From 4751e94034485f2d53bbb171fe9762b3a279cbaf Mon Sep 17 00:00:00 2001 From: Aaron Taylor Date: Mon, 17 May 2021 18:42:48 -0700 Subject: [PATCH] Changed the way I label chapter headers in my notes. --- notes/chapter-1.tex | 2 +- notes/chapter-2.tex | 2 +- notes/chapter-3.tex | 68 ++------------------------------------------- 3 files changed, 4 insertions(+), 68 deletions(-) diff --git a/notes/chapter-1.tex b/notes/chapter-1.tex index 78834af..0051570 100644 --- a/notes/chapter-1.tex +++ b/notes/chapter-1.tex @@ -1,5 +1,5 @@ \newpage -\section{Notes: Chapter 1} +\section{Chapter 1: The Rock} \subsection{Review} diff --git a/notes/chapter-2.tex b/notes/chapter-2.tex index 448be37..b4670cf 100644 --- a/notes/chapter-2.tex +++ b/notes/chapter-2.tex @@ -1,5 +1,5 @@ \newpage -\section{Notes: Chapter 2} +\section{Chapter 2: Symbols} \subsection{Review} diff --git a/notes/chapter-3.tex b/notes/chapter-3.tex index 22ad5b0..5e923ce 100644 --- a/notes/chapter-3.tex +++ b/notes/chapter-3.tex @@ -1,5 +1,5 @@ \newpage -\section{Notes: Chapter 3} +\section{Chapter 3: Proofs} \subsection{Review} @@ -63,71 +63,7 @@ sum-of-generations type argument used when proving transitivity. from whatever Knuth eventually defines. \end{defi} -Given the obvious symbolic symmetry, we won't bother explicitly proving this -operation is commutative. - Keep in mind that this is only guaranteed to produce a valid number (per Axiom \autoref{ax:number-definition}) subject to our caveat regarding closure. -Since we have defined this operation in terms of specific forms, we must ensure -the operation behaves identically with respect to all similar forms. It would -be a shame if, for example, $0+0=0$ only held for certain values of $0$. - -\begin{theorem} \label{thm:sgkadd-welldefined} - The binary operation $\sgkadd$ on $\mathbb{U}$ is well defined. That is, for - numbers $x, x', y, z \in \mathbb{U}$ such that $x \sgkadd y = z$ and $x - \similar x'$, $\exists z' \in \mathbb{U}$ such that $x' \sgkadd y = z' - \similar z$. -\end{theorem} - -\begin{proof} - TODO -\end{proof} - -\begin{theorem} \label{thm:sgkadd-identity} - The number $0 = \surreal{}{}$ is the identity element for the binary - operation $\sgkadd$ on $\mathbb{U}$. That is, for any number $x \in - \mathbb{U}$, $x \sgkadd 0 \similar 0 \sgkadd x \similar x$. - In this behavior, the number $0$ is unique up to similarity. -\end{theorem} - -\begin{proof} - TODO -\end{proof} - -\begin{theorem} \label{thm:sgkadd-associative} - For all $x, y, z \in \mathbb{U}$, it holds that - $$(x \sgkadd y) \sgkadd z \similar x \sgkadd (y \sgkadd z).$$ -\end{theorem} - -\begin{proof} - TODO -\end{proof} - -\begin{defi} \label{defi:inverse} - For a number $x$, let \emph{negation} be defined as - $$ - -x = -\surreal{X_L}{X_R} \equiv \surreal{-X_R}{-X_L} - $$ - where $-A$ means the set of numbers $-a$ for all $a \in A$. -\end{defi} - -\begin{theorem} \label{thm:sgkadd-inverse} - For every number $x \in \mathbb{U}$, there exists a number $-x \in - \mathbb{U}$ such that $x \sgkadd -x = 0$. - In this behavior, the number $-x$ is unique up to similarity. -\end{theorem} - -\begin{proof} - TODO -\end{proof} - -Putting that all together, $(\mathbb{U},\sgkadd)$ is well defined, closed, and -respects the three group axioms. It's a group. Let's name it -$\mathbb{U}_{\sgkadd}$. It's also commutative. - - -\subsection{Conjecture} - -$\mathbb{U}_{\sgkadd}$ really is a group. - +I'll explore this definition more in the next chapter. -- 2.20.1