
RST Specification v0.1.1 #5

Craig Anderson

May 7, 2004

The purpose of this document is to specify the correct format of non-value
RST files as generated by the blaze simulator and related trace tools. While the
rstf.h file describes the syntax of the individual RST records, this document
specifies correct sequences of records, and additional information not included
in the rstf.h file.

Because shade does not simulate system level events, traces generated by
shade will not contain some records required in this specification. Shade traces
should conform to this specification to the extent possible.

1. General

(a) All fields in RST structures named “notused” or “reserved” or vari-
ants thereof are reserved for future use and have undefined contents.
Any software which consumes RST traces shall not contain references
to such fields. All software that produces traces shall set such fields
to 0. Setting unused fields to 0 may help trace compression.

2. Beginning of the Trace

(a) The first record in a trace shall be a RSTHEADER T record. It shall
contain the major and minor version of the rst header file which the
trace corresponds to. It also will have header str which will start
with RSTF MAGIC.

i. No RSTHEADER T record will appear after the first record in the
file.

(b) The second record shall be of type TRACEINFO T, with a subtype of
RST TI INFO 1.

(c) (New Requirement) The third record shall be of type TRACEINFO T,
with a subtype of RST TI INFO 2.

typedef struct {

uint8_t rtype;

uint8_t rtype2;

uint8_t max_cpu_id;

uint8_t total_num_cpus;

uint8_t major_rst_trace_version;

1

uint8_t minor_rst_trace_version;

uint8_t sub_minor_rst_trace_version;

uint8_t reserved;

uint64_t date_created;

uint64_t date_modified;

} rstf_traceinfo_3T

The fields are as follows:

• max cpu id: The maximum value of the cpuid field in INSTR T

records.

• total num cpus: The total number of unique cpuid numbers in
INSTR T. This must be less than or equal to max cpu id.

• Major, minor, sub-minor rst trace version: The version of the
RST specification with which the trace is compliant.

• date created: The date (as given by ctime(1)) that the trace file
was first created.

• date modified: The date (as given by ctime(1)) that the trace
file was last modified. If the trace file has not been modified,
filtered, or otherwise changed since it was generated, then the
date modified should be the same as the date created.

(d) A trace shall specify the MMU type in string record(s). The string
shall be of the form:
mmutype=MMUTYPE iTLB=spec1, dTLB=spec2
. and spec1 and spec2 are of the form:
(integer)(/ integer)*.
or, in case of unified TLB’s:
mmutype=MMUTYPE uTLB=spec1. Note that some configurations
may not be describable using this notation. Some trace generators
(notably Shade) model only user-level code and are exempt from this
requirement. Some example lines are:

• mmutype=cheetahplus iTLB=16/128, dTLB=16/512/512

• mmutype=spitfire iTLB=2048, dTLB=2048

(e) (New) A trace shall specify the SPARC implementation type in string
record(s). The string shall be of the form:
cputype=IMPLEMENTATION impl type. Some sample implemen-
tation types are: Some example lines are:

• cputype=spitfire

• cputype=blackbird

• cputype=cheetah

• cputype=cheetahplus

• cputype=millenium

• cputype=niagra

2

• cputype=rock

(f) A trace shall provide the initial values of:

• Trap level (tl). If the trap level is not zero, then the current trap
type, TPC, and TNPC shall be specified.

• The processor state register (pstate)

• The address space identifier (ASI) register

• The number of register windows. Currently, this is done in a
string “nwins=integer”.

(g) Before the first INSTR T record, there shall be TLB T records sufficient
to completely specify the initial contents of all TLBs in the system.
Warm-up records can be substituted for TLB records.

(h) There shall be an initial PAVADIFF T record.

3. Mid-trace requirement

(a) All STRCONT T records must be followed by either another STRCONT T

record or a STRDESC T record.

(b) Trace generators must output records for annulled instructions – they
may not be omitted. Annulled records have cpuid, pc va, and instr

valid. Ea valid is 0.

(c) A PAVADIFF T record shall be emitted when:

• Immediately before (i.e. the previous record) an instruction record
in which the PC maps to a virtual page different than the previ-
ous instruction record from the corresponding cpu, and the dif-
ference between the PA and VA differs from the previous PA/VA
difference.

• Immediately before an instruction record which is a load/store/atomic
instruction and the target of the instruction is on a different vir-
tual page than the previous load/store/atomic instruction from
the corresponding processor and the difference between the PA
and VA differs from the previous PA/VA difference. The ea valid
bit must be 1.

• (New?) When the i or d context changes. The ea valid bit must
be 1 when a d context changes.

• If a PAVADIFF T record is emitted immediately preceding an
instruction for which ea valid is zero, the ea valid bit in the
PAVADIFF T record must also be 0.

(d) Redundant PAVADIFF T records are allowed.

(e) The trace may not contain any records not specified by the version
of the rstf.h file specified in the trace’s header.

(f) TRAPEXIT T records are recommended but not required in a trace.

3

(g) If the AM bit in the pstate register is one, all virtual addresses are
limited to 32 bits. The ea va the INSTR T record must contain a
32-bit value; namely the upper 32 bits of the 64-bit ea va be zero.

4. Trap Behavior

(a) Every instruction causing a synchronous trap shall contain tr = 1.

(b) Updates of the TL register by wrpr %tl instructions should not

trigger a trap entrance or trap exit sequence of records.

(c) When a system performs a trap in hardware, the contents of the
corresponding trace are currently unspecified.

(d) Trap entrance
The trap record that is part of the start of a trap entrance has the
following fields and values:

is async Has a value of 1 if the trap is asynchronous.

tl The trap level before the trap is taken.

cpuid A value valid for this trace (see above).

ttype A valid trap type value.

pstate The pstate value before the trap is taken.

syscall If trap was caused by a system call, this contains a valid
system call number. Otherwise, it is 0.

pc The PC value before the trap.

npc The NPC value before the trap.

• Asynchronous traps
When an asynchronous trap occurs, the following records are
emitted in the specified order:

i. A TRAP T record, with async == 1.

ii. A PAVADIFF T record (if needed).

iii. An instruction record corresponding to the first instruction
of the asynchronous trap handler. The tr bit is set to 1.

• Synchronous traps, except for ITLB traps
When a synchronous trap occurs, the following records are emit-
ted in the specified order:

i. A TRAP T record, with async == 0.

ii. An instruction record corresponding to the instruction which
caused the trap. The tr bit is set to 1.

• ITLB traps

i. A TRAP T record, with async == 0.

ii. A PAVADIFF T record.

iii. An instruction record corresponding to the first instruction
in the ITLB trap handler. The tr bit is set to 1.

4

Note that no instruction record is emitted for the instruction
fetch which caused the trap.

(e) The instruction record which caused the DTLB miss has the trap bit
(tr) set.

(f) Trap exit

• Trap exit is only triggered by done or retry instructions.

• Done and retry instruction records must be preceded by a PREG

record. That record contains the following information:

– traplevel: The trap level before the retry/done instruction.

– pstate: The pstate register after the retry/done instruction.

– traptype Shall be the trap type that the processor is exiting.

– asiReg, cpuid Must be valid.

• optional Done and retry instruction records should be followed
by a REGVAL T record that contains the values of TL, TT, TPC,
and TNPC that are effective AFTER the done/retry completes.
followed by a REGVAL T

5. Multiprocessor trace specifications

(a) The interleaving of records from different CPUs in a trace is not
defined. However, some versions of the rstzip program cannot handle
large numbers of contiguous records from the same CPU. Version
three of the rstzip program does not have this limitation.

6. Multifile traces If a trace is written to more than one file in a serial manner,
the concatentation of the files must yield a valid trace with no dropped
records “between” the files.

7. Record specifications
As described earlier, the rstf.h file specifies the format of individual
records while this document describes higher level syntax and sequencing
of records. However, there are some aspects of the individual records that
are not specified in the rstf.h that nonetheless need to be defined. In
the following section, we elaborate on the definitions of a few of the RST
records. If the comments in the rstf.h file and this file differ, then one
or both of the files needs to be corrected.

(a) INSTR T record specification:

• ea valid: For instructions which conditionally or uncondition-
ally load or store a value to memory, or a control transfer in-
struction, ea valid is 1 if and only if the ea va field in the
record is valid. This must be true even if the an field is 1. In-
structions that cause synchronous traps (other than ITLB miss
traps) have ea valid equal to 1. For all other instructions,
ea valid is 0. EA VALID must be 1 for all branches and all non-
asi load/stores/atomics that have both an and tr equal to 0. If

5

the instruction record incurs a data MMU miss, the EA VALID

shall be set to 0.
(New)Information about the EA that caused the miss, or a non-
translateable address (eg internal ASI) will be supplied using
a SPECIALVAL or REGVAL record that occurs BEFORE the
instruction record but AFTER the trap record corresponding
to the trapping instruction. Note: it is not clear why we have
ea valid be one for control transfer instructions.

• tr: Broadly, the value is 1 if a trap occurred:

– In the middle of this instruction (e.g. a load that takes DTLB
trap), or

– At the end of this instruction (e.g. TRAP instruction), or

– This is the first instruction of a trap handler (e.g. ITLB trap
handler)

Note that an instruction record with tr == 1 does not always
mean that the instruction was not executed to completion.

• bt: For control transfer instructions, bt is 1 if the control trans-
fer occurred, and 0 if it did not. Control transfer instructions
include all conditional and non-conditional branches, trap in-
structions, and the done and retry instructions. In addtion, all
instructions which cause a synchronous trap to occur (except for
ITLB misses) also have bt equal to one. For all other instruc-
tions, bt is 0.

• cpuid: has a value between 0 and MAX INSTR CPUID -1, in-
clusive.
Note: This field is only 6 bits wide, which is likely to be insuffi-
cient in the future. Solutions may include using the two unused
bits in the record (which are not contiguous with the cpuid field
or each other) or the ihash field.

• ihash: The content of the ihash field is not defined in the rstf.h
file. However, existing software assumes that the field contains
the decoded instruction as returned by a call to spix sparc iop().

• instr: The instruction in 32 bit machine code form.

• pc va: The virtual address of the PC corresponding to the cur-
rent instruction

• ea va: For load/store/atomic instructions, the virtual address
of the target of the i/o instruction. For control transfer instruc-
tions, the value of NPC, which is either PC+8 or the branch
target. For all other instructions, the value is 0.

(b) PREG T record specification:

• PREG T records contain the current values of the specified regis-
ters.

• The above does not apply on trap entrance and trap exits.

6

(c) REGVAL T record specification:

• All values specified by a REGVAL T record are the values after
all actions corresponding to records before the REGVAL T record
have completed, and before any record coming after the REGVAL T

has taken effect. [XXX This is not true in current traces - see
REGVAL T records that occur before a done instruction].

Here are two tables detailing the records seen on trap entry and exit.

Table 1: Trap Entry Sequence
Record
Type/Fields

Asynchonous Trap Synchronous Trap ITLB Miss

TRAP T
(first record)

TL: Previous Trap
Level

Same Same

TT: This trap type
PSTATE: state BE-
FORE trap
PC=
NPC=

INSTR T
(second
record)
Trap Bit TR=1 TR=1 TR=1
Contains First instruction of

trap handler
Trap causing in-
struction

First instruction of
handler

Instruction IS executed NOT executed IS executed

7

Table 2: Trap Exit Sequence
Record
Type/Fields

Asynchonous Trap Synchronous Trap ITLB Miss

REGVAL T
(first record)

%g7 = value AFTER
done/retry

Same Same

%sp = ???

PREG T
(second
record)

TL:trap level BEFORE
done/retry

Same Same

TT: trap type BEFORE
done/retry
PSTATE: state AFTER
done/retry
MMU context: current

INSTR T
(third
record)

Done/Retry Instruction Same Same

8

