
SpixTools
User’s Manual

V6.1 (beta 2.0.28)

Sun Microsystems, Inc.
Palo Alto, California 94303, U.S.A.

Copyright 2005 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, California 94303, U.S.A. All
rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copy-
ing, distribution, and decompilation. No part of this product or document may be reproduced in any form
by any means without prior written authorization of Sun and its licensors, if any.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of Califor-
nia. UNIX is a registered trademark in the U.S. and other countries, exclusively licensed through X/Open
Company, Ltd.

Sun, Sun Microsystems, Sun Microelectronics, the Sun Logo, Solaris, and SunOS are trademarks or
registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an
architecture developed by Sun Microsystems, Inc.

U.S. Government approval required when exporting the product.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Govt is subject to restrictions of
FAR 52.227-14(g) (2)(6/87) and FAR 52.227-19(6/87), or DFAR 252.227-7015 (b)(6/95) and DFAR
227.7202-3(a).

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS,
REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHAN-
TABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED,
EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2005 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, California 94303, U.S.A. All
rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copy-
ing, distribution, and decompilation. No part of this product or document may be reproduced in any form
by any means without prior written authorization of Sun and its licensors, if any.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of Califor-
nia. UNIX is a registered trademark in the U.S. and other countries, exclusively licensed through X/Open
Company, Ltd.

Sun, Sun Microsystems, Sun Microelectronics, the Sun Logo, Solaris, and SunOS are trademarks or
registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an
architecture developed by Sun Microsystems, Inc.

U.S. Government approval required when exporting the product.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Govt is subject to restrictions of
FAR 52.227-14(g) (2)(6/87) and FAR 52.227-19(6/87), or DFAR 252.227-7015 (b)(6/95) and DFAR
227.7202-3(a).

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS,
REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHAN-
TABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED,
EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Commands sadd (1sh)

NAME
sadd – add/subtract spixcounts files

SYNOPSIS
sadd – b bbout prog bbin [[±] bbin]...

DESCRIPTION
The sadd command adds or subtracts one or more spixcounts(5sh) format files, bbin , all corresponding
to the program prog to produce a new spixcounts(5sh) format file bbout . Each bbin is added by default
or if preceded by ‘+’, but subtracted if preceded by ‘– ’.

DIAGNOSTICS
Counter overflows or underflows cause sadd to terminate with a diagnostic (which includes the instruc-
tion address), but without writing bbout .

SEE ALSO
spixcounts(1sh), spixcounts(5sh).

BUGS
Negative instruction counts are not supported.

Spix Last change: 8/Oct/98 1

Commands sdas (1sh)

NAME
sdas – print disassembled code with spixcounts

SYNOPSIS
sdas [– d] [– b bbin [– s[bi]]] [±tA]... [±t[A],[B]]... [program]

DESCRIPTION
The sdas command prints a disassembled version of a program program (a.out by default) on standard
output.

The – d option causes the (normally unprinted) data segment to be printed.

The – b option causes instruction execution counts (taken from the spixcounts(5sh) format file bbin) to
be printed. For conditional branches, the number of times the branch was taken, followed by the
number of times not taken, are shown.

The – si option causes instructions to be disassembled in order of decreasing execution count. Unexe-
cuted instructions are not shown.

The – sb option causes sdas to disassemble a basic block at a time, sorting blocks by decreasing
summed instruction execution count. Before each block sdas prints the instruction execution count sum,
percent of total instructions executed, and the accumulated percentage for this and previously disassem-
bled blocks. Unexecuted blocks are not shown.

The +t/– t options may be used to restrict disassembly to the indicated regions of text.

SEE ALSO
sprint(1sh), spixcounts(1sh), spixcounts(5sh).

Spix Last change: 8/Oct/98 1

Commands spixjitcnt (1sh)

NAME
spixjitcnt – postprocess spixcounts data from JIT compiler

SYNOPSIS
spixjitcnt – o exefile – b bbfile – d datafile_out datafile_in jit_sfile ...

DESCRIPTION
The spixjitcnt command is a postprocessor for the spixcounts Shade analyzer when run on a Java JIT
compiler. JIT compilers generate code in their data space and then execute that code. The spixcounts
analyzer reports such executed instructions in a special human-readable text file, which is not understood
by the spix commands.

One deficiency of the special text file is that it does not correlate executed instructions with the Java
class files or methods that they implement. However, the JIT compiler supports an option that causes it
to write out a set of files with the disassembled instructions for each compiled Java class. The spix-
jitcnt tool combines the information from these disassemblies with the special text file written by the
spixcounts analyzer. The result is a mock executable file and corresponding spixcounts(5sh) format file
that describe the execution counts for the compiled Java classes. These files are suitable for input to the
spix commands such as spixstats, sdas, etc.

The spixjitcnt command accepts several required switches. The – o switch specifies the name of the
emitted mock executable file. This executable file contains the instructions and labels for all the com-
piled Java class methods. Note, this executable file cannot be run. It is only usable as input to the spix
commands.

The – b switch specifies the name of the spixcounts(5sh) format file containing the execution counts for
the instructions in the exefile. This file is suitable for input to the spix commands.

The – d switch specifies the name of an emitted human-readable text file. This file contains the instruc-
tions and execution counts for any instructions that do not belong to a compiled Java class method. The
format of this file is identical to the datafile_in file created by the spixcounts analyzer. The datafile_out
file may be used as input to a subsequent spixjitcnt command if desired.

After the switches, specify the names of the input files. The first input file must be the text file describ-
ing the execution counts of the instructions in an application’s data space. Typically, this file is created
from the spixcounts Shade analyzer, but it may also be the result of a prior spixjitcnt run (see the – d
switch above). Following this file is a list of disassembly files created by the JIT compiler. These files
contain the generated code and address locations for the compiled class files.

EXAMPLE
The following example demonstrates how the spixcounts, spixjitcnt, and spixstats commands can be
used to analyze the code generated for the Java clock applet. This assumes that java has been
configured to run the JIT compiler and to dump disassembly files for any compiled class files.

% spixcounts -b "%p.bb" -shlibs -data "clock.data" -- \
java sun.applet.AppletViewer clock.html

% spixjitcnt -o clock.exe -b clock.bb -d clock_out.data \
clock.data ∗.s

% spixstats -b clock.bb clock.exe

SEE ALSO
spixcounts(1sh), spixstats(1sh).

Spix Last change: 8/Oct/98 1

Commands spixstats (1sh)

NAME
spixstats – summarize spixcounts

SYNOPSIS
spixstats – b bbin [– g gfile] [±tA]... [±t[A],[B]]... [– v] [program]

DESCRIPTION
The spixstats command prints various statistics about the run-time behavior of the program program
(a.out by default) using the spixcounts(5sh) format file bbin .

The – g option allows the user to specify an alternate grouping of opcodes for various tables. gfile
should contain lines of the form:

group-name opcode-names

An opcode may appear in at most one group. Unnamed opcodes are collected into an ‘‘other’’ group.

The +t/– t options may be used to restrict statistics to the indicated regions of text.

The – v option causes spixstats to produce expanded versions of some tables.

FILES
$SHADE/lib/spixstats.groups default opcode group file

SEE ALSO
spixcounts(1sh), spixcounts(5sh).

Spix Last change: 8/Oct/98 1

Commands sprint (1sh)

NAME
sprint – print source code with spixcounts

SYNOPSIS
sprint – b bbin [– d] [– i] [– l] program source...

DESCRIPTION
The sprint command prints one or more source files, source, corresponding to the program program
with executable lines preceded by the number of times they were executed. The execution counts are
derived from the spixcounts(5sh) file bbin . The program must have been compiled with the – g option.

The – d option causes sprint to disassemble the instructions and print them along with the corresponding
source line.

With the – i option, the number of instructions executed for each executable source line is printed
instead of the number of times the line was executed.

The – l option causes sprint to line number the output source code.

SEE ALSO
cc(1), tcov(1).
sdas(1sh), spixcounts(1sh), spixcounts(5sh).

BUGS
Counts are occasionally off by one, or off by one line.

Compiling with – g precludes optimization.

Spix Last change: 8/Oct/98 1

Spix Library spix_sparc_dis (3sh)

NAME
spix_sparc_dis, spix_sparc_dis32 – Disassemble a SPARC instruction

SYNOPSIS
#include <spix_sparc.h>

size_t spix_sparc_dis(char ∗buf , size_t szbuf , spix_sparc_iop_t iop , const void ∗pinst ,
spix_addr64_t addr);

size_t spix_sparc_dis32(char ∗buf , size_t szbuf , spix_sparc_iop_t iop , const void ∗pinst ,
spix_addr32_t addr);

DESCRIPTION
These functions disassemble a single SPARC instruction into the given buffer. The buffer buf must
have size szbuf. The instruction must be represented by the opcode value iop, which is the value
returned by a previous call to spix_sparc_iop(3sh). The pointer pinst must point to the beginning of the
instruction, and addr must be the instruction’s virtual address.

Both functions write the disassembly to buf. If there is not enough room in buf, only the first szbuf
characters of the disassembly are written and the string is not NULL terminated. Otherwise, the string
is terminated with a NULL character.

The spix_sparc_dis32() function is provided for the benefit of compilers that do not support a 64-bit
integral type. Aside from limiting the address to 32 bits, it is identical to spix_sparc_dis().

RETURN VALUES
Both functions return the number of bytes written to the buffer, not including any terminating NULL
character. If an error is detected, both functions return zero. Note, when the returned value is szbuf, the
disassembly is truncated because the buffer is too small.

SEE ALSO
spix_sparc_iop(3sh), spix_sparc_iop_name(3sh), spix_sparc_ireg_name(3sh),
spix_sparc_asreg_name(3sh).

Spix Last change: 18/Sep/98 1

Spix Library spix_sparc_iop (3sh)

NAME
spix_sparc_iop – Return a SPARC instruction’s opcode value

SYNOPSIS
#include <spix_sparc.h>

spix_sparc_iop_t spix_sparc_iop(spix_sparc_ver_t ver, const void ∗pinst);

DESCRIPTION
The spix_sparc_iop() function calculates the an "opcode" value for a SPARC instruction. This opcode
value may be used with many of the functions defined in the Spix or Shade libraries, however, the
opcode value may not match any of the opcodes listed in the SPARC Architecture Manual. See the
<spix_sparc_iop.h> header for a list of possible opcode values.

The ver parameter specifies the SPARC architecture version to use when decoding the instruction. Pos-
sible values are:

SPIX_SPARC_V8
Identifies the SPARC V8 architecture.

SPIX_SPARC_V9
Identifies the SPARC V9 architecture.

The pinst parameter points to the start of the instruction to decode.

RETURN VALUES
The spix_sparc_iop() function returns the instruction’s opcode value if the instruction is defined for the
specified SPARC architecture version. It returns (spix_sparc_iop_t)-1 if it is not defined.

SEE ALSO
spix_sparc_dis(3sh), spix_sparc_iop_istype(3sh), spix_sparc_iop_name(3sh).

Spix Last change: 18/Sep/98 1

Spix Library spix_sparc_iop_istype (3sh)

NAME
spix_sparc_iop_istype – Classify SPARC instruction by type

SYNOPSIS
#include <spix_sparc.h>

spix_bool_t spix_sparc_iop_istype(spix_sparc_iop_t iop , spix_sparc_itype_t itype);

DESCRIPTION
The spix_sparc_iop_istype() function returns TRUE if the given instruction opcode is a member of the
given instruction type. The opcode iop must be the value returned by a previous call to
spix_sparc_iop(3sh). The type itype may be any one of the following values. Note the first few
correspond to the architecture independent instruction classifications in Shade.

SPIX_SPARC_ITYPE_FP
This type corresponds to the Shade SHADE_ICLASS_FP class. It selects all floating point
instructions. This includes all FPOP1 and FPOP2 instructions, all loads or stores to floating
point registers (including the %fsr register), the FBfcc and FBPfcc instructions, the MOVcc
instructions that use the %fcc conditions, and all UltraSPARC extended "vis" instructions
(including those that do not use floating point registers).

SPIX_SPARC_ITYPE_LOAD
This type corresponds to the Shade SHADE_ICLASS_LOAD class. It selects all instructions
that load a value from memory. This includes all integer load instructions, all FP load instruc-
tions, and all atomic load/store instructions.

SPIX_SPARC_ITYPE_USTORE
This type corresponds to the Shade SHADE_ICLASS_USTORE class. It selects all instruc-
tions that unconditionally store a value to memory. This includes all integer store instructions,
all FP store instructions, and the LDSTUB, LDSTUBA, SWAP, and SWAPA atomic load/store
instructions.

SPIX_SPARC_ITYPE_CSTORE
This type corresponds to the Shade SHADE_ICLASS_CSTORE class. It selects all instruc-
tions that conditionally store a value to memory. This includes the CASA and CASXA instruc-
tions.

SPIX_SPARC_ITYPE_BRANCH
This type corresponds to the Shade SHADE_ICLASS_BRANCH class. It selects all condi-
tional branch instructions, whether on the "always" condition, the "never" condition, or any
other condition. Note, this type is the union of the SPIX_SPARC_ITYPE_UBRANCH and
SPIX_SPARC_ITYPE_CBRANCH types below.

SPIX_SPARC_ITYPE_UBRANCH
This type corresponds to the Shade SHADE_ICLASS_UBRANCH class. It selects all uncon-
ditional branch instructions. This includes only conditional branch instructions on the "always"
condition. Note, it does not include CALL, JMPL, or RETURN instructions.

SPIX_SPARC_ITYPE_CBRANCH
This type corresponds to the Shade SHADE_ICLASS_CBRANCH class. It selects all condi-
tional branch instructions. This includes conditional branch instructions on any condition other
than "always".

SPIX_SPARC_ITYPE_TRAP
This type corresponds to the Shade SHADE_ICLASS_TRAP class. It selects all TCC instruc-
tions.

SPIX_SPARC_ITYPE_V8
This type selects all instructions that are defined for the SPARC V8 architecture.

SPIX_SPARC_ITYPE_V9

Spix Last change: 9/Oct/98 1

Spix Library spix_sparc_iop_istype (3sh)

This type selects all instructions that are defined for the SPARC V9 architecture. (It does not
include any of the UltraSPARC extended instructions.)

SPIX_SPARC_ITYPE_VIS
This type selects all the UltraSPARC extended "vis" instructions.

SPIX_SPARC_ITYPE_PRIV
This type selects all of the privileged instructions. It does not select instructions that are
privileged only for certain operands (such as RDASR) or that are only privileged depending on
the processor’s configuration (such as RDTICK).

SPIX_SPARC_ITYPE_BAA
This type selects all conditional branches on the "always" condition that also have the "annul"
attribute set.

SPIX_SPARC_ITYPE_DCTI
This type selects all delayed control transfer instructions.

SPIX_SPARC_ITYPE_USECCR
This type selects all instructions that use either the %xcc or %icc condition codes. This
includes the RDCCR instruction.

SPIX_SPARC_ITYPE_SETCCR
This type selects all instructions that set either the %xcc or %icc condition codes. This
includes the WRCCR instruction.

SPIX_SPARC_ITYPE_SETFCC
This type selects all instructions that set any of the floating point condition codes. This
includes the LDFSR and LDXFSR instructions.

SPIX_SPARC_ITYPE_MOVCC
This type selects all conditional integer register move instructions that are contingent on either
the integer or floating point condition codes.

SPIX_SPARC_ITYPE_FMOVCC
This type selects all conditional floating point register move instructions that are contingent on
either the integer or floating point condition codes.

SPIX_SPARC_ITYPE_MOVR
This type selects all conditional integer register move instructions that are contingent on the
value of a register.

SPIX_SPARC_ITYPE_FMOVR
This type selects all conditional floating point register move instructions that are contingent on
the value of a register.

SPIX_SPARC_ITYPE_BICC
This type selects all non-predicted branch instructions that are contingent on the integer condi-
tion codes.

SPIX_SPARC_ITYPE_FBFCC
This type selects all non-predicted branch instructions that are contingent on the floating point
condition codes.

SPIX_SPARC_ITYPE_BPCC
This type selects all predicted branch instructions that are contingent on the integer condition
codes.

SPIX_SPARC_ITYPE_FBPFCC
This type selects all predicted branch instructions that are contingent on the floating point con-
dition codes.

SPIX_SPARC_ITYPE_BPR

Spix Last change: 9/Oct/98 2

Spix Library spix_sparc_iop_istype (3sh)

This type selects all branch instructions that are contingent on the value of a register.

SPIX_SPARC_ITYPE_FPOP1
This type selects all FPOP1 instructions as defined by the SPARC Architecture Manual.

SPIX_SPARC_ITYPE_ALU
This type selects all instructions that perform an integer arithmetic or logical operation. This
does not include load, store, branch, or floating point instructions.

SPIX_SPARC_ITYPE_ILOAD
This type selects all instructions that load a value from memory into an integer register. This
includes all atomic load/store instructions.

SPIX_SPARC_ITYPE_ISTORE
This type selects all instructions that conditionally or unconditionally store a value from an
integer register into memory. This includes all atomic load/store instructions.

Note, the Shade instruction class SHADE_ICLASS_IWSTART does not have a corresponding instruc-
tion type above. Since SPARC is not a VLIW architecture, the SHADE_ICLASS_IWSTART class
selects all instructions.

The <spix_sparc.h> header also defines the following macros that provide a convenient way to test if an
instruction opcode belongs to any of the types listed above.

spix_bool_t spix_sparc_iop_isfp(spix_sparc_iop_t)
spix_bool_t spix_sparc_iop_isload(spix_sparc_iop_t)
spix_bool_t spix_sparc_iop_isustore(spix_sparc_iop_t)
spix_bool_t spix_sparc_iop_iscstore(spix_sparc_iop_t)
spix_bool_t spix_sparc_iop_isbranch(spix_sparc_iop_t)
spix_bool_t spix_sparc_iop_isubranch(spix_sparc_iop_t)
spix_bool_t spix_sparc_iop_iscbranch(spix_sparc_iop_t)
spix_bool_t spix_sparc_iop_istrap(spix_sparc_iop_t)
spix_bool_t spix_sparc_iop_isv8(spix_sparc_iop_t)
spix_bool_t spix_sparc_iop_isv9(spix_sparc_iop_t)
spix_bool_t spix_sparc_iop_isvis(spix_sparc_iop_t)
spix_bool_t spix_sparc_iop_ispriv(spix_sparc_iop_t)
spix_bool_t spix_sparc_iop_isbaa(spix_sparc_iop_t)
spix_bool_t spix_sparc_iop_isdcti(spix_sparc_iop_t)
spix_bool_t spix_sparc_iop_isuseccr(spix_sparc_iop_t)
spix_bool_t spix_sparc_iop_issetccr(spix_sparc_iop_t)
spix_bool_t spix_sparc_iop_issetfcc(spix_sparc_iop_t)
spix_bool_t spix_sparc_iop_ismovcc(spix_sparc_iop_t)
spix_bool_t spix_sparc_iop_isfmovcc(spix_sparc_iop_t)
spix_bool_t spix_sparc_iop_ismovr(spix_sparc_iop_t)
spix_bool_t spix_sparc_iop_isfmovr(spix_sparc_iop_t)
spix_bool_t spix_sparc_iop_isbicc(spix_sparc_iop_t)
spix_bool_t spix_sparc_iop_isfbfcc(spix_sparc_iop_t)
spix_bool_t spix_sparc_iop_isbpcc(spix_sparc_iop_t)
spix_bool_t spix_sparc_iop_isfbpfcc(spix_sparc_iop_t)
spix_bool_t spix_sparc_iop_isbpr(spix_sparc_iop_t)
spix_bool_t spix_sparc_iop_isfpop1(spix_sparc_iop_t)
spix_bool_t spix_sparc_iop_isalu(spix_sparc_iop_t)
spix_bool_t spix_sparc_iop_isiload(spix_sparc_iop_t)
spix_bool_t spix_sparc_iop_isistore(spix_sparc_iop_t)

RETURN VALUES
The spix_sparc_iop_istype() function and all the macros above return TRUE if the instruction is a
member of the requested type. They return FALSE if the instruction is not a member.

Spix Last change: 9/Oct/98 3

Spix Library spix_sparc_iop_istype (3sh)

SEE ALSO
spix_sparc_iop(3sh), shade_iset(3sh).

Spix Last change: 9/Oct/98 4

Spix Library spix_sparc_iop_memsize (3sh)

NAME
spix_sparc_iop_memsize – Return size of memory referenced by SPARC instruction

SYNOPSIS
#include <spix_sparc.h>

size_t spix_sparc_iop_memsize(spix_sparc_iop_t iop);

DESCRIPTION
The spix_sparc_iop_memsize() instruction returns the number of bytes of memory referenced by a load
or store instruction with the given opcode value. If the opcode iop does not correspond to a load or
store instruction, spix_sparc_iop_memsize() returns zero.

SEE ALSO
spix_sparc_iop(3sh).

Spix Last change: 18/Sep/98 1

Spix Library spix_sparc_iop_name (3sh)

NAME
spix_sparc_iop_name, spix_sparc_iop_Lname – Return the name for a SPARC instruction opcode

SYNOPSIS
#include <spix_sparc.h>

const char ∗spix_sparc_iop_name(spix_sparc_iop_t iop);

extern const size_t spix_sparc_iop_Lname;

DESCRIPTION
The spix_sparc_iop_name() function returns a NULL terminated string representation of the name for
the given opcode value. The constant spix_sparc_iop_Lname is the length of the longest string
returned by spix_sparc_iop_name().

SEE ALSO
spix_sparc_iop(3sh), spix_sparc_dis(3sh).

Spix Last change: 18/Sep/98 1

Spix Library spix_sparc_iop_regpos (3sh)

NAME
spix_sparc_iop_regpos – Return register usage at position in SPARC instruction

SYNOPSIS
#include <spix_sparc.h>

spix_sparc_ruact_t spix_sparc_iop_reguse(spix_sparc_iop_t iop , spix_sparc_rupos_t pos);

DESCRIPTION
The spix_sparc_iop_reguse() function returns an indication of how instructions with a particular opcode
use a given register field. The iop parameter specifies the opcode to query, and pos specifies the register
position. The pos parameter may have one of the following values.

SPIX_SPARC_RUPOS_RS1
Query the RS1 field of the instruction.

SPIX_SPARC_RUPOS_RS2
Query the RS2 field of the instruction.

SPIX_SPARC_RUPOS_RD
Query the RD field of the instruction.

RETURN VALUES
The spix_sparc_iop_reguse() function returns either SPIX_SPARC_RUACT_NONE to indicate that
the instruction does not use the given register field or one of the other spix_sparc_ruact_t values as
defined on spix_sparc_reguse(3sh).

SEE ALSO
spix_sparc_iop(3sh), spix_sparc_reguse(3sh).

Spix Last change: 18/Sep/98 1

Spix Library spix_sparc_ireg_name (3sh)

NAME
spix_sparc_ireg_name, spix_sparc_asreg_name – SPARC register names

SYNOPSIS
#include <spix_sparc.h>

const char ∗spix_sparc_ireg_name(unsigned reg);

const char ∗spix_sparc_asreg_name(unsigned reg);

DESCRIPTION
These functions return software names for SPARC registers. The spix_sparc_ireg_name() function
returns the software name for the integer register reg or NULL if reg is an invalid register number. The
spix_sparc_asreg_name() function returns the name of the given ancillary state register or NULL if reg
is not a valid ancillary state register number.

SEE ALSO
spix_sparc_dis(3sh).

Spix Last change: 18/Sep/98 1

Spix Library spix_sparc_reguse (3sh)

NAME
spix_sparc_reguse – Determine registers used by a SPARC instruction

SYNOPSIS
#include <spix_sparc.h>

void spix_sparc_reguse(spix_sparc_iop_t iop , const void ∗pinst ,
void (∗pfun)(spix_sparc_ruact_t, spix_sparc_rupos_t, unsigned, void ∗),
void ∗pdata);

DESCRIPTION
The spix_sparc_reguse() function reports the registers that are used, either explicitly or implicitly, by
the given instruction. The instruction’s opcode value iop must be the valued returned from a previous
call to spix_sparc_iop(3sh). The pointer pinst must point to the text of the instruction.

The spix_sparc_reguse() function calls the user-supplied pfun function once fore each register used by
the instruction. Four parameters are passed to this function. The first is one of the following values,
which indicates how the register is used.

SPIX_SPARC_RUACT_RI
SPIX_SPARC_RUACT_R2I

Instruction reads an integer register or an integer register pair.

SPIX_SPARC_RUACT_WI
SPIX_SPARC_RUACT_W2I

Instruction writes an integer register or an integer register pair.

SPIX_SPARC_RUACT_RWI
SPIX_SPARC_RUACT_RW2I

Instruction both reads and writes an integer register or integer register pair.

SPIX_SPARC_RUACT_RF
SPIX_SPARC_RUACT_R2F
SPIX_SPARC_RUACT_R4F

Instruction reads a single-precision, double precision, or quad precision floating point regis-
ter.

SPIX_SPARC_RUACT_WF
SPIX_SPARC_RUACT_W2F
SPIX_SPARC_RUACT_W4F

Instruction writes a single-precision, double precision, or quad precision floating point regis-
ter.

SPIX_SPARC_RUACT_RWF
SPIX_SPARC_RUACT_RW2F
SPIX_SPARC_RUACT_RW4F

Instruction both reads and writes a single-precision, double precision, or quad precision
floating point register.

SPIX_SPARC_RUACT_RS
SPIX_SPARC_RUACT_WS
SPIX_SPARC_RUACT_RWS

Instruction reads, writes, or both reads and writes a special register.

The second parameter to the pfun function is one of the following values, which indicates the register’s
position in the instruction.

SPIX_SPARC_RUPOS_RS1
Register is in the RS1 position.

SPIX_SPARC_RUPOS_RS2
Register is in the RS2 position.

Spix Last change: 18/Sep/98 1

Spix Library spix_sparc_reguse (3sh)

SPIX_SPARC_RUPOS_RD
Register is in the RD position.

SPIX_SPARC_RUPOS_IMP
The instruction does not explicitly reference the register, but its use is implied.

The third parameter to the pfun function is the register number. The function must interpret this register
as either an integer, floating point, or special register number according to the value of the first parame-
ter. If this is special register, the third parameter has one of the following values.

SPIX_SPARC_SREG_Y
The %y register.

SPIX_SPARC_SREG_ASI
The %asi register.

SPIX_SPARC_SREG_CCR
The %ccr register.

SPIX_SPARC_SREG_FPRS
The %fprs register.

SPIX_SPARC_SREG_FCC
One of the condition code fields of the %fsr register.

SPIX_SPARC_SREG_RM
The rounding mode field of the %fsr.

SPIX_SPARC_SREG_FSR
Another other field of the %fsr.

SPIX_SPARC_SREG_TICK
The %tick register.

SPIX_SPARC_SREG_GSR
The UltraSPARC extended %gsr register.

The final parameter to the pfun function is the pdata value passed to spix_sparc_reguse().

SEE ALSO
spix_sparc_iop(3sh), spix_sparc_iop_regpos(3sh).

Spix Last change: 18/Sep/98 2

File Formats spixcounts (5sh)

NAME
spixcounts – spixcounts file format

SYNOPSIS
#include <spixcounts.h>

DESCRIPTION
The spixcounts file format is generated by the spixcounts(1sh) Shade analyzer, and is consumed by
several of the SpixTools. This file format contains three parts: a header, basic block lengths, and basic
block execution counts.

The header has the following format:

typedef struct {
unsigned sc_magic;
unsigned sc_tsize;
unsigned sc_tsum;
unsigned sc_nbb;

} spix_schdr_t;

The sc_magic field helps distinguish this type of file from other types, and this version of spixcounts
files from other versions. It currently has the value:

#define SPIX_SC_MAGIC 0x62620011

The sc_tsize field and the sc_tsim field contain the size (in bytes) and a checksum of the original
program’s text segment.

The sc_nbb field contains the number of basic blocks in the original program.

After the header comes an array of bytes representing the lengths of each basic block. Each byte con-
tains the number of instructions (4 byte words) in its basic block. Blocks longer than 255 instructions
must be split, so their lengths can be represented in a byte. This section of the spixcounts file is padded
on the end to a word boundary.

Finally comes for each basic block a pair of (4 byte) counters. For basic blocks containing a branch, the
first counter contains the number of times the branch was taken, and the second contains the number of
times the branch wasn’t taken. For other executable blocks, the first counter contains the number of
times the block was executed. For non-executable blocks (e.g. data) both counters will have the value:

#define SPIX_SC_BADCNT 0xffffffff

DIAGNOSTICS
Commands which read spixcounts files may produce the following diagnostics:

spixcounts-file: bad magic
The magic number (sc_magic) field in the file spixcounts-file was incorrect (not
SPIX_SC_MAGIC). The file is not (the expected version of) a spixcounts file.

program and spixcounts-file don’t jibe
This indicates a mismatch in text size (sc_size) or checksum (sc_tsum) between the named pro-
gram and spixcounts file. The spixcounts file must correspond to a different program.

spixcounts-file: unexpected EOF
The file spixcounts-file is incomplete. The instrumented program may have terminated before
writing the spixcounts, or an output error (e.g. insufficient disk space) may have precluded writ-
ing the spixcounts.

Spix Last change: 8/Oct/98 1

File Formats spixcounts (5sh)

SEE ALSO
spixcounts(1sh), sadd(1sh), sdas(1sh), spixstats(1sh), sprint(1sh).

Spix Last change: 8/Oct/98 2

