 tx clock, 312.5MHz

Port 0 and Port 1 4 bit rx clock buses, 312.5MHz

Serdes/ PLL n2_niu

MAC 0, 1
Chapter 6 Network Interface Unit (NIU) 6-11

6.3 Configuration and Modes of Operation
Programming option for the XMAC will allow 1G operation also. Therefore a 10G,
can be changed to 1G by software. The system is free to populate one or more ports
at hardware or software level, which can be configured as 10G or 1G. TABLE 6-1
describes the various supported port configurations.

6.4 Effective Performance Targets for
various Host Bus variants of NIU
The performance target is for one direction only with numbers listed for the transmit
path. The bottle neck is governed by host bus performance.

TABLE 6-1 NIU-OpenSPARC T2 Configurations

NIU-T2 Ethernet Ports Remarks

X 2x10G Fiber

X 2x1G Copper

X 1x10G Copper

X 1x10G and 1x1G Fiber, Copper (Low Priority)

X 1x10G or 1x1G Fiber, Copper (Low Priority)

1 10G Copper

2x10G Fiber

TABLE 6-2 NIU-OpenSPARC T2 Tx Performance

Packet Size
Back to Back

NIU-T2 Remarks

64B 15M OpenSPARC T2: NIU is the bottle neck currently

512 OpenSPARC T2: Networks is the bottleneck

1518 823K OpenSPARC T2: Networks is the bottleneck.
6-12 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

6.5 Theory of Operation
MACs are the Ethernet Media Access Controllers that support the Ethernet protocol.
They contain the layer 2 protocol logic, statistic counters, address matching and
filtering logic. The output from the MACs contain information on the destination
address, whether it is one of the programmed individual addresses or an accepted
group address, and the index associated with the address in that category.

Frames from different physical ports are stored temporarily in a per port receive
FIFO. While they are being stored into the FIFO, the frame or first 128B will also be
copied to the packet classification and checksum engines. The classification logic will
determine which Receive DMA Channel (RDC) Group the packet belongs to and an
offset into the RDC Table where the final RDC is determined. There are a total of
eight RDC Tables.

The Layer 2 parser processes the Ethernet header to determine if the received frame
contains a VLAN Tag or LLC/SNAP header. For VLAN tagged packet, the VLAN ID
is used to lookup into a VLAN table to determine the RDC Table number for the
packet. Hardware will also lookup the MAC address table to determine a RDC Table
number based on the destination MAC address information. Software can program
which of the two groups to use in subsequent classification. The output of the Layer
2 parser together with the resulting RDC Table number will be passed to the Layer
3/4 parser.

The Layer 2/3/4 parser will examine the EtherType, TOS/DSCP field and the
Protocol ID/Next Header field to determine if the IP packet needs further
classification. The L3/4 parser is hardwired to recognize some fixed protocol such as
TCP or UDP. It also supports a number of programmable Protocol IP number. If the
packet needs further classification, it will generate a Flow Key and a TCAM Key.

The TCAM key is sent to the TCAM unit for an associative search. If there is a
match, the result may override the RDC Table selection from L2 and/or contain an
offset into the Layer 2 RDC Table and ignore the result from the Hash Unit..

The TCAM result will determine if a hash lookup based on the Flow Key is needed.
Using the RDC Table number supplied by the TCAM logic, which determines a
partition of the external table the Hash unit can search, an lookup is launched and
either an exact match or an optimistic match is performed. If there is a match, the
result contains the offset into the RDC Table and the User Data.

The output from the Hash unit and the TCAM unit will be merged, and used to
lookup in the RDC Table to determine a RDC to enqueue the received frame. The
output of the Classification Unit is stored into the Control FIFO.
Chapter 6 Network Interface Unit (NIU) 6-13

Hardware supports checksum off load and CRC-32c off load for TCP/SCTP
payloads.1 Hardware will simply compare the calculated value with the CRC value.
The result will be sent to software through the completion status. No discard
decision is made based on the CRC result. Note that checksum/CRC errors do not
affect the L3/4 classification results. Similarly, the error status will be sent to
software through the completion status.

The datapath from the two MACs is time shared. The Receive FIFO is logically
organized per physical port. Layer 2/3/4 error information has to be logically
synchronized with the classification result of the corresponding frame.

Logically there are 16 Receive DMA Channels. The datapath engine is common
across the channels. It is also used to prefetch the Receive Blocks or update the
Completion Ring of the RDCs.

Each Receive DMA Channel (RDC) has a Receive Buffer Ring (RBR), a Receive
Completion Ring (RCR) and the state associated with the RDC. Physically, they are
allocated as ring buffers in system memory. To support partitioning, each RDC
supports two logical pages. All the addresses posted by software, such as the
configuration of the ring buffers, buffer block addresses, are translated to physical
addresses when used to reference system memory.

Software posts buffer Blocks into the RBR. The size of each block is programmable,
but fixed per channel. Software can specify up to three sizes of packet buffer
hardware can partition a block. Each block can only contain packet buffers of the
same size.

To reduce the per packet overhead, hardware maintains a pre fetch buffer for the
RBR and a tail buffer for the RCR. When the RBR prefect is low, a request will be
issued to the system memory to retrieve a cache of Block addresses from the ring.
The prefect requests may be issued as bypass queue read requests.2 Or if the RCR
tail buffer needs to be updated, a non posted writes request will be issued. The RCR
non posted write request will be issued as an ordered queue posted write request for
host buses that do not support non posted writes. When a completion
acknowledgments from system is returned, the software visible states will be
updated Since there is no completion acknowledgment for posted writes, the host
bus interface logic must return and acknowledgment when the posted write has
been dispatched to the ordered domain, where no ordered transaction can bypass
this write. The RDC control scheduler will maintain the fairness among the RDCs.

The Port Scheduler examines if there are any frames available from the Receive FIFO
and the Control FIFO, and decides which port to service first. A Deficit Round Robin
scheduler is implemented. From the control header, the scheduler determines which
RDC to check for congestion and retrieve a buffer to store the frame. Congestion is
determined by a WRED algorithm applied on the Receive Buffer Ring and the

1. For TCP over Ethernet packets, the last four bytes of the packet is assumed to be a CRC value.

2. This is safe if there is only one outstanding request.
6-14 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

Receive Completion Ring. If the RDC is not congested, a buffer address is allocated
according to the packet size. Packet data requests are issued as posted writes to the
bypass/relaxed order queue.

The RCR buffer will be updated after issuing the write requests for the entire packet.
However, software visible states will not be updated at this time. When updating the
RCR buffer to system memory, an ordered write request is issued. When the
acknowledgment is returned, the software visible states will be updated.

The datapath engine will fairly schedule the requests from the Port Scheduler and
the RDC Control Scheduler and issue the requests to the DRAM.

The DMA status registers will be updated every time the RCR buffer is updated.
Software may poll the DMA status registers to determine if any packet has been
received. When the RCR queue length reached a threshold or a time-out occurred
since the first arrival to an empty RCR, hardware may update the RCR buffer and at
the same time, write the DMA status registers to a software defined mailbox. These
writes are issued as ordered writes. When the acknowledgments are returned, the
software state will be updated, and an interrupt may be issued to the NCU directly.
Note that the CSR mailbox update and the interrupt can be enabled independently.

On the transmit side, there are 16 Transmit DMA Channels total. The following
Figure shows the logical view of the transmit hardware. Each channel is comprised
of a Transmit Ring, a set of control and status registers. Similar to the receive side,
each transmit channel supports two logical pages, different from the RX page.
Addresses in the Transmit Ring and configuration registers are subjected a
translation to convert to physical addresses.

The Transmit Ring is built from a ring buffer in system memory. Software posts
packets into the Transmit Ring, and signals the DMA hardware that packets have
been queued. Each packet is built as a gather list. When the Transmit Ring is not
empty, hardware will prefetch the Transmit Ring into a per channel buffer.

Any DMA channel can be bound to one of Ethernet ports (2 in OPenSPARC) by
software. This is controlled by a mapping register at the per port DRR scheduler. The
DRR scheduler may switch to a different channel on packet boundary. This
guarantees there will be no packet interleaving from different DMA channels. The
scheduler will first acquire an available buffer tag for that port. If it is available, a
memory request will be issued. The buffer tag is needed because acknowledgment
(with the packet data) may return out of order. This tag, which is linked to the
request/ack ID, is used to reorder the data from memory system into the packet
order.

The Ethernet ports are serviced in round robin order, and requests from different
ports may be interleaved.
Chapter 6 Network Interface Unit (NIU) 6-15

6.6 Receive Datapath
The receive data path is responsible for providing advanced network processing
functions such as packet classification, checksum off loading, and channelized DMA
for movement of ingress network traffic to system memory. The receive datapath is
partitioned into two main sub-modules, Receive Controller (RXC) and Receive Data
Management Controller (RDMC), and includes all the functionality for moving data
from the Ethernet ports to system memory.

The RXC sub-module is partitioned into two engines, Data and
Control/Classification. The data partition is responsible for all aspects of packet
checking, while the control/classification selects the DMA resource responsible for
packet transfer to system memory.

The motivation to separate the data and classification paths, is to abstract the
behavior and latency of the classification engine, and for supporting line rate traffic
at 20 G bits/sec.

The Data partition comprises of the following sub-modules, Input Packet Processor
(IPP) with Header Parser interface, Checksum/CRC engine and data FIFO.

6.7 Input Packet Processor (IPP)
The IPP interfaces to the 10 G and 1G MACs via 64 bit data bus, and converts 64 bit
ingress data to an internal 128 bit data path. Following the conversion, the data is
moved into a pre-buffer for IPP processing. The IPP waits till the pre-buffer indicates
that either of the two conditions are valid:

1. Complete Packet

2. 128 Bytes of data stored

When either condition is valid, the IPP extracts the data and informs the Header
parser that there is a valid header for this port. Since the header parser is shared
between all ports (pure round robin), the pre-buffer is sized (1kbytes), to support the
worst case arbitration delay.

When the header parser indicates that it is ready to process the header. The IPP
forwards a copy of the data to the header parser, and waits for checksum/crc
calculation information. The header parser is required to respond to the IPP within 4
system cycles with the information needed to compute/verify checksum/crc.
6-16 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

The IPP and checksum/crc engines provide support for the following:

1. TCP and UDP full checksum

2. CRC32 on TCP, UDP and SCTP

The IPP now starts moving the ingress packet from the pre-buffer via the
checksum/crc engine, to the main data fifo. The IPP encapsulates the packets in the
data fifo with SOP with control header(128 bits) and EOP tags. The control header
consist of packet length (calculated by the IPP) MAC crc status and checksum/sctp
status. This information is used by the RDMC.

The IPP is responsible for padding MAC data when the conversion of 64bit to 128bit
datapath has a partial result from odd packet sizes. For example:

a. if a MAC packet data is an odd set of 64-bits

XMAC: {41'h0,mac_status[22:0],mac_data[63:0]}

b. if a MAC packet data is an even set of 64-bits

XMAC: {41'h0,mac_status[22:0],41'h0,mac_status[22:0]}

Runt packets smaller than 64 bytes are silently dropped and recorded in IPP status
registers.In addition the MAC will also record dropped and runt packets.

The Data Fifo to RDMC interface is implemented using a simple request-ack
protocol (dmc_request, ipp_ack). For each dmc_request (read operation) there is an
associated ipp_ack (data Valid). The “ipp_full_pkt” flag signals the RDMC, that at
least one complete packet is in the FIFO. The RDMC asserts dmc_request signal for
reading data out of the Data FIFO. Data returned by the read operation is qualified
by a data valid (ipp_ack).

The Checksum unit supports 1's complement 128 bit full checksum and CRC_32c.
The overhead of the checksum engine is 4 cycles.

6.8 Header Parser and Classification Engine
(FFLP)
The Header Parser is responsible for extracting header information from the ingress
packet. It provides the IPP with offset information necessary to compute TCP/IP
checksum. The Header Parser also creates the TCAM search keys for flow
identification.

The Classification Engine is responsible for VLAN lookup’s, TCAM searches and
updates, computation of Hash function for DMA RDC table offset calculation etc.
Chapter 6 Network Interface Unit (NIU) 6-17

This stage is grouped as one of the logical pipeline stages and must perform its
operations to meet 20 Gbps line rate performance.

6.9 Receive DMA Engine
The Receive I/F connects to both the Rx Packet FIFO and the Rx Control FIFO. Based
on Rx Control FIFO parsing results, the DMU receive path is responsible for
transferring packets between the Rx Receive FIFO and the Meta Interface.

The Port Scheduler determines the next port from which to transfer data based on
the status of the Rx Packet FIFO, the Rx Control FIFO, a Deficit Round Robin
algorithm is used to determine the availability of the selected DMA channel.

Congestion is determined by a WRED algorithm applied on the Receive FIFO and
the Receive Completion Ring. When a channel is determined to be congested, the
Port Scheduler will drop the packets randomly from the existing queues. In the TCP
flags are available, preference may be given to existing connections. The preference
is to drop randomly from the existing queue rather than packets from new
connections.

6.10 Transmit Datapath
The transmit data path is responsible for providing checksum computation, DMA
support for moving egress network traffic from system memory to the Ethernet
Ports. The transmit datapath is partitioned into two main sub-modules, and
Transmit Data Management Controller (TDMC) and Transmit Controller (TXC), and
includes all the functionality for supporting a gather list of up to 15 descriptors.

6.11 Transmit DMA Controller
This block is the interface between the Transmit Control Engine (TXC) and Meta Bus
Interface (which interfaces to the system memory).This block is responsible for
managing the Transmit Descriptors. It also has the mechanism for caching
descriptors and providing these to TXC upon request.
6-18 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

The TDMC is partitioned into four sub-blocks as follows:

1. PIO Block.

2. Cache Fetch and Management Engine.

3. Transmit Controller Interface block.

4. Arbiter for Meta Bus (Shared between Rx and Tx DMA Engines)

The structure of various sub-blocks is shown in FIGURE 6-4.

FIGURE 6-4 TXDMA Sub Blocks

6.11.1 PIO Block

This block interfaces with NIU's PIO control block. It manages all the Control and
Status Registers (CSRs) required for correct functioning of the DMU block. Some of
the registers, added for ease of diagnosis, are also managed within this block.

Cache
Management

Engine

PIO
Block

Meta Bus
Arbiter

Txc
Cache

Interface
Chapter 6 Network Interface Unit (NIU) 6-19

6.11.2 Cache Management Engine
The cache fetch engine is responsible for scheduling descriptor fetch requests to the
System Memory and to cache descriptors in its cache memory. There are up to 16
DMA channels supported in NIU. Per DMA Channel, the cache engine can fetch up
to a maximum of two cache-line worth of descriptors and store these in the cache.
The cache line is assumed to be 64 Bytes long.

The descriptors held in the cache are processed by the TXC and hence the read
pointers are controlled by the TXC Block.

6.11.3 Tx DMA Cache RAM
The cache is organized as 16 logical FIFOs, one for each DMA channel. Each entry in
this cache stores two descriptors (8 Bytes each). Up to 16 descriptors (128 Bytes –
Two 64 Byte Cache Lines) can be stored per DMA Channel. There is a set of tags
associated with each entry. This is used by the Exacted Interface to keep track of any
gather list.

Although the worst case latency for read request is system dependent, NIU expects
the worst case latency to be less than 800ns calculated from the acceptance of the
read request by the host bus logic. FIGURE 6-5 illustrates the image of the descriptor
cache.
6-20 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

FIGURE 6-5 Diagram Of Descriptor Cache

6.11.4 Tx DMA Cache Fetch Engine
The cache fetch engine manages the heuristics associated with cache fetches from
system memory. A fetch request to the memory can be initiated by any of the
following conditions.

1. Receipt of a new kick for any DMA channel. This channel gets added into a list of
active DMAs. This condition is detected when software clears the stall bit in the
CSR.

2. Availability of at least one cache line worth of space in the cache of any active
DMA. This can happen as TXC keeps servicing the descriptors. The fetch engine
always tries to fill up the cache so that the descriptors are available when
requested by TXC.

Ta
gs

DMA0

DMA31

16 Bytes

128 Bytes

25
6

E
nt

ri
es

Total Size = 4 KBytes + Tags + Parity
Chapter 6 Network Interface Unit (NIU) 6-21

3. Appending of descriptors to an active DMA by the software. This happens when
software moves the tail pointer in the CSR. A fetch request for that DMA will be
scheduled under the following conditions.

4. The Descriptor Cache is empty (For this DMA Channel).

5. The Descriptor Cache is partially full and has space available for at least one
cache line.

6. If the Cache is full, appending a new set of descriptors should not initiate any
new descriptor fetches until enough space is available.

The extent of fullness of the cache is determined using a set of shadow pointers.
These pointers get updated as soon as a request is issued to the system memory.
These pointers are used as an anchor to determine the state of outstanding requests
to System Memory on a per DMA channel basis.

Once the request state machine s triggered to fetch descriptors, it arbitrates among
all the available DMAs. An arbitration algorithm is used to choose a DMA from the
list of available DMAs in a round robin fashion. The algorithm also checks for space
availability in the cache of each DMA and sends read requests to system memory
accordingly. A logical view of the request state machine is shown in FIGURE 6-6.
6-22 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

FIGURE 6-6 Request State Machine

6.11.5 Tx DMA Cache Write Engine
The Cache write engine is responsible for writing the cache response data back into
the SRAM. It writes the data into the appropriate logical offset using the DMA
number returned by the Meta Interface. This engine reorders any out of order
responses from memory and updates the appropriate pointers, which are used by
the TxCache interface block.

6.12 Tx Controller Interface
This block reads the cache and presents the descriptors to TXC. As soon as the
descriptors are ready and read out from the cache FIFO, it send a cache_ready signal
to the TXC. This causes the TXC state machines to be kick started.

IDLE

WAIT_FOR_ACCEPT

UpdateTxCache = f {ReceivedKick | SpaceAvailable}

REQ_FOR_META

ARB_FOR_DMA

UpdateTxCache
Chapter 6 Network Interface Unit (NIU) 6-23

Each popped entry has two flags associated with it. These are used to indicate if the
corresponding entry is valid or not. The validity of an entry is determined by the
following conditions:

1. Comparison of the current head and tail pointers of the descriptor ring to
determine if the end of the list has been reached.

2. If the entry is the first descriptor of a gather list and at least one descriptor of that
gather list is unavailable.

3. Any errors associated with the data integrity.

Based upon these conditions, only valid entries are sent to the TXC block for further
processing. The timing diagram for the interface between TXC and Tx DMA block is
shown in FIGURE 6-7.

FIGURE 6-7 TXDMA To TXC Interface Timing Diagram

6.13 Transmit Controller
The Transmit Controller Engine (TXE), FIGURE 6-8, consist of the following functional
blocks.; The DRR Scheduler, Data Fetch State Machine and per port
re-order/realigner buffer. The engine is designed as a true store and forward, such

core_clk

cache_ready_dma#

txc_dmc_getnext_desc_dma#

dmc_txc_gonext_desc

dmc_txc_descriptor_dma#

dma_txc_dma#_active

0 ns 25 ns
6-24 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

that latencies on the host bus are abstracted from any temporal issues during
transmit. The Scheduler and Data State machine are shared by all the ports in the Tx
path.

Software posts transmit packets into a transmit DMA channel where each packet
may be made up of a gather list. The DMA controller fetches the descriptor and
informs the DRR scheduler of active DMA channels and their corresponding
descriptor information. The Scheduler coupled with the DRR information and
re-order state, dispatches data request to the Data fetch state machine. This engine is
now responsible for fetch and re-ordering data from the host system and storing the
response data with the appropriate alignment information in the re-order buffer.
Upon completion of the request the state machine causes the re-aligner to process
the stored data in the buffer. The Realigner reads data from the buffer, aligns the
data into16 byte-aligned chunks and pushes the data into the Store and Forward
FIFO, while at the same time primes the checksum engine if enabled. On the
completion of the packet the re-aligner updates the checksum information and
forwards the packet for transmission. The data state machine interface with the
DMA controller for update to the completion ring and next descriptor fetches.

The Transmit Controller Engine (TXE) interfaces to host system through the DMA
Controller & Cache via the Meta interface. However, the use of the Meta interface
abstracts out the physical MTU of the host bus.

The Transmit data requests and the prefetch requests share the same datapath to
memory system. The returned acknowledgment is first processed to decide whether
it is a prefetch or a Transmit data. Transmit hardware also supports checksum off
load and CRC-32C off load. This logic is embedded in the Reorder and Transmit
FIFO logic.

When the entire packet has been received into the Transmit FIFO, the transmission
of the packet is considered to be completed and the state of the DMA channel will be
updated through the associated status register. A 12-bit wrap around counter,
initialized to 0, is used to keep track of packets transmitted. Software may poll the
status registers to determine the status. Alternatively, software may MARK a packet
so that an interrupt (if enabled) may be issued after the transmission of the packet.
Similar to the receive side, hardware will update the state of the DMA channel to a
predefined mailbox before issuing an interrupt.
Chapter 6 Network Interface Unit (NIU) 6-25

FIGURE 6-8 TX Controller Block Diagram

ReOrder & StoreForward

PacketEngine Port0

PacketEngine Port1

D
at

a
F

et
ch

Meta Response InterfaceTDMC Interface

 SRAMs

M
et

a
R

eq
ue

st
 In

te
rf

ac
e

Clock, Reset
 &

CSR

10G MACs
6-26 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

6.14 Ethernet MicroArchitecture Specification
(MAC,MIF)

6.14.1 MAC Network Connections

6.14.1.1 T2 Network Interface Connections

FIGURE 6-9 Network Interface Connections

XMAC XMAC
(10GbE/

La
ne

-0
La

ne
-1

La
ne

-3

La
ne

-2

La
ne

-0
La

ne
-1

La
ne

-3

La
ne

-2

XGE-0 Interface
(XAUI or 1GbE)

XGE-1 Interface

10G Copper PHY,
10G Fiber Serdes or

10G Copper PHY,
10G Fiber Serdes or
4 x 1G Fiber Serdes

(XAUI or 4x1GbE)

(10GbE/

1G Fiber Serdes
Chapter 6 Network Interface Unit (NIU) 6-27

6.14.2 Ethernet Port Configuration Table

6.14.3 Ethernet Port Loopback Mode Configuration Table

6.14.4 T2 MAC Loopback Mode

The corresponding T2 MAC port configuration table, TABLE 6-4, should be setup to
do the loopback static timing analysis.

TABLE 6-3 T2 MAC Port Configuration

configuration port0 port1 mode setting port0 mode setting port1

2x10G 10G (XAUI) 10G (XAUI) xgmii_mode0 = 1
gmii_mode0 = 0
mii_mode0 = 0
pcs_bypass0 = 0
(XAUI)

xgmii_mode1 = 1
gmii_mode1 = 0
mii_mode1 = 0
pcs_bypass1 = 0
(XAUI)

1x10G + 1x1G 10G (XAUI) 1G (ch0) (fibre) xgmii_mode0 = 1
gmii_mode0 = 0
mii_mode0 = 0
pcs_bypass0 = 0
(fibre)

xgmii_mode1 = 0
gmii_mode1 = 1
mii_mode1 = 0
pcs_bypass1 = 0
(fibre)

2x1G 1G (fibre) 1G (ch0) (fibre) xgmii_mode0 = 0
gmii_mode0 = 1
mii_mode0 = 0
pcs_bypass0 = 0
(fibre)

xgmii_mode1 = 0
gmii_mode1 = 1
mii_mode1 = 0
pcs_bypass1 = 0
(fibre)
6-28 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

TABLE 6-4 T2 MAC Port Configuration - Loopback Analysis

configuration port0 port1 mode setting port0 mode setting port1

2x10G

XMAC loopback

10G (XAUI) 10G (XAUI) loopback0 = 1
xpcs_loopback0 = 0

loopback1 = 1
xpcs_loopback1 = 0

2x10G

XPCS loopback

10G (XAUI) 10G (XAUI) loopback0 = 0
xpcs_loopback0 = 1

loopback1 = 0
xpcs_loopback1 = 1

10G

Blunt Loopback

10G (XAUI) 10G (XAUI) loopback0 = 0
xpcs_loopback0 = 0

loopback1 = 0
xpcs_loopback1 = 0

blunt_end_loopback = 1

1G

Blunt Loopback

1G (fibre) 10 (XAUI) loopback0 = 0
xpcs_loopback0 = 0

loopback1 = 0
xpcs_loopback1 = 0

blunt_end_loopback = 1
Chapter 6 Network Interface Unit (NIU) 6-29

FIGURE 6-10 T2 MAC Top Level Architecture

tx_pcs (1G)

serdes0
(PMA)

rx_pcs (1G)

tx_xpcs (10G)

rx_xpcs (10G)

tx_xmac
(10/1G)

xgmii_tx

gmii_tx

rx_xmac
(10/1G)

xgmii_rx

gmii_rx

0

1

xpcs_bypass

0

1

pcs_bypass

_ p _

xmac

gmii_rxd, gmii_rx_dv

rx_code_group1

xtx_code_group0[39:0]

xrx_code_group0[39:0]

10

10

esr_ctrl2 phy_clock_2ports

lane 0

lane 1

lane 2

lane 3

tx 0

rx 0

tx 1

rx 1

tx 2

rx 2

tx 3

rx 3

sphy_dpath2

20

1

0

xgmii_mode

0

1

blunt_end_
loopback

0

1

blunt_end_
loopback

0

1

blunt_end_
loopback

0

1

blunt_end_
loopback

csr mif

Notes:
1. esr_mac_rclk[3:0] goes to phy_clock_2ports and sphy_dpath2.
2. A: Falling edge trigger (hi transparent) latch.
3. B: Rising edge trigger (low transparent) latch. .

tx_pcs (1G)

serdes1
(PMA)

rx_pcs (1G)

tx_xpcs (10G)

rx_xpcs (10G)

tx_xmac
(10/1G)

xgmii_tx

gmii_tx

rx_xmac
(10/1G)

xgmii_rx

gmii_rx

0

1

xpcs_bypass

0

1

pcs_bypass

xmac_2pcs_core

xmac

gmii_rxd, gmii_rx_dv

rx_code_group1

xtx_code_group1[39:0]

xrx_code_group1[39:0]

10

10

lane 0

lane 1

lane 2

lane 3

tx 0

rx 0

tx 1

rx 1

tx 2

rx 2

tx 3

rx 3

20

1

0

xgmii_mode

0

1

blunt_end_
loopback

0

1

blunt_end_
loopback

0

blunt_end_
loopback

0

1

blunt_end_
loopback

rx_code_group0

rx_code_group2

rx_code_group3

rx_code_group3

rx_code_group2

rx_code_group0

tx_code_group0

tx_code_group1

B
B

B

B

B

B

B

B

B

B

A

A

A

A

A

A

A

A

6-30 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

6.14.5 Serdes - MAC Interface Signals

TABLE 6-5 MAC Interrupts Info Table

Signal Name Width Description

from serdes to mac

esr_mac_los_0 [3:0] Port 0 serdes loss of signal from each lane

esr_mac_los_1 [3:0] Port 1 serdes loss of signal from each lane

esr_mac_oddcg0_0 Port 0, lane 0 odd code group

esr_mac_oddcg0_1 Port 1, lane 0 odd code group

esr_mac_oddcg1_1 Port 1, lane 1 odd code group

esr_mac_oddcg2_1 Port 1, lane 2 odd code group

esr_mac_oddcg3_1 Port 1, lane 3 odd code group

esr_mac_rclk_0 [3:0] Port 0 per lane receive clock

esr_mac_rclk_1 [3:0] Port 1 per lane receive clock

esr_mac_rxd0_0 [9:0] Port 0 lane 0 receive data

esr_mac_rxd1_0 [9:0] Port 0 lane 1 receive data

esr_mac_rxd2_0 [9:0] Port 0 lane 2 receive data

esr_mac_rxd3_0 [9:0] Port 0 lane 3 receive data

esr_mac_rxd0_1 [9:0] Port 1 lane 0 receive data

esr_mac_rxd1_1 [9:0] Port 1 lane 1 receive data

esr_mac_rxd2_1 [9:0] Port 1 lane 2 receive data

esr_mac_rxd3_1 [9:0] Port 1 lane 3 receive data

esr_mac_serdes_rdy_
0

[3:0] Port 0 serdes lanes have detected and sync up with comma character (K28.5)
and ready to receive packet.

esr_mac_serdes_rdy_
1

[3:0] Port 1 serdes lanes have detected and sync up with comma character (K28.5)
and ready to receive packet.

esr_mac_tclk_0 Port 0 lane 0 transmit clock; output of tx PLL

esr_mac_tclk_1 [3:0] Port 1 lane 0,1,2,3 transmit clock; output of tx PLL

from mac to serdes

mac_esr_txd0_0 [9:0] Port 0 lane 0 transmit data

mac_esr_txd1_0 [9:0] Port 0 lane 1 transmit data

mac_esr_txd2_0 [9:0] Port 0 lane 2 transmit data

mac_esr_txd3_0 [9:0] Port 0 lane 3 transmit data
Chapter 6 Network Interface Unit (NIU) 6-31

Note – oddcg: odd code group; per IEEE 802.3z clause 36.2.4.2; Used to identify
comma code group (K28.5) which should reside in even code group;

6.15 NIU_RXC_TOP Microarchitecture
Specification

6.15.1 NIU_RXC_TOP Overview
NIU_RXC consists of three sub-modules:

1. IPP: Input Packet Process unit,

2. FFLP: Flow Forwarding and Learning Process unit,

3. ZCP: Zero Copy Process unit.

IPP takes packet data from MAC, sends packet’s header to FFLP;

FFLP sends packet’s checksum information back to IPP;

IPP then puts the packets into the ipp_data_fifo with checksum results for RDMC to
transfer MAC packets into system memory.

FFLP parses headers of the packets for IPP’s checksum and ZCP’s packet control
information buffering through TCAM key search. FFLP provides ZCP packet’s
Receive DMA channel Table number and the table offset number of that selected
table.

ZCP gathers packet’s characteristics, the RDC Table number, and the table offset
number provided by FFLP’s header parsing;

mac_esr_txd0_1 [9:0] Port 1 lane 0 transmit data

mac_esr_txd1_1 [9:0] Port 1 lane 1 transmit data

mac_esr_txd2_1 [9:0] Port 1 lane 2 transmit data

mac_esr_txd3_1 [9:0] Port 1 lane 3 transmit data

TABLE 6-5 MAC Interrupts Info Table (Continued)

Signal Name Width Description
6-32 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

ZCP then provides RDMC the RDMA channel number, and the system memory
address of a packet to be transferred to, via the zcp_ctrl_fifo.

NIU_RXC, and the interfacing portions of the MAC, and RDMC are running under
the same core_clock.

Based upon system’s configuration,

the core_clock is running up to 375MHZ(OpenSPARC T2 mode).

Depending upon system’s configuration,

NIU_RXC supports up to 20Gbits/sec receiving data rate.

An on-chip ternary TCAM is required.

A VLAN_table is used. It has 4096 entries, covering all 12 bits of the vlan_tags.

FIGURE 6-11 NIIU-RXC Block Diagram

mac_ipp_data

dmc_ipp_dat_req

ipp_dmc_data

ipp_dmc_dat_ack
ipp_dmc_ful_pkt
ipp_dmc_dat_err

ipp_mac_req

mac_ipp_ack
64

Rdmc

 IPP

ZCPFFLP

RXC

dmc_zcp_dat_req

zcp_dmc_data

zcp_dmc_dat_ack
zcp_dmc_ful_pkt
zcp_dmc_dat_err

130

130

128
ipp_fflp_data

Mac

vlan_
tabletcam

mac_ipp_ctrl

Abreviations:
RXC: Receive Transfer Control unit
IPP: Input Packet Process unit
ZCP: Zero Copy Process unit
FFLP: Flow Forwarding Learning Process unit

fflp_ipp_data[15:0]

NIU_CLK
Chapter 6 Network Interface Unit (NIU) 6-33

6.15.1 NIU_RXC_TOP Interface Signals

TABLE 6-6 NIU_RXC_TOP Top Level Interface Signals

Signal Name Width Direction Description

MAC Interface

mac_ipp_ack0 1 I Xmac0 sends the ack to ipp0

mac_ipp_tag0 1 I Xmac0 identifies the end of a packet

mac_ipp_data0 64 I Xmac0 writing the packet’s data to ipp0

mac_ipp_ctrl0 1 I Active high for packet’s control information

mac_ipp_stat0 23 I Xmac0 writing the packet’s status to ipp0

ipp_mac_req0 1 O Request (as rdy) from ipp0 to xmac0

mac_ipp_ack1 1 I Xmac1 sends the ack to ipp1

mac_ipp_tag1 1 I Xmac1 identifies the end of a packet

mac_ipp_data1 64 I Xmac1 writing the packet’s data to ipp1

mac_ipp_ctrl1 1 I Active high for packet’s control information

mac_ipp_stat1 23 I Xmac1 writing the packet’s status to ipp1

ipp_mac_req1 1 O Request (as rdy) from ipp1 to xmac1

ipp_rdmc interface

dmc_ipp_dat_req0 1 I Rdmc requests data from ipp_dat_fifo_0

ipp_dmc_dat_ack0 1 O If 1, validates ipp_dat_fifo_0 data to rdmc

ipp_dmc_data0 130 O ipp_dat_fifo_0’s data to rdmc

ipp_dmc_ful_pkt0 1 O If 1, ipp_dat_fifo_0 has complete packet/s

ipp_dmc_dat_err0 1 O If 1, ipp_dat_fifo_0 data has error

dmc_ipp_dat_req1 1 I Rdmc requests data from ipp_dat_fifo_1

ipp_dmc_dat_ack1 1 O If 1, validates ipp_dat_fifo_1 data to rdmc

ipp_dmc_data1 130 O ipp_dat_fifo_1’s data to rdmc

ipp_dmc_ful_pkt1 1 O If 1, ipp_dat_fifo_1 has complete packet/s

ipp_dmc_dat_err1 1 O If 1, ipp_dat_fifo_1 data has error

ipp_rdmc interface

dmc_ipp_dat_req0 1 I Rdmc requests data from ipp_dat_fifo_0
6-34 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

ipp_dmc_dat_ack0 1 O If 1, validates ipp_dat_fifo_0 data to rdmc

ipp_dmc_data0 130 O ipp_dat_fifo_0’s data to rdmc

ipp_dmc_ful_pkt0 1 O If 1, ipp_dat_fifo_0 has complete packet/s

ipp_dmc_dat_err0 1 O If 1, ipp_dat_fifo_0 data has error

dmc_ipp_dat_req1 1 I Rdmc requests data from ipp_dat_fifo_1

ipp_dmc_dat_ack1 1 O If 1, validates ipp_dat_fifo_1 data to rdmc

ipp_dmc_data1 130 O ipp_dat_fifo_1’s data to rdmc

ipp_dmc_ful_pkt1 1 O If 1, ipp_dat_fifo_1 has complete packet/s

ipp_dmc_dat_err1 1 O If 1, ipp_dat_fifo_1 data has error

zcp_rdmc interface

dmc_zcp_req0 1 I Rdmc requests data from zcp_ctrl_fifo_0

zcp_dmc_ack0 1 O if 1, zcp_ctrl_fifo_0 sending valid data to rdmc

zcp_dmc_dat0 130 O zcp_ctrl_fifo_0’s data sent to rdmc

zcp_dmc_ful_pkt0 1 O f 1, zcp_ctrlfifo_0 has complete packet/s

zcp_dmc_dat_err0 1 O f 1, zcp_ctrl_fifo_0 data has error

dmc_zcp_req1 1 I Rdmc requests data from zcp_ctrl_fifo_1

zcp_dmc_ack1 1 O if 1, zcp_ctrl_fifo_1 sending valid data to rdmc

zcp_dmc_dat1 130 O zcp_ctrl_fifo_1’s data sent to rdmc

zcp_dmc_ful_pkt1 1 O f 1, zcp_ctrlfifo_1 has complete packet/s

zcp_dmc_dat_err1 1 O f 1, zcp_ctrl_fifo_1 data has error

global signals

niu_reset_l 1 I core reset, active low

niu_clk 1 I core_clock

pio_ipp_sel 1 I if 1, pio access ipp

pio_zcp_sel 1 I if 1, pio access zcp

pio_fflp_sel 1 I if 1, pio access fflp

pio_clients_addr 20 I pio access address

pio_clients_rd 1 I if 1, pio read, else pio write

TABLE 6-6 NIU_RXC_TOP Top Level Interface Signals (Continued)

Signal Name Width Direction Description
Chapter 6 Network Interface Unit (NIU) 6-35

6.16 NIU_RXC_TOP Sub-Modules

6.16.1 niu_ipp
Refer to NIU_IPP Microarchitecture Specification

6.16.2 fflp
Refer to FFLP Microarchitecture

pio_clients_wdata 64 I pio write data

pio_client_32b 1 I N/A

ipp_pio_ack 1 O if 1, ipp ack back the pio access request

ipp_pio_rdata 64 O pio read data from ipp

ipp_pio_err 1 O if 1, ipp reports an error pio access

ipp_pio_intr 1 O if 1, ipp reports an interrupt condition

ipp_debug_port 32 O ipp’s debug bus

zcp_pio_ack 1 O if 1, zcp ack back the pio access request

zcp_pio_rdata 64 O pio read data from zcp

zcp_pio_err 1 O if 1, zcp reports an error pio access

zcp_pio_intr 1 O if 1, zcp reports an interrupt condition

zcp_debug_port 32 O zcp’s debug bus

fflp_pio_ack 1 O if 1, fflp ack back the pio access request

fflp_pio_rdata 64 O pio read data from fflp

fflp_pio_err 1 O if 1, fflp reports an error pio access

fflp_pio_intr 1 O if 1, fflp reports an interrupt condition

fflp_debug_port 32 O fflp’s debug bus

TABLE 6-6 NIU_RXC_TOP Top Level Interface Signals (Continued)

Signal Name Width Direction Description
6-36 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

6.16.3 niu_zcp
Refer to ZCP Microarchitecture Block

6.16.4 tcam
The NIU_cam is a 200-bit wide, 128-entry on-chip ternary cam.

Each data bit of every entry has a mask bit. When a mask bit is set to 0, that
associated data bit becomes a matched bit among the 200 bits of a comparing entry.

The tcam operates at 375Mhz.

A comparison takes three cycles to produce a matching result. Then one more
niu_clk registers out the comparison results.

A pio_write or pio_read to the tcam takes two cycles.

The tcam is a synchronous and static one.

Venders provide testability circuitries.

6.16.5 vlan_table
The vlan_table is a single port 4096-entry x 9-bit, or 4096-entry x 18-bit sram.

6.17 NIU_IPP Microarchitecture Specification

6.17.1 NIU_IPP Overview
Input Port Processor, the ipp, is one of the three RXC submodules.

ipp loads packets from MAC, passes packet’s header to fflp, gets checksum
information back from fflp, then, does checksum, and writes packets to the
ipp_data_fifo which is the data source of the RDMC.

At the ipp_top level, there is an ffl_arbiter and, multiple ipps can be instantiated.
The number of ipps instantiate corresponds to the number of the MAC ports that the
chip supports.

The ipp_ffl_arbiter is a pure round-robin arbiter.
Chapter 6 Network Interface Unit (NIU) 6-37

The ipp supports full checksum for Tcp and UDP packets.

To provide RDMC the early information of a packet’s byte size and other conditions,
at the beginning of an original Ethernet packet, ipp injects an
ipp_data_status_word(128-bits). The data_status_word indicates the
packet_length(calculated by the MAC), whether it has bad_mac_crc, mac_abort, or if
this packet has a bad checksum.

FIGURE 6-12 NIU_IPP Interfacing Blocks Diagram

mac_ipp_ack0
mac_ipp_tag0
mac_ipp_data0
mac_ipp_ctrl0
mac_ipp_stat0

ipp_mac_req0

mac_ipp_ack1
mac_ipp_tag1
mac_ipp_data1
mac_ipp_ctrl1

mac_ipp_stat1

ipp_mac_req1

mac_ipp_req2

ipp0Xmac0

Xmac1

IPP_TOP

Rdmc

ipp1

ipp_ffl_arbiter

fflp

ffl_ipp_ready
ffl_ipp_dvalid
ffl_ipp_sum[13:0]

ipp_ffl_dvalid
ipp_ffl_port[1:0]
ipp_ffl_data[127:0]
ipp_ffl_mac_default[11:0]

ipp_dmc_dat_ack0

dmc_ipp_dat_req0

ipp_dmc_dat0

ipp_dmc_ful_pkt0

ipp_dmc_dat_err0

ipp_dmc_dat_ack1

dmc_ipp_dat_req1

ipp_dmc_dat1

ipp_dmc_ful_pkt1

ipp_dmc_dat_err1

niu_clk
6-38 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

6.17.2 NIU_IPP Interface signals

TABLE 6-7 NIU_IPP Top Level Interface Signals

Signal name Width Direction Description

MAC Interface

mac_ipp_ack0 1 I Xmac0 sends the ack to ipp0

mac_ipp_tag0 1 I Xmac0 identifies the end of a packet

mac_ipp_data0 64 I Xmac0 writing the packet’s data to ipp0

mac_ipp_ctrl0 1 I Active high for packet’s control information

mac_ipp_stat0 23 I Xmac0 writing the packet’s status to ipp0

ipp_mac_req0 1 O Request (as rdy) from ipp0 to xmac0

mac_ipp_ack1 1 I Xmac1 sends the ack to ipp1

mac_ipp_tag1 1 I Xmac1 identifies the end of a packet

mac_ipp_data1 64 I Xmac1 writing the packet’s data to ipp1

mac_ipp_ctrl1 1 I Active high for packet’s control information

mac_ipp_stat1 23 I Xmac1 writing the packet’s status to ipp1

ipp_mac_req1 1 O Request (as rdy) from ipp1 to xmac1

RDMC interface

dmc_ipp_dat_req0 1 I Rdmc requests data from ipp_dat_fifo_0

ipp_dmc_dat_ack0 1 O If 1, validates ipp_dat_fifo_0 data to rdmc

ipp_dmc_data0 130 O ipp_dat_fifo_0’s data to rdmc

ipp_dmc_ful_pkt0 1 O If 1, ipp_dat_fifo_0 has complete packet/s

ipp_dmc_dat_err0 1 O If 1, ipp_dat_fifo_0 data has error

dmc_ipp_dat_req1 1 I Rdmc requests data from ipp_dat_fifo_1

ipp_dmc_dat_ack1 1 O If 1, validates ipp_dat_fifo_1 data to rdmc

ipp_dmc_data1 130 O ipp_dat_fifo_1’s data to rdmc

ipp_dmc_ful_pkt1 1 O If 1, ipp_dat_fifo_1 has complete packet/s

ipp_dmc_dat_err1 1 O If 1, ipp_dat_fifo_1 data has error

fflp interface

fflp_ipp_ready 1 I fflp is ready to accept data from ipp

fflp_ipp_dvalid 4 I Each line validates the fflp output of a port

fflp_ipp_sum 14 I Parsed header information for a checksum
Chapter 6 Network Interface Unit (NIU) 6-39

6.17.3 NIU_IPP Interface Timing

FIGURE 6-13 IPP_XMAC Interface Timing Diagram

ipp_fflp_dvalid 1 O Packet header data is valid to fflp

ipp_fflp_port 2 O Encoded 4 mac port number

ipp_fflp_data 128 O ipp sends fflp a packets’s header data

ipp_fflp_mac_default 12 O Default values from MAC’s address table

TABLE 6-7 NIU_IPP Top Level Interface Signals (Continued)

Signal name Width Direction Description

clk

mac_ipp_tag

ipp_mac_req

mac_ipp_data[63:0] i_th Eop1st 2nd 3rd

mac_ipp_stat[22:0] status

mac_ipp_ctrl

mac_ctrl_word

mac_ipp_ack

at least 2 clk at most 2 clk
6-40 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

1. As long as IPP can accept packets from Xmac, IPP asserts ipp_mac_req=1,

2. Once Xmac has packet data ready, it sends data to IPP, validated by setting
mac_ipp_ack=1,

3. When mac_ipp_tag=1, it indicates this is the end of the packet and it also
validates the packet’s mac_status_word via the mac_ipp_stat[22:0] bus,

4. When mac_ipp_ctrl=1, it indicates the beginning of the packet and it also
validates the packet’s mac_ctrl_word via the mac_ipp_stat[22:0] bus.

FIGURE 6-14 IPP_FFLP Interface Timing Diagram

1 2 3 4 5 6 7 8 9 10 11 12 13 14
ipp_fflp interface timing

data4data3

port_i

data3data1data2

data

data

vld_i

data1data2 data4

data

vld_i

data

port_i

clk

ipp_fflp_dvalid

ipp_fflp_port[1:0]

ipp_fflp_data[127:0]

ipp_fflp_mac_default[11:0]

fflp_ipp_ready

fflp_ipp_dvalid[3:0]

fflp_ipp_data[127:0]
Chapter 6 Network Interface Unit (NIU) 6-41

FIGURE 6-15 IPP_RDMC Interface Timing Diagram

6.17.4 IPP Operation
ipp is loosely a two pipeline-stage operation.

The first pipeline-stage, the ipp_Load, receives MAC’s packet data, writes them into
ipp_pre_fifo, sends a packet’s header to fflp.

The second pipeline-stage, the ipp_Unload, receives fflp’s checksum information,
then reads the ipp_pre_fifo, copies them into the ipp_data_fifo which is the packet
source of the RDMC.

On the way the packet data is being read from the ipp_pre_fifo and copied into the
ipp_data_fifo, the checksum unit sniffs the ipp_pre_fifo data bus and does 1’s
complement full checksum calculations.

The ipp_Unload collects MAC’s status, fflp’s checksum information, and the packet’s
checksum results to form an "ipp_data_status_word" which becomes the first entry
of a packet, stored in the ipp_data_fifo.

The IPP’s data_FIFO requires “random access”.
At the end of an Ethernet packet being copied from ipp_pre_fifo into ipp_dat_fifo,
the hardware jumps back to the beginning of this packet and inserts the
"ipp_data_status_word" into the data_fifo as the first entry of the packet.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
ipp_rdmc interface timing

data1status_word data4data3data2

data1

status_word

clk

ipp_dmc_dat_ful

ipp_dmc_dat[129]=eop

ipp_dmc_dat[128]=sop

ipp_dmc_dat[129:0]

dmc_ipp_dat_req

ipp_dmc_dat_ack

ipp_dmc_dat_err
6-42 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

Multiple ipp units can be instantiated and working parallel. For packet’s headers
from multiple ipps to fflp, an arbiter is used to combine multiple port’s header data
into one data stream, sending to fflp for parsing; for packet data stream from ipp to
RDMC, it is a per port independent operation to the RDMC.

FIGURE 6-16 IPP Block Diagram

dmc_ipp_dat_req

ipp_dmc_data

ipp_dmc_dat_ack
ipp_dmc_ful_pkt
ipp_dmc_dat_err

ipp_mac_req

mac_ipp_ctrl

ipp_data_fifoipp_pre_fifo

fflp

128

130

cksum

MAC DMU

ipp_unloadipp_load

ipp_ffl_arbiter

128

128port1 port0

ipp

ipp_TOP
ipp_fflp_dvalid

ipp_fflp_port[1:0]
ipp_fflp_data[127:0]

ipp_fflp_mac_default[11:0]

fflp_ipp_ready
fflp_ipp_dvalid[3:0]
fflp_ipp_sum[13:0]

1k_bytes

mac_ipp_ack

mac_ipp_stat

mac_ipp_data
64

16/32k_bytes
Chapter 6 Network Interface Unit (NIU) 6-43

FIGURE 6-17 IPP Datapath Diagram

mac_ipp_data[63:0]

128

6464

64

64

128128

128

130

130

130

130

ipp_data_status_word

ipp_dmc_data[129:0]

reg

reg

reg

reg

reg

reg

reg

mux

IPP_DATA_PATH

IPP_PRE_FIFO

IPP_DATA_FIFO
6-44 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

6.17.5 IPP_LOAD
ipp_Load unit, mainly, interfaces with MAC, fflp, and prepares for packet’s unload
operation.

6.17.5.1 Interface with MAC

1. Data width: ipp stages MAC’s 64-bits/cycle to a 128-bits/cycle data bus, padding
last bus cycle:

a. if a MAC packet data is an odd set of 64-bits, the last entry in ipp_pre_fifo will
be. Xmac: {41’h0,mac_status[22:0],mac_data[63:0]}

b. if a MAC packet data is an even set of 64-bits, the last entry in ipp_pre_fifo will
be. Xmac: {41’h0,mac_status[22:0],41’h0,mac_status[22:0]}

2. This extra word will be part of the packet written into the ipp_pre_fifo, but it will
be filtered out when the packet is finally written into the ipp_data_fifo.

3. Smaller than 57 bytes/pkt: ipp quietly drop the packet and increase the
pkt_drop_counter.

6.17.5.2 Interface with FFLP
1. Size: 64 bytes to 128 bytes per packet, i.e., the first 4,5,6,7, or 8 bus cycles of a

packet.
2. Consecutive: ipp accumulates sufficient header bytes and sends them to fflp in

one shot.
3. Fixed cycle response from fflp

If at the ith cycle, ipp sends fflp the first valid header data
. at the i+1th cycle, fflp indicates fflp is busy,
. at the i+4th cycle, fflp provides ipp the checksum information,
. at the i+7th cycle, fflp indicates fflp is ready to accept the next header.

4. Arbitration: a round-robin arbiter controls which port’s header gets to fflp

TABLE 6-8 <fflp_ipp_sum> Checksum Information from fflp to ipp

bit field function

1 [1:0] L2_option[1:0] {LLC,VLAN}

2 [3:2] L3_version[1:0] 00:unknown, 01:IPv4, 10:IPv6, 11:reserved
Chapter 6 Network Interface Unit (NIU) 6-45

6.17.5.3 SRAM

There is a 64-entry x 146-bit two port SRAM used as the ipp_pre_fifo per port.

FIGURE 6-18 IPP_FIFO Read Timing Diagram

6.17.6 IPP_UNLOAD
Ipp_Unload, mainly, interfaces with the RDMC, forwarding the stored packets to
RDMC.

6.17.6.1 Interface with RDMC

1. A simple rdmc_request and ipp_ack protocol.

2. "ipp_ful_pkt" signal: to start requesting a new packet, RDMC needs to check if the
"ipp_ful_pkt"=1, i.e., there is, at least, one complete packet existed to be read out
by RDMC.

3. Ipp_data_status_word

3 [7:4] IPv4_hd_length[3:0] Ipv4’s header_length_field

4 [9:8] L4_protocol[1:0] 00:unknown, 01:Tcp, 10:UDP, 11:reserved

5 [13:10] fflp_pkt_id[3:0] fflp issued packet ID

TABLE 6-8 <fflp_ipp_sum> Checksum Information from fflp to ipp (Continued)

bit field function

1 2 3 4 5 6 7 8 9
niu_ipp_fifo Read

data1 data2

data1 data2

clk

rd_enable

rd_addr[a:0]

rd_data_out[d:0]
6-46 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

The 128-bit word is inserted and is the first entry of a packet to RDMC.

TABLE 6-9 <ipp_data_status_word> a Packet Information from ipp to rdmc

Bit Field Function

1 [15:0] IP_cksum[15:0] Hardware calculated checksum value

2 [16] Full_checksum If 1, a full cksum can be calculated

3 [17] Full_cksum_err If 1, hardware reports a bad full checksum

4 [18] Full_cksum_ena If 1, full checksum calculation is enabled

5 [19] reserved 0

6 [35:20] IP_length[15:0] IPv4/6 header’s IP_length field

7 [37:36] L2_option[1:0] {LLC,VLAN}

8 [39:38] L3_version[1:0] 00:unknown, 01:IPv4, 10:IPv6, 11:reserved

9 [43:40] IPv4_hd_length[3:0] IPv4’s header length

10 [45:44] L4_protocol[1:0] 00:unknown, 01:Tcp, 10:UDP, 11:reserved

11 [49:46] fflp_pkt_id[3:0] fflp issued packet ID

12 [51:50] reserved 0’s

13 [52] inc_ipp_dsc_pkt_cnt If 1, this packet increases ipp_discard_packet_counter. This bit
becomes 1 if an ipp_pre_fifo_parity_error is detected and the
config_reg[3] is enabled.

14 [53] reserved 0

15 [54] MAC_abort If 1, MAC determines to drop this packet

16 [71:55] reserved 0’s

17 [84:72] dfifo_sop_addr[12:0] ipp_data_fifo sop address

18 [87:85] reserved 0’s

Below are the direct copy
of the mac_rxc_status

19 [101:88] pkt_length[13:0] MAC reported packet length in bytes

20 [102] bad_crc If 1, MAC detects a bad CRC, for diagnostic

21 [103] MAC_abort If 1, MAC determines to drop this packet

22 [x:104] hash_value MAC’s hash value, Xmac:x=109,

23 [y] hash_hit_match MAC has hash hit, Xmac:y=110,

24 [127:z] reserved 0’s, Xmac:z=111,
Chapter 6 Network Interface Unit (NIU) 6-47

6.17.6.2 SRAM

For OpenSPARC T2 mode, port_0/port_1, there is a 1024-entry x 146-bit two port
sram used as ipp_data_fifo per port.

FIGURE 6-19 IPP_FIFO Read Timing Diagram

The ipp DATA_FIFO uses “single bit error correction, double bit error detection” ECC
algorithm.

6.17.7 Checksum
The Checksum unit supports 1’s complement full checksum per port.
The overhead of the checksum is 4 cycles per packet.

6.18 NIU_PIO Microarchitecture
Specification

6.18.1 NIU_PIO Overview
The NIU_PIO block is a generic programmable IO interface for NIU. It converts NIU
internal PIO protocol to a generic protocol that is suitable for OpenSPARC T2

1 2 3 4 5 6 7 8 9
niu_ipp_fifo Read

data1 data2

data1 data2

clk

rd_enable

rd_addr[a:0]

rd_data_out[d:0]
6-48 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

To communicate with the host, for OpenSPARC T2 mode, the niu_pio talks to NCU
(Non Cacheable Unit) block via UCB.

The NIU_PIO block provides the following functions:

■ Decode generic host PIO requests and turns them into internal PIO cycles.

■ Provide pio address space global configuration, interrupt status, interrupt masks
and diagnostic registers.

■ Supports non-posted PIO read cycle and posted PIO write cycle.

■ Supports split transactions.

■ The niu_PIO block also hosts registers for the blocks that do not have PIO
interface signals. In the OpenSPARC T2 mode, niu_PIO hosts registers for SMX
and Meta Arb. Accept interrupt signals from internal modules, group them and
generate generic interrupt vectors sent to UCB.
Chapter 6 Network Interface Unit (NIU) 6-49

FIGURE 6-20 NIU_PIO and Interfacing Blocks Block Diagram

FIFO
Pio Engine

 (pio_rw_sm)

Global CSR Regs

Interrupt_Controller

interrupt_sm

Multi_Partition

NIU_PIO to/from

Address_Decoders

NIU_COREto/from UCB/PEU_PIO

rd_req_vld

req_accepted

wr_req_vld

addr_in[26:0]

data_in[63:0]

thr_id_in[5:0]

buf_id_in[1:0]

rack_busy

rd_ack_vld

rd_nack_vld

data_out[63:0]

thr_id_out[5:0]

buf_id_out[1:0]

int_busy

int_vld

dev_id[6:0]

ucb_pio_32b

pio_ucb_32b

pio_ucb_afull

resetniu_reset_l

niu_clk

pio_clients_32b

pio_client_addr[19:0]

pio_client_wdata[63:0]

pio_client_rd

pio_client_sel

client_pio_ack

client_pio_err

client_pio_rdata[63:0]

client_pio_intr

int_invld

niu_clk

Virtualization
 (DMA, LDVS)

interrupt_map_tbl

interrupt_gen
6-50 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

6.18.2 NIU_PIO Interface Signals

TABLE 6-10 NIU_PIO Top Level Interface Signals

Signal name Width Direction Description

UCB Interface

rd_req_vld 1 I read request.

wr_req_vld 1 I write request

addr_in[26:0] 27 I address in

data_in[63:0] 64 I write data in

thr_id_in[5:0] 6 I thread ID in

buf_id_in[1:0] 2 I buffer ID in

rack_busy 1 I read busy

rd_ack_vld 1 O read acknowledgment
This signal is mutually exclusive with rd_nack_vld

rd_nack_vld 1 O read not acknowledgment; bad address detected.

req_accepted 1 O read or write request acceptance

data_out[63:0] 64 O read return data

thr_id_out[5:0] 6 O thread ID outgoing

buf_id_out[1:0] 2 O buffer ID outgoing

MSI interface

int_busy 1 I Interrupt busy

int_vld 1 O Interrupt valid

dev_id[6:0] 7 O dev_id is valid only when int_vld/int_invld is ’1’.
dev_id[6:5] == msi_fun_num[1:0]
dev_id[4:0] == msi_vector[4:0]
Chapter 6 Network Interface Unit (NIU) 6-51

6.18.3 NIU_PIO Interface Timing

6.18.3.1 PIO - Client Interface Protocol

FIGURE 6-21 Client Side PIO Read Timing Diagram

1
pio client read timing

clk

pio_client_32b

pio_client_sel

pio_client_rd

pio_client_addr[19:0]

client_pio_rdata[63:0]

client_pio_ack

client_pio_err
6-52 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

FIGURE 6-22 Client Side PIO Write Timing Diagram

6.18.3.2 PIO - UCB Interface Protocol

FIGURE 6-23 Back_to_Back Read Timing Diagram

1
pio client write timing

clk

pio_client_32b

pio_client_sel

pio_client_rd

pio_client_addr[19:0]

client_pio_wdata[63:0]

client_pio_ack

client_pio_err
Chapter 6 Network Interface Unit (NIU) 6-53

pio-ucb Back_to_Back Read

1 or 0

addr0 addr1

thr0 thr1

buf1buf0

data0 data1

thr0 thr1

buf0 buf1

clk

pio_ucb_afull

ucb_pio_32b

rd_req_vld

addr_in[26:0]

thr_id_in[5:0]

buf_id_in[1:0]

req_accepted

pio_ucb_32b

rack_busy

rd_ack_vld

rd_nack_vld

data_out[63:0]

thr_id_out[5:0]

buf_id_out[1:0]
6-54 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

FIGURE 6-24 Back_to_Back Write Timing Diagram

either "1" or "0"

pio-ucb Back_to_Back Write

addr0 addr1

thr0 thr1

buf1buf0

data0 data1

clk

pio_ucb_afull

ucb_pio_32b

wr_req_vld

data_in[63:0]

addr_in[26:0]

thr_id_in[5:0]

buf_id_in[1:0]

req_accepted
Chapter 6 Network Interface Unit (NIU) 6-55

FIGURE 6-25 Write followed by Read Timing Diagram

6.18.3.3 PIO Write Cycle

When a PIO write command is executed to the niu_PIO block, the signal
’wr_req_vld’ is asserted to indicate the followings are valid, the addr_in[26:0],
data_in[63:0], thr_id_in[5:0] and buf_id_in[1:0].

pio-ucb Write_followed_by Read

1 or 0 1 or 0

addr0 addr1

data0

thr0 thr1

buf1buf0

data1

thr1

buf1

clk

pio_ucb_afull

ucb_pio_32b

wr_req_vld

rd_req_vld

addr_in[26:0]

data_in[63:0]

thr_id_in[5:0]

buf_id_in[1:0]

req_accepted

pio_ucb_32b

rack_busy

rd_ack_vld

rd_nack_vld

data_out[63:0]

thr_id_out[5:0]

buf_id_out[1:0]
6-56 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

niu_PIO block asserts a one clock pulse wide signal ’req_accepted’ to indicate the
acceptance of the PIO write command. Based on the ’addr_in[26:0]’, niu_PIO block
will update the CSR information accordingly. The signals ’thr_id_in[5:0],’ and
’buf_id_in[1:0]’ are not used in the PIO write case. Write command to invalid
address should be discarded silently. This is a posted write operation. There is no
’ack’ or ’nack’ signal going back to UCB interface block.

6.18.3.4 PIO Read Cycle

In the read case, ’rd_req_vld’ signal is asserted to indicate a read command is ready
and the following signals are valid, the addr_in[26:0], thr_id_in[5:0], and
buf_id_in[1:0].

rd_ack_vld and rd_nack_vld are mutually exclusive and are used to qualify the
following signals, the data_out, thr_id_out and buf_id_out.

niu_PIO block asserts a one clock pulse wide signal ’req_accepted’ to indicate the
acceptance of the PIO read command. Based on the addr_in[26:0], niu_PIO block
will read the corresponding register and put the return data on ’data_out[63:0]’.
Along with the signals ’thr_id_out[5:0],’ and ’buf_id_out[1:0]’ that came with the
read command, niu_PIO block asserts the ’rd_ack_vld’ to send the return data. In the
case of an unsuccessful read, e.g., caused by invalid address, niu_PIO block asserts
the signal ’rd_nack_vld’ along with the ’thr_id_out[5:0]’ and ’buf_id_out[1:0]’ signals
which came from the read message. If rack_busy is asserted, niu_PIO block waits
until it is cleared.

niu_PIO block supports split transactions. The read response can occur at a later
time.

In the case of ’rack_busy’ signal is asserted, niu_PIO block will not assert
’rd_ack_vld’ nor ’rd_nack_vld’ until ’rack_busy’ signal is de-asserted.

6.18.3.5 PIO Error Condition

In NIU mode, there are two conditions that can result in nack.

(1) Address is out of range.
(2) Time out from client.

The time out value has a default of 1024 and is a programmable value. I
Chapter 6 Network Interface Unit (NIU) 6-57

6.18.4 Interrupt Controller Microarchitecture
Internal logical device sends a level interrupt signal to niu_PIO block. niu_PIO block
will generate a pulse at group level to the interfacing host module. After generating
one interrupt, software needs to re-enable the device by clearing the status bits
which generate the interrupt. If there is another event pending on the logical device,
as soon as the device is enabled, an interrupt will be issued.

1. Interrupt Mapping Table

There is a 64 deep and 7 bit wide programmable MSI data table which is used to
generate MSI function number and MSI Vector/data.

The output bus name is call dev_id.

dev_id is valid only when int_vld/int_invld is ’1’.

dev_id[6:5] == msi_fun_num[1:0]
dev_id[4:0] == msi_vector[4:0].

2. OpenSPARC T2 Interrupts

On OpenSPARC T2, interrupt signal is sent to the NCU. Inside NCU there is an ID
table, where the thread ID and interrupt vector number are stored. NCU uses the
table information to issue a trap to the CPU.

3. Interrupt Timing Diagram

a. UCB Interrupt Timing Diagram

The niu_PIO block sends interrupt along with a Device I.D. (dev_id[6:0]) to the
host block - UCB(NCU). The Device I.D. is used to associate with the source of
interrupts.

Signal ’int_vld’ indicates a valid interrupt request to meta block UCB(NCU), and
it asserts only when "int_busy" is ’0’. Signal ’int_busy’ means that the device is
currently busy and cannot accept interrupt. The signal ’int_invld’ is generated
when the source of the interrupt of a group goes away, the group is to be released.
The interrupt request/release signals are generated on a per group basis.
6-58 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

FIGURE 6-26 UCB Side Interrupt Timing Diagram

b. Client side Interrupt Timing Diagram

All the interrupts other than DMU are a level signal coming to niu_PIO. These
client interrupt signals stay active till they are cleared by software.

4. Interrupt Device ID Allocation

a. RX: 16

b. TX: OpenSPARC T2 mode 15

c. MAC: OpenSPARC T2 mode 2

d. MIF: 1

e. System: 1

5. Interrupt Generation

An interrupt generation is a function of the following factors:

a. Logic device interrupt event, of the possible 69 Interrupt Devices,

b. Interrupt event mask_pair, per logic device,

c. Interrupt group membership,

d. Group Time-out counter,

e. Group ARM bit.

The "ARM" bit is to gate the generation of a pio interrupt request to the host, jointly
by software & hardware, at per group level.

1
pio-ucb interrupt

id0 id1

clk

int_busy

int_vld/int_invld

dev_id[6:0]
Chapter 6 Network Interface Unit (NIU) 6-59

If the ARM=1, a pio interrupt request can be generated if an interrupt condition
exists in the group.

The ARM bit can only be set by the software; can be cleared by software or
hardware.

6. Interrupt State Machine

Multiple groups’ “interrupt requests” and “interrupt releases” can be active at the
same time. The Interrupt State Machine is to choose and process one interrupt
requesting group or one interrupt releasing group at a time.

“interrupt request”: hardware is notifying host that there is an interrupt coming out
of logic device/s of a group.

“interrupt release”: hardware is notifying host that the software has cleared all the
interrupting conditions within this group.

6.18.5 Virtualization

Niu-pio supports virtualization in two places:

1. DMA channel addresses,

2. LDSV registers (Logic Device State Vector).

The physical address of each DMA channel can be virtualized by programming the
DMA_BIND register. See niu_pio PRM Chapter 18.2 Virtualization Region and the
DMA Channel Binding register(FZC_PIO+0x10000).

6.18.6 Multi-Partition

Niu_pio handles 27 bits of pio_address[26:0].

The 27-bit pio_address space is evenly divided into four chunks, one chunk for each
function.

Within each chuck, there is an FZC zone, the Function Zero Control zone.
The FZC zone registers normally can be read or written by any of the 4 functions.
The FZC zone registers can then only be written via function_0 accesses if the MPC
bit is set.

6.18.7 PIO Transaction FIFO Microarchitecture

There is a 16 entry deep, 101 bit wide niu_PIO Transaction FIFO to queue up all the
niu_PIO read/write operation requests from the host. It enforces strong ordering.
6-60 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

6.18.8 Registers for Other Modules Microarchitecture

The niu_PIO block hosts registers for the blocks that do not have niu_PIO interface
signals. In the OpenSPARC T2 mode niu_PIO hosts registers for SMX and Meta Arb.
FIGURE 6-11 shows interface signals from the niu_PIO block to SMX, and Meta Arb.

TABLE 6-11 <Registers for Other Modules> Interface Signals

Signal name Width Direction Description

SMX Interface

pio_smx_cfg_data 32 O Configuration Data Register for SMX, hosted by niu_PIO

smx_pio_intr 1 I Interrupt Signal from Smx

smx_pio_status 32 I Status register for SMX, hosted by niu_PIO

pio_smx_clear_intr 1 O Interrupt clear signal (pulse) for SMX

pio_smx_ctrl 32 O Control register for SMX, hosted by niu_PIO

pio_smx_debug_vector 32 O Debug register for SMX, hosted by niu_PIO

Meta Arb Interface

pio_arb_ctrl 32 O Control register for Meta Arb, hosted by niu_PIO

pio_arb_debug_vector 32 O Debug register for Meta Arb, hosted by niu_PIO

arb_pio_all_npwdirty 1 I Registered in niu_PIO, read accessible by software

arb_pio_all_rddirty 1 I Registered in niu_PIO, read accessible by software

pio_arb_dirtid_enable 1 O Register for Meta Arb, hosted by niu_PIO

pio_arb_dirtid_clr 1 O Register for Meta Arb, hosted by niu_PIO

pio_arb_np_threshold 6 O Register for Meta Arb, hosted by niu_PIO

pio_arb_rd_threshold 6 O Register for Meta Arb, hosted by niu_PIO

arb_pio_dirtid_rdstatus 6 I Registered in niu_PIO, read accessible by software

arb_pio_dirtid_npwstatus 6 I Registered in niu_PIO, read accessible by software
Chapter 6 Network Interface Unit (NIU) 6-61

6.19 FFLP Microarchitecture

6.19.1 Overview
In general, the FFLP block provides link layer, network (IP) and transport layer
(TCP) packet header parser, match and search mechanisms, which in conjunction
with an on-chip TCAM-RAM, External hash table as well as CPU management,
performs Layer 2/3/4 packet/flow classification. Based upon the result of
classification, FFLP selects the receive DMAchannel for the incoming packet,
provides the packet header information to IPP block to perform TCP/IP checksum
calculation and in certain cases determines packet filtering status. The interfaces to
FFLP are IPP, ZCP, PIO, and CAM.

The main functions of the FFLP are:

■ Perform fast, real time L2/L3/L4 header parsing. The parser parses through TCP
header to assist packet reassembling.

■ Perform register based L3/L4 packet classification (class filter).

■ Based on 1, 2, generate TCAM key to search and match the TCAM database to
perform CAM based classification.

■ Generate flow key and hash key to external hash table to do further flow
classification, if needed.

■ provide a command interface for software to manage both CAM and hash table
entries, such as adding new entries, updating entries, invalidating unwanted
entries, etc.

■ FCRAM controller to manage the access to external FCRAM.

Note – Flow table lookups to the external FCRAM are not supported by the current
version of T2 NIU. References to the flow table lookups and external FCRAM in this
chapter are meant for reference only.
6-62 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

FIGURE 6-27 FFLP and Interfacing Blocks Block Diagram

FFLP
ZCP

NIU_ASIC

375 MHz
375 MHz

IPP

375 MHz

 TCAM

375 MHz
Chapter 6 Network Interface Unit (NIU) 6-63

6.19.2 Interface Signals

TABLE 6-12 FFLP Top Level Interface Signals

Signal name width direction Description

fflp_ipp_ready 1 O FFLP is ready to receive header

ipp_fflp_dvalid 1 I IPP header data is valid.

ipp_fflp_data 128 I Header data sent by IPP. The header data sent to fflp is
between 64 bytes to 128bytes depending on packet size.

ipp_fflp_port 2 I The MAC port which the header data comes from.

ipp_fflp_mac_index 8 I

ipp_fflp_mac_default 11 I

fflp_ipp_dvalid 1 O FFLP checksum info to IPP is ready.

fflp_ipp_data 16 O The checksum info from packet header.

fflp_zcp_wr 1 O Control data is ready to write to control Fifo

fflp_zcp_data 216 O Control data from classification

fflp_zcp_port 4 O Which MAC port the packet comes from.

zcp_fflp_rdy 1 I The fifo between fflp and zcp is full.

cam_compare 1 O Start cam search

cam_data_inp 200 O Cam search key

cam_pio_wr 1 O PIO write cam key or cam mask

cam_pio_rd 1 O PIO read cam key or cam mask

cam_pio_sel 1 O Select key or mask when pio read/write cam. 0: cam key, 1:
mask.

cam_index 10 O Address for pio read/write cam key or mask. When not all
bits are used, the higher bits are not used.

cam_hit 1 I cam search results in a match.

cam_valid 1 I Qualify cam_hit signal, not used by fflp.

cam_haddr 10 I Match index when cam hit. If not all bits are used, higher
bits are tied to 0.

pio_rd_valid 1 I Indicate cam_msk_dat_out is valid for cam_pio_rd.
6-64 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

6.19.3 Interface Timing

FIGURE 6-28 IPP <-> FFLP Interface Timing

cam_msk_dat_out 200 I cam pio read data (key/mask)

fflp_pio_ack 1 O fflp ask to pio access.

fflp_pio_rdata 64 O pio read data.

fflp_pio_err 1 O pio access results in error.

fflp_pio_intr 1 O fflp interrupt to pio.

pio_fflp_sel 1 I pio select signal.

pio_fflp_rd 1 I pio read/write. 1: read, 0: write.

pio_fflp_addr 20 I pio read/write address.

TABLE 6-12 FFLP Top Level Interface Signals (Continued)

Signal name width direction Description

d0 d1 d2 d3 d0 d1 d2 d3 d4 d5 d6 d7

d0 d1

fflp_ipp_rdy

ipp_fflp_data[127:0]

fflp_ipp_dvalid

fflp_ipp_data[9:0]

min. 8 cycles
Chapter 6 Network Interface Unit (NIU) 6-65

FIGURE 6-29 FFLP <-> ZCP Interface Timing

FIGURE 6-30 Timing Reference for Back to Back CAM Search

d0 d1 d2

fflp_zcp_wr

fflp_zcp_data[215:0]

min 8 cycles

cam_key0

ind0

cam_compare

cam_data_inp[199:0]

min 5 cycles

cam_key1 cam_key2

ind1 ind2

max 4 cycles min 3 cycles

cam_hit

cam_haddr[9:0]

niu_clk
6-66 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

6.19.3.1 Principle of CAM Access:

1. Minimum number of cycles between two comparison commands is 5.

2. A TCAM comparison takes three niu_clk cycles.

3. A TCAM read or write takes two niu_clk cycles.

4. TCAM write and comparison can not be active at the same time.

5. TCAM read and comparison can be active at the same time.

6. TCAM read and write can not be active at the same time.
Chapter 6 Network Interface Unit (NIU) 6-67

FIGURE 6-31 Example of Interleaved CAM Search and PIO Access

comp_key0

ind0

cam_compare

cam_data_inp[199:0]

comp_key1

ind1

cam_hit

cam_haddr[9:0]

wr_key wr_mask

key mask

comp_key2

cam_pio_wr

cam_pio_sel

cam_pio_rd

cam_pio_rd_vld

cam_msk_dat_out[199:0]

min 5 cycles

rd_addr

cam_index[9:0]

wr_addr

niu_clk
6-68 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

6.19.4 FFLP Microarchitecture Block

FIGURE 6-32 Sub-block Block Diagram with Interfacing Sub-block

cam_scheduler

fflp_cam_ram

cam_dp

cam_cmd_srch

cam_if

ram_dp

ram_cntl
ram_cntl_sm

hdr_processor
(shifter, aligner,

 comparators,
 tables, class filter,
temp key storage)

fflp_pio_if

pio_if

reg_dp

fflp_zcp_data

cmd reg

in
sn

fwd_info_bus
cam_cmd_srch_

sm

cam_kbus

fwd_mstr_cntrl

merge

fcram_
dp

fcram_
sm

ipp_dvalid ipp_data

fflp_rdy

fflp_zcp_wr

hash_key
_cal

CAM_IF

RAM_IF

hash_key

375Mhz NIU clk Domain

scheduler

fcram_ctl_top

flow_
cls

merge
Chapter 6 Network Interface Unit (NIU) 6-69

6.19.5 Major Pipeline Stages

FIGURE 6-33 FFLP Logic Pipeline Stages

The FFLP design is fully pipelined to help throughput. Each pipeline takes less than
eight fixed cycles regardless of the packet size. An fifo is put in place to handle the
handshaking Between different clock domain.

This fifo is also used as a data buffer in case there is temperate cycle mismatch
between Pipeline stage4 and previous stages.

From IPP

Hdr_Load/Hdr_Parser

L3/L4 Classification

CAM Key &
Flow Key Gen

CAM Search

Read Assoc_Data

Hash Key GenI

Hash Key Gen II

Merge FunctionI

Hash Table Lookup

Flow Classification

To Zero Copy

L2 Table Lookup

Merger Functional
6-70 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

Pipeline Stage1: Header Processor (8 cycles)

The first stage of pipeline loads the packet header from IPP via four to eight cycles
of data transfer between IPP and FFLP. The Header Processor includes three major
functions: packet header parser, L2/L3/L4 packet classification and search key
generations. Those functions as well as the load function are also pipelined.

Pipeline Stage2: TCAM Search (6 cycles)

AT this stage, TCAM search is performed based on the key generated by header
processor. It also calculates hash key from flow key created by header Processor. In
order to accommodate various latency from different vendors, a small fifo is placed
in between pipeline stage1 and pipeline stage2.

Pipeline Stage3: TCAM Merge Function (6 cycles)

This stage includes read associated data based on the TCAM match index, merge the
results from L2-L4 classification and TCAM search. The hash key calculation is
finished at this stage. The merge function result goes into Fifo which handles the
synchronization between different clock domain.

Pipeline Stage4: Hash Table Lookup (8 cycles @ 375Mhz)

This stage performs hash table lookup based on the hash key generated by previous
stages. The hash table access is via a FCRAM controller which handles FCRAM
access required protocol.

Pipeline Stage5: Flow Classification (8 cycles @ 375Mhz)

This stage processes the results from hash table lookups and determines if the hash
results in exact match, or optimistic match, or no hash hit and generates the forward
decision based on flow classification.

Pipeline Stage6: Merge Function II (2 cycles @ 375Mhz)

This stage generates final forward decision from flow classification and previous
CAM search results. The result is written into ZCP.
Chapter 6 Network Interface Unit (NIU) 6-71

FIGURE 6-34 FFLP Pipeline Stages

6.19.6 L2/L3/L4 Header Classification

6.19.6.1 Header Parsing

The header parsing function applies to the receive packets from IPPs. It is
responsible for providing various header offsets to IPPs to do checksum calculation
and other operations. it is also participating in creating the CAM lookup key as well
as flow key. The header parsing block contains logic to shift, coalesce and
accumulate packet header sixteen bytes as they are read out of each IPP FIFO
according to programmable parameters, options and packet header types.

The parser detects various encapsulations and protocols including:

hdr_process

cam_search

ram_rd & mrege

fcram_lookup

flow_classificatin

final_merge

fcram access latency plus
DDR to SDR translation
latency (min 12 cycles).

8 cycles

min latency ~ 52 cycles
6-72 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

■ - 802.1Q (VLAN-tagged) and LLC SNAP encapsulations.

■ - IPv4, IPv6 and IPv4 header options.

■ - IPsec on IPv4, ESP or AH.

■ - IPsec on IPv6, ESP or AH.

■ - TCP, UDP, STCP header.

IPv4 headers are 20 bytes each without IP header options and IPv6 headers are 40
bytes each. The header parser does not attempt to parse IP header options other than
IPsec. It skips the option field and move to the next header. It does not process IP
fragments beyond the IP header.

The TCP header is detected based on the protocol or next header field of the IP
header identified by the parser function. It provides TCP header information, such
as TCP sequence number, TCP SYN, FIN flags, to ZCP block to assist zero copy
function. The parser does not process any TCP header options. It only uses the
header length value to locate the starting point of TCP segment payload for the
purpose of checksum calculations.

The CAM search key as well as flow key are formed from accumulated packet
header fields combining with the results from various classifications.

6.19.6.2 L2 Header Classification

The L2 header classification happens when FFLP reads in the first cycle of 16 bytes
of data from IPP.

The control information sent out by MAC tells L2 classifier if the MAC has an
address match. In case if the packet does not have MAC address match, the per port
default RDC table number will be used.

In the meantime, if Header parser determines the received packet is a VLAN tagged
packet after processing the Ethernet header, the VLAN ID is used to lookup into a
VLAN table to select L2 VLAN based RDC table number.

Based on the figure2-11, the L2 merge function decides the preference between MAC
RDC table number and VLAN RDC table if the packet is VLAN tagged packet. If the
packet is not VLAN tagged packet, the MAC RDC table number will be used as L2
RDC table number and passed to the Merge Functional to participate further RDC
table number selection.
Chapter 6 Network Interface Unit (NIU) 6-73

6.19.6.3 L3/L4 Header Classification

The L3/L4 header classification starts when the header parser identifies the
incoming packet L2/L3 packet type. It could start as early as the third set of 16 bytes
data been read into FFLP. In fact, the header classification process and header
parsing are going in parallel to shorten the cycles.

The CAM lookup key generation as well as the flow lookup key generation use the
concept of classes of packets to assemble a reasonable size of key. With this CAM
key, a packet goes through a single CAM lookup for an associative search. The L2
class is determined based on the EtherType value. The L3 class is designed
exclusively for IP packets. It is obtained by matching a number of packet header
fields against 12 possible L3 class filter entries. The header fields which are selected
for L3 class match include Protocol ID/Next Head and TOS byte. A set of bits mask
are also used to allow certain bits in header bit pattern not participating in header
matching. The class matched determines if further CAM classification or flow
classification is needed and how the CAM key and flow key are assembled. The five
bits class filter index which indicates matched class becomes part of CAM lookup
key, and the lowest matched index has the highest priority if multiple classes are
matched.

There are ten classes which are hardwired, the rest are software programmable. The
hardwired classes start at index 8 in the class filter table.

The FFLP assigns class 00000 to the packet which does not match any class in class
filter. Class 00001, 10010-11111 are reserved for dummy class used by software or
testing.

TABLE 6-13 Class Code

Class Code Description Detected by

00000 No class match

00001 Dummy Class.

00010 class_reg2[16:0].
Programmable L2 Class.

class_reg2[16] == 1,
pkt_EtherType == l2_class_reg2[15:0]

00011 class_reg3[16:0].
Programmable L2 Class

class_reg3[16] == 1,
pkt_EtherType == l2_class_reg3[15:0]

00100 class_reg4[25:0]
Programmable L3 Class

class_reg4[25] == 1, (class valid bit)
v4: class_reg4[24] == 0,
v6: class_reg4[24] == 1,
protocol/next_hdr == class_reg4[23:16],
class_reg4[15:8]: mask bits for TOS field.
pkt_TOS == class_reg4[7:0], if per mask bit is set.
6-74 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

00101 class_reg5[25:0]
Programmable L3 Class

class_reg5[25] == 1, (class valid bit)
v4: class_reg5[24] == 0,
v6: class_reg5[24] == 1,
protocol/next_hdr == class_reg5[23:16],
class_reg5[15:8]: mask bits for TOS field.
pkt_TOS == class_reg5[7:0], if per mask bit is set.

00110 class_reg6[25:0]
Programmable L3 Class

class_reg6[25] == 1, (class valid bit)
v4: class_reg6[24] == 0,
v6: class_reg6[24] == 1,
protocol/next_hdr == class_reg6[23:16],
class_reg6[15:8]: mask bits for TOS field.
pkt_TOS == class_reg6[7:0], if per mask bit is set.

00111 class_reg7[25:0]
Programmable L3 Class

class_reg7[25] == 1, (class valid bit)
v4: class_reg7[24] == 0,
v6: class_reg7[24] == 1,
protocol/next_hdr == class_reg7[23:16],
class_reg7[15:8]: mask bits for TOS field.
pkt_TOS == class_reg7[7:0], if per mask bit is set.

01000 TCP over IPv4
Hardwired L3 class

Ethertype == 0x0800,
Version == 4,
Protocol == 0x06,
No fragment.

01001 UDP over IPv4
Hardwired L3 class

Ethertype == 0x0800,
Version == 4,
Protocol= 0x11,
No fragment|.

01010 AH or ESP over IPv4
Hardwired L3 class

Ethertype == 0x0800,
Version == 4,
Protocol == 0x33 or 0x32,
no fragment|.

01011 STCP over IPv4
Hardwired L3 class

Ethertype == 0x0800,
Version == 4,
Protocol == 0x06,
No fragment.

TABLE 6-13 Class Code (Continued)

Class Code Description Detected by
Chapter 6 Network Interface Unit (NIU) 6-75

Note that the IP header TOS field is not needed for L3 hardwired class comparison.

The hardwired classes are always enabled. Whereas the programmable classes can
be disabled by setting the valid bit to zero. Furthermore, each L3 class filter is
associated with two class action register which set the rule to form the CAM key and
flow key. The packet which belongs to particular L3 class can also be filtered out by
programming class action register.

6.19.7 TCAM Classification

6.19.7.1 Associative Memory Organization

The FFLP classification logic, in collaboration with management software, maintains
a combined L3/L4 packet header fields based classification database. This database
is stored in an on-chip associative memory (CAM-RAM) and contains information
for making real-time packet matching, filtering and processing decisions.
Theoretically, the entire address space could be supported by the database. However,
in practice, only a small given subset of this address space is assumed to be active at

01100 TCP over IPv6
Hardwired L3 class

Ethertype == 0x86dd,
Version == 6,
Next_Hdr == 0x06.

01101 UDP over IPv6
Hardwired L3 class

Ethertype == 0x86dd,
Version == 6,
Next_Hdr == 0x11.

01110 AH or ESP over IPv6
Hardwired L3 class

Ethertype == 0x86dd,
Version == 6,
Next_hdr == 0x33 or 0x32

01111 STCP or IPv6
Hardwired L3 class

Ethertype == 0x86dd,
Version == 6,
Next_Hdr == 0x11.

10000 ARP Ethertype == 0x0806

10001 RARP Ethertype == 0x8035

10010 - 11111 Dummy Class

TABLE 6-13 Class Code (Continued)

Class Code Description Detected by
6-76 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

a time. In addition, when the search criteria is based on L3 (IP) header information,
it would be based on active IP flows. The number of active flows is limited at any
given time, especially with flow aggregation.

FFLP CAM-RAM is designed to support total of 128 (or 256) simultaneously active
flows at any given time. However, the supported flow space is not a hard limit, since
the physical size of the CAM is transparent to FFLP. If deeper CAMs are available,
the flow spaces increase. Newly arrived entries can replace inactive existing entries
in the CAM-RAM. When the associative memory is full, software invalidates old
entry and replace it by new entry. In any cases, the associative memory full is
transparent to FFLP.

To be able to support both IPv4 and IPv6 packets, the CAM is configured to 200 bits
key.

The CAM-RAM is made up of two portions: a fully associative CAM portion made
up of L3/L4 header and an associated data SRAM. Figure 2-10 shows the logical
organization of the CAM-RAM.

Each CAM line is 200 bits. A active entry contains any of the following fields. #1 is
already present:

1. a five bit class denoting the type of class.

2. a five bit RDC number from L2 classification.

3. 1 bit no_ports to avoid erroneous matching of non-standard TCP/IP headers.

4. 8 bit protocol/next header field.

5. 8 bit TOS field.

6. IP destination address, IP source address, 16 bit destination port number and 16
bit source port number.

7. 7). 32 bit SPI from IPSec packet.

Each SRAM line contains information like which RDC the packet should be sent to,
if the packet needs flow classification, control bits, and information to Zero copy.
Chapter 6 Network Interface Unit (NIU) 6-77

FIGURE 6-35 Associative Memory (CAM-RAM) Logical Organization

10001

10010

01100

11111

00010

000010

00000
00011
00000
00000

00100

0

entry1

CAM portion SRAM portion
41195 associative field associated data field

11000011111111...............1111111111111111111

00000000000000000000000000000001011111

000000000000000011111111111111................1

000000..................0 11111....11111000.......1111

000000..................0 11111....11111000.......1111

01001

0

entry0

01010

00000

01001 1111001111111................111111111111000111

01100

2n

00000

11111100001111110000.........11111111111111

11000001111100......11111111.................1110

1111111111111............1111111111111....00000

127

199

(255)
6-78 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

6.19.7.2 Search Key & Search Execution

The class filter match determines how the search key is assembled. The search key
for each connection is generated from extracting certain fields from IP header and
TCP header combined with the header class that is from the result of packet
classification. The fields which are extracted from IP header and TCP header (key
elements) include:

■ IPv4 protocol ID/IPv6 next header,

■ IP source or/and destination address (4-tuple or 5-tuple key),

■ TOS field,

■ TCP source and destination port number/SPI number for IPSec.

With each class identified, there is a programmable register to tell how the key
should be built. For IPv4 packets, the keys are always 5-tuple key. For IPv6 packets,
only 4-tuple key is required with choice of IP source address or IP destination
address.

The header parser detects if the incoming packet is IPv4, IPv6 or other packet type.
Those information combined with packet classification as well as programming
resource are used to determine whether IP source address or IP destination address
is required for this particular packet.

TABLE 6-14 Class - Key Relationship

Class Code TCAM Key Flow Key

00000 No class match, TCAM search is not needed. Same as TCAM key

00001 Dummy class, Software use only. No key generated
by fflp.

No flow key generated

00010 First 11 bytes after EtherType No flow key generated

00011 First 11 bytes after EtherType No flow key generated

00100 - 01111 Based on key elements. User programmable
register determines: IP src/dest address.
IPADDR= 1 -> source addr,
IPADDR= 0 -> destination addr

Based on MAC DA, VLAN_ID,
IP address, TCP port number,
Protocol_ID, port_ID and
others. User programmable
register tells which elements
are selected as part of key and
which are not.

10000 First 11 bytes after EtherType No flow key generated

10001 First 11 bytes after EtherType No flow key generated

10010 - 11111 Dummy class, Software use only. No key generated
by fflp.

No flow key generate
Chapter 6 Network Interface Unit (NIU) 6-79

Please note, in order to differentiate the IPv4 IP fragment packets, a bit “NOPORT”
is used in the key format to indicate the TCP port field is invalid and should be
masked out. The NOPORT definition is stated as:

NOPORT = (Fragment_bit == 1) | (Fragment_offset[12:0]!= 0);

The following is the list of various TCAM search keys:

5-Tuple IPv4/TCP (UDP)

1. key[199:195]: header class index (5 bits)

2. key[194:190]: reserved, 5’b0

3. key[189:187]: L2 DRC table number (3 bits)

4. key[186]: noport (1 bit)

5. key[185:112]: reserved, 74’b0

6. key[111:104]: TOS (8 bits)

7. key[103:96]: protocol (8 bits)

8. key[95:80]: TCP source port number (16 bits)

9. key[79:64]: TCP destination port number (16 bits)

10. key[63:32]: IPv4 source address (32 bits)

11. key[31:0]: IPv4 destination address (32 bits)

5-Tuple IPv4/IPSec

1. key[199:195]: header class index (5 bits)

2. key[194:190]: reserved, 5’b0

3. key[189:187]: L2 DRC table number (3 bits)

4. key[186]: noport (1 bit)

5. key[185:112]: reserved, 74’b0

6. key[111:104]: TOS (8 bits)

7. key[103:96]: protocol (8 bits)

8. key[95:64]: SPI (32 bits)
6-80 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

9. key[63:32]: IPv4 source address (32 bits)

10. key[31:0]: IPv4 destination address (32 bits)

4-Tuple IPv6/TCP (UDP)

1. key[199:195]: header class index (5 bits)

2. key[194:190]: reserved, 5’b0

3. key[189:187]: L2 DRC table number (3 bits)

4. key[186]: reserved, 1’b0

5. key[185:176]: reserved, 10’b0

6. key[175:168]: TOS (8 bits)

7. key[167:160]: next header (8 bits)

8. key[159:144]: TCP source port number (16 bits)

9. key[143:128]: TCP destination port number (16 bits)

10. key[127:0]: IPv6 source or destination address (128 bits)

4-Tuple IPv6/IPSec

1. key[199:195]: header class index (5 bits)

2. key[194:190]: reserved, 5’b0

3. key[189:187]: L2 DRC table number (3 bits)

4. key[186]: reserved, 1’b0

5. key[185:176]: reserved, 10’b0

6. key[175:168]: TOS (8 bits)

7. key[167:160]: next header (8 bits)

8. key[159:28]: SPI (32 bits)

9. key[127:0]: IPv6 source or destination address (128 bits)

EtherType and others:

1. key[199:195]: header class index (5 bits)
Chapter 6 Network Interface Unit (NIU) 6-81

2. key[194:192]: reserved, 3’b0

3. key[191:104]: first 11 bytes after EtherType {11th,... second, first}

4. key[103:0]: reserved, 104’b0

If there is a CAM match, the CAM match index will be used as address to read
associated RAM. The associated data contains TCAM classification result that
includes:

■ If flow (hash table) lookup is required,

■ TCAM RDC table index,

■ TCAM RDC table offset number,

■ Which RDC table number to use, L2 or TCAM,

■ Zero copy information

■ If the packet should be filtered.

The TCAM classification result as well as L2/L3/L4 registered based classification
result are sent to a Merge Function for further data processing.

In addition, the FFLP performs searches/updates into the CAM on behalf of the
software user. All requests will go through an arbitration mechanism.

FIGURE 6-36 Search-update CAM Cycle with associated SRAM

CAM Access Scheduler

sch1

match_flag1

NOP

match_flag2

match_index2

read_data1

NOP

assoc_data_rd2

assoc_data2

sch2 sch3

meger_func1 meger_func1

assoc_data_rd1

match_index1

assoc_data_wr1

write_data1

NOPNOP
6-82 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

The scheduler arbitrates the requests from both CPU management access and packet
cam lookup. For current TCAM, the cam comparison is very fast - the
search/comparison command can be issued every five cycles. Because of that, the
CPU request will be granted almost right away once the request reaches fflp. On the
other hand, FFLP is designed to support bigger CAM (if it is needed later on), and
the CAM search rate could be lower. So the flexibility is desirable for the cam access
schedule. In general, if needed, more bandwidth can be reserved for packet cam
lookup than CPU access. The ration between them is programmable through register
(fflp config register). Note: if the number is programmed to 0 (which is the default
value), FFLP will always give high priority to packet cam lookup.

Please note, the CPU request for CAM read does not consume any cam bandwidth.

CAM Bandwidth Considerations

The dead cycles (access time) between the CAM key presented to the CAM and the
match flag becoming valid varies from different vendors. Especially the CAM depth
can be increased to up to 1K entries to meet the requirement of certain applications.
The design is implemented in such way that it is not sensitive to the number of dead
cycles as long as it is within reasonable range and it is at least be able to support two
10G and two 1G ports.

The CAM runs at 375MHz, same as the core clock. To support back to back
minimum size (64 bytes) packets at aggregate packet rate of 20Gb/s, the CAM
lookup rate has to be (at least) 10 cycles per packet. In order to leave enough
bandwidth to CUP management access, the number of cycles should be much less
than 10 cycles.

Software Access to CAM Algorithm

Major Software commands:

FFLP provides a command interface via bus PIOs to software for accessing the CAM.
The command interface supports a minimum set of basic commands and a set of key
and data registers to support the following functions:

Opcode: 3’b000: write CAM key and write CAM mask.

Opcode: 3’b001: read CAM key and read CAM mask.

Opcode: 3’b010: CAM key compare.

Opcode: 3’b011: reserved.

Opcode: 3’b100: write associated data.

Opcode: 3’b101: read associated data.

Opcode: 3’b110, 111: reserved.
Chapter 6 Network Interface Unit (NIU) 6-83

All software commands are atomic operations. All read/write commands are
address counter based.

For write or compare command, software has to write data or key to proper registers
before issuing write/compare command. Software command execution is triggered
by software writing to CAM control/status register.

Since the internal CAM lookup is fairly fast and total CAM bandwidth is sufficient
enough, the software command can be executed almost right way once the request
has reached FFLP block.

Software always checks for command done status bit before issuing another
command to make sure current command has been carried out by FFLP.

Aging and CAM Entry Invalidation

“Aging” is the process of time stamping entries and removing expired entries from
the database. Aging helps reclaim inactive flow space for new flows and allows for
more efficient database management. Setting the Aged bits is the responsibility of
software. It can be achieved by writing the associated data with the appropriate
Aged bit set using write command. Checking the Aged bits to see if they are still set
when the corresponding Age timer expires is also the responsibility of software.
Hardware clears the aged bit every time its packet lookup for the entry in the
database results a CAM match.

There are two occasions when a CAM entry becomes invalid: 1) during power up,
where all entries are marked invalid by the CAM initialization. 2) when software
sends a command (in the form of a PIO write to a command register) to the
hardware to perform invalidation of a specific entry.

Software is responsible for invalidating entries to make room for possible new
entries. It does so via write CAM key with invalid class code (0x0) or dummy
classes. If software wants to replace an old entry with new one, it can first invalidate
that entry, following by writing new key via write command.

6.20 ZCP Microarchitecture

6.20.1 ZCP Overview
ZCP contains two control FIFOs. One for each port. The control FIFO (CFIFO) is
used to deposit forwarding decision which is generated by FFLP. A shared RDC
table is used to lookup the Receive DMA channel number. The main consumer of
CFIFO and RDC table is RDMC.
6-84 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

ZCP operates in niu clock domain. There is one clock domain.

FIGURE 6-37 ZCP and Interfacing Blocks Block Diagram

ZCP

FFLP

RDMC
375 MHz

375 MHz

375 MHz

niu_clk
Chapter 6 Network Interface Unit (NIU) 6-85

6.20.2 ZCP Interface Signals

6.20.3 ZCP Microarchitecture Block

FIGURE 6-38 ZCP Block Diagram

TABLE 6-15 ZCP Top Level Interface Signals

Signal Name Width Direction Description

FFLP-ZCP

fflp_zcp_wr 5 I For timing issue, the write enable is driven out as a five bit bus. All
five bits have the same function and waveform.

fflp_zcp_data 216 I FFLP post forwarding decision to ZCP control FIFO.

PORT0 ZCP-RDMC

dmc_zcp_req0 1 I Rx dmc request data from ctrl_fifo.
Rx dmc uses this signal to advance control fifo read pointer.

zcp_dmc_ack0 1 O Valid data. Rx dmc should use this signal to qualify valid data. This
signal is asserted three clocks after dmc_zcp_req is asserted.

zcp_dmc_dat0 130 O ctrl_fifo’s data to rxdma

zcp_dmc_dat_err0 1 O Uncorrectable ECC error. It has timing as the corresponding data.

zcp_dmc_ful_pkt0 1 O ctrl_fifo has at least one full packet. When it is asserted, the first
control information of the packet is ready.

PORT1 ZCP-RDMC

dmc_zcp_req1 1 I Rx dmc request data from ctrl_fifo.
Rx dmc uses this signal to advance control fifo read pointer.

zcp_dmc_ack1 1 O Valid data. Rx dmc should use this signal to qualify valid data. This
signal is asserted three clocks after dmc_zcp_req is asserted.

zcp_dmc_dat1 130 O ctrl_fifo’s data to rxdma

zcp_dmc_dat_err1 1 O Uncorrectable ECC error. It has timing as the corresponding data.

zcp_dmc_ful_pkt1 1 O ctrl_fifo has at least one full packet. When it is asserted, the first
control information of the packet is ready.
6-86 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

FIGURE 6-39 ZCP State Machine.

RDMC

FFLP

 zcp state_machine

RDC table

mux_logic

Port 0

FIFO

Port 1

FIFO

 IDLE

STATE_1

STATE_2

STATE_3

STATE_4

STATE_5

kickoff_tt

decode_default_rdc

decode_table_rdc

p1_ld_cal_results

wr_2words
Chapter 6 Network Interface Unit (NIU) 6-87

6.20.4 RDC Table Microarchitecture
The RDC table is 4 bit wide and 128 deep. Each table entry is used to store the
Receive DMA channel number. It is logically organized as eight tables. Each table is
16 deep.

6.20.5 ZCP State Machine Microarchitecture
The ZCP state machine is used to pace the RDC table look up and control FIFO
loading.

6.20.6 ZCP Control FIFO Microarchitecture
The ZCP control FIFO module is housing a SRAM based FIFO with zcp-rdmc
interface protocol logic. The SRAM is protected by single error correction and double
error detection ECC.

6.20.7 ZCP - RDMC Interface Data Format

Each packet occupies two entries in CFIFO. The data format is shown in FIGURE 6-40.

FIGURE 6-40 Data Format

B0 B1 B15

B16 B17 B31

0129 128

1

0

0

1

B0 - B19 are forward decisions sent from FFLP.
B20 - B31 are reserved.

LSBMSB

Bit 129: EOP
Bit 128: SOP
6-88 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

6.20.8 ZCP FIFO Memory Configuration
ZCP only has two per port control FIFO memory. All previous translation table
SRAM are removed.

6.21 RDMC Microarchitecture Specification

6.21.1 RDMC Overview
The main functions of the RDMC are:

1. Support 16 DMA channels.

2. Descriptor prefetch and buffer allocation and buffer management to support
different packet sizes as well as jumbo frame.

3. Completion write back logic maintains a RCR shadow buffer to reduce overhead
of updating the RCR to the system RAM

4. Port scheduler with Deficit Round Robin algorithm to guarantee no starvation
between 1Gbps and 10Gbps ports.

5. Full data alignment logic to support zero copy mode.

6. Support Weighted RED buffer management scheme per channel based on RDC
state.

TABLE 6-16 ZCP FIFO Memory Configuration

Memory NAME Logical Dimension
D x W

RAS D x W with RAS Size Physical Configuration
(D x W)

Port 0 Control FIFO 2K x 16B ECC 1664 x 18B
(1664 x 146bit)

30KB One 1664x72b
+ one 1664x74b

Port 1 Control FIFO 2K x 16B ECC 1664 x 18B
(1664 x 146bit)

30KB One 1664x72b
+ one 1664x74b
Chapter 6 Network Interface Unit (NIU) 6-89

FIGURE 6-41 RDMC and Interfacing Blocks Block Diagram

 RDMC

 IPP

ZCP

 SMX

375 MHz

375 MHz

375 MHz

375 MHz
6-90 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

6.21.2 RDMC Interface Signals

TABLE 6-17 Top Level Interface Signals

Class Code Description Detected by

IPP-RDMC:

dmc_ipp_dat_req0 1 I Rdmc requests data from ipp_dat_fifo_0

ipp_dmc_dat_ack0 1 O If 1, validates ipp_dat_fifo_0 data to rdmc

ipp_dmc_data0 130 O ipp_dat_fifo_0’s data to rdmc

ipp_dmc_ful_pkt0 1 O If 1, ipp_dat_fifo_0 has complete packet/s

ipp_dmc_dat_err0 1 O If 1, ipp_dat_fifo_0 data has error

dmc_ipp_dat_req1 1 I Rdmc requests data from ipp_dat_fifo_1

ipp_dmc_dat_ack1 1 O If 1, validates ipp_dat_fifo_1 data to rdmc

ipp_dmc_data1 130 O ipp_dat_fifo_1’s data to rdmc

ipp_dmc_ful_pkt1 1 O If 1, ipp_dat_fifo_1 has complete packet/s

ipp_dmc_dat_err1 1 O If 1, ipp_dat_fifo_1 data has error

ZCP-RDMC

dmc_zcp_req0 1 I Rx dmc request data from ctrl_fifo.
Rx dmc uses this signal to advance control fifo read
pointer.

zcp_dmc_ack0 1 O Valid data. Rx dmc should use this signal to qualify
valid data. This signal is asserted three clocks after
dmc_zcp_req is asserted.

zcp_dmc_dat0 130 O ctrl_fifo’s data to rxdma

zcp_dmc_dat_err0 1 O Uncorrectable ECC error. It has timing as the
corresponding data.

zcp_dmc_ful_pkt0 1 O ctrl_fifo has at least one full packet. When it is asserted,
the first control information of the packet is ready.

dmc_zcp_req1 1 I Rx dmc request data from ctrl_fifo.
Rx dmc uses this signal to advance control fifo read
pointer.

zcp_dmc_ack1 1 O Valid data. Rx dmc should use this signal to qualify
valid data. This signal is asserted three clocks after
dmc_zcp_req is asserted.

zcp_dmc_dat1 130 O ctrl_fifo’s data to rxdma

zcp_dmc_dat_err1 1 O Uncorrectable ECC error. It has timing as the
corresponding data.
Chapter 6 Network Interface Unit (NIU) 6-91

zcp_dmc_ful_pkt1 1 O ctrl_fifo has at least one full packet. When it is asserted,
the first control information of the packet is ready.

PIM-RDMC

meta0_rdmc_wr_req_acce
pt

1 I rdmc write request accepted.

meta0_rdmc_wr_data_re
q

1 I meta write data request.

meta0_rdmc_rcr_req_acce
pt

1 I rdmc rcr write back request accepted.

meta0_rdmc_rcr_data_re
q

1 I meta rcr write data request.

meta0_rdmc_rcr_ack_rea
dy

1 I non-posted write ack for rcr write back

meta0_rdmc_rcr_ack_cm
d

8 I rcr write back ack command

meta0_rdmc_rcr_ack_cm
d_status

4 I rcr write back ack command status.

meta0_rdmc_rcr_ack_clie
nt

1 I rcr write back ack client ID

meta0_rdmc_rcr_ack_dm
a_num

5 I rcr write back ack dma number

meta1_rdmc_rbr_req_acc
ept

1 I rdmc read request accepted

meta1_rdmc_rbr_req_err
or

1 I rdmc read request error

meta1_rdmc_rbr_resp_re
ady

1 I rdmc read request response ready

meta1_rdmc_rbr_resp_cm
d

8 I rdmc read request response command

meta1_rdmc_rbr_resp_cm
d_status

4 I rdmc read request response status

meta1_rdmc_rbr_resp_d
ma_num

5 I rdmc read request response dma number

meta1_rdmc_rbr_resp_cli
ent

1 I rdmc read request response client

meta1_rdmc_rbr_resp_co
mp

1 I rdmc read request response completed

TABLE 6-17 Top Level Interface Signals (Continued)

Class Code Description Detected by
6-92 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

meta1_rdmc_rbr_resp_tra
ns_comp

1 I rdmc read request response transfer completed

meta1_rdmc_rbr_resp_da
ta_valid

1 I rdmc read request response data valid

meta1_rdmc_rbr_resp_da
ta

128 I rdmc read request response data

meta1_rdmc_rbr_resp_by
teenable

16 I rdmc read request response byte enable

meta1_rdmc_rbr_resp_da
ta_status

4 I rdmc read request response data status

rdmc_meta0_wr_req 1 O rdmc write request

rdmc_meta0_wr_req_cm
d

8 O rdmc write request command

rdmc_meta0_wr_req_add
ress

64 O rdmc write request address

rdmc_meta0_wr_req_leng
th

14 O rdmc write request length

rdmc_meta0_wr_req_port
_num

2 O rdmc write request port number

rdmc_meta0_wr_req_dm
a_num

5 O rdmc write request dma number

rdmc_meta0_wr_req_fun
c_num

2 O rdmc write request function number

rdmc_meta0_wr_data_val
id

1 O rdmc write data valid

rdmc_meta0_wr_data 128 O rdmc write data

rdmc_meta0_wr_req_byte
enable

16 O rdmc write data byte enable

rdmc_meta0_wr_transfer
_comp

1 O rdmc write data transfer completed

rdmc_meta0_wr_status 4 O rdmc write data status

rdmc_meta0_rcr_req 1 O rdmc rcr write back request

rdmc_meta0_rcr_req_cm
d

8 O rdmc rcr write back request command

rdmc_meta0_rcr_req_add
ress

64 O rdmc rcr write back request address

TABLE 6-17 Top Level Interface Signals (Continued)

Class Code Description Detected by
Chapter 6 Network Interface Unit (NIU) 6-93

rdmc_meta0_rcr_req_leng
th

14 O rdmc rcr write back request length

rdmc_meta0_rcr_req_port
_num

2 O rdmc rcr write back request port number

rdmc_meta0_rcr_req_dm
a_num

5 O rdmc rcr write back request dma number

rdmc_meta0_rcr_req_fun
c_num

2 O rdmc rcr write back request function number

rdmc_meta0_rcr_data_val
id

1 O rdmc rcr write back data valid

rdmc_meta0_rcr_data 128 O rdmc rcr write back data

rdmc_meta0_rcr_req_byte
enable

16 O rdmc rcr write back data byte enable

rdmc_meta0_rcr_transfer
_comp

1 O rdmc rcr write back data transfer completed

rdmc_meta0_rcr_status 4 O rdmc rcr write back data status

rdmc_meta0_rcr_ack_acc
ept

1 O rdmc rcr write back ack accepted

rdmc_meta1_rbr_req 1 O rdmc rbr request

rdmc_meta1_rbr_req_cm
d

8 O rdmc rbr request command

rdmc_meta1_rbr_req_add
ress

64 O rdmc rbr request address

rdmc_meta1_rbr_req_len
gth

14 O rdmc rbr request length

rdmc_meta1_rbr_req_dm
a_num

5 O rdmc rbr request dma number

rdmc_meta1_rbr_req_por
t_num

2 O rdmc rbr request port number

rdmc_meta1_rbr_req_fun
c_num

2 O rdmc rbr request function number

rdmc_meta1_rbr_resp_ac
cept

1 O rdmc rbr read response accepted.

TABLE 6-17 Top Level Interface Signals (Continued)

Class Code Description Detected by
6-94 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

6.21.3 RDMC Interface Timing
Please see NIU_IPP Interface Timing, ZCP Interface Signals, NIU_PIO Interface
Timing.
Chapter 6 Network Interface Unit (NIU) 6-95

6.21.4 RDMC Microarchitecture Block

FIGURE 6-42 Sub-block Block Diagram with Interfacing Sub-block

Port Scheduler
(DRR)

RDC Selection

 wr_data.sm

 wr_ctrl

 hdr_data0

 hdr_data1

 data_alingment

 byteenable &
transfer_completion Gen

 wr_dp

Partition definition
Regs &
RBR, RCR config
Regs &

RBR prefetch

 Pkt buf fer allocation &
Buffer management

RCR manager

completion writer back

update mailbox

RBR manager

RDC state

RDC state

WRED Logic

other config Regs

Channel0_manager

 Channel15_manager

 Channel1_manager

 Channel2_manager

16

16

 Descriptor cache access Ctrl

RBR Read Scheduler

16 RCR /mailbox update
 Scheduler

16
 Completion writeback shadow

buffer access Ctrl

 Descriptor Cache

 Completion Shadow ram

 (128x148)

 (128x148)

 wr_data[127:0]

 wr_data_req

 wr_data_valid

 wr_data_byteenable

 transfer_completion

 rdmc_wr_req

 rdmc_wr_accept

 rbr_rd_req
 rbr_rd_accept

 rbr_rd_data[127:0]

 rbr_rd_data_valid

 rcr_wr_req
 rcr_wr_accept

 rcr_wr_data[127:0]

 rcr_wr_data_valid
 rcr_wr_data_req

 rcr_wr_data_ack

 rcr_wr_ack_accept

2

2

2

2

2

2ipp_req

ipp_pkt_ful

zcp_req

zcp_pkt_ful

dmc_zcp_ack

dmc_ipp_ack

ipp_d0[129:0]

ipp_d1[129:0]

zcp_d0[129:0]

zcp_d1[129:0]
6-96 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

6.21.5 Descriptor Cache & Descriptor Fetch
1. RDMC has on chip 256X148 cache for descriptor prefetch.

■ It can store maximum 32 block buffers per channel.

■ Each entry can store 4 block buffers at most. Each channel occupies eight
entries.

■ Each buffer is represented by 32 bits, which is the higher order bits of 44 bits
block address aligned to 4KB. One valid bit is associated to each block buffer.

■ The block size can be programmed to 4KB, 8KB, 16KB and 32KB.

2. The access to the descriptor cache is a flat round robin all for channels

3. Two conditions to trigger RDMC to assert descriptor fetch request.

■ There is at least one buffer available in RBR memory, and

■ The descriptor cache has five entry space available.

4. There is only one outstanding request per channel at any given time. Each DMA
will not assert next descriptor read request before the current descriptor read
response come back.

5. Each request is a 64 bytes read at most, and 4 bytes as a minimum which is one
block buffer size. The read response can be split into two transactions since the
read can be cross cacheline boundary. The RDMC does not do re-ordering if the
second transaction comes back first.

6. When store data into descriptor cache, it writes 128 bits data along with the 4
valid bits and 16 parity bits into one entry. The writes always start from an new
entry regardless of the previous entry having empty space or not.

7. The DMA state will be updated once the read response data are received. The
DMA state includes RBR current buffer length and RBR head pointer.

8. The read request obeys Meta interface protocols.

Note – After channel reduction from 32 to 16. the rdmc only uses up half of the
descriptor cache memory, which is 128 entries instead of 256 entries.

6.21.6 Packet Buffer Selection
1. The RDMC supports three packet buffer size programmed by software. Each

buffer size has a valid bit associated with it.

■ size0: 256 bytes, 512 bytes, 1K, and 2K.
Chapter 6 Network Interface Unit (NIU) 6-97

■ size1: 1K, 2K, 4K, and 8K.

■ size2: 2K, 4K, 8K, and 16K.

2. The channel manager reads one entry from descriptor cache per request and
fetches in at most 4 block buffers. Then it partitions these block buffers into one of
three packet buffer sizes, one at a time and it sets the size buffer available bit to 1
when partition is done.

3. There are six registers, two for each size buffer, to hold the current address and
current available buffer number for that size. They will be updated once one
buffer from that size is assigned to current incoming packet. When all buffers are
used up from that size buffer, a fresh block buffer will be partitioned to that size
buffer.

4. When all block buffers from one request are used up, the channel manage will
assert an new request to access the descriptor cache if the descriptor cache is not
empty.

5. The incoming packet size is compared against the three buffer sizes and block
buffer size.

■ Packet size used to do comparison = packet_L2_len + control_header.

■ The control header is either 2 or 18 bytes programmable by software per dam
channel.

■ The data offset has to be taken into consideration also.

■ The first buffer size that is larger than the packet size will be assigned to that
packet.

■ For the packet size larger than the largest buffer size, up to three fresh block
buffers can be used for that packet.

■ drop packet conditions related to select packet buffer:

■ Packet size is larger than three fresh block buffers;

■ There is no buffer available at time when packet arrives regardless of cache
empty or not.

■ If the size buffers which are large enough to store the packet are not available;

The RDMC performs address translation for each buffer selected from the buffer
pool for partition control.

6.21.7 Port Scheduler
1. Both IPP_dmc_data_full and zcp_dmc_data_full have to be high in order for port

to be participated in port scheduling.

2. DRR is used to perform arbitration among two ports.
6-98 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

■ Init. weight is programmable for all ports.

■ The scheduler schedules one packet from one port at time and moves to next
port as long as the current weight for the port is positive.

■ The current weight is subtracted by one once a 16 bytes data is read out from
data FIFO.

■ Once the current weight for all ports becomes negative or the port which has
positive weight does not have packet to schedule, the init. weight will be
re-loaded to the current weight register.

6.21.8 Packet Processing
1. After port scheduler, the RDMC reads control FIFO and the first word of data

FIFO to get the control information for the packet by issuing two consecutive
reads to ZCP.

2. Each packet will go through three major pipelines before being put on the meta
interface bus.

■ Packet buffer selection.

■ Bus request (posted write request) and grant phase.

■ Data request phase and packet alignment.

3. Depends on when RDMC gets the bus_accept and data_request from Meta
interface, RDMC can process back to back 64 bytes packet in about eight cycles if
more than one port are active. If only one port is active, it takes about 18 cycles
for RDMC to process one 64 bytes packet.

4. After RDMC receives data_req from meta interface, it asserts data_req to IPP to
read data from data fifo. The IPP sends back data_ack after three cycles. The
RDMC takes one cycle to do data alignment before asserting data_valid along
with data to meta interface.

5. For jumbo frame, it takes up to three transactions to finish one packet transfer.

After alignment, the data_byteenable signal is always 16’hffff unless it is for the last
chunk of data.

FIGURE 6-43 shows two alignment cases for bypass mode.
Chapter 6 Network Interface Unit (NIU) 6-99

FIGURE 6-43 Packet Data Format

6.21.9 Completion Shadow RAM and Completion Write
Back
1. The RDMC has on chip 256X148 RCR shadow RAM to reduce the overhead of per

packet updating the RCR memory. Each shadow entry can store two sets of eight
bytes completion write back data. The upper 16 bits are used as parity bits.

2. Each channel occupies 16 entries which contains 32 sets of completion write back
data.

H0H1B0B1B2B3B4B5B6B7B8B9B10B11B12B13

B14B15

Data with 2 bytes of control header

H2H3H4H5H6H7H8H9H10H11H12H13H14H15H16H17

B14B15

H0H1B0B1B2B3B4B5B6B7B8B9B10B11B12B13

Data with 18 bytes of control header
6-100 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

3. For normal packet which uses up only one packet buffer, the eight bytes
completion write back data will be written into shadow RAM once the last set of
data is put on the Meta bus.

4. For jumbo frame which uses more than one buffers, each transaction will have
eight bytes completion write back data and it will be written into shadow RAM
once the last set of data is put on the Meta bus. The mult-bit is set if it is not the
last transaction for the packet.

5. Since the shadow ram is not per byte writable ram, to prevent the first set of
completion data been overwritten, a temp register per channel is used to store the
first set of completion data.

6. The shadow write pointer will be updated by one once two sets of completion
data are written into one entry.

7. The shadow read pointer will be updated by eight once the full cacheline is read
out from shadow memory.

8. A counter is used to count how many eight bytes space are available in shadow
memory. The shadow fullness is determined by the counter. Packets will be
dropped if shadow is full.

9. The completion write back to RCR is always full cacheline write regardless if
there is full cacheline data in shadow ram or not. If it is not, the shadow read
pointer will not be updated.

10. Completion write back to RCR memory triggers:

■ There are at least eight sets of completion write back data in shadow RAM, or

■ The completion write back timeout is expired and shadow is not empty, or

■ The RCR_QLEN is larger than the PKT_THRESH at the time when MEX is set
and shadow is not empty.

■ The RCR flush bit in RCR flush register is set and shadow is not empty.

11. The WRED should be always enabled in order for RDMC not to overflow RCR
memory. The WRED uses RCR QLEN as well as the THRESH and WINDOW,
both are software programmable, as parameters to do the calculation to determine
if the incoming packet should be dropped or not.

12. The completion write back to RCR is a non-posted write. The RDMC waits for the
ack coming back before it updates all RCR related DMA state, such as QLEN and
RCR tail pointer.

13. At any given time, there is only one outstanding non-posted write request per
channel. The non-posted write request comes from RCR write back and mailbox
update.

14. A flat round robin is used to grant write requests among all channels.
Chapter 6 Network Interface Unit (NIU) 6-101

6.21.10 Mailbox Update
1. After each completion write back to RCR, the RDMC checks if the mailbox update

is needed or not.

2. Mailbox update is triggered by

■ When there is completion write back timeout and MEX bit is set and the
RCR_QLEN is not zero, or

■ When there is packet threshold crossing and MEX bit is set.

3. If hardware and software DMA states are in sync, RDMA does not do completion
write back to RCR before it does mailbox update.

4. The rdmc will assert interrupt “ldf_a” to indicate that the mailbox update has
happened and completed.

6.21.11 Drop Packet
1. Events to trigger dropping packets:

■ Packet buffer not available,

■ RCR Shadow RAM full,

■ fflp/ipp tells to drop packet,

■ WRED drop,

■ DMA not enabled when packet arrives,

■ Encounter fatal errors

2. Two counters per channel to count dropped packets.

■ Counter for WRED drop,

■ Shared counter to count dropped packet from the first three events.

■ Does not count the packet dropped by fatal errors or DMA not enabled.
6-102 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

6.22 TDMC Microarchitecture Specification

6.22.1 TDMC Overview
The Transmit DMA Controller (TDMC) block is the interface between the Transmit
Control Engine (TXC) and the Meta Interface to the system memory. This block is
responsible for managing the Transmit Descriptors. It also has a mechanism for
caching descriptors and providing these to the TXC upon request.

The Transmit DMA Controller supports a total of 16 Transmit DMA Channels. Each
Transmit DMA Channel is comprised of a Transmit Ring and a set of status registers.
Software creates a list of packet descriptors for the Transmit Ring in system memory
and informs the TDMC block about the corresponding pointers by updating the
appropriate Control and Status Registers (CSRs). The TDMC block fetches the
descriptors from memory and presents them to the TXC which then transmits the
packets out.

The TDMC block also relocates the packet address to the appropriate page based
upon the CSR values.

The packets are transmitted in the same order as they are posted in the ring. Each
packet descriptor may also be structured as a gather list.

The TDMC Block updates the Mailbox in the system memory with the current state
of the hardware when instructed by the software. The update occurs once the
descriptor with the mailbox update instruction gets scheduled by the TXC. If
necessary, an interrupt event would also be generated.

There are three main sub-blocks within this block:

■ PIO Interface Block.

■ Cache Fetch and Management Block.

■ Mailbox Processing

Details about the functioning of these sub-blocks are given in subsequent sections.
Chapter 6 Network Interface Unit (NIU) 6-103

FIGURE 6-44 TDMC Interface Diagram

dma_page_handle[19:0]

dma_reset_scheduled

Transmit

pkt_error_address[43:0]

dma_nack_pkt_rd[15:0]

pkt_sz_err_address[43:0]

dma_pkt_sz_err[15:0]

Meta Interface

dma_active

dma_eoflist

dma_error

dma_gotnxtdesc

dma_cacheready

dma_partial

dma_descriptor[63:0]

dma_getnxtdesc

dma_inc_head

dma_reset_done

dma_mark_bit

dma_inc_pkt_cnt

TXC Interface

PIO

pio_clients_rd
pio_txc-sel

pio_clients_addr[19:0]

pio_clients_wdata[63:0]

tdmc_pio_ack

tdmc_pio_err

tdmc_pio_intr[63:0]

tdmc_pio_rdata[63:0]

tdmc_arb1_req

tdmc_arb1_req_state

arb1_tdmc_req_accept

arb1_tdmc_req_accept

meta_dmc_resp_rdy

dmc_mets_resp_accept

meta_dmc_transfer_cmpl

meta_dmc_resp_complete

meta_dmc_resp_state

Meta

tdmc_arb0_req

tdmc_arb0_req_state

arb0_tdmc_req_accept

meta_dmc_ack_rdy

dmc_meta_ack_accept

meta_dmc_transfer_cmpl

meta_dmc_ack_complete

meta_dmc_ack_state

TXC

Global

 (Per DMA Channel)

 (Read Request
and Response)

 Controller

 and
Interrupts

 Interface

 Error Status

 Interface

 (Read Request

 and Response)

 DMA
6-104 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

6.22.2 TDMC Interface Signals

6.22.2.1 Transmit Controller Engine and Transmit DMA Interface

TABLE 6-18 TXC - TDMC DMA Cache Interface Signals

Signal Name I/O Size From/To Description

is DMA Channel number OpenSPARC T2: #= 16 channels, 0 through
15

txc_dmc_DMA#_getnextdesc I 1 TXC->TDMC Get next descriptor list

txc_dmc_DMA#_reset_done I 1 TXC->TDMC Indicates TXC is done with
resetting/stopping the DMA#

txc_dmc_DMA#_inc_head_ptr I 1 TXC->TDMC Increment DMA#'s Head Pointer

txc_dmc_DMA#_update_mbox I 1 TXC->TDMC Update Mailbox for DMA#

txc_dmc_DMA#_mark_bit I 1 TXC->TDMC Indicates mark bit set for DMA#

dmc_txc_DMA#_active O 1 TDMC->TXC DMA # is active

dmc_txc_DMA#_descriptor O 64 TDMC->TXC DMA# descriptor

dmc_txc_DMA#_eoflist O 1 TDMC->TXC DMA# end of descriptor list

dmc_txc_DMA#_error O 1 TDMC->TXC DMA# error

dmc_txc_DMA#_gotnxtdesc O 1 TDMC->TXC DMA# got next descriptor list

dmc_txc_DMA#_page_handle O 20 TDMC->TXC Relocation handle for packet address

dmc_txc_DMA#_func_num O 2 TDMC->TXC Function number to be sent along with
requests to host memory.

dmc_txc_DMA#_cache_ready O 1 TDMC->TXC DMA# Cache Ready

dmc_txc_DMA#_partial O 1 TDMC->TXC DMA# Indicating Partial descriptors
available

dmc_txc_DMA#_reset_scheduled O 1 TDMC->TXC DMA# Indicating software reset/stop is
scheduled
Chapter 6 Network Interface Unit (NIU) 6-105

6.22.2.2 Transmit Controller Engine and Transmit DMA Error
Interface

6.22.2.3 Transmit DMA-Meta Interface Signals

TABLE 6-19 TXC- TDMC Error Interface Signals

Signal Name I/O Size From/To Description

txc_dmc_dma_nack_pkt_rd I 16 TXC->TDMC One- Hot Encoded signal indicating the
DMA number for which the error is being
reported

txc_dmc_nack_pkt_rd_addr I 44 TXC->TDMC Error Address for packets which timeout

txc_dmc_nack_pkt_rd I 1 TXC->TDMC Pulse indicating Timeout Error

txc_dmc_p0_dma_pkt_size_err I 16 TXC->TDMC One- Hot Encoded signal indicating the
DMA number for which the error is being
reported. This is reported from Port0's
Packet Engine block in TXC.

txc_dmc_p0_pkt_size_err_addr I 44 TXC->TDMC Error Address for packets which exceeded
required size

txc_dmc_p0_pkt_size_err I 1 TXC->TDMC Pulse indicating size error.

txc_dmc_p1_dma_pkt_size_err I 16 TXC->TDMC One- Hot Encoded signal indicating the
DMA number for which the error is being
reported. This is reported from Port0's
Packet Engine block in TXC.

txc_dmc_p1_pkt_size_err_addr I 44 TXC->TDMC Error Address for packets which exceeded
required size.

txc_dmc_p1_pkt_size_err I 1 TXC->TDMC Pulse indicating size error.

TABLE 6-20 TDMC- Meta Interface Write Request Interface Signals

Signal Name I/O Size From/To Description

Write REQUEST Transaction
Type and Transaction Control

tdmc_arb0_req_cmd O 8 TDMC->Meta Request Command

tdmc_arb0_req_address O 64 TDMC->Meta Memory Address: 64-bit address, 32-bit
address.

tdmc_arb0_req_length O 14 TDMC->Meta Data Length (bytes)

tdmc_arb0_req_dma_num O 5 TDMC->Meta Channel Number

tdmc_arb0_req_func_num O 2 TDMC->Meta Function Number
6-106 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

tdmc_arb0_req O 1 TDMC->Meta REQUEST Queue Request

arb0_tdmc_req_accept I 1 Meta->TDMC Grant REQUEST Queue request

tdmc_arb0_transfer_complete O 1 TDMC->Meta Transfer complete.

arb0_tdmc_data_req I 1 Meta->TDMC Meta Request for memory line transfer.

tdmc_arb0_data O 128 TDMC->Meta Packet Data.

tdmc_arb0_req_byteenable O 16 TDMC->Meta Always driven as 0xffff

tdmc_arb0_data_valid O 1 TDMC->Meta TDMC Acknowledges memory-line
transfer.

TABLE 6-21 Write Acknowledge Interface Signals

Signal Name I/O Size From/To Description

Write REQUEST Transaction
Type and Transaction Control

meta_dmc_ack_ready I 1 Meta->TDMC Validate ACK Queue request

meta_dmc_ack_client I 1 Meta->TDMC Signal Indicating transaction is for TDMC

meta_dmc_ack_complete I 1 Meta->TDMC Completion of acknowledgement

meta_dmc_ack_dma_num I 5 Meta->TDMC acknowledgement dma_num

meta_dmc_ack_cmd I 8 Meta->TDMC acknowledgement command

meta_dmc_ack_cmd_status I 4 Meta->TDMC acknowledgement status

dmc_meta_ack_accept O 1 TDMC->Meta Grant ACK Queue Request

TABLE 6-22 Read Request Interface Signals

Signal Name I/O Size From/To Description

tdmc_arb1_req_cmd O 8 TDMC->Meta Commands: Memory Read.

tdmc_arb1_req_address O 64 TDMC->Meta Memory Address: 64-bit address, 32-bit
address.

tdmc_arb1_req_length O 14 TDMC->Meta Data Length (bytes)

tdmc_arb1_req_dma_num O 5 TDMC->Meta Channel Number

TABLE 6-20 TDMC- Meta Interface Write Request Interface Signals (Continued)

Signal Name I/O Size From/To Description
Chapter 6 Network Interface Unit (NIU) 6-107

tdmc_arb1_req_func_num O 2 TDMC->Meta Function Number

tdmc_arb1_req O 1 TDMC->Meta REQUEST Queue Request

arb1_tdmc_req_accept I 1 Meta->TDMC Grant REQUEST Queue Request

TABLE 6-23 Read Response Interface Signals

Signal Name I/O Size From/To Description

meta_dmc_resp_cmd I 8 Meta->TDMC Command Requests:

meta_dmc_resp_address I 64 Meta->TDMC Memory Address: 64-bit address, 32-bit
address.

meta_dmc_resp_length I 14 Meta->TDMC Data Length (bytes)

meta_dmc_resp_cmd_statu I 4 Meta->TDMC Command Status

meta_dmc_resp_dma_num I 5 Meta->TDMC Channel Number

meta_dmc_resp_client I 1 Meta->TDMC Signal Indicating transaction is for TDMC

meta_dmc_resp_ready I 1 Meta->TDMC Validate RESPONSE Queue Request

dmc_meta_resp_accept O 1 TDMC->Meta Grant RESPONSE Queue Request.

meta_dmc_resp_complete I 1 Meta->TDMC Fragment complete.

meta_dmc_transfer_complete I 1 Meta->TDMC Transfer Complete.

meta_dmc_data I 128 Meta->TDMC Packet Data.

meta_dmc_resp_byteenable I 16 Meta->TDMC First/Last Byte Enable

meta_dmc_data_status I 4 Meta->TDMC Packet Transfer Status:

meta_dmc_data_valid I 1 Meta->TDMC Meta Acknowledges Burst Transfer

TABLE 6-22 Read Request Interface Signals (Continued)

Signal Name I/O Size From/To Description
6-108 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

6.22.2.4 Transmit DMA Interface and PIO Interface

6.22.3 TDMC Interface Timing Diagrams

6.22.3.1 TXC-TDMC Interface Timing Diagrams
■ Conditions: Initial Kick Received, DMA restarted after a software reset

Under the described condition, dma_active and cache_read signals are asserted for
TXC. Along with these signals TDMC also asserts gotnext_desc signal which
indicates to TXC to pop descriptors from TDMC. For every getnext_desc signal
descriptors are popped for further processing.

TABLE 6-24 TDMC - PIO Interface

Signal Name I/O Size From/To Description

tdmc_pio_ack O 1 TDMC->PIO PIO Acknowledge.

tdmc_pio_rdata O 64 TDMC->PIO PIO Read Data.

tdmc_pio_err O 1 TDMC->PIO PIO Error

tdmc_pio_intr O 64 TDMC->PIO Interrupt signals from TDMC. Bits 31:0
indicate Interrupts for LDF0 and bits 63:32
indicate interrupts for LDF1.

pio_clients_addr; I 20 PIO->TDMC PIO Address.

pio_clients_wdata; I 64 PIO->TDMC PIO Write Data.

pio_clients_rd I 1 PIO->TDMC PIO Read/Write

pio_tdmc_sel I 1 PIO->TDMC PIO Client Select
Chapter 6 Network Interface Unit (NIU) 6-109

FIGURE 6-45 TDMC-TXC Interface Timing Diagram

■ Conditions: Appending descriptors to an active DMA when the descriptor ring is
empty.

Under this condition, dma_active remains asserted. Whenever the emptiness of the
cache reaches a certain threshold as described in detail in Section read requests are
sent to the host memory. Once the response is received and re-ordered if need be,
cache is populated again and cache_ready signal is asserted for TXC for further
processing of the data.

0ns 25ns

core_clk

dmc_txc_DMA#_cache_ready

txc_dmc_DMA#_gotnext_desc

dmc_txc_DMA#_getnext_desc

dmc_txc_DMA#_descriptor

dmc_txc_DMA#_active

dmc_txc_DMA#_eoflist
6-110 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

FIGURE 6-46 TDMC-TXC Interface Timing Diagram

■ Conditions: Software reset issued to an active DMA.

A timing diagram of the reset process is shown in FIGURE 6-47.

25ns

core_clk

dmc_txc_DMA#_cache_ready

txc_dmc_DMA#_gotnext_desc

dmc_txc_DMA#_getnext_desc

dmc_txc_DMA#_descriptor

dmc_txc_DMA#_active

dmc_txc_DMA#_eoflist
Chapter 6 Network Interface Unit (NIU) 6-111

FIGURE 6-47 TDMC-TXC Interface Timing Diagram

6.22.3.2 TDMC-Meta Interface Timing Diagrams

Please refer to Meta Interface Overview.

6.22.3.3 TDMC-PIO Interface Timing Diagrams

Please refer to PIO Interface.

reset_issued_from_software

txc_dma_reset_done

all pending transactions
reclaimed

dma_reset_complete

cache no longer
active after reset_done

50ns

core_clk

dmc_txc_DMA#_cache_ready

txc_dmc_DMA#_gotnext_desc

dmc_txc_DMA#_getnext_desc

dmc_txc_DMA#_descriptor

dmc_txc_DMA#_active

dmc_txc_DMA#_eoflist

dmc_txc_DMA#_reset_scheduled

txc_dmc_DMA#_reset_done

txc_dma_DMA#_inc_head_ptr

txc_dma_DMA#_inc_pkt_cnt
6-112 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

6.22.4 Functional Block Diagram
Functionally there are two main engines within the TDMC, namely

■ Cache Fetch and Management Engine.

■ Mailbox Processing Engine.

Both of these block are controlled by CSRs programmed by Software. A Detailed
description of each of these subblocks is given in subsequent sections.

A block diagram of how external interfaces interact with each of the main
engines within TDMC is shown in FIGURE 6-48.
Chapter 6 Network Interface Unit (NIU) 6-113

FIGURE 6-48 TDMC Block Diagram

The data flow within the Cache Fetch and Management Engine is shown in
FIGURE 6-49. Detail functionality of each of these subblocks is given in subsequent
sections.

PIO Tx Mailbox

Processing Engine

Cache Fetch
&

Management

 TDMC

PIO Interface

arb1

arb1 *arb0*

arb0

#dma0 #dma0#dma23 #dma23

TXC Descriptor Interface TXC Mailbox Update Interface

CSRs

 MetaReadReq
 Signals

 MetaReadResp
 Signals

 MetaWriteReq
 Signals

 MetaWriteResp
 Signals
6-114 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

FIGURE 6-49 TDMC Descriptor Cache Management Data Flow

CSRs

pio rd/wr

DMA Kick
State of

dmaAvailbleForFetch

RR Arbiter

DMA#

Meta Request

State Machine
Meta

DMA Contexts

address

Meta

update_dma_contexts

ReOrderLogic

WriteData
WritePtr

respAddr

T
x

D
es

cr
ip

to
r

C
ac

h
e

readData

readAddr Transmit

dma0

dma23

TxcIf
State

Machine

Modules
Unique
per DMA

Modules
Shared

by all DMAs

RR Arbiter

...
...

...
...

...
...

...
...

..

Request
Interface

Response
Interface

Controller
Interfacecache_readlength

respDMA#

Scheduled

DMA Cache

Meta Response

State Machine

TxcIf
State

Machine
Chapter 6 Network Interface Unit (NIU) 6-115

6.23 TXC Microarchitecture Specification

6.23.1 TXC Overview
The Transmit Controller (TXC) consists of the following functional blocks: the DRR
Scheduler, Data Fetch State Machine and per port re-order/realigning buffer. The
engine is designed as true store and forward, such that latencies on the host bus are
abstracted from any temporal issues during transmission of packet data. The
Scheduler and Data State machines are shared by all the ports in the Tx path.

Software posts transmit packets into a transmit DMA channel where each packet
may be made up of a gather list. The DMA controller fetches the descriptor and
informs the DRR scheduler of active DMA channels and their corresponding
descriptor information. The Scheduler, coupled with the DRR information and
re-order state, dispatches data request to the Data fetch state machine. This engine is
now responsible for fetch and re-ordering data from the host system and storing the
response data with the appropriate alignment information in the re-order buffer.
Upon completion of the request, the state machine causes the re-aligner to process
the stored data in the buffer. The Realigner reads data from the buffer, aligns the
data into16 byte-aligned chunks and pushes the data into the Store and Forward
FIFO, while at the same time primes the checksum engine, if enabled. On the
completion of the packet, the re-aligner updates the checksum information and
forwards the packet for transmission. The data state machine interfaces with the
DMA controller for updates to the completion ring and next descriptor fetches.

The Transmit Controller (TXC) interfaces to the host system through the DMA
Controller & Cache via the Meta interface. The architecture of the Meta interface is
better described in the TDMC Microarchitecture specification. However, the use of
the Meta interface abstracts out the physical MTU size of the host bus.
6-116 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

FIGURE 6-50 NIU_TXC Interface Diagram

dm
a_

pa
ge

_h
an

dle
[19

:0]
dm

a_
res

et_
sc

he
du

led

NIU TXC

10/1G
 MAC

ma
c0

_tx
c_

req
txc

_m
ac

0_
ac

k
txc

_m
ac

0_
da

ta[
63

:0]
txc

_m
ac

0_
tag

NIU TXC Interface Signals

Meta Interface (Request & Response)

dm
a_

ac
tiv

e

txc
_m

ac
0_

ab
ort

10/1G
 MAC

ma
c1

_tx
c_

req
txc

_m
ac

1_
ac

k
txc

_m
ac

1_
da

ta[
63

:0]
txc

_m
ac

1_
tag

txc
_m

ac
1_

ab
ort

dm
a_

eo
flis

t
dm

a_
err

or
dm

a_
go

tnx
tde

sc
dm

a_
ca

ch
ere

ad
y

dm
a_

pa
rtia

l

dm
a_

de
sc

rip
tor

[63
:0]

dm
a_

ge
tnx

tde
sc

dm
a_

inc
_h

ea
d

dm
a_

res
et_

do
ne

dm
a_

ma
rk_

bit
dm

a_
inc

_p
kt_

cn
t

TDMC Interface (Per DMA Channel)

PIO & Interrupts

pio
_c

lie
nts

_rd
pio

_tx
c-s

el

pio
_c

lie
nts

_a
dd

r[1
9:0

]
pio

_c
lie

nts
_w

da
ta[

63
:0]

txc
_p

io_
ac

k
txc

_p
io_

err

txc
_p

io_
int

r[3
1:0

]
txc

+p
io_

rda
ta[

63
:0]

txc
_a

rb1
_re

q

txc
_a

rb1
_re

q_
sta

te

arb
1_

txc
_re

q_
ac

ce
pt

arb
1_

txc
_re

q_
ac

ce
pt

me
ta_

dm
c_

res
p_

rdy

dm
c_

me
ts_

res
p_

ec
ce

pt

me
ta_

dm
c_

tra
ns

fer
_c

mp
l

me
ta_

dm
c_

res
p_

co
mp

let
e

me
ta_

dm
c_

res
p_

sta
te
Chapter 6 Network Interface Unit (NIU) 6-117

6.23.2 Meta Interface Signals

TABLE 6-25 Meta Request Queue

Signal Name I/O Size From/To Description

dmc_txc_req_ack I 1 DMU->TXC Request Acknowledge from Meta

txc_dmc_transID I 6 TXC->DMU Transaction Identification

txc_dmc_req O 8 TXC->DMU Transaction Requests

txc_dmc_cmd O 8 TXC->DMU Command Requests: Memory Read, Memory Read
Bypass, Message Interrupt.

txc_dmc_dma_# O 5 TXC->DMU DMA initiating request

txc_dmc_address O 64 TXC->DMU Memory Address: 64-bit address, 32-bit address.

txc_dmc_length O 16 TXC->DMU Data Length (DW units)

TABLE 6-26 Meta Response Queue

Signal Name I/O Size From/To Description

dmc_txc_resp_rdy I 1 DMU->TXC Read Response ready

dmc_txc_port_num I 2 DMU->TXC Port Number

dmc_txc_transID I 5 DMU->TXC Transaction Identification

dmc_txc_cmd_status I 4 DMU->TXC Command Phase Status

dmc_txc_dma_# I 5 DMU->TXC DMA channel number

dmc_txc_resp_complete I 1 DMU->TXC Response complete

dmc_txc_trans_complete I 1 DMU->TXC Transaction Complete

dmc_txc_data_valid I 1 DMU->TXC Data valid strobe

dmc_txc_length I 12 DMU->TXC Current Data Length in bytes

dmc_txc_bytecount I 12 DMU->TXC Remaining Byte Count for Request.

dmc_txc_byteenable I 16 DMU->TXC Byte Enable

dmc_txc_address I 64 DMU->TXC Current Data Address:

dmc_txc_data I 128 DMU->TXC Response Data

dmc_txc_data_status I 4 DMU->TXC Data Phase Status

dmc_txc_resp_accept O 1 TXC->DMU Response accept
6-118 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

6.23.3 TXC to TDMC Interface
is the DMA channel number. 0-15

TABLE 6-27 TXC to TDMC Interface

Signal Name I/O Size From/To Description

txc_dmc_DMA#_getnextdesc O 1 TXC->DMU Get next descriptor list

txc_dmc_DMA#_unrecov O 1 TXC->DMU Unrecoverable error

txc_dmc_DMA#_inc_head_ptr O 1 TXC->DMU Increment Head Pointer

txc_dmc_DMA#_ update_mbox O 1 TXC->DMU Update Mailbox

txc_dmc_DMA#_mark_bit O 1 TXC->DMU Mark bit seen

dmc_txc_DMA#_active I 1 DMU->TXC DMA # is active

dmc_txc_DMA#_eofList I 1 DMU->TXC DMA# end of descriptor list

dmc_txc_DMA#_error I 1 DMU->TXC DMA# error

dmc_txc_DMA#_gotnxtdesc I 1 DMU->TXC DMA# got next descriptor list

dmc_txc_DMA#_cache_ready I 1 DMU->TXC DMA# Cache Ready

dmc_txc_DMA#_partial I 1 DMU->TXC DMA# Indicating Partial gather
descriptors available

dmc_txc_DMA#_page_handle I 20 DMU->TXC Relocation handle for packet address

dmc_txc_DMA#_descriptor I 64 DMU->TXC DMA# descriptor
Chapter 6 Network Interface Unit (NIU) 6-119

6.23.4 TXC to 10 G MAC Interface

6.23.5 PIO Interface

TABLE 6-28 XMAC Interface

Signal Name I/O Size From/To Description

mac_txc_req I 1 MAC->TXC Request for Data. This signal is driven by the MAC
and is used to indicate to the TXC block that MAC is
ready for the next burst of data transfer.

txc_mac_ack O 1 TXC->MAC This signal is used to indicate that the TXC block is
executing a 8 byte data transfer.

txc_mac_tag O 1 TXC->MAC This signal is used to indicate the completion of
packet transfer from the TXC to MAC. For each
packet transmitted, the last data double-word and
the status word will have this bit set. The remaining
double-words of the packet shall have this bit
cleared.

txc_mac_abort O 1 TXC->MAC This signal is used to indicate that the current packet
being transferred over to the MAC should be
aborted.

txc_mac_status O 4 TXC->MAC Packet Status information

txc_mac_data O 64 TXC->MAC This data bus is used to transfer 8 bytes of transmit
packet data. The data will be presented to MAC in a
`little endian' format.

TABLE 6-29 PIO Interface

Signal Name I/O Size From/To Description

txc_pio_ack_l O 1 TXC->PIO PIO acknowledge.

txc_pio_rdata O 64 TXC->PIO PIO read data.

pio_txc_req_l I 1 PIO->TXC PIO request.

pio_txc_wr_l I 1 PIO->TXC PIO write

pio_txc_address I 18 PIO->TXC PIO address.

pio_txc_wdata I 64 PIO->TXC PIO write data.
6-120 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

6.23.6 NIU_TXC Block Diagrams

FIGURE 6-51 NIU_TXC Block Diagram

ReOrder & StoreForward

PacketEngine Port0

PacketEngine Port1

Data

Meta Response InterfaceTDMC Interface

 SRAMs

Meta

Clock, Reset
 &

CSR

10G MACs

Fetch

Request
Interface
Chapter 6 Network Interface Unit (NIU) 6-121

FIGURE 6-52 Packet Engine Block Diagram

ReOrder

PacketAssembly

DRR Engine

ReOrder Fifo

StoreForward Fifo

Max

CSR

 Interrupts
 &

checksum

TDMC Interface

Meta

To

TDMC Interface

PIO Interface

Xfer

Data
Fetch

Response
Interface
6-122 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

FIGURE 6-53 Deficit Round Robin Engine

DRR_Arb_Valid

Next_DMA_Channel[4:0]

PacketDone

PacketByteCount[14:0]

From/To TDMC Interface
DRR Context Per DMA

DMA 15

DMA 0

DRR Arbiter

To/From Data Fetch

State
Machine

Logic

D
M

A
#_

A
ct

iv
e

D
M

A
#_

E
rr

or

D
M

A
#_

E
of

Li
st

D
M

A
#_

C
ac

he
R

ea
dy

D
M

A
#_

P
ar

tia
l

D
M

A
#_

R
es

et
_S

ch
ed

ul
ed

D
M

A
#_

R
es

et
_D

on
e

From Control Registers

Txc_Enabled

MaxBurstDMA#[19:0]
NewMaxBurstDMA#

Port_Enabled

ClrMaxBurstDMA#

PacketDone

PacketByteCount

AddCreditToContext

ContextActiveList

DmaChannel

ContextNumber

NoDeficit

Per DMA

ContextNumber is a bind
Chapter 6 Network Interface Unit (NIU) 6-123

FIGURE 6-54 ReOrder Engine Block Diagram

Load Anchor Logic

Bind Anchor to TID

DataExtract ReOrder State

Meta Response Interface

Check Logic
&

Data Steering Logic

&
Fifo Write Logic

TDMC Interface
TDMC State

Fifo Pointer Update

Write Data

Packet

ReOrder Fifo

Assembly

Fetch
Engine
6-124 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

FIGURE 6-55 ReOrder State Management

ReOrder State

Tid Table

{Address, Length, DMA

{EndingWritePtr,

Transaction State

Reorder Fifo State

Mark, GatherList}

NextWritePtr}

Anchor_Req

Transaction_State

Anchor_Done

ReOrder_Full

D
at

a
F

et
ch

 E
n

g
in

e

ReOrder Fifo

EndingWritePtr NextWritePtr

Address of ReOrder State

LoadTID

Request Transaction ID

D
at

a
F

et
ch

 E
n

g
in

e
F

ro
m

 M
et

a
R

eq
u

es
t

In
te

rf
ac

eWrite SideRead Side

C
h

ec
k

L
o

g
ic

Read Address

Resp_Rdy

Resp_Transaction ID

Response State

Response Data

Write of Response Data

Update Write Ptr on Read Side

Complete Segment

32 Entries, using TID as Address

16 ReOrder States for 10G

8 ReOrder States for 10G

Write Address
Chapter 6 Network Interface Unit (NIU) 6-125

FIGURE 6-56 Packet Assembly Engine

CheckSum

Write Packet Engine

Read Packet Engine

DataValid

Data

Read

Data

DataValid

queuedWrites

Data

Empty

Write

UpdateChkssum

R
eO

rd
er

 F
ifo

S
to

re
 F

o
rw

ar
d

 F
ifo

Inc.

Dec.

EnableWr

SpaceAvailable & Full

Size of Fifo

Pointers

Pointers

Packet Attributes

Logic
6-126 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

6.24 Meta Arb Microarchitecture
Specification

6.24.1 Meta Arb Overview
■ Sits between NIU clients and Host Interface Module

■ Arbitrates Read and Write Requests from NIU clients

■ Selected client is then served by Host Interface Module

■ Two independent arbiters

■ Read arbiter; Simple Round Robin Arbiter arbitrating between the read

■ Requests to the Meta Interface issued by multiple clients (txc, tdmc, rdmc).

■ Write arbiter; Simple Round Robin Arbiter arbitrating between the write
requests to the Meta Interface issued by multiple clients (tdmc and rdmc). txc
does not issue writes.

■ Read and Write Tag Manager

■ Snoops META response bus

■ Reclaim META tag when transaction is completed

■ Handles META tag if transaction is unsuccessful
Chapter 6 Network Interface Unit (NIU) 6-127

FIGURE 6-57 Top Level View of META_ARB and Neighbor Blocks

META_ARB

clients

(TXC, RDMC, TDMC)

ack_cmd
w

r_
re

q_
cm

d

ac
k_

cm
d

rd
_r

eq
_c

m
d

rdw
r

rdw
r

rd

Host Layer Transactions

Host Interface

resp_cmd

re
sp

_c
m

d
re

ps
_d

at
a

NIU META Transactions niu_clk

host_clk
6-128 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

FIGURE 6-58 META ARB Top Level Flow

 Host Interface

M
et

a
R

ea
d

R
eq

M
et

a
W

rit
e

R
eq

M
et

a
R

es
po

ns
e

C
m

d,
 D

at
a

TXCTDMCRDMC

MetaArb

M
et

a
R

es
p

C
m

d

M
et

a
A

ck
 C

m
d

Write Request Read Request

w
r_

re
q

rd
_r

eq

wr_req

rd
_r

eqrd_req

Arbiter Tag Mgr Arbiter Tag Mgr
Chapter 6 Network Interface Unit (NIU) 6-129

6.24.2 Meta Arb Interface Signals
The Meta Arbiter Interface uses the Meta protocol and is specified in the Meta
Interface Specification document, please refer to Meta Interface Microarchitecture
Specification for signal and timing diagram details.

TABLE 6-30 Write Request Signals

Signal Name I/O Size From/To Description

Request Control Path

dmc_meta0_req O 1 ARB->HOST Send Queue Request

dmc_meta0_req_cmd O 8 ARB->HOST Command Requests: Memory Read, Memory
Write, Completion.

dmc_meta0_req_address O 64 ARB->HOST 64 bit Memory Address

dmc_meta0_req_transID O 6 ARB->HOST Transaction Identification

dmc_meta0_req_length O 14 ARB->HOST Data Length (byte units)

dmc_meta0_req_port_num O 2 ARB->HOST Port number corresponding to the request (to
be returned with read response)

dmc_meta0_req_dma_num O 5 ARB->HOST Dma number corresponding to the request (to
be returned with read response)

dmc_meta0_req_client O 8 ARB->HOST Requesting Client (vector, one-hot encoded)

meta_dmc0_req_accept I 1 HOST->ARB Grant Send Queue Request

Request Data Path

meta_dmc0_data_req I 1 HOST->ARB Host Request for Burst Transfer.

dmc_meta0_data_valid O 1 ARB->HOST DMU sends data Ack with every cycle of valid
data.

dmc_meta0_status O 4 ARB->HOST Packet Transfer Status: Complete, Abort.

dmc_meta0_data O 128 ARB->HOST Data.

dmc_meta0_req_byteenable O 16 ARB->HOST Contains the byteenables for each byte of data
in the 16 byte data transfer. byteenable[N]==1
implies write data[8N + 7: 8N] is enabled
(valid).

dmc_meta0_transfer_complete O 1 ARB->HOST Transfer complete. No additional data for this
transaction. Asserted coincidental with last
data.
6-130 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

FIGURE 6-59 Write Request - Command, Data Phase Illustration

FIGURE 6-60 Write Request from the Same Client

meta_datareq

dmc_cmdreq

meta_accept

dmc_dv

dmc_xfer_complete

meta_datareq

dmc_cmdreq

meta_accept

dmc_dv

meta_xfer_complete

dmc_client

accept before end of data0 xfer

req0 req1

data0 data1
Chapter 6 Network Interface Unit (NIU) 6-131

FIGURE 6-61 Write Request from Different Client

TABLE 6-31 Non-Posted Write Response Phase (Acknowledgement)

Signal Name I/O Size From/To Description

Non-Posted Write
Acknowledgement Control Path

meta_dmc_ack_ready I 1 HOST->CLIENT acknowledge ready

meta_dmc_ack_cmd_status I 4 HOST->CLIENT encoded command

meta_dmc_ack_dma_num I 5 HOST->CLIENT corresponding dma number

meta_dmc_ack_transID I 6 HOST->CLIENT Transaction Identification. (Meta
Arbiter snoops this signal)

meta_dmc_ack_client I 8 HOST->CLIENT targeted client to receive this
acknowledgement

meta_datareq

dmc_cmdreq

meta_accept

dmc_dv

meta_xfer_complete

dmc_client clientA clientB

accept only after end of data0 xfer

req0 req1

data0 data1
6-132 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

FIGURE 6-62 Non-Posted Write Acknowledgement

dmc_meta_ack_accept O 8 CLIENT->ARB Grant Receive Queue Request. (Meta
Arbiter snoops this signal)

meta_dmc_ack_complete I 8 HOST->CLIENT single pulse to indicate
acknowledgement to corresponding
transaction

meta_dmc_ack_transfer_complete I 8 HOST->CLIENT Single pulse to indicate
acknowledgement to corresponding
completion of transaction (Meta Arbiter
snoops this signal)

TABLE 6-32 Read Request Command Phase

Signal Name I/O Size From/To Description

Read Request

Request Control Path

dmc_meta1_req_cmd O 8 ARB->HOST Command Requests: Memory Read

dmc_meta1_req_address O 64 ARB->HOST 64 bit Memory Address

dmc_meta1_req_transID O 6 ARB->HOST Transaction Identification

dmc_meta1_req_length O 14 ARB->HOST Data Length (byte units)

TABLE 6-31 Non-Posted Write Response Phase (Acknowledgement) (Continued)

Signal Name I/O Size From/To Description

meta_ack_xfer_complete

meta_ack_ready

dmc_ack_accept
Chapter 6 Network Interface Unit (NIU) 6-133

dmc_meta1_req_port_num O 2 ARB->HOST Port number corresponding to the
request (to be returned with read
response)

dmc_meta1_req_dma_num O 5 ARB->HOST Dma number corresponding to the
request (to be returned with read
response)

dmc_meta1_req_client O 8 ARB->HOST Requesting Client (vector, one-hot
encoded)

dmc_meta1_req O 1 ARB->HOST Send Queue Request

meta_dmc1_req_accept I 1 HOST->ARB Grant Send Queue Request

TABLE 6-33 Read Response Command and Data Phase

Signal Name I/O Size From/To Description

Resp Data Control Path

meta_dmc_resp_ready I 1 HOST->CLIENT response ready

meta_dmc_resp_cmd I 8 HOST->CLIENT encoded respond command

meta_dmc_resp_cmd_status I 4 HOST->CLIENT 0xf - transaction error

meta_dmc_resp_address I 64 HOST->CLIENT response address

meta_dmc_resp_length I 14 HOST->CLIENT length in bytes for this segment of response
transfer

meta_dmc_resp_transID I 6 HOST->CLIENT Transaction Identification (Meta Arbiter snoops
this signal)

meta_dmc_resp_port_num I 2 HOST->CLIENT port number corresponding to this response
segment

meta_dmc_resp_dma_num I 5 HOST->CLIENT dma number corresponding to this response
segment

meta_dmc_resp_client I 8 HOST->CLIENT targeted client to receive this response segment

dmc_meta_resp_accept I 8 CLIENT->HOST Grant Receive Queue Request
(Meta Arbiter snoops this signal)

Response Data Path

meta_dmc_data_valid I 8 HOST->CLIENT response data is valid

meta_dmc_data I 128 HOST->CLIENT response data

meta_dmc_resp_byteenable I 16 HOST->CLIENT byte enable per data byte

TABLE 6-32 Read Request Command Phase (Continued)

Signal Name I/O Size From/To Description
6-134 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

FIGURE 6-63 Read Response - Command, Data Phase

meta_dmc_data_status I 4 HOST->CLIENT 0x0 - good data
0xf - data error

meta_dmc_resp_complete I 8 HOST->CLIENT single pulse on the last data cycle to indicate that
this segment of response transfer is complete

meta_dmc_transfer_complete I 8 HOST->ARB Single pulse on the last data cycle to indicate that
all the read responses are returned from the host
for the complete request i.e. the transaction is
complete. (Meta Arbiter snoops this signal)

TABLE 6-33 Read Response Command and Data Phase (Continued)

Signal Name I/O Size From/To Description

meta_resp_ready

meta_resp_dv

dmc_accept

meta_resp_complete

meta_resp_xfer_complete

response segment

all response segments complete
for ‘this’ meta transaction

complete for req0

req0 req1

data0 data1

response segment
complete for req1
Chapter 6 Network Interface Unit (NIU) 6-135

6.25 Meta Interface Microarchitecture
Specification

6.25.1 Meta Interface Overview
The host Unit and the DMA Controllers communicate point-to point via the Meta
Interface. Another unit, the host, also share the same point-to-point Meta Interface to
the DMA Controllers. Note that only one point-to-point connection can be
maintained given a particular mode of operation. This section describes the signal
and timing diagrams of the Meta Interface. The Meta Interface is composed of three
functional groups:

■ REQUEST (separate read, write) queues,

■ RESPONSE queue,

■ and ACKNOWLEDGMENT queue.

The REQUEST, RESPONSE, and ACKNOWLEDGEMENT Meta interfaces can
operate up to 300MHz in a 0.13um ASIC process.

The REQUEST Queue is responsible for issuing COMMAND request and
transmitting payload to the Host module. The Host module translates the REQUEST
Queue commands request into the appropriate host Transaction Layer Protocol
(TLP) format, type, length, and transaction descriptor; and, depending on the type of
command issued, pulls data in 16 byte chunks from the REQUEST Queue as needed
for transmission.

The RESPONSE Queue is responsible for receiving COMMAND request and
payload from the host module. The host module translates TLP Packets into the
appropriate RESPONSE Queue COMMAND, address, length, byte enables, and
completion status; and, depending on the type of command issued, pulls data in 16
byte chunks from the host module as needed. The RESPONSE Credit is infinite.

The ACKNOWLEDGEMENT queue is responsible for indicating when posted write
request have been completely serviced in the ordered domain. For example, a posted
write of 1K bytes segment into four write request of 256 bytes will generate an
ACKNOWLEDGEMENT when the last write request is scheduled to be dispatched
on the wire.
6-136 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

6.25.2 Meta Request Interface Signals
The REQUEST Meta Interface is composed of two separate and independent buses,
one for memory writes and the other for memory reads. The object of this bus design
is to mitigate head-of-queue blocking of read REQUEST transactions during the
service write REQUEST. The host shall support this requirement by interleaving read
and write transaction layer packets (on packet boundaries) of concurrent read and
write REQUESTS. PIO RESPONSE can also be interleaved.

FIGURE 6-64 Interleaved Read Write and PIO Packets

Ordered DOmain

Ack Response

Write Request

Read Request

Poi Response

W0W1W2R1 R0P0P1W3 R2
Chapter 6 Network Interface Unit (NIU) 6-137

6.25.3 Write Request Interface Signals

TABLE 6-34 Write Request Meta Signals

Signal Name Size From/To Description

Write REQUEST Transaction Type and Transaction
Control

Nomenclature: Prefixes dmc_meta0 and meta_dmc0
signifies write interface signal.

meta_host0_req_cmd 8 Meta->host Commands: Memory Write, Memory Posted Write, and
Flush.
Command Request Encoding:
[7:6] Reserved;
[5] Posted=1, Non-Posted=0;
[4] Ordered=1, Non-Ordered=0;
[3] 64-bit addressing=1, 32-bit addressing=0;
[2:0] Memory Write=001; Reserved=1x1,x11,xx0.
Note: IO, Cfg, Msg, and Cpl type commands are not
supported by the REQUEST Queue.

meta_host0_req_address 64 Meta->host Memory Address: 64-bit address, 32-bit address.

meta_host0_req_length 14 Meta->host Data Length (bytes)

meta_host0_req_transID 6 Meta->host Transaction Identification

meta_host0_req_port_num 2 Meta->host Port Number

meta_host0_req_dma_num 5 Meta->host Channel Number

meta_host0_req_client 8 Meta->host Requesting Client (vector, one-hot encoded)

meta_host0_req 1 Meta->host REQUEST Queue Request

meta_host0_transfer_complete 1 Meta->host Transfer complete. No additional data for this
transaction. Asserted coincides with last data.

host_meta0_req_accept 1 host->Meta Grant REQUEST Queue request

Write REQUEST Data and Data Control

host_meta0_data_req 1 host->Meta Meta Request for memory line transfer.

meta_host0_data 128 Meta->host Packet Data.

meta_host0_req_byteenable 16 Meta->host First/Last Byte Enable

meta_host0_status 4 Meta->host Packet Transfer Status: [3:0] Reserved
Note: Data transfers are in memory-line units.

meta_host0_data_valid 1 Meta->host DMU Acknowledges memory-line transfer.

Write REQUEST host Error Flag

host_meta0_req_errors 1 host->Meta Flag to report errors back to NIU. Flag is
asynchronous with respect to write REQUEST
events.
6-138 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

6.25.4 Write Request Interface Timing

FIGURE 6-65 Single Write Request

One to One
4 Cycles [Min./Max]

tptp

Min. 2 Cycles

Min. 2 Cycles

Min. 1 Cycles

tp

One Cycle

StrobeStrobe

StrobeStrobe

0ns 25ns 50ns

system clock

meta_host0_req

meta_host0_req_cmd[7:0]

meta_host0_req_address[63:0]

meta_host0_req_length[13:0]

meta_host0_req_transID[5:0]

meta_host0_req_port_num[1:0]

meta_host0_req_dma_num[4:0]

meta_host0_req_client[7:0]

host_meta0_req_accept

host_meta0_data_req

meta_host0_data[127:0]

meta_host0_byteenable[15:0]

meta_host0_data_status[3:0]

meta_host0_data_valid

meta_host0_transfer_complete
Chapter 6 Network Interface Unit (NIU) 6-139

FIGURE 6-66 Single Write Request With Read Bubble‘

One to One

4 Cycles [Min./Max]

tptp

Two Cycle Read
Min. 2 Cycles

Min. 2 Cycles

Min. 1 Cycles

tp

One Cycle

StrobeStrobe

StrobeStrobe

First Read must be two cycle before first bubble

0ns 25ns 50ns

system clock

meta_host0_req

meta_host0_req_cmd[7:0]

meta_host0_req_address[63:0]

meta_host0_req_length[13:0]

meta_host0_req_transID[5:0]

meta_host0_req_port_num[1:0]

meta_host0_req_dma_num[4:0]

meta_host0_req_client[7:0]

host_meta0_req_accept

host_meta0_data_req

meta_host0_data[127:0]

meta_host0_byteenable[15:0]

meta_host0_data_status[3:0]

meta_host0_data_valid

meta_host0_transfer_complete
6-140 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

FIGURE 6-67 Two Write Requests

4 Cycles [Min./Max]

One to One
4 Cycles [Min./Max]

tptptp

Min. 2 CyclesMin. 2 Cycles

2 Cycles Min./MaxMin. 2 Cycles

Min. 1 CyclesMin. 1 Cycles

tp

StrobeStrobeStrobeStrobe

StrobeStrobeStrobeStrobe

0ns 25ns 50ns 75ns

system clock

meta_host0_req

meta_host0_req_cmd[7:0]

meta_host0_req_address[63:0]

meta_host0_req_length[13:0]

meta_host0_req_transID[5:0]

meta_host0_req_port_num[1:0]

meta_host0_req_dma_num[4:0]

meta_host0_req_client[7:0]

host_meta0_req_accept

host_meta0_data_req

meta_host0_data[127:0]

meta_host0_byteenable[15:0]

meta_host0_data_status[3:0]

meta_host0_data_valid

meta_host0_transfer_complete
Chapter 6 Network Interface Unit (NIU) 6-141

FIGURE 6-68 Back to Back Write Requests

4 Cycles [Min./Max]

One to One
4 Cycles [Min./Max]

tptptp

Min. 2 CyclesMin. 2 Cycles

2 Cycles Min./MaxMin. 2 Cycles

Min. 1 CyclesMin. 1 Cycles

tp

StrobeStrobeStrobeStrobe

StrobeStrobeStrobeStrobe

0ns 25ns 50ns 75ns

system clock

meta_host0_req

meta_host0_req_cmd[7:0]

meta_host0_req_address[63:0]

meta_host0_req_length[13:0]

meta_host0_req_transID[5:0]

meta_host0_req_port_num[1:0]

meta_host0_req_dma_num[4:0]

meta_host0_req_client[7:0]

host_meta0_req_accept

host_meta0_data_req

meta_host0_data[127:0]

meta_host0_byteenable[15:0]

meta_host0_data_status[3:0]

meta_host0_data_valid

meta_host0_transfer_complete
6-142 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

6.25.5 Read Request Interface Signals

TABLE 6-35 Read Request Meta Signals

Signal Name Size From/To Description

Read REQUEST Transaction Type and Transaction Control Nomenclature: Prefixes dmc_meta1 and
meta_dmc1 signifies read interface signal.

meta_host1_req_cmd 8 Meta->host Commands: Memory Read.
Command Request Encoding:
[7:5] Reserved;
[4] Ordered=1, Non-Ordered=0;
[3] 64-bit addressing=1, 32-bit addressing=
0;
[2:0] Memory Read=000; Reserved=
1x0,x10,xx1.
Note: IO, Cfg, Msg, and Cpl type
commands are not supported by the
REQUEST Queue.

meta_host1_req_address 64 Meta->host Memory Address: 64-bit address, 32-bit
address.

meta_host1_req_length 14 Meta->host Data Length (bytes)

meta_host1_req_transID 6 Meta->host Transaction Identification

meta_host1_req_port_num 2 Meta->host Port Number

meta_host1_req_dma_num 5 Meta->host Channel Number

meta_host1_req_client 8 Meta->host Requesting Client (vector, one-hot enc)

meta_host1_req 1 Meta->host REQUEST Queue Request

host_meta1_req_accept 1 host->Meta Grant REQUEST Queue Request

Read REQUEST Data and Data Control

N/A

Read REQUEST host Error Flag

host_meta1_req_errors 1 host->Meta Flag to report errors back to NIU. Flag is
asynchronous with respect to read
REQUEST events.
Chapter 6 Network Interface Unit (NIU) 6-143

6.25.6 Read Request Interface Timing

FIGURE 6-69 Single Read Request

Min. 2 Cycles

Min. 1 Cycles

tp

One Cycle

StrobeStrobe

0ns 25ns

system clock

meta_host1_req

meta_host1_req_cmd[7:0]

meta_host1_req_address[63:0]

meta_host1_req_length[13:0]

meta_host1_req_transID[5:0]

meta_host1_req_port_num[1:0]

meta_host1_req_dma_num[4:0]

meta_host1_req_client[7:0]

host_meta1_req_accept

host1_meta_transID[4:0]
6-144 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

FIGURE 6-70 Two Read Requests

Min. 2 CyclesMin. 2 Cycles

Min. 1 CyclesMin. 1 Cycles

tp

One CycleOne Cycle

StrobeStrobeStrobeStrobe

0ns 25ns

system clock

meta_host1_req

meta_host1_req_cmd[7:0]

meta_host1_req_address[63:0]

meta_host1_req_length[13:0]

meta_host1_req_transID[5:0]

meta_host1_req_port_num[1:0]

meta_host1_req_dma_num[4:0]

meta_host1_req_client[7:0]

host_meta1_req_accept

host1_meta_transID[4:0]
Chapter 6 Network Interface Unit (NIU) 6-145

FIGURE 6-71 Back to Back Read Requests

4 Cycles [Min. Max]
Min. 2 Cycles

Min.1CycleMin. 1 Cycles

tp

One Cycle

StrobeStrobeStrobeStrobe

0ns 25ns

system clock

meta_host1_req

meta_host1_req_cmd[7:0]

meta_host1_req_address[63:0]

meta_host1_req_length[13:0]

meta_host1_req_transID[5:0]

meta_host1_req_port_num[1:0]

meta_host1_req_dma_num[4:0]

meta_host1_req_client[7:0]

host_meta1_req_accept

host1_meta_transID[4:0]
6-146 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

6.25.7 Response Interface Signals
Example of response packet. Please note this is not meant to be an explicit
implementation.

TABLE 6-36 Clock Cycles Between Conditional Event

Eventx-y Minimum Maximum Comments

t1-2 2

t2-3 2 2

t2-a 2 2

ta-b 4 4

tb-c 0 (Length/16)-1

tc-2 2 2

TABLE 6-37 Read Response Meta Signals

Signal Name Size From/To Description

RESPONSE Transaction Type and Transaction Control

host_meta_resp_cmd 8 host->Meta Command Requests: Completion with Data, and
Completion without Data.
Command Request Encoding:
[7:5] Reserved; [4:3] Error Type,
[2:0] Completion with Data=101, Completion
without Data=110.
Note: Mem, IO, Cfg, and Msg type commands
are not supported by the RESPONSE Queue.

host_meta_resp_address 64 host->Meta Memory Address: 64-bit address, 32-bit address.

host_meta_resp_length 14 host->Meta Data Length (bytes)

host_meta_resp_transID 6 host->Meta Transaction Identification

host_meta_resp_port_num 2 host->Meta Port Number

host_meta_resp_dma_num 5 host->Meta Channel Number

host_meta_resp_client 8 host->Meta Requesting Client (vector, one-hot encoded)

host_meta_resp_ready 1 host->Meta Validate RESPONSE Queue Request
Chapter 6 Network Interface Unit (NIU) 6-147

host_meta_resp_cmd_status 4 host->Meta Indicates that at transaction time-out has
occurred. Valid values are 4'h0 and 4'hF. 4'hF
indicates a transaction time-out.

meta_host_resp_accept 8 Meta->host Grant RESPONSE Queue Request. (Per client)

host_meta_resp_complete 8 host->Meta Fragment complete. (Per client).

host_meta_transfer_cmpl 8 host->Meta Transfer Complete. No additional transfers for
this transaction. (Per client).

RESPONSE Data and Data Control

host_meta_data 128 host->Meta Packet Data.

host_meta_resp_byteenable 16 host->Meta First/Last Byte Enable

host_meta_data_status 4 host->Meta Packet Transfer Status:
[3:2] Error Type,
[1:0] Reserved.
Note: Data transfers are in 128-bit units.

host_meta_data_valid 8 host->Meta Meta Acknowledges Burst Transfer. (Per
client).

RESPONSE NIU Error Flag

N/A

RESPONSE Flow Control

N/A Infinite Credits

TABLE 6-37 Read Response Meta Signals (Continued)

Signal Name Size From/To Description
6-148 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

6.25.8 Response Interface Timing

FIGURE 6-72 Read Response with Data

Min One Cycle

Min One Cycle

Max 2 Cycles

Min 1 Cycles

tp

One Cycle

StrobeStrobe

StrobeStrobe

0ns 25ns

system clock

host_meta_resp_ready

host_meta_resp_cmd[7:0]

host_meta_resp_cmd_status[7:0]

host_meta_resp_address[63:0]

host_meta_resp_length[13:0]

host_meta_resp_transID[5:0]

host_meta_resp_port_num[1:0]

host_meta_resp_dma_num[4:0]

host_meta_resp_client[7:0]

meta_host_resp_accept

host_meta_resp_complete

host_meta_transfer_cmpl

host_meta_data_valid

host_meta_resp_data[127:0]

host_meta_resp_byteenable[15:0]
Chapter 6 Network Interface Unit (NIU) 6-149

FIGURE 6-73 Back to Back Read Responses

Min One CycleMin One Cycle

Min One Cycle
Max 2 Cycles

Min 1 CyclesMin 1 Cycles

tp

One Cycle

StrobeStrobeStrobeStrobe

StrobeStrobeStrobeStrobe

0ns 25ns 50ns 75ns

system clock

host_meta_resp_ready

host_meta_resp_cmd[7:0]

host_meta_resp_cmd_status[7:0]

host_meta_resp_address[63:0]

host_meta_resp_length[13:0]

host_meta_resp_transID[5:0]

host_meta_resp_port_num[1:0]

host_meta_resp_dma_num[4:0]

host_meta_resp_client[7:0]

meta_host_resp_accept

host_meta_resp_complete

host_meta_transfer_cmpl

host_meta_data_valid

host_meta_resp_data[127:0]

host_meta_resp_byteenable[15:0]
6-150 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

FIGURE 6-74 Segmented Read Responses

Min One CycleMin One Cycle

Min One Cycle

Min One Cycle
Min One Cycle

Max 2 Cycles
Max 2 Cycles

Min 1 CyclesMin 1 Cycles

tptp

One CycleOne Cycle

StrobeStrobe

StrobeStrobe

0ns 25ns 50ns

system clock

host_meta_resp_ready

host_meta_resp_cmd[7:0]

host_meta_resp_cmd_status[7:0]

host_meta_resp_address[63:0]

host_meta_resp_length[13:0]

host_meta_resp_transID[5:0]

host_meta_resp_port_num[1:0]

host_meta_resp_dma_num[4:0]

host_meta_resp_client[7:0]

meta_host_resp_accept

host_meta_resp_complete

host_meta_transfer_cmpl

host_meta_data_valid

host_meta_resp_data[127:0]

host_meta_resp_byteenable[15:0]
Chapter 6 Network Interface Unit (NIU) 6-151

FIGURE 6-75 Transaction Time-out

Min One Cycle

Min One Cycle

Max 2 Cycles

Min 1 Cycles

tp

tp

One Cycle

StrobeStrobe

StrobeStrobe

0ns 25ns

system clock

host_meta_resp_ready

host_meta_resp_cmd[7:0]

host_meta_resp_cmd_status[7:0]

host_meta_resp_address[63:0]

host_meta_resp_length[13:0]

host_meta_resp_transID[5:0]

host_meta_resp_port_num[1:0]

host_meta_resp_dma_num[4:0]

host_meta_resp_client[7:0]

meta_host_resp_accept

host_meta_resp_complete

host_meta_transfer_cmpl
6-152 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

FIGURE 6-76 Example of Response Transactions

S0 S1 S2 S3

D0 D1 D2

S0 S1 S2

D0 D1 D2

Back To Back 64 Byte Data Transfers to different clients

 Back To Back 64 Byte Data Transfers to same client

S0 S1 S2

D0 D1 D2

Responses to different clients D0>D1. S2 held for longer time

S0 S1 S2

D0 D2

Response S1 with no data transfer to client 1

S0 S1 S2

D0 S1

Data Transfers to different clients with bubbles

S2

0ns 25ns 50ns 75ns 100ns

core_clk

Setup Phase

Data Phase

Setup Phase1

Data Phase1

Setup Phase2

Data Phase2

Setup Phase3

Data Phase3

Setup Phase4

Data Phase4
Chapter 6 Network Interface Unit (NIU) 6-153

6.25.9 Alignment for Request and Response Data
FIGURE 6-77 and FIGURE 6-78 show the alignment of the internal data path of the NIU
design for Request and Response data.

6.25.9.1 Request Data Format

In the case of Requests, data and Address are byte aligned, with byte enables only
on the last data phase. Where D0 and D1 are the two successive data phases, with
D1 being the last data phase.

FIGURE 6-77 Request Data Format

6.25.9.2 Response Data Format

In the case of a response, the data is 16 byte aligned with the appropriate byte
enable driven, as in FIGURE 6-78. Where D0 and D1 are the two successive data
phases.

D0

D1

D0

D1

Case 1: Write Request Address = A0, Length = 17 Bytes

Case 1: Write Request Address = A5, Length = 17 Bytes

16 Bytes Valid

16 Bytes Valid

1 Byte Valid

1 Byte Valid
6-154 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

FIGURE 6-78 Response Data Format

D0

D1

D0

D1

Case 1: Read Response Address = A0, Length = 17 Bytes

Case 1: Read Response Address = A0 (A5), Length = 17 Bytes

16 Bytes Valid

11 Bytes Valid

6 Bytes Valid

1 Byte Valid
Chapter 6 Network Interface Unit (NIU) 6-155

6.25.10 Acknowledgment Signals

FIGURE 6-79 Acknowledgement Waveform

TABLE 6-38 Acknowledgement Queue Meta Signals

Signal Name Size From/To Description

ACKNOWLEDGEMENT Transaction Type and Transaction Control

host_meta_ack_cmd 8 host->Meta Command Requests: Completion with Data,
and Completion without Data.
Command Request Encoding:
[7:5] Reserved; [4:3] Error Type,
[2:0] Completion with Data=101, Completion
without Data=110.
Note: Mem, IO, Cfg, and Msg type commands
are not supported by the
ACKNOWLEDGEMENT Queue.

host_meta_ack_address 64 host->Meta Memory Address: 64-bit address, 32-bit address.

host_meta_ack_length 14 host->Meta Data Length (bytes)

host_meta_ack_transID 6 host->Meta Transaction Identification

host_meta_ack_port_num 2 host->Meta Port Number

host_meta_ack_dma_num 5 host->Meta Channel Number

host_meta_ack_client 8 host->Meta Requesting Client (vector, one-hot encoded)

host_meta_ack_ready 1 host->Meta Validate ACKNOWLEDGEMENT Queue
Request

meta_host_ack_accept 8 Meta->host Grant ACKNOWLEDGEMENT Queue
Request. (Per client)

host_meta_ack_complete 8 host->Meta Fragment complete. (Per client).

host_meta_ack_transfer_comple
te

8 host->Meta Transfer Complete. No additional transfers for
this transaction. (Per client).

ACKNOWLEDGEMENT Data and Data Control

N/A

ACKNOWLEDGEMENT NIU Error Flag

N/A

ACKNOWLEDGEMENT Flow Control

N/A Infinite Credits
6-156 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

4 Cycles [Min./Max

One to One
4 Cycles [Min./Max]

tptptp

Min. 2 CyclesMin. 2 Cycles

2 Cycles Min./MaxMin. 2 Cycles

Min. 1 CyclesMin. 1 Cycles

tp

StrobeStrobeStrobeStrobe

StrobeStrobeStrobeStrobe

0ns 25ns 50ns 75ns

system clock

meta_host0_req

meta_host0_req_cmd[7:0]

meta_host0_req_address[63:0]

meta_host0_req_length[13:0]

meta_host0_req_transID[5:0]

meta_host0_req_port_num[1:0]

meta_host0_req_dma_num[4:0]

meta_host0_req_client[7:0]

host_meta0_req_accept

host_meta0_data_req

meta_host0_data[127:0]

meta_host0_byteenable[15:0]

meta_host0_data_status[3:0]

meta_host0_data_valid

meta_host0_transfer_complete
Chapter 6 Network Interface Unit (NIU) 6-157

6.26 Interrupt Microarchitecture Specification

6.26.1 Interrupt Overview
The NIU supports up to 69 logic devices that can be separated into five categories:

Multiple interrupt sources can be associated with a single logic device. Each
interrupt source can be individually masked by setting corresponding mask bits.

Each logic device has two associated interrupt flags i.e. the ldf[i] and ldf[j] flags.
ldf[i] is used for normal datapath events such as packet arrivals or transmission
completion events, while ldf[j] is used for error or non critical datapath events such
as MAC and MIF interrupts.

Each logic device interrupt flag can be masked individually by setting the logic
device ldf_mask[1:0] bits.

Each of the logic devices can be bound to one of 64 logic device groups sharing a
system interrupt, by assigning a logic device group number.

The interrupt status of a logic device group is reflected by the Logic Device State
Vector (LDSV[68:0]) associated with that group. Each bit of the LDSV represents the
interrupt status of corresponding logic device bound to that group. The LDSV can be
accessed by software to determine the pending interrupt status.

The interrupt logic implementation spans multiple NIU blocks.

The logic devices are implemented in the MAC/RXC/TXC blocks. The interrupt
event generation an arbitration is implemented in the NIU_PIO block

Receive DMA Channels LD[0:15]

Reserved LD[16:31]

Transmit DMA Channels LD[32:47]

Reserved LD[48:62]

MDIO Interface (MIF) LD[63]

Ethernet MACs LD[64:65]

Reserved LD[66:67]

System Errors. LD[68]
6-158 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

FIGURE 6-80 is a high level representation of the Interrupt datapath.

The subsequent paragraphs describe the microarchitecture of the components of the
interrupt logic in more detail.

FIGURE 6-80 Interrupt Datapath Block Diagram

6.26.2 Interrupt Event Generation
A logic device group interrupt request event is generated when a least one logic
device bound to that group flags an interrupt (flag bit set), the logic device mask bit
is cleared, the logic device group interrupt timeout timer has expired and the logic
device group arm bit is set.

A logic device group release request event is generated, when the logic device
group’s arm bit is cleared (by hardware) and all the pending interrupts are serviced
by software by either clearing the flag bits, setting the mask bit, and/or re-setting of
the timeout counter.

ld_a ld_b ld_c

logic device group X

int_request[63]int_release[63]

ld_l ld_m ld_n

logic device group Y

int_request[0]int_release[0]

interrupt arbitration

Device ID

SID

MAC/RX/TX

NIU_PIO
group[5:0]

interrupt generation

niu_clk

niu_clk

Logic Devices
Chapter 6 Network Interface Unit (NIU) 6-159

When a logic device group has generated an interrupt event, (interrupt request or
interrupt release request), the group arbitrates for access to the interrupt queue for
further processing of the interrupt.

FIGURE 6-81 Interrupt Diagram

6.26.3 Interrupt Request Arbitration
The 64 interrupt groups can assert interrupt requests and release requests
independently.

The interrupt arbitration logic arbitrates between the various requests for access to
the interrupt request queue. The arbitration algorithm is a priority based scheme
that assigns lowest priority to the group that has been serviced most recently.
Interrupts requests have priority over interrupt release requests.

ldfj[0]

ldfi[0]

~ldf_mask0[1]

~ldf_mask0[0]

ld_intr[0]

ldfi[68]

ldfj[68]

~ldf_mask68[1]

~ldf_mask68[0]

ld_intr[68]

memship_group0[68:0]

TO_group[63:0]

memship_intr_TO[0]

arm0 intr_req_group[0]

intr_rel_group[0]

S

R
issued_intr[0]

activate_ig_sm

activate_ig_sm_rel

X 64

memship_intr_TO[63]

(int_request)

(int_release)

arm63 X 64

intr_req_group[0]

intr_req_group[63]

intr_rel_group[0]

intr_rel_group[63]

issued_intr[63]
6-160 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

The arbitration logic generates the group number of the request that won the
arbitration. The logic has to guarantee that the correct value of the group number is
maintained throughout the arbitration sequence by latching all the interrupt
information at the start of the sequence.

The interrupt arbitration state machine manages the dispatching of the interrupt
request.

6.26.4 Interrupt SID Generation
Once the arbitration sequence has completed, the 6-bit group number associated
with the request is used to index into the 64 entry DeviceID table that contains a
unique SID value for each of the groups.

SID[6:5] contains the function number assigned to the group, and SID[4:0]
represents the five bit SID vector. Note that only 32 unique SID values can be
assigned per function. As a consequence, a maximum of 32 logic device groups can
be assigned to a single function.
Chapter 6 Network Interface Unit (NIU) 6-161

FIGURE 6-82 NIU Interrupt Arbitration Datapath

activate_ig_sm

intr_req_group[63:0]

intr_rel_group[63:0]

activate_ig_sm_rel

64’b0

mux_input[63:0]

pri_group_1/2[5:0]

req_mux_dout_reg[63:0]

latch_req_mux_out_del

gnt[63:0] gnt_num[5:0]
 64 : 6

daisy_chain

mux_input_del[0]

mux_input_del[63]

mux_input_del[63]

mux_input_del[62]

mux_input_del[:0]

mux_input_del[1]

req_mux_dout[63:0]

req_mux

result_group

latch_result_group_del

group[5:0]
+

+ 1

nx_pri_group

latch_nx_pri_group_del

pri_group_1[5:0]

PE

gnt_encoder
6-162 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

FIGURE 6-83 Interrupt Arbitration State Machine

IDLE

LCH_REQ_MUX

LCH_RESULT_GROUP

LCH_NX_PRI

DLY1

WAIT4BUSY:

~ibusy

activate_ig_sm ||

intr_vld_ip = activate_ig_sm

intr_invld_ip = activate_ig_sm_rel

latch_req_mux_out = 1

latch_result_group = 1

latch_nx_pri_group = 1

activate_ig_sm_rel

intr_valid

intr_invalid
Chapter 6 Network Interface Unit (NIU) 6-163

6.27 Debug Microarchitecture Specification

6.27.1 Overview
■ Debug bus architecture that facilitates the observability of:

■ Block level control signals.

■ Internal Clock signals.

■ The debug architecture is implemented at two levels:

■ Top level through RTST_SEL[4:0] pins.

■ Block level through debug select register

FIGURE 6-84 Top-level Debug Diagram

DEBUG

niu_clk

txc

rdmc

zcp

ipp

fflp

pio

mac

meta_arb

smx

TST_SEL[4:0]

DebugOPENSPARC T2

tdmc
6-164 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

6.27.2 Debug Port
The debug architecture is implemented at two levels, block level and top level.

At the block level, a debug select register is programmed by software to select a
group of block level debug control signals that are placed on the block debug bus.
Details on the programming and selection of the block level control signal groups
are described in the PRM chapters of the individual blocks.

At the top level, the external RTST_SEL[4:0] pins select which one of the block level
debug busses are propagated to the debug port data bus:

Default debug port value is zero when the select ranges from 5’h1to 5’10.

In addition to debug control signals, internal clock signals can be observed shown in
TABLE 6-40.

TABLE 6-39 Debug Data Port

RTST_SEL[4:0] Debug Port Data

5’h11 txc_debug_port

5’h12 tdmc_debug_port

5’h13 rdmc_debug_port

5’h14 zcp_debug_port

5’h15 ipp_debug_port

5’h16 fflp_debug_port

5’h17 pio_debug_port

5’h18 mac_debug_port

5’h19 zero

5’h1a meta_arb_debug_port

5’h1b smx_debug_port_port

TABLE 6-40 Debug Internal Clock Signals

RTST_SEL[4:0] Debug_clock0 Debug_clock1

5’h0: 1’b0 1’b0

5’h8: mac_debug_clock0_divby8 mac_debug_clock1_divby8

5’h9: 1’b0 1’b0

default: niu_clk_div8 niu_clk_div8
Chapter 6 Network Interface Unit (NIU) 6-165

6.28 N2 NIU Design for Test

FIGURE 6-85 NIU Block Diagram

niu_txc

niu_rxc

mac

niu_smx

niu_tdmcniu_rdmc

niu_pio

tdsrdp

rtx

hedwig

mac_2ports
6-166 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

6.28.1 Membist Block Diagrams

FIGURE 6-86 Membist TDS Block Diagram

FIGURE 6-87 Membist RDP Block Diagram

niu_smx

niu_tdmc

Ram Wrapper

niu_<mbist_type> = master module

 niu_mb2

X = Controller ID Number

 niu_mb0

tds

niu_rdmc

 niu_mb4

Ram Wrapper

niu_<mbist_type> = master module

X = Controller ID Number

niu_pio

rdp
Chapter 6 Network Interface Unit (NIU) 6-167

FIGURE 6-88 Membist RTX Block Diagram

niu_txc

niu_rxc

ipp top

 niu_mb1 niu_mb1

 niu_mb3 niu_mb3

 niu_mb5

 niu_mb6

 niu_mb7

 niu_mb7

Ram Wrapper

niu_<mbist_type> = master module

tcam

fflp

zcp top

txe0 txe1

X = Controller ID Number

vlan

tarray

rtx
6-168 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

6.28.2 MAC Wrapper DFT Clocks

6.28.3 MAC Wrapper DFT Port Names

TABLE 6-41 MAC DFT Clock Ports

MAC DFT Clock Port Name Type Description Mux with Functional Clock

mac_312rx_test_clk Input 312 MHz RX DFT clock rbc0_a,b,c,d

mac_312tx_test_clk Input 312 MHz TX DFT clock tx_clk0_312, tx_clk1_312

mac_156rx_test_clk Input 156 MHz RX DFT clock rx_clk0, rx_clk1

mac_156tx_test_clk Input 156 MHz TX DFT clock tx_clk0, tx_clk1

mac_125rx_test_clk Input 125 MHz TX DFT clock rx_nbclk0, rx_nbclk1

mac_125tx_test_clk Input 125 MHz TX DFT clock tx_nbclk0, tx_nbclk1

TABLE 6-42 MAC Functional vs. DFT Clock Groupings

Functional Clock External DFT Clock Comment

rbc0_a0, rbc0_b0, rbc0_c0, rbc0_d0,
rbc0_a1, rbc0_b1, rbc0_c1, rbc0_d1

mac_312rx_test_clock 312 Mhz RX clocks

rx_clk0, rx_clk1 mac_156rx_test_clock 156 Mhz RX clocks

rx_nbclk0, rx_nbclk1 mac_125rx_test_clock 125 Mhz RX clocks

tx_clk0, tx_clk1 mac_156tx_test_clock 156 Mhz TX clocks

tx_nbclk0, tx_nbclk1 mac_125tx_test_clock 125 Mhz TX clocks

tx_clk0_312, tx_clk1_312 mac_312tx_test_clock 312 Mhz TX clocks
NIU Lane 1 transmit clk.

TABLE 6-43 MAC DFT Scan Ports

MAC Scan Port Names Type Description

tcu_scan_mode Input (FUNC_MODE) Mux select for dft clocking = 1

tcu_scan_en Input Shift/Capture select

tcu_aclk Input Shift clock stage 1

tcu_bclk Input Shift clock stage 2

tcu_mac_io_clk_stop Input Stop Clock
Chapter 6 Network Interface Unit (NIU) 6-169

tcu_pce_ov Input Pulse Clock Enable Override

scan_in Input Scan input

scan_out Output Scan output

TABLE 6-43 MAC DFT Scan Ports (Continued)

MAC Scan Port Names Type Description
6-170 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

6.28.4 RDP Wrapper DFT Port Names

6.28.5 TDS Wrapper DFT Port Names

TABLE 6-44 RDP DFT Ports

RDMC Scan Port Names Type Description

tcu_scan_en Input Shift/Capture select

tcu_aclk Input Shift clock stage 1

tcu_bclk Input Shift clock stage 2

tcu_rdp_io_clk_stop Input Stop Clock

tcu_pce_ov Input Pulse Clock Enable Override

scan_in Input Scan input

scan_out Output Scan output

tcu_array_wr_inhibit Input

tcu_mbist_bisi_en Input

tcu_se_scancollar_in Input

tcu_se_scancollar_out Output

tcu_rdp_rdmc_mbist_start Input

rdp_rdmc_tcu_mbist_fail Output

rdp_rdmc_tcu_mbist_done Output

rdp_rdmc_mbist_scan_in Input Mbist scan input

rdp_rdmc_mbist_scan_out Output Mbist scan output

rdp_tcu_dmo_data_out[39:0] Output 40 bit DMO data bus New

TABLE 6-45 TDS DFT Ports

TDS Scan Port Names Type Description

tcu_scan_en Input Shift/Capture select

tcu_aclk Input Shift clock stage 1

tcu_bclk Input Shift clock stage 2

tcu_tds_io_clk_stop Input Stop Clock

tcu_pce_ov Input Pulse Clock Enable Override
Chapter 6 Network Interface Unit (NIU) 6-171

scan_in Input Scan input

scan_out Output Scan output

tcu_array_wr_inhibit Input

tcu_mbist_bisi_en Input

tcu_se_scancollar_in Input

tcu_se_scancollar_out Output

tcu_tds_smx_mbist_start Input

tds_smx_tcu_mbist_fail Output

tds_smx_tcu_mbist_done Output

tcu_tds_tdmc_mbist_start Input

tds_tdmc_tcu_mbist_fail Output

tds_tdmc_tcu_mbist_done Output

tds_mbist_scan_in Input Mbist scan input

tds_mbist_scan_out Output Mbist scan output

tds_tcu_dmo_data_out[39:0] Output 40 bit DMO data bus to RDP New

TABLE 6-45 TDS DFT Ports (Continued)

TDS Scan Port Names Type Description
6-172 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

6.28.6 RTX Wrapper DFT Port Names

TABLE 6-46 RTX DFT Ports

RTX Scan Port Names Type Description

tcu_scan_en Input Shift/Capture select

tcu_aclk Input Shift clock stage 1

tcu_bclk Input Shift clock stage 2

tcu_rtx_io_clk_stop Input Stop Clock

tcu_pce_ov Input Pulse Clock Enable Override

scan_in Input Scan input

scan_out Output Scan output

tcu_array_wr_inhibit Input

tcu_mbist_bisi_en Input

tcu_array_bypass Input

tcu_se_scancollar_in Input

tcu_se_scancollar_out Output

tcu_rtx_txe0_mbist_start Input

rtx_txe0_tcu_mbist_fail Output

rtx_txe0_tcu_mbist_done Output

tcu_rtx_txe1_mbist_start Input

rtx_txe1_tcu_mbist_fail Output

rtx_txe1_tcu_mbist_done Output

tcu_rtx_rxc_ipp0_mbist_start Input

rtx_rxc_ipp0_tcu_mbist_fail Output

rtx_rxc_ipp0_tcu_mbist_done Output

tcu_rtx_rxc_ipp1_mbist_start Input

rtx_rxc_ipp1_tcu_mbist_fail Output

rtx_rxc_ipp1_tcu_mbist_done Output

tcu_rtx_rxc_mb5_mbist_start Input

rtx_rxc_mb5_tcu_mbist_fail Output

rtx_rxc_mb5_tcu_mbist_done Output

tcu_rtx_rxc_mb6_mbist_start Input
Chapter 6 Network Interface Unit (NIU) 6-173

rtx_rxc_mb6_tcu_mbist_fail Output

rtx_rxc_mb6_tcu_mbist_done Output

tcu_rtx_rxc_zcp0_mbist_start Input

rtx_rxc_zcp0_tcu_mbist_fail Output

rtx_rxc_zcp0_tcu_mbist_done Output

tcu_rtx_rxc_zcp1_mbist_start Input

rtx_rxc_zcp1_tcu_mbist_fail Output

rtx_rxc_zcp1_tcu_mbist_done Output

rtx_mbist_scan_in Input Mbist scan input

rtx_mbist_scan_out Output Mbist scan output

tcu_rtx_dmo_ctl[2:0] Input 3 bit select from TCU New

rtx_tcu_dmo_data_out[39:0] Output 40 bit DMO data bus to RDP New

TABLE 6-46 RTX DFT Ports (Continued)

RTX Scan Port Names Type Description
6-174 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

6.28.7 SMX Module DFT Port Names

6.28.8 TDMC Module DFT Port Names

TABLE 6-47 SMX DFT Ports

SMX Scan Port Names Type Description

tcu_scan_en Input

tcu_aclk Input Shift clock stage 1

tcu_bclk Input Shift clock stage 2

tcu_clk_stop Input Stop Clock

tcu_array_wr_inhibit Input

tcu_mbist_bisi_en Input

tcu_pce_ov Input Pulse Clock Enable Override

tcu_se_scancollar_in Input

tcu_se_scancollar_out Output

tcu_tds_smx_mbist_start Input

tds_smx_tcu_mbist_fail Output

tds_smx_tcu_mbist_done Output

tds_smx_mbist_scan_in Input Mbist scan input

tds_smx_mbist_scan_out Output Mbist scan output

TABLE 6-48 TDMC DFT Ports

TDMC Scan Port Names Type Description

tcu_scan_en Input

tcu_aclk Input Shift clock stage 1

tcu_bclk Input Shift clock stage 2

tcu_clk_stop Input Stop Clock

tcu_pce_ov Input Pulse Clock Enable Override

tcu_array_wr_inhibit Input

tcu_mbist_bisi_en Input

tcu_se_scancollar_in Input

tcu_se_scancollar_out Output
Chapter 6 Network Interface Unit (NIU) 6-175

tcu_tds_tdmc_mbist_start Input

tds_tdmc_tcu_mbist_fail Output

tds_tdmc_tcu_mbist_done Output

tds_tdmc_mbist_scan_in Input Mbist scan input

tds_tdmc_mbist_scan_out Output Mbist scan output

tds_tcu_dmo_data_out[39:0] Output Mbist DMO output New

TABLE 6-48 TDMC DFT Ports (Continued)

TDMC Scan Port Names Type Description
6-176 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

6.28.9 RDMC Module DFT Port Names

6.28.10 TXC Module DFT Port Names

TABLE 6-49 RDMC DFT Ports

RDMC Scan Port Names Type Description

tcu_scan_en Input

tcu_aclk Input Shift clock stage 1

tcu_bclk Input Shift clock stage 2

tcu_clk_stop Input Stop Clock

tcu_array_wr_inhibit Input

tcu_mbist_bisi_en Input

tcu_array_bypass Input

tcu_pce_ov Input Pulse Clock Enable Override

tcu_se_scancollar_in Input

tcu_se_scancollar_out Output

tcu_rdp_rdmc_mbist_start Input

rdp_rdmc_tcu_mbist_fail Output

rdp_rdmc_tcu_mbist_done Output

rdp_rdmc_mbist_scan_in Input Mbist scan input

rdp_rdmc_mbist_scan_out Output Mbist scan output

rdp_tcu_dmo_data_out[39:0] Output Mbist DMO output New

TABLE 6-50 TXC DFT Ports

TXC Scan Port Names Type Description

tcu_scan_en Input

tcu_aclk Input Shift clock stage 1

tcu_bclk Input Shift clock stage 2

tcu_clk_stop Input Stop Clock

tcu_pce_ov Input Pulse Clock Enable Override

tcu_array_wr_inhibit Input

tcu_mbist_bisi_en Input
Chapter 6 Network Interface Unit (NIU) 6-177

tcu_se_scancollar_in Input

tcu_se_scancollar_out Output

tcu_rtx_txc_txe0_mbist_start Input

rtx_txc_txe0_tcu_mbist_fail Output

rtx_txc_txe0_tcu_mbist_done Output

rtx_txc_txe0_dmo_dout Output Mbist DMO output New

tcu_rtx_txc_txe1_mbist_start[39:0] Input

rtx_txc_txe1_tcu_mbist_fail Output

rtx_txc_txe1_tcu_mbist_done Output

rtx_txc_txe1_dmo_dout[39:0] Output Mbist DMO output New

rtx_txc_txe_mbist_scan_in Input Mbist scan input

rtx_txc_txe_mbist_scan_out Output Mbist scan output

TABLE 6-50 TXC DFT Ports (Continued)

TXC Scan Port Names Type Description
6-178 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

6.28.11 RXC Module DFT Port Names

TABLE 6-51 RXC DFT Ports

RXC Scan Port Names Type Description

tcu_scan_en Input

tcu_aclk Input Shift clock stage 1

tcu_bclk Input Shift clock stage 2

tcu_clk_stop Input Stop Clock

tcu_pce_ov Input Pulse Clock Enable Override

tcu_array_wr_inhibit Input

tcu_mbist_bisi_en Input

tcu_array_bypass Input

tcu_se_scancollar_in Input

tcu_se_scancollar_out Output

tcu_rtx_rxc_ipp0_mbist_start Input

rtx_rxc_ipp0_tcu_mbist_fail Output

rtx_rxc_ipp0_tcu_mbist_done Output

rtx_rxc_ipp0_mb3_mbist_scan_in Input Mbist scan input

rtx_rxc_ipp0_mb3_mbist_scan_out Output Mbist scan output

rtx_rxc_ipp0_mb3_dmo_dout[39:0] Output Mbist DMO output New

tcu_rtx_rxc_ipp1_mbist_start Input

rtx_rxc_ipp1_tcu_mbist_fail Output

rtx_rxc_ipp1_tcu_mbist_done Output

rtx_rxc_ipp1_mb3_mbist_scan_in Input Mbist scan input

rtx_rxc_ipp1_mb3_mbist_scan_out Output Mbist scan output

rtx_rxc_ipp1_mb3_dmo_dout[39:0] Output Mbist DMO output New

tcu_rtx_rxc_mb5_mbist_start Input

rtx_rxc_mb5_tcu_mbist_fail Output

rtx_rxc_mb5_tcu_mbist_done Output

rtx_rxc_tcam_cntrl_mbist_scan_in Input Mbist scan input

rtx_rxc_tcam_cntrl_mbist_scan_out Output Mbist scan output

tcu_rtx_rxc_mb6_mbist_start Input
Chapter 6 Network Interface Unit (NIU) 6-179

rtx_rxc_mb6_tcu_mbist_fail Output

rtx_rxc_mb6_tcu_mbist_done Output

rtx_tcam_vlan_mbist_scan_in Input Mbist scan input

rtx_tcam_vlan_mbist_scan_out Output Mbist scan output

rtx_rxc_vlan_mb6_dmo_dout[39:0] Output Mbist DMO output New

tcu_rtx_rxc_zcp0_mbist_start Input

rtx_rxc_zcp0_tcu_mbist_fail Output

rtx_rxc_zcp0_tcu_mbist_done Output

rtx_rxc_zcp0_mb7_mbist_scan_in Input Mbist scan input

rtx_rxc_zcp0_mb7_mbist_scan_out Output Mbist scan output

rtx_rxc_zcp0_mb7_dmo_dout[39:0] Output Mbist DMO output New

tcu_rtx_rxc_zcp1_mbist_start Input

rtx_rxc_zcp1_tcu_mbist_fail Output

rtx_rxc_zcp1_tcu_mbist_done Output

rtx_rxc_zcp1_mb7_mbist_scan_in Input Mbist scan input

rtx_rxc_zcp1_mb7_mbist_scan_out Output Mbist scan output

rtx_rxc_zcp1_mb7_dmo_dout[39:0] Output Mbist DMO output New

TABLE 6-51 RXC DFT Ports (Continued)

RXC Scan Port Names Type Description
6-180 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

6.28.12 Controller to SRAM Mapping

*** Ram wrapper has application width for wiring.

Controller
Type

SRAMs Depth X Width
Physical ***

App. Depth/Width
in ()

< Array Name>
2X Wrapper
Clk Name

e_fuse

niu_mb0 SMX Read/Write Table 64 X 148(146) smx_table TDS none

SMX Store/Forward 32 X 148(146) smx_store TDS none

niu_mb1 Port 0 Transmit Store &
Forward

1024(640)X
152(152)

xmit_store 2X RTX efuhdr1a_p0

Port 0 Transmit Re-align
Buffer

1024 X 152(152) xmit_realign 2X RTX efuhdr1b_p0

niu_mb1 Port 1 Transmit Store &
Forward

1024(640) X
152(152)

xmit_store 2X RTX efuhdr1a_p1

Port 1 Transmit Re-align
Buffer

1024 X 152(152) xmit_realign 2X RTX efuhdr1b_p1

niu_mb2 TX DMA Descriptor
Cache

256 X 152(148) tx_dma_desc 2X TDS efuhdr2

niu_ mb3 Port 0 Receive Data Fifo 1024 X 152(146) rx_data_fifo 2X RTX efuhdr3_p0

Port 0 Pre-Buffer Header 64 X 152(146) prebuf_header RTX none

niu_mb3 Port 1 Receive Data Fifo 1024 X 152(146) rx_data_fifo 2X RTX efuhdr3_p1

Port 1 Pre-Buffer Header 64 X 148(146) prebuf_header RTX none

niu_ mb4 RX DMA Descriptor
Cache

256 X 152(148) rx_dma_desc 2X RDP efuhdr4a

RX DMA Completion
Shadow

256 X 152(148) rx_dma_comp 2X RDP efuhdr4a

niu_mb5 TCAM Controller 128 X 200(200) tcam_cntrl RTX none

niu_mb6 TCAM Array 128 X 42(42) tcam_array RTX none

VLAN Table 4096 X 9 (9) vlan RTX efuhdr6

niu_mb7 Port 0 Control Fifo (ZCP) 512 X 152(146) cntrl_fifo_zcp 2X RTX efuhdr7_p0

niu_mb7 Port 1 Control Fifo (ZCP) 512 X 152(146) cntrl_fifo_zcp 2X RTX efuhdr7_p1
Chapter 6 Network Interface Unit (NIU) 6-181

6.28.13 Scan and MEMBIST Signals for NIU SRAMs

6.28.14 SRAM Array Signal Names

Name Type Description

tcu_scan_en input (NIU top level only)

tcu_ack input (Top level and Propagate to RAM hierarchy)

tcu_bclk input (Top level and Propagate to RAM hierarchy)

tcu_se_scancollar_in input (Top level and Propagate to RAM hierarchy)

tcu_se_scancollar_out input (Needed for SRAM output flops...none in NIU)

tcu_clk_stop input (Top level and Propagate to RAM hierarchy)

tcu_pce_ov input (Top level and Propagate to RAM hierarchy)

tcu_arrary_wr_inhibit input (Top level and Propagate to RAM hierarchy)

tcu_arrary_bypass input (Top level and Propagate to RAM hierarchy)

tcu_mbist_bisi_en input (Top level and Propagate to RAM hierarchy)

<mbist_name>_<array_name>_scan_in input (Top level and Propagate to RAM hierarchy)

<mbist_name>_<array_name>_scan_out output (Propagate from RAM hierarchy to top level)

tcu_niu_mbist_start input (Top level and Propagate to RAM hierarchy)

niu_tcu_mbist_fail output (Propagate from Controller to top level)

niu_tcu_mbist_done output (Propagate from Controller to top level)

TABLE 6-52 Array Signals

Description Type Name Format NIU *

Read_Enable Input <cluster_name_mbi_<array_name>_rd_en mbi_rd_en

Write_Enable Input <cluster_name_mbi_<array_name>_wr_en mbi_wr_en

Address Input <cluster_name>_mbi_addr mbi_adr

Wdata Input <cluster_name>_mbi_wdata mbi_wdata

Run Input <cluster_name>_mbi_run mbi_run
6-182 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

6.28.15 Membist Controller Port Names

TABLE 6-53 NIU_MB0 SMX Mbist Controller Ports

Description Type Signal Name Changed

Read_Enable Output niu_mb0_smx_table_rd_en

Write_Enable Output niu_mb0_smx_table_wr_en

Read_Enable Output niu_mb0_smx_store_rd_en

Write_Enable Output niu_mb0_smx_store_wr_en

Address Output niu_mb0_addr[5:0]

Wdata Output niu_mb0_wdata[7:0]

Run Output sniu_mb0_run

Fail Output niu_tcu_mbist_fail_0

Done Output niu_tcu_mbist_done_0

Start Input tcu_niu_mbist_start_0

Data_Out Input niu_mb0_smx_table_data_out[145:0]

Data_Out Input niu_mb0_smx_store_data_out[145:0]

scan_in Input mb0_scan_in

scan_out Output mb0_scan_out

TABLE 6-54 TXC NIU_MB1 Mbist Controller Ports

Description Type Signal Name Changed

Read_Enable Output niu_mb1_xmit_store_rd_en

Write_Enable Output niu_mb1_xmit_store_wr_en

Read_Enable Output niu_mb1_xmit_realign_rd_en

Write_Enable Output niu_mb1_xmit_realign_wr_en

Address Output niu_mb1_addr[11:0]

Wdata Output niu_mb1_wdata[7:0]

Run Output niu_mb1_run

Done Output niu_tcu_mbist_done_1

Fail Output niu_tcu_mbist_fail_1

Start Input tcu_niu_mbist_start_1

Data_Out Input niu_mb1_xmit_store_data_out[151:0]

Data_Out Input niu_mb1_xmit_realign_data_out[151:0]
Chapter 6 Network Interface Unit (NIU) 6-183

scan_in Input mb1_scan_in

scan_out Output mb1_scan_out

dmo_dout Output mb1_dmo_dout[39:0] New

TABLE 6-55 TDMC NIU_MB2 Mbist Controller Ports

Description Type Signal Name Changed

Read_Enable Output niu_mb2_rd_en

Write_Enable Output niu_mb2_wr_en

Address Output niu_mb2_addr[7:0]

Wdata Output niu_mb2_wdata[7:0]

Run Output niu_mb2_run

Fail Output niu_tcu_mbist_fail_2

Done Output niu_tcu_mbist_done_2

Start Input tcu_niu_mbist_start_2

Data_Out Input niu_mb2_tdmc_data_out[147:0]

scan_in Input mb2_scan_in

scan_out Output mb2_scan_out

dmo data out Output mb2_dmo_dout[39:0] New

TABLE 6-56 RDMC NIU_MB4 Mbist Controller Ports

Description Type Signal Name Changed

Read_Enable Output niu_mb4_desc_rd_en

Write_Enable Output niu_mb4_desc_wr_en

Read_Enable Output niu_mb4_comp_rd_en

Write_Enable Output niu_mb4_comp_wr_en

Address Output niu_mb4_addr[7:0]

Wdata Output niu_mb4_wdata [7:0]

Run Output niu_mb4_run

Fail Output niu_tcu_mbist_fail_4

Done Output niu_tcu_mbist_done_4

TABLE 6-54 TXC NIU_MB1 Mbist Controller Ports (Continued)

Description Type Signal Name Changed
6-184 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

Start Input tcu_niu_mbist_start_4

Data_Out Input niu_rdmc_desc_data_out[147:0]

Data_Out Input niu_rdmc_comp_data_out[147:0]

scan_in Input mb4_scan_in

scan_out Output mb4_scan_out

dmo data out Output mb4_dmo_dout[39:0] New

TABLE 6-57 RXC NIU_MB3 IPP Mbist Controller Ports

Description Type Signal Name Changed

Read_Enable Output niu_mb3_rx_data_fifo_rd_en

Write_Enable Output niu_mb3_rx_data_fifo_wr_en

Read_Enable Output niu_mb3_prebuf_header_rd_en

Write_Enable Output niu_mb3_prebuf_header_wr_en

Address Output niu_mb3_addr[9:0]

Wdata Output niu_mb3_wdata[7:0]

Run Output niu_mb3_run

Fail Output niu_tcu_mbist_fail_3

Done Output niu_tcu_mbist_done_3

Start Input tcu_niu_mbist_start_3

Data_Out Input niu_mb3_rx_data_fifo_data_out[145:0]

Data_Out Input niu_mb3_prebuf_header_data_out[145:0]

scan_in Input mb3_scan_in

scan_out Output mb3_scan_out

dmo data out Output mb3_dmo_dout[39:0] New

TABLE 6-58 RXC NIU_MB5 TCAM Mbist Controller Signals

Description Type Signal Name Changed

Read_Enable Output niu_mb5_tcam_cntrl_rd_en

Write_Enable Output niu_mb5_tcam_cntrl_wr_en

Address Output rxc_mb5_addr[6:0]

TABLE 6-56 RDMC NIU_MB4 Mbist Controller Ports (Continued)

Description Type Signal Name Changed
Chapter 6 Network Interface Unit (NIU) 6-185

Run Output rxc_mb5_run

Fail Output niu_tcu_mbist_fail_5

Done Output niu_tcu_mbist_done_5

Start Input tcu_niu_mbist_start_5

scan_in Input mb5_scan_in

scan_out Output mb5_scan_out

cam_haddr Input niu_mb5_cam_haddr[6:0]

cam_compare Output niu_mb5_cam_compare

cam_hit Input niu_mb5_cam_hit

data_inp Output niu_mb5_data_inp[199:0]

pio_sel Output niu_mb5_pio_sel

msk_dat_out Input niu_mb5_msk_dat_out[199:0]

cam_valid Input niu_mb5_cam_valid

pio_rd_vld Input niu_mb5_rd_vld

TABLE 6-59 RXC NIU_MB6 Mbist Controller Signals

Description Type Signal Name

Read_Enable Output niu_mb6_tcam_array_rd_en

Write_Enable Output niu_mb6_tcam_array_wr_en

Read_Enable Output niu_mb6_vlan_rd_en

Write_Enable Output niu_mb6_vlan_wr_en

Address Output niu_mb6_addr[11:0]

Wdata Output niu_mb6_wdata [7:0]

Run Output niu_mb6_run

Fail Output niu_tcu_mbist_fail_6

Done Output niu_tcu_mbist_done_6

Start Input tcu_niu_mbist_start_6

Data_Out Input niu_mb6_tcam_array_data_out[41:0]

Data_Out Input niu_mb6_vlan_data_out[8:0]

TABLE 6-58 RXC NIU_MB5 TCAM Mbist Controller Signals

Description Type Signal Name Changed
6-186 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

scan_in Input mb6_scan_in

scan_out Output mb6_scan_out

dmo data out Output mb7_dmo_dout[39:0] New

TABLE 6-60 RXC NIU_MB7 ZCP Mbist Controller Signals

Description Type Signal Name

Read_Enable Output niu_mb7_cntrl_fifo_zcp_rd_en

Write_Enable Output niu_mb7_cntrl_fifo_zcp_wr_en

Address Output niu_mb7_addr[8:0]

Wdata Output niu_mb7_wdata[7:0]

Run Output niu_mb7_run

Fail Output niu_tcu_mbist_fail_7

Done Output niu_tcu_mbist_done_7

Start Input tcu_niu_mbist_start_7

Data_Out Input niu_mb7_cntrl_fifo_zcp_data_out[145:0]

scan_in Input mb7_scan_in

scan_out Output mb7_scan_out

dmo data out Output mb7_dmo_dout[39:0] New

TABLE 6-59 RXC NIU_MB6 Mbist Controller Signals (Continued)

Description Type Signal Name
Chapter 6 Network Interface Unit (NIU) 6-187

6.28.16 RAM vs. Membist Controller Connectivity

FIGURE 6-89 Ram vs. Membist Controller Connectivity

RAM WRAPPER

<membist_name>_<array_name>_Data_out

yy_mbx_run mbi_run

yy_mbx_wdata

mbi_adryy_mbx_addr

mbi_wdata

yy_mbx_xx_wr_en mbi_wr_en

yy_mbx_xx_rd_en mbi_rd_en

sel

Rd_en

Wr_en

Addr

Wdata

yy_xx_mbist_done

tcu_mbist_bisi_en

yy_xx_tcu_mbist_fail

tcu_yy_xx_mbist_start

 Propagate all mbist signals to membist controller hierarchy
yy= cluster name = rdp, tds, rtx
xx = array name
mbx = membist name = mb0, mb1, ... mb7

Note: the rtl top level module name is “niu_mbx”
X = Controller ID number

Propagated
from top level

yy_xx_mbx_dmo_dout[39:0]

R
A
M

A
R
R
A
Y

I
N
P
U
T

M
U
X

M
E
M
B
I
S
T

C
O
N
T
R
O
L
L
E
R

X

6-188 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

6.29 SMX Microarchitecture
The SMX module is designed OpenSPARC T2 and is the bus bridge from the Meta
Interface (which is NIU’s internal protocol) to the System Interface Unit (SIU) bus
interface.

The SMX module has the following functionality:

■ The DMA read/write data is routed through this bridge Interface.

■ Performs Flow Control

■ Support the DMA function of the DMU module by fetching read and write
descriptors and reading and writing data from host memory in 64 byte aligned
blocks.

■ Converts larger data read and write request payloads on the Meta interface to 64
byte aligned requests, with a fixed payload of 64 bytes (One cacheline).

■ The maximum payload coming from the DMU block will be 8K+ bytes on the
Meta. The SIU block supports a fixed 64 bytes data payload.

The SMX module comprises of the following sub-modules:

1. Meta Read/Write state m/c

2. SIU Read/Write state m/c, Credit based Flow control logic

3. Command/Data Buffering on the Write path and the Read return paths

4. Two levels of buffering to store two commands and corresponding 64byte data on
the outbound and inbound path of the Translator.
Chapter 6 Network Interface Unit (NIU) 6-189

6.29.1 Block Diagram

FIGURE 6-90 SMX Module Block Diagram

SIU

SMX

Meta Arb

Clients
(tdmc, rdmc, txc)

SIU

Meta

Interface

Interface

DMA
Read/Write

DMA
Response

DMA
Read return

DMA
Write

Request

Write completiondata/Read
6-190 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

6.29.2 SMX Data Flow Diagram

FIGURE 6-91 SMX Data Flow

SIO SII

DMU

Translator Translator

Arbitor

Translator

Response s/m/
transaction complete

Sii Protocol s/m/

Read s/m/
Write request s/m/

segmentation

x4 x4 x16

x4 x16

sii_header sii_data

Transaction
Reassembly

rdresp

wrresp np_rd
p_wr
np_wr

 Tables segmentation
tag management

credit management
Chapter 6 Network Interface Unit (NIU) 6-191

6.29.3 Description of Bus Interfaces to the SMX Module

6.29.3.1 SIU Interface

The SIU-NIU Interface is specified in the SIU Microarchitecture document, please
refer to the SIU Volume 1, Chapter 6 for timing diagrams and Header format

TABLE 6-61 SII-SMX Interface

Signal Name I/O Size From/To Description

niu_sii_hdr_vld O 1 SMX->SII Asserted for one cycle (header cycle) to indicate that the
header packet is being sent on the data pins(niu_sii_data.).

niu_sii_reqbypass O 1 SMX->SII Indicated that NIU is sending packet to SII’s (bypass) Queue.
Asserted in the header valid cycle.

niu_sii_datareq O 1 SMX->SII Indicates that header has a payload following the header valid
cycle, this is also asserted in the header cycle.

niu_sii_oqdq I 1 SII->SMX Dequeue signal for the ordered queue.

niu_sii_bqdq I 1 SII->SMX Dequeue signal for the bypass queue.

niu_sii_data O 128 SMX->SII Contains the header in the header cycle (1st cycle) and the
payload in the following data cycles. Data is in big endian
format.

niu_sii_parity O 8 SMX->SII Contains the parity for each 16 bit of data. See RAS
documentation.

TABLE 6-62 SIO-SMX Interface

Signal Name I/O Size From/To Description

sio_niu_hdr_vld I 1 SIO->SMX Asserted for one cycle (header cycle) to indicate that the header
packet is being sent on the data pins(sio_niu_data.).

sio_niu_datareq I 1 SIO->SMX Indicates that header has a payload following the header valid
cycle, this is also asserted in the header cycle.

sio_niu_data I 128 SIO->SMX Contains the header in the header cycle (1st cycle) and the
payload in the following data cycles. Data is in big endian
format.

sio_niu_parity I 8 SIO->SMX Contains the parity for each 16 bit of data. See SOC RAS doc

nu_sio_dq O 1 SMX->SIO Dequeue signal for inbound queue; data flow from sio to smx
is flow control with 4 credits;
6-192 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

TABLE 6-63 Meta Protocol Signals

Signal Name I/O Size From/To Description

Write REQUEST

dmc_meta0_req_cmd I 8 DMU->SMX Command Requests: Memory Read, Memory Write,
Completion.

dmc_meta0_req_address I 64 DMU->SMX 64 bit Memory Address

dmc_meta0_req_transID I 6 DMU->SMX Transaction Identification

dmc_meta0_req_length I 14 DMU->SMX Data Length (byte units)

dmc_meta0_req_port_num I 2 DMU->SMX Port number corresponding to the request (to be
returned with read response)

dmc_meta0_req_dma_num I 5 DMU->SMX Dma number corresponding to the request (to be
returned with read response)

dmc_meta0_req_client I 8 DMU->SMX Requesting Client (vector, one-hot encoded)

dmc_meta0_req I 1 DMU->SMX Send Queue Request

meta_dmc0_req_accept O 1 SMX->DMU Grant Send Queue Request

Write REQUEST Data and Data Control

meta_dmc0_data_req O 1 SMX->DMU SMX Request for Burst Transfer.

dmc_meta0_data_valid I 1 DMU->SMX DMU sends data Ack with every cycle of valid data.

dmc_meta0_status I 4 DMU->SMX Packet Transfer Status: Complete, Abort.

dmc_meta0_data I 128 DMU->SMX Data.

dmc_meta0_req_byteenable I 16 DMU->SMX Contains the byteenables for each byte of data in the
16 byte data transfer. byteenable[N]==1 implies
write data[8N + 7: 8N] is enabled (valid).

dmc_meta0_transfer_comple
te

I 1 SMX->DMU Transfer complete. No additional data for this
transaction. Asserted coincidental with last data.

Write REQUEST Error Flag

meta_dmc0_req_errors O 1 SMX->DMU Flag to report errors back to NIU. Flag is
asynchronous with respect to write REQUEST
events.

Read REQUEST

dmc_meta1_req_cmd I 8 DMU->SMX Command Requests: Memory Read

dmc_meta1_req_address I 64 DMU->SMX 64 bit Memory Address

dmc_meta1_req_transID I 6 DMU->SMX Transaction Identification

dmc_meta1_req_length I 14 DMU->SMX Data Length (byte units)
Chapter 6 Network Interface Unit (NIU) 6-193

dmc_meta1_req_port_num I 2 DMU->SMX Port number corresponding to the request (to be
returned with read response)

dmc_meta1_req_dma_num I 5 DMU->SMX Dma number corresponding to the request (to be
returned with read response)

dmc_meta1_req_client I 8 DMU->SMX Requesting Client (vector, one-hot encoded)

Read REQUEST Data and Data Control

N/A

Read REQUEST Error Flag

meta_dmc1_req_errors O 1 SMX->DMU Flag to report errors back to NIU. Flag is
asynchronous with respect to write REQUEST
events.

RESPONSE Transaction Type and Transaction Control

meta_dmc_resp_cmd O 8 SMX->DMU Command Requests: Completion.

meta_dmc_resp_cmd_ststus O 4 SMX->DMU Response command status:
4’hf - timeout error

meta_dmc_resp_address O 64 SMX->DMU 64 bit Memory Address

meta_dmc_resp_transID O 6 SMX->DMU Transaction Identification

meta_dmc_resp_length O 14 SMX->DMU Data Length (byte units)

meta_dmc_resp_port_num O 2 SMX->DMU Port number corresponding to the request (to be
returned with read response)

meta_dmc_resp_dma_num O 5 SMX->DMU Dma number corresponding to the request (to be
returned with read response)

meta_dmc_resp_client O 8 SMX->DMU Requesting Client (vector, one-hot encoded)

meta_dmc_resp_ready O 1 SMX->DMU SMX to DMU command response ready

dmc_meta_resp_accept I 8 DMU->SMX Grant Receive Queue Request

RESPONSE Data and Data Control

meta_dmc_data_valid O 1 SMX->DMU Data Ack validating every cycle of valid data.

meta_dmc_data_status O 4 SMX->DMU Packet Transfer Status: Complete, Abort.

meta_dmc_data O 128 SMX->DMU Packet Data.

meta_dmc_resp_byteenable O 16 SMX->DMU Contains the byteenables for each byte of data in the
16 byte data transfer. byteenable[N]==1 implies
write data[8N + 7: 8N] is enabled (valid).

TABLE 6-63 Meta Protocol Signals (Continued)

Signal Name I/O Size From/To Description
6-194 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

meta_dmc_resp_complete O 1 SMX->DMU Single pulse on the last data cycle to indicate that
the segmented response is complete.

meta_dmc_resp_transfer_cm
pl

O 1 SMX->DMU Single pulse on the last data cycle to indicate that all
the read responses are returned from the host for the
complete request i.e. the transaction is complete.

Write Completion Transaction Type

meta_dmc_ack_cmd O 8 SMX->DMU Command Requests: Completion.

meta_dmc_ack_address O 64 SMX->DMU 64 bit Memory Address

meta_dmc_ack_transID O 6 SMX->DMU Transaction Identification

meta_dmc_ack_length O 14 SMX->DMU Data Length (byte units)

meta_dmc_ack_port_num O 2 SMX->DMU Port number corresponding to the request (to be
returned with read response)

meta_dmc_ack_dma_num O 5 SMX->DMU Dma number corresponding to the request (to be
returned with read response)

meta_dmc_ack_client O 8 SMX->DMU Requesting Client (vector, one-hot encoded)

meta_dmc_ack _ready O 1 SMX->DMU SMX to DMU command response ready

dmc_meta_ack_accept I 8 DMU->SMX Grant Receive Queue Request

Write Completion without Data

meta_dmc_ack_complete O 1 SMX->DMU Single pulse on the last data cycle to indicate that
the segmented response is complete.

meta_dmc_ack_transfer_cmp
l

O 1 SMX->DMU Single pulse on the last data cycle to indicate that all
the read responses are returned from the host for the
complete request i.e. the transaction is complete

TABLE 6-64 Command Opcode (RECEIVE and SEND command)

Bits Name Usage

7:6 Reserved

5 1=Posted, 0=Non-Posted SIU: Supported.
Reads are always Non-Posted Commands.

TABLE 6-63 Meta Protocol Signals (Continued)

Signal Name I/O Size From/To Description
Chapter 6 Network Interface Unit (NIU) 6-195

6.29.4 Meta-SIU Header Translation
The header encoding for a DMA Read/Write from NIU is shown in TABLE 6-65.

4 1=Ordered,0=Un-Ordered SIU: To send the request to the non-ordered
queue (bypass queue), assert reqbypass signal
on the SIU Header cycle.

3 Reserved

2: 0 Memory Read=000,Memory Write =
001,Completion with Data = 101Completion
without Data = 110

SIU: Supported

TABLE 6-65 SIU header/Meta Command Translation: DMA Read/Write Request

Header Cycle Name Meta Command bits niu_sii_data[127:122] Command

127=Response bit 126=Posted bit 125=Read bit 124=Write ByteMask
Active

123=L2 bit

122=NCU bit dmc_smx_cmd_req[
3]

dmc_smx_cmd_req[5] dmc_smx_cmd_req[0]

Set to 0 Set to 1 Set to 0 niu_sii_data[121:85] Reserved

Must Be Zero niu_sii_data[84:83] AP[1:0] Address Parity: AP[0]:
parity for the even bits
of PA, AP[1]: parity for
the odd bits of PA. (i.e.
PA[1], PA[3], PA[5].)

niu_sii_data[82]

TimeOutError 1=This packet had
Timed Out

Set to Zero niu_sii_data[81] UnmappedAddressError

1=This packet’s
address mapped
to an
nonexistent,
reserved, or
erroneous
address (Set to
Zero)

niu_sii_data[80] Uncorrectable Error 1=data payload has
uncorrectable error

niu_sii_data[79:64]

ID[15:0] Transaction
ID;{dmc_meta_tra
nsID[5:0],
segment}

niu_sii_data[63] Reserved Must be Zero

TABLE 6-64 Command Opcode (RECEIVE and SEND command) (Continued)

Bits Name Usage
6-196 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

6.29.5 Functional Description of Sub-blocks

6.29.5.1 Meta Request Sub-module

The meta request sub-module handles the protocol to interface with the SEND
Queue signals on the Meta interface. The Meta Command is an 8-bit encode to
specify the type of Memory Read/Write operation to be performed on the SIU bus.
The Command is decoded and translated to the Sii HEADER and placed in the Sii
FIFO. The Sii FIFO is two Commands deep.

On the data path the dmc_smx_length signal is latched in with the Command and
data is read from the DMC SEND Queue in bursts of 4 data cycles, which is 64 bytes
(16 Dwords) and placed in the Sii FIFO. As soon as this data fifo is non empty the
header and data is sent out on the Sii bus. The Translated Sii HEADER is inserted
after 4 data cycles, with the 64 byte aligned address for the data. The meta request
state machine will stay in loop processing the Write request till all the data is
converted to 64 byte chunks and read out of the DMC SEND Queue based on the
dmc_smx_length latched in with the Command. The data length can be a
non-multiple of 64 bytes (One cachline). At the trailing end of the data is not in a 64
bytes, 0s are padded in the data to make it a 64 bytes in length.

The byte enables are always set to 1s when in OpenSPARC T2 as zero-copy is not
supported in T2. Byte enables are removed from the sii and sio bus as the data is
always 64 byte aligned and it is OK to write memory with bad data at the start and
end of the packet.

The TransactionID is 6 bit on the Meta and is 16 bits on the SIU interface. The SMX
manages 64 outstanding requests and sends a new tag for each on the SII bus.

niu_sii_data[62] CP Command Parity:
Parity for bits
127-122

niu_sii_data[61:56] CtagEcc[5:0]

6-bit SEC-DED
check bits for the
16-bit Ctag field.

niu_sii_data[55:40] Reserved niu_sii_data[39:0]

PA[39:0] Segment start
address

niu_sii_reqbypass Control signal to
indicate write should
be directed to bypass
queue

!dmc_smx_cmd_req[4]

TABLE 6-65 SIU header/Meta Command Translation: DMA Read/Write Request

Header Cycle Name Meta Command bits niu_sii_data[127:122] Command
Chapter 6 Network Interface Unit (NIU) 6-197

6.29.5.2 Sii Request Sub-module

The Sii_request state machine looks at the Sii FIFO signals, if the header FIFO is not
empty and it is a read header it will initiate a read header cycle on the Sii bus. The
Command buffering is 4 deep and a Command can be written by the Meta
request/Translator block while one Command is being sent on the SIU bus. In the
case of writes it waits for the SII data FIFO to be non-empty and then send the
header followed by 4 cycles of data.

6.29.5.3 Sio Response Sub-module

Has two levels of buffering for the Header and data coming from SIU. This module
is responsible for sending the dequeue signals for doing the Credit based flow
control with the SIU block and has the state machine to support the Sio protocol.

6.29.5.4 Meta Response Sub-module

The Meta Response block handles the protocol timing for communicating with the
RECEIVE QUEUE in the DMU and passed the Read/Write response data back to the
DMU. It also computes the byte enable information from address and length and
drives the byteenable lines to the Clients.

In addition it asserts a completion signal with the last response for each transaction
ID. The Meta interface tracks the last response from the HOST for each Meta Read
request (each request has a unique transaction ID). This will require the SMX to
maintain a table of Transaction ID with a corresponding Outstanding request length
information for each request.

6.29.6 Transaction Table
Each meta request which expects responses (with or without data) is kept track via
transaction ID. SMX supports 64 transaction ID. For each meta request launched, the
corresponding packet info is stored in the transaction table. The transaction ID is
later extracted from the tagID field of sio packet header (responses). This is then
used to index the transaction table.
6-198 OpenSPARC T2 SoC Microarchitecture Specification Part 2 • May 2008

	OpenSPARC™ T2 System-On-Chip (SoC) Microarchitecture Specification (Part 2 of 2)
	Contents
	Figures
	Tables
	Preface
	Data Management Unit (DMU)
	1.1 Overview
	1.1.1 DMU Block Diagram
	1.1.2 Abbreviation
	1.1.3 General Ingress Pipeline (IP) Operations
	1.1.4 General Egress Pipeline (EP) Operations

	1.2 Functional Description of DMU Sub-blocks
	1.3 Transaction Manager Unit (TMU)
	1.3.1 TMU Function Description:
	1.3.1.1 Data Ingress Manager (DIM)
	1.3.1.2 Data Egress Manager (DEM)
	1.3.1.3 MSI-X Support:

	1.4 Interrupt Message Unit (IMU)
	1.4.1 IMU Functional Description
	1.4.1.1 Definition of Terms
	1.4.1.2 IMU Mondo State Machine
	1.4.1.3 PCI-Express/PCI-X/PCI MSI Capability Structure
	1.4.1.4 IMU Mondo INO Mapping Table
	1.4.1.5 IMU CSRs Change List

	1.5 Record Management Unit (RMU)
	1.5.1 RMU Function Description
	1.5.1.1 Link Receive Manger (LRM)
	1.5.1.2 Schedule Records Manager (SRM)
	1.5.1.3 Retire Record Manager (RRM)

	1.6 Transaction Scoreboard Unit (TSB)
	1.6.1 TSB Function Description

	1.7 Memory Management Unit (MMU)
	1.7.1 IOMMU Description
	1.7.1.1 IOMMU Bounds Check for Bypass Mode
	1.7.1.2 Customized Virtual Tag Buffer Design
	1.7.1.3 Customized Physical Tag Buffer Design

	1.8 Context Manager Unit (CMU)
	1.8.1 CMU Function Description
	1.8.1.1 Receive Context Manager (RCM)
	1.8.1.2 Transmit Context Manager (TCM)
	1.8.1.3 Context Record (CTX)

	1.9 Packet Manager Unit (PMU)
	1.9.1 PMU Function Description
	1.9.1.1 Packet Receive Manager (PRM)

	1.10 Packet Scoreboard (PSB)
	1.10.1 Add JTAG to Thread ID

	1.11 Cache Line Unit (CLU)
	1.11.1 CLU Function Description
	1.11.1.1 Cacheline Transmit Manager (CTM)
	1.11.1.2 Cacheline Receive Manager (CRM)
	1.11.1.3 Mondo Interrupt -> One Data Beat

	1.12 Data In Unit (DIU)
	1.12.1 DIU Function Description

	1.13 Data Out Unit (DOU)
	1.13.1 DOU Function Description
	1.13.2 SRAM
	1.13.2.1 Adding Test Features

	1.14 DMU SIU/NCU Interface Unit (DSN)
	1.14.1 DSN Overview
	1.14.2 DSN Block Diagrams
	1.14.3 DSN Detailed Block Diagram
	1.14.4 DSN Interface Descriptions
	1.14.4.1 DSN-SIU Interface
	1.14.4.2 DSN-SIU Interface List
	1.14.4.3 SIU to DSN Egress Commands
	1.14.4.4 SIU to DSN Outbound Header sent by SIU (DMA rd cpls only)
	1.14.4.5 Bit Mapping from DSN to SII for DMA rd/wr Requests
	1.14.4.6 Bit Mapping from NCU/SIU Header to DMU for DMA/Int ack/nack
	1.14.4.7 DMU to SIU Ingress Commands
	1.14.4.8 DSN to SII Header as sent by DSN
	1.14.4.9 DSN-SII Header RAS
	1.14.4.10 DSN-SII Interface Timing Diagrams
	1.14.4.11 DSN-NCU Interface Description
	1.14.4.12 DSN-NCU Interface Pin List
	1.14.4.13 NCU-DSN Egress PIO Commands
	1.14.4.14 Bit Mapping from NCU Header to DMU for PIO rd/wr
	1.14.4.15 NCU-DSN Timing Diagram
	1.14.4.16 NCU to DSN Command Header Info
	1.14.4.17 NCU to DSN Header for MMU Invalidates

	1.14.5 DSN-DMU Interface

	1.15 Interface Layer Unit (ILU)
	1.15.1 Overview
	1.15.2 Block Diagram
	1.15.3 Functional Description
	1.15.4 Interface Signals
	1.15.5 Transaction Flow
	1.15.6 Passing Data Across Clock Domains
	1.15.6.1 Synchronizer Scenario
	1.15.6.2 Gray-Coded Buffer Pointers
	1.15.6.3 Auto-Update Req-Ack Interface
	1.15.6.4 Demand-Based Req-Ack Interface

	1.15.7 IIL Sub Block
	1.15.7.1 IIL Block Diagram
	1.15.7.2 IIL Timing Diagram
	1.15.7.3 Assumptions

	1.15.8 ILU PEU Interface
	1.15.8.1 Block Diagram
	1.15.8.2 ILU-PTL Signal Interface
	1.15.8.3 Data Buffers
	1.15.8.4 Buffer Management
	IHB And IDB
	EHB And EDB

	1.15.8.5 IIL Type Decoder
	1.15.8.6 Drain State
	1.15.8.7 PCI-E Flow Control Credit Processing
	1.15.8.8 PIO Completion Time Out

	1.15.9 EIL Sub Block
	1.15.9.1 EIL Block Diagram
	1.15.9.2 EIL Timing Diagram
	1.15.9.3 EIL Record Format
	1.15.9.4 EIL Type Decoder
	1.15.9.5 EIL Buffer Manager
	1.15.9.6 EIL Finite State Machines
	1.15.9.7 EIL Data Alignment
	1.15.9.8 EIL Release Generating

	1.15.10 CIB Sub Block
	1.15.11 ISB Sub Block
	1.15.12 ILU Idle Check

	1.16 Pin Mapping
	1.17 RAS
	1.17.1 DSN/SII-SIO RAS Interface
	1.17.2 DSN/NCU RAS Interface
	1.17.3 DMU Internal RAS
	1.17.4 RAS Interface Signals
	1.17.5 Error Cases
	1.17.6 IOMMU RAS
	1.17.7 No Syndrome Register in DSN

	1.18 Resets
	1.19 Content and Status Registers (CSRs)
	1.19.1 CSR Address Decoding
	1.19.2 Content and Status Register (CSR) Related Pins
	1.19.3 CSR Block Diagram

	1.20 Transaction Ordering
	1.21 DEBUG Features
	1.21.1 Quiescent DMU/SII/SIO Interface
	1.21.2 Debug Busses
	1.21.3 All PCI-Ex Error Output
	1.21.4 Debug Interface Signals
	1.21.5 DSN Debug Signals

	Miscellaneous I/O (MIO) Specification
	2.1 Overview
	2.1.1 MIO Interface with System and Rest of OpenSPARC T2
	2.1.2 Internal Pullups/Pulldowns in MIO for Inputs
	2.1.3 MIO Clocking
	2.1.4 DFT Support for MIO

	2.2 Debug Port
	2.2.1 DTM Support in MIO
	2.2.2 Timing Spec for Debug Port Signals for Reliable Logic Analyzer Sampling

	2.3 MIO RTL Hierarchy

	Debug
	3.1 Overview
	3.2 OpenSPARC T2 Debug Features
	3.2.1 Observability
	3.2.1.1 CLK/PLL Observability
	3.2.1.2 Debug Port
	Repeatability Mode
	Tester Characterization/CPU Debug mode
	SoC Observability Mode

	3.2.2 Repeatability
	3.2.2.1 FBDIMM Link training after Debug Reset
	3.2.2.2 I/O Quiescent in OpenSPARC T2 During Checkpoint

	3.2.3 Debug Events
	3.2.3.1 Debug Events in SPARC Cores
	3.2.3.2 Debug Events in SoC

	3.2.4 Joint Test Action Group (JTAG) Access
	3.2.4.1 JTAG Scan out
	3.2.4.2 JTAG Shadow Scan
	3.2.4.3 JTAG Boundary Scan
	3.2.4.4 JTAG CREG/UCB Access
	3.2.4.5 Clock Stretch
	3.2.4.6 Clock Stop
	Serial and Parallel Clock Stop Modes
	Hard Stop
	Soft Stop
	Clock Stop Domains

	3.2.4.7 Single Stepping, Disable Overlap, Cycle Step, Run N Instructions

	3.2.5 Fatal Error Indication on Pin
	3.2.6 TRIGIN and TRIGOUT pins
	3.2.7 DTM Support in DB1,MIO modules
	3.2.7.1 MCU DTM Mode Signals

	3.3 OpenSPARC T2 Core Debug Features
	3.3.1 Basic Features
	3.3.2 Enhanced Features
	3.3.3 Details of the OpenSPARC T2 Core Debug Features
	3.3.3.1 Instruction Breakpoints
	3.3.3.2 Instruction and Data Address Watchpoints
	3.3.3.3 Trap on Taken Control Transfer
	3.3.3.4 Single Instruction Step
	3.3.3.5 Disable Overlap
	3.3.3.6 Soft-Stop Request from TCU to Core
	3.3.3.7 Shadow Scan
	3.3.3.8 Debug Event Control Register

	3.4 Core Interface with the TCU
	3.4.1 Clock Interface
	3.4.1.1 Tcu_spc_clk_stop
	3.4.1.2 Core_available & Core_enabled
	3.4.1.3 Core_running[7:0] & Core_running_status[7:0]
	3.4.1.4 Scan_enable
	3.4.1.5 Spc_hardstop_request[7:0] & Spc_softstop_request[7:0]

	3.4.2 Debug Event Interface
	3.4.2.1 spc_trigger_pulse[7:0]

	3.4.3 Scan Interface
	3.4.3.1 Scan_in
	3.4.3.2 Scan_out
	3.4.3.3 Shadow_scan_in
	3.4.3.4 Shadow_scan_cntrl[n:0]
	3.4.3.5 Shadow_scan_out

	3.4.4 Single Step Mode Signals (and Single Step Usage Model)
	3.4.5 Disable Overlap Mode Signals (and Usage Model)

	3.5 Debug Block Interface Signals
	3.6 Debug Blocks (dbg0.v and dbg1.v)
	3.6.1 OpenSPARC T2 Debug Port
	3.6.2 CSR Block in Debug.v

	3.7 Debug Appendix
	3.7.1 Checkpoint Sequence (SW-HW interaction)
	3.7.2 SW Visible State Lost on Debug Reset
	3.7.3 Registers to Support Debug
	3.7.3.1 Debug Port Configuration Register
	3.7.3.2 RESET_GEN Register
	3.7.3.3 RESET_SOURCE Register
	3.7.3.4 ASI_WMR_VEC_MASK Register
	3.7.3.5 MCU Channel Read Latency Register
	3.7.3.6 MCU Sync Frame Frequency Register
	3.7.3.7 Subsystem Reset Register
	3.7.3.8 I/O Quiesce Control Register
	3.7.3.9 Core DECR Register
	3.7.3.10 SoC DECR Register
	3.7.3.11 L2 Mask Register
	3.7.3.12 L2 Compare Register
	3.7.3.13 DMU Core and Block Interrupt Enable Register
	3.7.3.14 DRAM Debug Trigger Enable Register
	3.7.3.15 NCU Debug Trigger Enable Register
	3.7.3.16 L2 Error Enable Register
	3.7.3.17 ASI_OVERLAP_MODE Register
	3.7.3.18 PEU Debug Select A Register
	3.7.3.19 PEU Debug Select B Register
	3.7.3.20 DMU Debug Select Register for DMU Debug Bus A
	3.7.3.21 DMU Debug Select Register for DMU Debug Bus B

	Electronic Fuse Unit (EFU)
	4.1 Overview
	4.1.1 Definitions of Terms Used

	4.2 EFU Block Diagram
	4.2.1 Unit Functional Description of EFU
	4.2.1.1 eFuse Array (EFA)
	4.2.1.2 eFuse Controller (FCT)
	4.2.1.3 TCU Interface

	4.3 EFU Logical Implementation
	4.3.1 eFuse Modes of Operations
	4.3.1.1 Power On Reset Read Mode
	4.3.1.2 JTAG Read Access
	4.3.1.3 Fuse Programming Mode
	4.3.1.4 JTAG Fuse Bypass Mode
	4.3.1.5 Fuse Sample Mode

	4.3.2 Interface with NCU, SRAM Header Flops and TCU Destinations
	4.3.2.1 EFU to SRAM Header Flops
	4.3.2.2 SRAM to EFU Interface:
	4.3.2.3 EFU to NCU Interface:
	4.3.2.4 TCU to EFU Transfers
	4.3.2.5 EFU to TCU:

	4.3.3 Register Formats
	4.3.3.1 RV REGISTER CLEAR ID
	4.3.3.2 Block ID
	4.3.3.3 SRAM Redundancy Register Formats:
	4.3.3.4 L2 Data Array EFA Entry Definition
	4.3.3.5 L1 INSTRUCTION CACHE (ICD) EFA Entry Definition
	4.3.3.6 L1 data cache array redundancy register (DCD) definition
	4.3.3.7 Core Available
	4.3.3.8 L2 Bank Available
	4.3.3.9 FSR SERDES Trimming Registers
	4.3.3.10 DMU DATA Registers
	4.3.3.11 SER_NUM Programming

	4.4 Unit-Level Interface Signals
	4.5 Miscellaneous/Multiple Clock Domains
	4.6 eFuse Array Specification
	4.6.1 eFuse Array Organization
	4.6.2 eFuse Array Functions
	4.6.3 Timing Diagrams
	4.6.4 Interface Table

	Reset Unit Specification
	5.1 OpenSPARC T1 and OpenSPARC T2 Partitioning
	5.2 Reset Overview
	5.2.1 Goals
	5.2.2 Nomenclature
	5.2.3 Priority
	5.2.4 OpenSPARC T2 Structures that Hold State
	5.2.5 eFuse destination Flops and Latches
	5.2.6 Latches
	5.2.7 Flip-Flops Outside of SRAMs
	5.2.8 SRAM Input Flops
	5.2.9 SRAM Output Flops
	5.2.10 Core Array Contents
	5.2.11 NIU, DMU-PEU, RST, and TAP Reset Implementations Differ
	5.2.12 Eliminating Clock Contention
	5.2.12.1 Before gclk starts
	5.2.12.2 After gclk starts, Asic SE deasserts, and Asic clk_ctop deasserts
	5.2.12.3 Two Signals Require Asynchronous Assert, Synchronous Deassert.

	5.3 Types of Reset
	5.3.1 TRST_
	5.3.2 POR
	5.3.3 DBR
	5.3.4 WMR
	5.3.4.1 A Fatal Error causes a WMR
	5.3.4.2 Conflicting Demands placed on WMR

	5.3.5 WMR Trap and SPARC-V9 POR Trap
	5.3.5.1 How OpenSPARC T1 Starts its Virtual Cores at Reset
	5.3.5.2 How OpenSPARC T2 Starts its Virtual Cores at Reset

	5.3.6 XIR
	5.3.6.1 JTAG can cause XIR

	5.3.7 WDR
	5.3.7.1 Tomatillo SouthBridge System_watchdog Timer Signal
	5.3.7.2 CMP Watchdog Reset, WDR

	5.3.8 XIR, WDR, and SIR Perform No Reset

	5.4 Machine State after Each Kind of Reset
	5.4.1 Venn Diagram
	5.4.2 Reset Signals Asserted for each Kind of Reset
	5.4.3 POR Clears the Valid Bits in the L2T Directory of L1 Tags CAM

	5.5 OpenSPARC T2 is a System On a Chip
	5.5.1 System On a Board
	5.5.2 System On a Chip
	5.5.3 Serial System Interface, SSI
	5.5.4 Connections between RST and Other Clusters

	5.6 Registers
	5.6.1 (0x89-0000-0808) Reset Generation Register, RESET_GEN
	5.6.2 (0x89-0000-0818) Reset Source Register, RESET_SOURCE
	5.6.3 (0x89-0000-0838)Subsystem Reset Register, SSYS_RESET
	5.6.4 (0x89-0000-0810) Reset Status Register, RSET_STAT
	5.6.5 (0x89-0000-0820) Fatal Error Enable Register, RESET_FEE
	5.6.6 (0x89-0000-0860) Clock Control Unit Time Register, CCU_TIME
	5.6.7 (0x89-0000-0870) Lock Time Register, LOCK_TIME
	5.6.8 (0x89-0000-0880) Propagation Time Register, PROP_TIME
	5.6.9 (0x89-0000-0890) NIU Time Register, NIU_TIME

	5.7 Power-On Reset Sequence Overview
	5.7.1 Power-On Reset Duration in a System
	5.7.2 Power-On Reset Duration on a Tester
	5.7.3 Warm Reset Duration in a System
	5.7.4 Warm Reset Duration on a Tester

	5.8 Deterministic Behavior
	5.9 Power-On Reset Sequence
	5.9.1 During PWRON_RST_L (including POR1)
	5.9.2 After PWRON_RST_L (including POR2)
	5.9.3 Power-On Reset Sequence - End of POR1
	5.9.4 Pre-WMR Boot Code
	5.9.5 During WMR1
	5.9.6 After WMR
	5.9.7 Post-WMR Boot Code

	5.10 Warm Reset Sequence
	5.10.1 Before rst_mwr_
	5.10.2 During rst_wmr_
	5.10.3 After rst_wmr_
	5.10.4 Post-WMR Boot Code

	5.11 Reset Sequence for DBG
	5.12 Reset Sequence for NIU
	5.13 Reset Sequence for XIR
	5.14 Reset and Scan of the Reset Unit
	5.14.1 tcu_rst_clk_stop
	5.14.2 tcu_rst_io_clk_stop

	5.15 Reset Unit Ports
	5.15.1 Input Ports
	5.15.2 Output Ports

	5.16 Appendices
	5.16.1 OpenSPARC T1 Thread Suspension Differs from CMP Suspend
	5.16.2 CMP Disabling and Parking of Virtual Cores
	5.16.3 OpenSPARC T1 Reset Sequence
	5.16.4 Glossary
	5.16.5 Glossary of Shadow Terms
	5.16.6 Promotion among Core Available, Enable, and Status registers

	Network Interface Unit (NIU)
	6.1 Introduction
	6.1.1 Context for OpenSPARC T2
	6.1.2 Features and Requirements
	6.1.3 Design Goals
	6.1.4 Buffering Analysis
	6.1.5 Single 10 Gigabit Port Active
	6.1.6 All 10G and 1G Ports Active
	6.1.6.1 Transaction Time-Outs and System Errors
	Transaction Time-Outs

	6.1.7 Data Alignment Format for Internal Datapath
	6.1.7.1 Request Data Format
	6.1.7.2 Response Data Format

	6.2 Chip Overview
	6.3 Configuration and Modes of Operation
	6.4 Effective Performance Targets for various Host Bus variants of NIU
	6.5 Theory of Operation
	6.6 Receive Datapath
	6.7 Input Packet Processor (IPP)
	6.8 Header Parser and Classification Engine (FFLP)
	6.9 Receive DMA Engine
	6.10 Transmit Datapath
	6.11 Transmit DMA Controller
	6.11.2 Cache Management Engine
	6.11.3 Tx DMA Cache RAM
	6.11.4 Tx DMA Cache Fetch Engine
	6.11.5 Tx DMA Cache Write Engine

	6.12 Tx Controller Interface
	6.13 Transmit Controller
	6.14 Ethernet MicroArchitecture Specification (MAC,MIF)
	6.14.1 MAC Network Connections
	6.14.1.1 T2 Network Interface Connections

	6.14.2 Ethernet Port Configuration Table
	6.14.4 T2 MAC Loopback Mode

	6.14.5 Serdes - MAC Interface Signals

	6.15 NIU_RXC_TOP Microarchitecture Specification
	6.15.1 NIU_RXC_TOP Overview

	6.16 NIU_RXC_TOP Sub-Modules
	6.16.1 niu_ipp
	6.16.2 fflp
	6.16.3 niu_zcp
	6.16.4 tcam
	6.16.5 vlan_table

	6.17 NIU_IPP Microarchitecture Specification
	6.17.1 NIU_IPP Overview
	6.17.2 NIU_IPP Interface signals
	6.17.3 NIU_IPP Interface Timing
	6.17.4 IPP Operation
	6.17.5 IPP_LOAD
	6.17.5.1 Interface with MAC
	6.17.5.2 Interface with FFLP
	6.17.5.3 SRAM

	6.17.6 IPP_UNLOAD
	6.17.6.1 Interface with RDMC
	6.17.6.2 SRAM

	6.17.7 Checksum

	6.18 NIU_PIO Microarchitecture Specification
	6.18.1 NIU_PIO Overview
	6.18.2 NIU_PIO Interface Signals
	6.18.3 NIU_PIO Interface Timing
	6.18.3.1 PIO - Client Interface Protocol
	6.18.3.2 PIO - UCB Interface Protocol
	6.18.3.3 PIO Write Cycle
	6.18.3.4 PIO Read Cycle
	6.18.3.5 PIO Error Condition

	6.18.4 Interrupt Controller Microarchitecture

	6.19 FFLP Microarchitecture
	6.19.1 Overview
	6.19.2 Interface Signals
	6.19.3 Interface Timing
	6.19.3.1 Principle of CAM Access:

	6.19.4 FFLP Microarchitecture Block
	6.19.6 L2/L3/L4 Header Classification
	6.19.6.1 Header Parsing
	6.19.6.2 L2 Header Classification
	6.19.6.3 L3/L4 Header Classification

	6.19.7 TCAM Classification
	6.19.7.1 Associative Memory Organization
	6.19.7.2 Search Key & Search Execution

	6.20 ZCP Microarchitecture
	6.20.1 ZCP Overview
	6.20.2 ZCP Interface Signals
	6.20.3 ZCP Microarchitecture Block
	6.20.4 RDC Table Microarchitecture
	6.20.5 ZCP State Machine Microarchitecture
	6.20.6 ZCP Control FIFO Microarchitecture
	6.20.8 ZCP FIFO Memory Configuration

	6.21 RDMC Microarchitecture Specification
	6.21.1 RDMC Overview
	6.21.2 RDMC Interface Signals
	6.21.3 RDMC Interface Timing
	6.21.4 RDMC Microarchitecture Block
	6.21.5 Descriptor Cache & Descriptor Fetch
	6.21.6 Packet Buffer Selection
	6.21.7 Port Scheduler
	6.21.8 Packet Processing
	6.21.9 Completion Shadow RAM and Completion Write Back
	6.21.10 Mailbox Update
	6.21.11 Drop Packet

	6.22 TDMC Microarchitecture Specification
	6.22.1 TDMC Overview
	6.22.2 TDMC Interface Signals
	6.22.2.1 Transmit Controller Engine and Transmit DMA Interface
	6.22.2.2 Transmit Controller Engine and Transmit DMA Error Interface
	6.22.2.3 Transmit DMA-Meta Interface Signals
	6.22.2.4 Transmit DMA Interface and PIO Interface

	6.22.3 TDMC Interface Timing Diagrams
	6.22.3.1 TXC-TDMC Interface Timing Diagrams
	6.22.3.2 TDMC-Meta Interface Timing Diagrams
	6.22.3.3 TDMC-PIO Interface Timing Diagrams

	6.22.4 Functional Block Diagram

	6.23 TXC Microarchitecture Specification
	6.23.1 TXC Overview
	6.23.2 Meta Interface Signals
	6.23.3 TXC to TDMC Interface
	6.23.4 TXC to 10 G MAC Interface
	6.23.5 PIO Interface
	6.23.6 NIU_TXC Block Diagrams

	6.24 Meta Arb Microarchitecture Specification
	6.24.1 Meta Arb Overview
	6.24.2 Meta Arb Interface Signals

	6.25 Meta Interface Microarchitecture Specification
	6.25.1 Meta Interface Overview
	6.25.2 Meta Request Interface Signals
	6.25.3 Write Request Interface Signals
	6.25.4 Write Request Interface Timing
	6.25.5 Read Request Interface Signals
	6.25.6 Read Request Interface Timing
	6.25.7 Response Interface Signals
	6.25.8 Response Interface Timing
	6.25.9 Alignment for Request and Response Data
	6.25.9.1 Request Data Format
	6.25.9.2 Response Data Format

	6.25.10 Acknowledgment Signals

	6.26 Interrupt Microarchitecture Specification
	6.26.1 Interrupt Overview
	6.26.2 Interrupt Event Generation
	6.26.3 Interrupt Request Arbitration
	6.26.4 Interrupt SID Generation

	6.27 Debug Microarchitecture Specification
	6.27.1 Overview
	6.27.2 Debug Port

	6.28 N2 NIU Design for Test
	6.28.1 Membist Block Diagrams
	6.28.2 MAC Wrapper DFT Clocks
	6.28.3 MAC Wrapper DFT Port Names
	6.28.4 RDP Wrapper DFT Port Names
	6.28.5 TDS Wrapper DFT Port Names
	6.28.6 RTX Wrapper DFT Port Names
	6.28.7 SMX Module DFT Port Names
	6.28.8 TDMC Module DFT Port Names
	6.28.9 RDMC Module DFT Port Names
	6.28.10 TXC Module DFT Port Names
	6.28.11 RXC Module DFT Port Names
	6.28.12 Controller to SRAM Mapping
	6.28.13 Scan and MEMBIST Signals for NIU SRAMs
	6.28.14 SRAM Array Signal Names
	6.28.15 Membist Controller Port Names
	6.28.16 RAM vs. Membist Controller Connectivity

	6.29 SMX Microarchitecture
	6.29.1 Block Diagram
	6.29.2 SMX Data Flow Diagram
	6.29.3 Description of Bus Interfaces to the SMX Module
	6.29.3.1 SIU Interface

	6.29.4 Meta-SIU Header Translation
	6.29.5 Functional Description of Sub-blocks
	6.29.5.1 Meta Request Sub-module
	6.29.5.2 Sii Request Sub-module
	6.29.5.3 Sio Response Sub-module
	6.29.5.4 Meta Response Sub-module

	6.29.6 Transaction Table

