X-Git-Url: https://git.subgeniuskitty.com/screensavers/.git/blobdiff_plain/89ff0c45f60d0ed38e6bcd67b8925b0dee7cecc0..963226f78433e2a83465604d53c35c0da0627540:/hacks/WolframAutomata/WolframAutomata.c diff --git a/hacks/WolframAutomata/WolframAutomata.c b/hacks/WolframAutomata/WolframAutomata.c index 01246f2..fff8a8a 100644 --- a/hacks/WolframAutomata/WolframAutomata.c +++ b/hacks/WolframAutomata/WolframAutomata.c @@ -1,8 +1,10 @@ -/* (c) 2021 Aaron Taylor */ -/* See LICENSE.txt file for copyright and license details. */ +/* (c) 2021 Aaron Taylor */ +/* See LICENSE.txt file for copyright and license details. */ #include "screenhack.h" +/* Keep this source code C89 compliant per XScreensaver's instructions. */ + /* -------------------------------------------------------------------------- */ /* Data Structures */ /* -------------------------------------------------------------------------- */ @@ -36,11 +38,6 @@ struct state { /* the 'evolution_history' Pixmap and subsequently ignored. */ Bool * current_generation; - /* When randomizing the seed generation, we can specify a population */ - /* density, or we can restrict to a single living cell. */ - int population_density; - Bool population_single; - /* For more information on the encoding used for rule_number and on the */ /* method used to apply it: https://en.wikipedia.org/wiki/Wolfram_code */ uint8_t rule_number; @@ -53,6 +50,7 @@ struct state { /* The following values correspond directly to independent CLI options. */ Bool random_rule; int requested_rule; + int seed_density; int cell_size; /* If cell_size=N then draw NxN pixels per cell. */ int delay_microsec; /* ...between calls to WolframAutomata_draw(). */ int num_generations; /* Reset simulation after this many generations. */ @@ -176,12 +174,22 @@ static const struct color_pair color_list[] = { /* Helper Functions */ /* -------------------------------------------------------------------------- */ +static void +randomize_seed_density(struct state * state) +{ + switch (random() % 3) { + case 0: state->seed_density = 30; break; + case 1: state->seed_density = 50; break; + case 2: state->seed_density = 70; break; + } +} + static void generate_random_seed(struct state * state) { int i; for (i = 0; i < state->number_of_cells; i++) { - state->current_generation[i] = ((random() % 100) < state->population_density) ? True : False; + state->current_generation[i] = ((random() % 100) < state->seed_density) ? True : False; } } @@ -258,16 +266,20 @@ WolframAutomata_free(Display * dpy, Window win, void * closure) static void * WolframAutomata_init(Display * dpy, Window win) { - struct state * state = calloc(1, sizeof(*state)); + struct state * state; + XGCValues gcv; + XWindowAttributes xgwa; + XColor fg, bg; + XColor blackx, blacks; + size_t color_index; + const struct curated_ruleset * curated_ruleset = NULL; + + state = calloc(1, sizeof(*state)); if (!state) { fprintf(stderr, "ERROR: Failed to calloc() for state struct in WolframAutomata_init().\n"); exit(EXIT_FAILURE); } - XGCValues gcv; - XWindowAttributes xgwa; - const struct curated_ruleset * curated_ruleset = NULL; - state->dpy = dpy; state->win = win; @@ -282,14 +294,13 @@ WolframAutomata_init(Display * dpy, Window win) /* Set foreground and background colors for active/inactive cells. Either */ /* the user provided an index into the pre-defined color_list[] or a */ /* random entry from that same array should be selected. */ - size_t color_index = get_integer_resource(state->dpy, "color-index", "Integer"); + color_index = get_integer_resource(state->dpy, "color-index", "Integer"); if (color_index == -1) { color_index = random() % sizeof(color_list)/sizeof(color_list[0]); } else if (color_index >= sizeof(color_list)/sizeof(color_list[0])) { fprintf(stderr, "WARNING: Color index out of range.\n"); color_index = 0; } - XColor fg, bg; fg.red = color_list[color_index].fg_red; fg.green = color_list[color_index].fg_green; fg.blue = color_list[color_index].fg_blue; @@ -409,9 +420,6 @@ WolframAutomata_init(Display * dpy, Window win) } /* Time to construct the seed generation for this simulation. */ - state->population_single = get_boolean_resource(state->dpy, "population-single", "Boolean"); - state->population_density = get_integer_resource(state->dpy, "population-density", "Integer"); - if (state->population_density < 0 || state->population_density > 100) state->population_density = 50; state->current_generation = calloc(1, sizeof(*state->current_generation)*state->number_of_cells); if (!state->current_generation) { fprintf(stderr, "ERROR: Failed to calloc() for cell generation in WolframAutomata_init().\n"); @@ -422,7 +430,7 @@ WolframAutomata_init(Display * dpy, Window win) /* setting the seed generation, instead drawing that information from */ /* the curated ruleset. */ switch (curated_ruleset->seed) { - case random_cell: generate_random_seed(state); break; + case random_cell: randomize_seed_density(state); generate_random_seed(state); break; case middle_cell: state->current_generation[state->number_of_cells/2] = True; break; case edge_cell : state->current_generation[0] = True; break; } @@ -430,9 +438,18 @@ WolframAutomata_init(Display * dpy, Window win) /* If we're not using a curated ruleset, process any relevant flags */ /* from the user, falling back to a random seed generation if nothing */ /* else is specified. */ - if (state->population_single) { + if (get_boolean_resource(state->dpy, "seed-left", "Boolean")) { state->current_generation[0] = True; + } else if (get_boolean_resource(state->dpy, "seed-center", "Boolean")) { + state->current_generation[state->number_of_cells/2] = True; + } else if (get_boolean_resource(state->dpy, "seed-right", "Boolean")) { + state->current_generation[state->number_of_cells-1] = True; + } else if (get_integer_resource(state->dpy, "seed-density", "Integer") != -1) { + state->seed_density = get_integer_resource(state->dpy, "seed-density", "Integer"); + if (state->seed_density < 0 || state->seed_density > 100) state->seed_density = 50; + generate_random_seed(state); } else { + randomize_seed_density(state); generate_random_seed(state); } } @@ -440,7 +457,6 @@ WolframAutomata_init(Display * dpy, Window win) state->evolution_history = XCreatePixmap(state->dpy, state->win, state->dpy_width, state->num_generations*state->cell_size, xgwa.depth); /* Pixmap contents are undefined after creation. Explicitly set a black */ /* background by drawing a black rectangle over the entire pixmap. */ - XColor blackx, blacks; XAllocNamedColor(state->dpy, DefaultColormapOfScreen(DefaultScreenOfDisplay(state->dpy)), "black", &blacks, &blackx); XSetForeground(state->dpy, state->gc, blacks.pixel); XFillRectangle(state->dpy, state->evolution_history, state->gc, 0, 0, state->dpy_width, state->num_generations*state->cell_size); @@ -459,13 +475,18 @@ WolframAutomata_draw(Display * dpy, Window win, void * closure) int window_y_offset; /* Calculate and record new generation. */ - Bool new_generation[state->dpy_width]; + Bool * new_generation = malloc(state->dpy_width * sizeof(Bool)); + if (new_generation == NULL) { + fprintf(stderr, "ERROR: Failed to malloc() when calculating new generation.\n"); + exit(EXIT_FAILURE); + } for (xpos = 0; xpos < state->number_of_cells; xpos++) { new_generation[xpos] = calculate_cell(state, xpos); } for (xpos = 0; xpos < state->number_of_cells; xpos++) { state->current_generation[xpos] = new_generation[xpos]; } + free(new_generation); render_current_generation(state); /* Check for end of simulation. */ @@ -500,34 +521,52 @@ WolframAutomata_draw(Display * dpy, Window win, void * closure) } static const char * WolframAutomata_defaults[] = { - "*delay: 25000", "*admiration-delay: 5", - "*length: 5000", - "*cell-size: 2", + "*color-index: -1", - "*population-density: 50", - "*population-single: False", + + "*cell-size: 2", "*random-cell-size: False", + + "*delay: 25000", "*random-delay: False", + + "*length: 5000", "*random-length: False", - "*random-rule: False", + "*rule: -1", + "*random-rule: False", + + "*seed-density: -1", + "*seed-left: False", + "*seed-center: False", + "*seed-right: False", + 0 }; static XrmOptionDescRec WolframAutomata_options[] = { - { "-delay", ".delay", XrmoptionSepArg, 0 }, { "-admiration-delay", ".admiration-delay", XrmoptionSepArg, 0 }, - { "-length", ".length", XrmoptionSepArg, 0 }, - { "-cell-size", ".cell-size", XrmoptionSepArg, 0 }, + { "-color-index", ".color-index", XrmoptionSepArg, 0 }, - { "-population-density", ".population-density", XrmoptionSepArg, 0 }, - { "-population-single", ".population-single", XrmoptionNoArg, "True" }, + + { "-cell-size", ".cell-size", XrmoptionSepArg, 0 }, { "-random-cell-size", ".random-cell-size", XrmoptionNoArg, "True" }, + + { "-delay", ".delay", XrmoptionSepArg, 0 }, { "-random-delay", ".random-delay", XrmoptionNoArg, "True" }, + + { "-length", ".length", XrmoptionSepArg, 0 }, { "-random-length", ".random-length", XrmoptionNoArg, "True" }, - { "-random-rule", ".random-rule", XrmoptionNoArg, "True" }, + { "-rule", ".rule", XrmoptionSepArg, 0 }, + { "-random-rule", ".random-rule", XrmoptionNoArg, "True" }, + + { "-seed-density", ".seed-density", XrmoptionSepArg, 0 }, + { "-seed-left", ".seed-left", XrmoptionNoArg, "True" }, + { "-seed-center", ".seed-center", XrmoptionNoArg, "True" }, + { "-seed-right", ".seed-right", XrmoptionNoArg, "True" }, + { 0, 0, 0, 0 } };