X-Git-Url: http://git.subgeniuskitty.com/screensavers/.git/blobdiff_plain/89ff0c45f60d0ed38e6bcd67b8925b0dee7cecc0..6b4b1b563ebbd3ddc4069eff5e56a260f2e92828:/hacks/WolframAutomata/WolframAutomata.c diff --git a/hacks/WolframAutomata/WolframAutomata.c b/hacks/WolframAutomata/WolframAutomata.c index 01246f2..edf1dc3 100644 --- a/hacks/WolframAutomata/WolframAutomata.c +++ b/hacks/WolframAutomata/WolframAutomata.c @@ -36,11 +36,6 @@ struct state { /* the 'evolution_history' Pixmap and subsequently ignored. */ Bool * current_generation; - /* When randomizing the seed generation, we can specify a population */ - /* density, or we can restrict to a single living cell. */ - int population_density; - Bool population_single; - /* For more information on the encoding used for rule_number and on the */ /* method used to apply it: https://en.wikipedia.org/wiki/Wolfram_code */ uint8_t rule_number; @@ -53,6 +48,7 @@ struct state { /* The following values correspond directly to independent CLI options. */ Bool random_rule; int requested_rule; + int seed_density; int cell_size; /* If cell_size=N then draw NxN pixels per cell. */ int delay_microsec; /* ...between calls to WolframAutomata_draw(). */ int num_generations; /* Reset simulation after this many generations. */ @@ -176,12 +172,22 @@ static const struct color_pair color_list[] = { /* Helper Functions */ /* -------------------------------------------------------------------------- */ +static void +randomize_seed_density(struct state * state) +{ + switch (random() % 3) { + case 0: state->seed_density = 30; break; + case 1: state->seed_density = 50; break; + case 2: state->seed_density = 70; break; + } +} + static void generate_random_seed(struct state * state) { int i; for (i = 0; i < state->number_of_cells; i++) { - state->current_generation[i] = ((random() % 100) < state->population_density) ? True : False; + state->current_generation[i] = ((random() % 100) < state->seed_density) ? True : False; } } @@ -409,9 +415,6 @@ WolframAutomata_init(Display * dpy, Window win) } /* Time to construct the seed generation for this simulation. */ - state->population_single = get_boolean_resource(state->dpy, "population-single", "Boolean"); - state->population_density = get_integer_resource(state->dpy, "population-density", "Integer"); - if (state->population_density < 0 || state->population_density > 100) state->population_density = 50; state->current_generation = calloc(1, sizeof(*state->current_generation)*state->number_of_cells); if (!state->current_generation) { fprintf(stderr, "ERROR: Failed to calloc() for cell generation in WolframAutomata_init().\n"); @@ -422,7 +425,7 @@ WolframAutomata_init(Display * dpy, Window win) /* setting the seed generation, instead drawing that information from */ /* the curated ruleset. */ switch (curated_ruleset->seed) { - case random_cell: generate_random_seed(state); break; + case random_cell: randomize_seed_density(state); generate_random_seed(state); break; case middle_cell: state->current_generation[state->number_of_cells/2] = True; break; case edge_cell : state->current_generation[0] = True; break; } @@ -430,9 +433,18 @@ WolframAutomata_init(Display * dpy, Window win) /* If we're not using a curated ruleset, process any relevant flags */ /* from the user, falling back to a random seed generation if nothing */ /* else is specified. */ - if (state->population_single) { + if (get_boolean_resource(state->dpy, "seed-left", "Boolean")) { state->current_generation[0] = True; + } else if (get_boolean_resource(state->dpy, "seed-center", "Boolean")) { + state->current_generation[state->number_of_cells/2] = True; + } else if (get_boolean_resource(state->dpy, "seed-right", "Boolean")) { + state->current_generation[state->number_of_cells-1] = True; + } else if (get_integer_resource(state->dpy, "seed-density", "Integer") != -1) { + state->seed_density = get_integer_resource(state->dpy, "seed-density", "Integer"); + if (state->seed_density < 0 || state->seed_density > 100) state->seed_density = 50; + generate_random_seed(state); } else { + randomize_seed_density(state); generate_random_seed(state); } } @@ -505,8 +517,10 @@ static const char * WolframAutomata_defaults[] = { "*length: 5000", "*cell-size: 2", "*color-index: -1", - "*population-density: 50", - "*population-single: False", + "*seed-density: -1", + "*seed-left: False", + "*seed-center: False", + "*seed-right: False", "*random-cell-size: False", "*random-delay: False", "*random-length: False", @@ -521,8 +535,10 @@ static XrmOptionDescRec WolframAutomata_options[] = { { "-length", ".length", XrmoptionSepArg, 0 }, { "-cell-size", ".cell-size", XrmoptionSepArg, 0 }, { "-color-index", ".color-index", XrmoptionSepArg, 0 }, - { "-population-density", ".population-density", XrmoptionSepArg, 0 }, - { "-population-single", ".population-single", XrmoptionNoArg, "True" }, + { "-seed-density", ".seed-density", XrmoptionSepArg, 0 }, + { "-seed-left", ".seed-left", XrmoptionNoArg, "True" }, + { "-seed-center", ".seed-center", XrmoptionNoArg, "True" }, + { "-seed-right", ".seed-right", XrmoptionNoArg, "True" }, { "-random-cell-size", ".random-cell-size", XrmoptionNoArg, "True" }, { "-random-delay", ".random-delay", XrmoptionNoArg, "True" }, { "-random-length", ".random-length", XrmoptionNoArg, "True" },