X-Git-Url: http://git.subgeniuskitty.com/screensavers/.git/blobdiff_plain/d0f3b852e00df82f39ff80eaf5ede2bb82450487..20848f707109f41eb39afbd2cdb3147a286c7dbe:/hacks/WolframAutomata/WolframAutomata.c diff --git a/hacks/WolframAutomata/WolframAutomata.c b/hacks/WolframAutomata/WolframAutomata.c index faab86b..c788f01 100644 --- a/hacks/WolframAutomata/WolframAutomata.c +++ b/hacks/WolframAutomata/WolframAutomata.c @@ -10,8 +10,10 @@ /* TODO: I suppose a lot of this stuff goes in the README instead. */ /* TODO: Explain the data structures in detail. */ /* TODO: Explain all the options, like the various starting conditions. */ +/* TODO: Explain all the dependencies like libXpm. */ +/* TODO: Explain that the program is inherently double-buffered but if you don't have VSync turned on, all those alternating lines are going to look terrible when they scroll upward. */ - +/* TODO: Add a #define for the hack version. */ /* TODO: Check manpage for all functions I use and ensure my includes are correct. I don't want to depend on picking up includes via screenhack.h. */ /* TODO: Verify everything in this file is C89. Get rid of things like '//' comments, pack all my declarations upfront, no stdint, etc. */ @@ -33,9 +35,13 @@ // Command line options // directory to output XBM files of each run (and call an external command to convert to PNGs?) // -save-dir STRING +// (could use libXpm to save an XPM and then convert to PNG with ImageMagick) (this is a single function call to go from pixmap -> file) +// (since it depends on an external library, make this whole feature optional at build-time?) // number of generations to simulate +// -random-generations // -num-generations N // delay time (speed of simulation) +// -random-delay // -delay-usec N // foreground and background color // -random-colors (highest precedence) @@ -43,6 +49,7 @@ // -background "COLORNAME" // (default is black and white) // (mention sample color combinations in manpage, and link to: https://en.wikipedia.org/wiki/X11_color_names) +// (note to the user that most color names they can naturally think of (e.g. red, purple, gray, pink, etc) are valid X11 color names for these CLI options.) // display info overlay with CA number and start conditions? // -overlay // which ruleset number to use? Or random? Or random from small set of hand-selected interesting examples? @@ -57,6 +64,7 @@ // (the two options above only apply to the simulation under the -rule-random or -rule N options. in curated mode, starting population is defined in the curation array) // TODO: In the future, add the option for user to pass list of cell IDs to turn ON. // size of pixel square (e.g. 1x1, 2x2, 3x3, etc) +// -random-pixel-size // -pixel-size N /* -------------------------------------------------------------------------- */ @@ -159,9 +167,35 @@ struct color_pair { }; // TODO: Decorations -// TODO: Populate this table with more examples. static const struct color_pair color_list[] = { + {"red", "black"}, + {"olive", "black"}, + {"teal", "black"}, + {"slateblue", "black"}, + {"violet", "black"}, + {"purple", "black"}, {"white", "black"}, + {"white", "darkgreen"}, + {"white", "darkmagenta"}, + {"white", "darkred"}, + {"white", "darkblue"}, + {"darkslategray", "darkslategray1"}, + {"lightsteelblue", "darkslategray"}, + {"royalblue4", "royalblue"}, + {"antiquewhite2", "antiquewhite4"}, + {"darkolivegreen1", "darkolivegreen"}, + {"darkseagreen1", "darkseagreen4"}, + {"pink", "darkred"}, + {"lightblue", "darkgreen"}, + {"red", "blue"}, + {"red", "darkgreen"}, + {"aqua", "teal"}, + {"darkblue", "teal"}, + {"khaki", "seagreen"}, + {"khaki", "darkolivegreen"}, + {"lightslategray", "darkslategray"}, + {"tomato", "darkslategray"}, + {"tomato", "darkcyan"} }; /* -------------------------------------------------------------------------- */ @@ -220,6 +254,10 @@ render_current_generation(struct state * state) for (xpos = 0; xpos < state->number_of_cells; xpos++) { if (state->current_generation[xpos] == True) { XFillRectangle(state->dpy, state->evolution_history, state->gc, xpos*state->pixel_size, state->ypos, state->pixel_size, state->pixel_size); + } else { + XSetForeground(state->dpy, state->gc, state->bg); + XFillRectangle(state->dpy, state->evolution_history, state->gc, xpos*state->pixel_size, state->ypos, state->pixel_size, state->pixel_size); + XSetForeground(state->dpy, state->gc, state->fg); } } } @@ -228,10 +266,31 @@ render_current_generation(struct state * state) /* Screenhack API Functions */ /* -------------------------------------------------------------------------- */ +static Bool +WolframAutomata_event(Display * dpy, Window win, void * closure, XEvent * event) +{ + return False; +} + +static void +WolframAutomata_free(Display * dpy, Window win, void * closure) +{ + struct state * state = closure; + XFreeGC(state->dpy, state->gc); + XFreePixmap(state->dpy, state->evolution_history); + free(state->current_generation); + free(state); +} + static void * WolframAutomata_init(Display * dpy, Window win) { - struct state * state = calloc(1, sizeof(*state)); // TODO: Check calloc() call + struct state * state = calloc(1, sizeof(*state)); + if (!state) { + fprintf(stderr, "ERROR: Failed to calloc() for state struct in WolframAutomata_init().\n"); + exit(EXIT_FAILURE); + } + XGCValues gcv; XWindowAttributes xgwa; const struct curated_ruleset * curated_ruleset = NULL; @@ -255,22 +314,83 @@ WolframAutomata_init(Display * dpy, Window win) state->bg = gcv.background = get_pixel_resource(state->dpy, xgwa.colormap, "background", "Background"); state->gc = XCreateGC(state->dpy, state->win, GCForeground, &gcv); - state->delay_microsec = get_integer_resource(state->dpy, "delay-usec", "Integer"); - if (state->delay_microsec < 0) state->delay_microsec = 0; - - state->pixel_size = get_integer_resource(state->dpy, "pixel-size", "Integer"); + /* Set the size of each simulated cell as NxN pixels for pixel_size=N. */ + if (get_boolean_resource(state->dpy, "random-pixel-size", "Boolean")) { + /* Although we are choosing the pixel size 'randomly', a truly random */ + /* selection would bias toward large numbers since there are more of */ + /* them. To avoid this, we select a random number for a bit shift, */ + /* resulting in a pixel size of 1, 2, 4, 8, 16 or 32, equally likely. */ + state->pixel_size = 1 << (random() % 6); + } else { + state->pixel_size = get_integer_resource(state->dpy, "pixel-size", "Integer"); + } if (state->pixel_size < 1) state->pixel_size = 1; if (state->pixel_size > state->xlim) state->pixel_size = state->xlim; state->number_of_cells = state->xlim / state->pixel_size; // TODO: Do we want to enforce that number_of_cells > 0? + /* Set the delay (in microseconds) between simulation of each generation */ + /* of the simulation, also known as the delay between calls to */ + /* WolframAutomata_draw(), which simulates one generation per call. */ + if (get_boolean_resource(state->dpy, "random-delay", "Boolean")) { + /* When randomly setting the delay, the problem is to avoid being too */ + /* fast or too slow, as well as ensuring slower speeds are chosen */ + /* with the same likelihood as faster speeds, as perceived by a */ + /* human. By empirical observation, we note that for 1x1 up to 4x4 */ + /* pixel cell sizes, values for state->delay_microsec between */ + /* 2048 (2^11) and 16556 (2^14) produce pleasant scroll rates. To */ + /* maintain this appearance, we bitshift state->pixel_size down until */ + /* it is a maximum of 4x4 pixels in size, record how many bitshifts */ + /* took place, and then shift our valid window for */ + /* state->delay_microsec up by an equal number of bitshifts. For */ + /* example, if state->pixel_size=9, then it takes one right shift to */ + /* reach state->pixel_size=4. Thus, the valid window for */ + /* state->delay_microsec becomes 4096 (2^12) up to 32768 (2^15). */ + size_t pixel_shift_range = 1; + size_t pixel_size_temp = state->pixel_size; + while (pixel_size_temp > 4) { + pixel_size_temp >>= 1; + pixel_shift_range++; + } + /* In the below line, '3' represents the total range, namely '14-11' */ + /* from '2^14' and '2^11' as the endpoints. Similarly, the '11' in */ + /* the below line represents the starting point of this range, from */ + /* the exponent in '2^11'. */ + state->delay_microsec = 1 << ((random() % 3) + 11 + pixel_shift_range); + } else { + state->delay_microsec = get_integer_resource(state->dpy, "delay-usec", "Integer"); + } + if (state->delay_microsec < 0) state->delay_microsec = 0; + + /* Set the number of generations to simulate before wiping the simulation */ + /* and re-running with new settings. */ + if (get_boolean_resource(state->dpy, "random-num-generations", "Boolean")) { + /* By empirical observation, keep the product */ + /* state->num_generations * state->pixel_size */ + /* below 10,000 to avoid BadAlloc errors from the X server due to */ + /* requesting an enormous pixmap. This value works on both a 12 core */ + /* Xeon with 108 GiB of RAM and a Sun Ultra 2 with 2 GiB of RAM. */ + state->num_generations = random() % (10000 / state->pixel_size); + /* Ensure selected value is large enough to at least fill the screen. */ + /* Cast to avoid overflow. */ + if ((long)state->num_generations * (long)state->pixel_size < state->ylim) { + state->num_generations = (state->ylim / state->pixel_size) + 1; + } + } else { + state->num_generations = get_integer_resource(state->dpy, "num-generations", "Integer"); + } /* The minimum number of generations is 2 since we must allocate enough */ /* space to hold the seed generation and at least one pass through */ /* WolframAutomata_draw(), which is where we check whether or not we've */ /* reached the end of the pixmap. */ - state->num_generations = get_integer_resource(state->dpy, "num-generations", "Integer"); if (state->num_generations < 0) state->num_generations = 2; + /* The maximum number of generations is pixel_size dependent. This is a */ + /* soft limit and may be increased if you have plenty of RAM (and a */ + /* cooperative X server). The value 10,000 was determined empirically. */ + if ((long)state->num_generations * (long)state->pixel_size > 10000) { + state->num_generations = 10000 / state->pixel_size; + } /* Time to figure out which rule to use for this simulation. */ /* We ignore any weirdness resulting from the following cast since every */ @@ -302,7 +422,7 @@ WolframAutomata_init(Display * dpy, Window win) if (state->population_density < 0 || state->population_density > 100) state->population_density = 50; state->current_generation = calloc(1, sizeof(*state->current_generation)*state->number_of_cells); if (!state->current_generation) { - fprintf(stderr, "ERROR: Failed to calloc() in WolframAutomata_init().\n"); + fprintf(stderr, "ERROR: Failed to calloc() for cell generation in WolframAutomata_init().\n"); exit(EXIT_FAILURE); } if (curated_ruleset) { @@ -331,7 +451,9 @@ WolframAutomata_init(Display * dpy, Window win) state->evolution_history = XCreatePixmap(state->dpy, state->win, state->xlim, state->num_generations*state->pixel_size, xgwa.depth); // Pixmap contents are undefined after creation. Explicitly set a black // background by drawing a black rectangle over the entire pixmap. - XSetForeground(state->dpy, state->gc, state->bg); + XColor blackx, blacks; + XAllocNamedColor(state->dpy, DefaultColormapOfScreen(DefaultScreenOfDisplay(state->dpy)), "black", &blacks, &blackx); + XSetForeground(state->dpy, state->gc, blacks.pixel); XFillRectangle(state->dpy, state->evolution_history, state->gc, 0, 0, state->xlim, state->num_generations*state->pixel_size); XSetForeground(state->dpy, state->gc, state->fg); render_current_generation(state); @@ -372,8 +494,8 @@ WolframAutomata_draw(Display * dpy, Window win, void * closure) } else { // TODO: Wait for a second or two, clear the screen and do a new iteration with suitably changed settings. // Note: Since we can't actually loop or sleep here, we need to add a flag to the state struct to indicate that we're in an 'admiration timewindow' (and indicate when it should end) - printf("infinite hamster wheel\n"); - while (1) continue; + WolframAutomata_free(dpy, win, state); + closure = WolframAutomata_init(dpy, win); } // Calculate the vertical offset of the current 'window' into the history @@ -405,6 +527,9 @@ static const char * WolframAutomata_defaults[] = { "*rule-random: False", "*population-density: 50", "*population-single: False", + "*random-delay: False", + "*random-pixel-size: False", + "*random-num-generations: False", 0 }; @@ -420,25 +545,13 @@ static XrmOptionDescRec WolframAutomata_options[] = { { "-rule-random", ".rule-random", XrmoptionNoArg, "True" }, { "-population-density", ".population-density", XrmoptionSepArg, 0 }, { "-population-single", ".population-single", XrmoptionNoArg, "True" }, + { "-random-delay", ".random-delay", XrmoptionNoArg, "True" }, + { "-random-pixel-size", ".random-pixel-size", XrmoptionNoArg, "True" }, + { "-random-num-generations", ".random-num-generations", XrmoptionNoArg, "True" }, + { 0, 0, 0, 0 } }; -static Bool -WolframAutomata_event(Display * dpy, Window win, void * closure, XEvent * event) -{ - return False; -} - -static void -WolframAutomata_free(Display * dpy, Window win, void * closure) -{ - struct state * state = closure; - XFreeGC(state->dpy, state->gc); - XFreePixmap(state->dpy, state->evolution_history); - free(state->current_generation); - free(state); -} - static void WolframAutomata_reshape(Display * dpy, Window win, void * closure, unsigned int w, unsigned int h) {