\ ========== Copyright Header Begin ========================================== \ \ Hypervisor Software File: catchexc.fth \ \ Copyright (c) 2006 Sun Microsystems, Inc. All Rights Reserved. \ \ - Do no alter or remove copyright notices \ \ - Redistribution and use of this software in source and binary forms, with \ or without modification, are permitted provided that the following \ conditions are met: \ \ - Redistribution of source code must retain the above copyright notice, \ this list of conditions and the following disclaimer. \ \ - Redistribution in binary form must reproduce the above copyright notice, \ this list of conditions and the following disclaimer in the \ documentation and/or other materials provided with the distribution. \ \ Neither the name of Sun Microsystems, Inc. or the names of contributors \ may be used to endorse or promote products derived from this software \ without specific prior written permission. \ \ This software is provided "AS IS," without a warranty of any kind. \ ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, \ INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A \ PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE HEREBY EXCLUDED. SUN \ MICROSYSTEMS, INC. ("SUN") AND ITS LICENSORS SHALL NOT BE LIABLE FOR \ ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING OR \ DISTRIBUTING THIS SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL SUN \ OR ITS LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR \ FOR DIRECT, INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE \ DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, \ ARISING OUT OF THE USE OF OR INABILITY TO USE THIS SOFTWARE, EVEN IF \ SUN HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. \ \ You acknowledge that this software is not designed, licensed or \ intended for use in the design, construction, operation or maintenance of \ any nuclear facility. \ \ ========== Copyright Header End ============================================ id: @(#)catchexc.fth 2.10 07/06/05 purpose: copyright: Copyright 2007 Sun Microsystems, Inc. All Rights Reserved copyright: Use is subject to license terms. \ Copyright 1985-1990 Bradley Forthware \ Solaris 2.x version \ Save the SPARC processor state after a signal. \ This code is entered as a result of a Unix signal. \ It saves the processor state and the register windows, then \ enters Forth so that the state may be examined, and possibly \ re-established later. \ Because our dictionary is independent of the ELF binary \ that loads it we can concievably end up with a 32-bit \ dictionary running in a 32-bit process environment, a 64-bit \ dictionary running in a 64-bit process environment, a 64-bit \ dictionary running in a 32-bit process environment, or \ concievably a 32-bit dictionary running in a 64-bit environment, \ (Note: the last one will only work if the dictionary is located \ entirely within the 32-bit address space, and our forth binary \ currently does not ensure that.) \ \ So we really should determine the size of the sigcontext structure \ dynamically based on the stack bias. However, to fully support \ this we need to always allocate space for 64-bit registers in \ our user save area and change the code to always save all 64-bits \ of registers even on a 32-bit dictionarey. But that's a project \ for the future. Right now I'll continue to use nget and nput. decimal only forth also hidden also forth definitions 3 global-regs %signal# %signal-code %fault-addr 3 global-regs %psr %asi %fprs 0 value unix-cpu-state hidden definitions \ ?insane prevents endless occurrences of the same exception. \ The variable "insane" is cleared after "expect" returns, \ which is indicative of a human being somewhat in control. : ?insane ( -- ) insane @ if bye then insane on ; : enterforth ( -- ) init-window ?insane handle-breakpoint ; \ Offset from the %o6 stack pointer of saved %g2. \ This depends in detail on the code in sigtramp.s \ Here is what is on the stack below the globals: \ word# 0 16 17 23 24 56 57 58 \ windowregs struct-ret args align fpregs fsr y (total) 16 1 + 6 + even 32 + 1 + 1 + /l* constant %g2-offset ( -- offset ) : exception ( -- adr ) addr %signal# ; \ This is the second level save routine. The first level is called \ from the signal handler, saving the globals and processor state registers. \ This second level is called after the handler returns, to save the \ window registers and the stacks. \ Align the start of window registers ( %o's %l's and %i's ) to 16 bytes window-registers h# 10 round-up is window-registers label finish-save spc ( %o7 ) %g1 move \ save a copy of %o7 \ Set the base register here 8 + call \ address of next instruction in spc nop here 8 - origin - base set \ relative address of current instruction spc base base sub \ subtract them to find the base address \ Find the user area 32\ \t32 'body main-task up set 32\ \t32 base up up ld \ Address of main task's user area 64\ \t32 'body main-task up set 64\ \t32 base up scr add 64\ \t32 scr 4 up ld 64\ \t32 scr 0 scr ld 64\ \t32 scr th 20 scr sllx 64\ \t32 up scr up add 32\ \t16 'body main-task up set 32\ \t16 base up tos add 32\ \t16 tos 2 up lduh 32\ \t16 tos 0 tos lduh 32\ \t16 tos th 10 tos sll 32\ \t16 up tos up add 64\ \t16 'body main-task up set 64\ \t16 base up tos add 64\ \t16 tos 6 up lduh 64\ \t16 tos 4 tos lduh 64\ \t16 tos th 10 tos sll 64\ \t16 up tos up add %g1 spc move \ restore %o7 'user unix-cpu-state %g4 nget \ Base address of save area %g0 3 always trapif \ Flush window registers to memory \ Save the ins, outs, locals window-registers ( offset ) 0 + %o0 %g4 2 pick nput \ %o0 /n + %o1 %g4 2 pick nput \ %o1 /n + %o2 %g4 2 pick nput \ %o2 /n + %o3 %g4 2 pick nput \ %o3 /n + %o4 %g4 2 pick nput \ %o4 /n + %o5 %g4 2 pick nput \ %o5 /n + %o6 %g4 2 pick nput \ %o6 /n + %o7 %g4 2 pick nput \ %o7 /n + %l0 %g4 2 pick nput \ %l0 /n + %l1 %g4 2 pick nput \ %l1 /n + %l2 %g4 2 pick nput \ %l2 /n + %l3 %g4 2 pick nput \ %l3 /n + %l4 %g4 2 pick nput \ %l4 /n + %l5 %g4 2 pick nput \ %l5 /n + %l6 %g4 2 pick nput \ %l6 /n + %l7 %g4 2 pick nput \ %l7 /n + %i0 %g4 2 pick nput \ %i0 /n + %i1 %g4 2 pick nput \ %i1 /n + %i2 %g4 2 pick nput \ %i2 /n + %i3 %g4 2 pick nput \ %i3 /n + %i4 %g4 2 pick nput \ %i4 /n + %i5 %g4 2 pick nput \ %i5 /n + %i6 %g4 2 pick nput \ %i6 /n + %i7 %g4 2 pick nput \ %i7 drop \ Establish the Data and Return stacks 'user .rp0 rp nget 'user .sp0 sp nget \ Validate the saved state true %l0 move %l0 %g4 offset-of %state-valid nput %l0 %g4 offset-of %restartable? nput \ Copy the entire Forth Data and Return stacks areas to a save area. \ Data Stack 'user pssave scr nget \ Address of data stack save area sp ps-size sc1 sub \ Bottom of data stack area ps-size sc2 move \ Size of data stack area in sc2 begin sc2 /n sc2 subcc sc1 sc2 sc3 nget 0= until sc3 scr sc2 nput \ Delay slot \ Return Stack 'user rssave scr nget \ Address of return stack save area rp rs-size sc1 sub \ Bottom of return stack area rs-size sc2 move \ Size of return stack area in sc2 begin sc2 /n sc2 subcc sc1 sc2 sc3 nget 0= until sc3 scr sc2 nput \ Delay slot \ Adjust the stack pointer to account for the top of stack register sp /n sp add \ Restart the Forth interpreter. \ Execute enterforth \itc 'acf enterforth sc1 set \itc sc1 base sc1 add \itc sc1 0 scr rtget \dtc 'acf enterforth scr set base scr %g0 jmpl nop end-code \ getexc is executed in the signal handler context. It is called \ from _sigtramp with a bunch of machine state on the %o6 stack. \ %o2 points to the sigcontext structure. \ If this is entered as a result of a breakpoint, there are two case: \ a) The breakpoint was unimplemented instruction = 0 \ This is a breakpoint that was placed in the code. \ We save the state and return to Forth. \ b) The breakpoint was unimplemented instruction = 1 \ This occurs at the end of the (restart routine. \ (restart has restored all the state except for PC and nPC \ We have to label getexc \ We have a fresh set of local registers as a result of the \ sigtramp code spc %l4 move \ Save the return address \ Set the base register here 8 + call \ address of next instruction in spc nop here 8 - origin - base set \ relative address of current instruction spc base base sub \ subtract them to find the base address \ Find the user area 32\ \t32 'body main-task up set 32\ \t32 base up up ld \ Address of main task's user area 64\ \t32 'body main-task up set 64\ \t32 base up scr add 64\ \t32 scr 4 up ld 64\ \t32 scr 0 scr ld 64\ \t32 scr th 20 scr sllx 64\ \t32 up scr up add 32\ \t16 'body main-task up set 32\ \t16 base up tos add 32\ \t16 tos 2 up lduh 32\ \t16 tos 0 tos lduh 32\ \t16 tos th 10 tos sll 32\ \t16 up tos up add 64\ \t16 'body main-task up set 64\ \t16 base up tos add 64\ \t16 tos 6 up lduh 64\ \t16 tos 4 tos lduh 64\ \t16 tos th 10 tos sll 64\ \t16 up tos up add 'user unix-cpu-state %l3 nget \ Base address of save area \ Now we need to properly handle the sigcontext structure. \ We don't know what size of structure we're looking at \ since the size of the Forth dictionary is independent of \ the ABI of the ELF executable that loaded it. We need to \ make that decision based on the stack bias. \ One thing that is probably still incorrect is that we should \ not be using nget and nput to save and restore register values \ from the user area, we should always try to save all 64-bits \ if possible. That's a bit of a problem until I make sure we \ allocate enough space in the user structure to store the regs \ and add code to DTRT on both V8 and V9 instruction set machines. %o6 1 %g0 andcc 0= if nop \ 32-bit aligned stack frame indicates a 32-bit context %o2 11 /l* %l0 ld \ Get the PC of the breakpoint instruction %l0 0 %l0 ld \ Get the instruction %l0 1 %g0 subcc \ Was it unimp=1 ? 0= if \ If so, we fix PC and nPC %l3 offset-of %pc %l0 nget \ PC from Forth save area %l0 %o2 11 /l* st \ fix PC in sigcontext %l3 offset-of %npc %l0 nget \ nPC from Forth save area %l0 %o2 12 /l* st \ fix nPC in sigcontext %l4 8 %g0 jmpl \ Return nop then \ Save the State Registers %o0 %l3 offset-of %signal# nput \ Signo %o1 %l3 offset-of %signal-code nput \ Sigcode %o3 %l3 offset-of %fault-addr nput \ Fault address %o2 11 /l* %l0 ld %l0 %l3 offset-of %pc nput \ PC %o2 12 /l* %l0 ld %l0 %l3 offset-of %npc nput \ nPC %l0 rdy %l0 %l3 offset-of %y nput \ Y %o2 10 /l* %l0 ld %l0 %l3 offset-of %psr nput \ PSR \ Save the Globals (sigtramp put them on the C stack) %g0 %l3 offset-of %g0 nput \ g0 is immutable %o2 14 /l* %l0 ld %l0 %l3 offset-of %g1 nput \ g1 is in sigcontext %g2-offset drop 15 /l* \ Note: we don't use %g2-offset, rather a constant ( offset-to-saved-%g2 ) %o2 over %l0 ld %l0 %l3 offset-of %g2 nput \ g2 4 + %o2 over %l0 ld %l0 %l3 offset-of %g3 nput \ g3 4 + %o2 over %l0 ld %l0 %l3 offset-of %g4 nput \ g4 4 + %o2 over %l0 ld %l0 %l3 offset-of %g5 nput \ g5 4 + %o2 over %l0 ld %l0 %l3 offset-of %g6 nput \ g6 4 + %o2 swap %l0 ld %l0 %l3 offset-of %g7 nput \ g7 \ Now we set the saved PC to point to the rest of the state save \ routine, the return to the signal dispatcher, which will clean \ up its stack frame and execute the Unix signal cleanup call. \ sigcleanup will restore the process to the context that existed \ at the time of the signal, except that the PC will be set to the \ finish-code routine. \ We have to do it this way to prevent nesting of the signal handler. finish-save origin- %l0 set base %l0 %l0 add %l0 %o2 11 /l* st \ Change saved PC %l0 4 %l0 add %l0 %o2 12 /l* st \ Change saved nPC else nop \ Unaligned stack, so read out a 64-bit context %o2 h# 48 %l0 ldx %l0 0 %l0 ld \ Get the instruction %l0 1 %g0 subcc \ Was it unimp=1 ? 0= if \ If so, we fix PC and nPC %l3 offset-of %pc %l0 nget \ PC from Forth save area %l0 %o2 h# 48 stx \ fix PC in sigcontext %l3 offset-of %npc %l0 nget \ nPC from Forth save area %l0 %o2 h# 50 stx \ fix nPC in sigcontext %l4 8 %g0 jmpl \ Return nop then %o0 %l3 offset-of %signal# nput \ Signo %o1 %l3 offset-of %signal-code nput \ Sigcode %o3 %l3 offset-of %fault-addr nput \ Fault address %o2 h# 48 %l0 ldx %l0 %l3 offset-of %pc nput \ PC %o2 h# 50 %l0 ldx %l0 %l3 offset-of %npc nput \ nPC %l0 rdy %l0 %l3 offset-of %y nput \ Y %o2 h# 40 %l0 ldx %l0 %l3 offset-of %psr nput \ CCR %o2 h# d8 %l0 ldx %l0 %l3 offset-of %asi nput \ ASI %o2 h# e0 %l0 ldx %l0 %l3 offset-of %fprs nput \ FPRS \ Save the Globals (sigtramp put them on the C stack) %g0 %l3 offset-of %g0 nput \ g0 is immutable %o2 h# 60 %l0 ldx %l0 %l3 offset-of %g1 nput \ g1 is in sigcontext %g2-offset drop h# 68 \ Note: we don't use %g2-offset, rather a constant ( offset-to-saved-%g2 ) %o2 over %l0 ldx %l0 %l3 offset-of %g2 nput \ g2 8 + %o2 over %l0 ldx %l0 %l3 offset-of %g3 nput \ g3 8 + %o2 over %l0 ldx %l0 %l3 offset-of %g4 nput \ g4 8 + %o2 over %l0 ldx %l0 %l3 offset-of %g5 nput \ g5 8 + %o2 over %l0 ldx %l0 %l3 offset-of %g6 nput \ g6 8 + %o2 swap %l0 ldx %l0 %l3 offset-of %g7 nput \ g7 \ Now we set the saved PC to point to the rest of the state save \ routine, the return to the signal dispatcher, which will clean \ up its stack frame and execute the Unix signal cleanup call. \ sigcleanup will restore the process to the context that existed \ at the time of the signal, except that the PC will be set to the \ finish-code routine. \ We have to do it this way to prevent nesting of the signal handler. finish-save origin- %l0 set base %l0 %l0 add %l0 %o2 h# 48 stx \ Change saved PC %l0 4 %l0 add %l0 %o2 h# 50 stx \ Change saved nPC then %l4 8 %g0 jmpl \ Return nop end-code code (restart-unix ( -- ) \ Restore the Forth stacks. \ Establish the Data and Return stack pointers 'user .rp0 rp nget 'user .sp0 sp nget \ Data Stack 'user pssave scr nget \ Address of data stack save area sp ps-size sc1 sub \ Bottom of data stack area ps-size sc2 move \ Size of data stack area in sc2 begin sc2 /n sc2 subcc scr sc2 sc3 nget 0= until sc3 sc1 sc2 nput \ Delay slot \ Return Stack 'user rssave scr nget \ Address of return stack save area rp rs-size sc1 sub \ Bottom of return stack area rs-size sc2 move \ Size of return stack area in sc2 begin sc2 /n sc2 subcc scr sc2 sc3 nget 0= until sc3 sc1 sc2 nput \ Delay slot \ Restore the Window Registers. 'user unix-cpu-state %g1 nget window-registers ( offset ) 0 + %g1 over %o0 nget \ %o0 /n + %g1 over %o1 nget \ %o1 /n + %g1 over %o2 nget \ %o2 /n + %g1 over %o3 nget \ %o3 /n + %g1 over %o4 nget \ %o4 /n + %g1 over %o5 nget \ %o5 /n + %g1 over %o6 nget \ %o6 /n + %g1 over %o7 nget \ %o7 /n + %g1 over %l0 nget \ %l0 /n + %g1 over %l1 nget \ %l1 /n + %g1 over %l2 nget \ %l2 /n + %g1 over %l3 nget \ %l3 /n + %g1 over %l4 nget \ %l4 /n + %g1 over %l5 nget \ %l5 /n + %g1 over %l6 nget \ %l6 /n + %g1 over %l7 nget \ %l7 /n + %g1 over %i0 nget \ %i0 /n + %g1 over %i1 nget \ %i1 /n + %g1 over %i2 nget \ %i2 /n + %g1 over %i3 nget \ %i3 /n + %g1 over %i4 nget \ %i4 /n + %g1 over %i5 nget \ %i5 /n + %g1 over %i6 nget \ %i6 /n + %g1 over %i7 nget \ %i7 drop \ Restore the State Registers. 'user unix-cpu-state %g7 nget %g7 offset-of %y %g4 nget %g4 0 wry \ Y nop nop nop 32\ %g7 offset-of %psr %g1 nget \ PSR 32\ %g1 8 %g1 sll %g1 28 %g1 srl \ Extract icc bits 64\ %g7 offset-of %psr %g1 nget \ CCR 64\ %g1 h# f %g1 and %g1 d# 20 %g1 srl \ Extract icc bits %g0 d# 33 always trapif \ Set icc 64\ %g7 offset-of %asi %g1 nget \ ASI 64\ %g1 0 wrasi 64\ %g7 offset-of %fprs %g1 nget \ FPRS 64\ %g1 0 wrfprs \ Restore the Globals. %g7 offset-of %g0 %g0 nget %g7 offset-of %g1 %g1 nget %g7 offset-of %g2 %g2 nget %g7 offset-of %g3 %g3 nget %g7 offset-of %g4 %g4 nget %g7 offset-of %g5 %g5 nget %g7 offset-of %g6 %g6 nget %g7 offset-of %g7 %g7 nget \ Take another trap, so we can fix up the PC's in the signal handler 1 , \ %l1 %g0 %g0 jmpl \ %g0 %g0 %g0 restore \ Do we need to do something with nPC ? end-code ' (restart-unix is restart : .signal ( -- ) [ also signals ] exception @ case SIGINT of ." Interrupt" endof SIGILL of ." Illegal Instruction" endof SIGTRAP of ." Trace Trap" endof SIGIOT of ." IO Trap" endof SIGEMT of ." Emulator Trap" endof SIGSEGV of ." Segmentation Violation" endof SIGBUS of ." Bus Error" endof SIGFPE of ." Numeric Exception" endof ." Signal # " dup 3 u.r endcase [ previous ] space ; hidden definitions : print-breakpoint .exception \ norm interactive? 0= if bye then \ Restart only if a human is at the controls ??cr quit ; ' print-breakpoint is handle-breakpoint : unix-catch-exceptions ( -- ) ['] print-breakpoint is handle-breakpoint ['] (restart-unix is restart ps-size alloc-mem to pssave rs-size alloc-mem to rssave h# 400 alloc-mem is unix-cpu-state ['] unix-cpu-state is cpu-state [ window-registers literal ] to window-registers ['] yes-accessible is accessible? [ also signals ] getexc SIGILL signal drop getexc SIGINT signal drop getexc SIGBUS signal drop getexc SIGSEGV signal drop getexc SIGTRAP signal drop getexc SIGIOT signal drop getexc SIGEMT signal drop getexc SIGFPE signal drop [ previous ] ['] .signal is .exception ; unix-catch-exceptions forth definitions headers : unix-init ( -- ) unix-init unix-catch-exceptions ; only forth also definitions