/*- * Copyright (c) 1985 The Regents of the University of California. * All rights reserved. * * This code is derived from software contributed to Berkeley by * Computer Consoles Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)Kdivf.s 7.1 (Berkeley) 12/6/90 */ #include "../math/fp.h" #include "../math/Kfp.h" #include "../tahoe/SYS.h" #define HIDDEN 23 # here we count from 0 not from 1 as in fp.h .text ENTRY(Kdivf, R9|R8|R7|R6|R5|R4|R3|R2) clrl r1 clrl r3 # r3 - sign: 0 for positive,1 for negative. movl 4(fp),r0 jgeq 1f movl $1,r3 1: movl 12(fp),r2 jgeq 2f bbc $0,r3,1f # seconed operand is negative. clrl r3 # if first was negative, make result positive. jmp 2f 1: movl $1,r3 # if first was positive, make result negative. 2: andl2 $EXPMASK,r0 # compute first 'pure'exponent. jeql retz shrl $EXPSHIFT,r0,r0 subl2 $BIAS,r0 andl2 $EXPMASK,r2 # compute seconed 'pure'exponent. jeql retz2 shrl $EXPSHIFT,r2,r2 subl2 $BIAS,r2 subl3 r2,r0,r2 # subtruct the exponents. addl2 $BIAS,r2 jleq underf # normalization can make the exp. smaller. # # We have the sign in r3,the exponent in r2,now is the time to # perform the division... # # fetch dividend. (r0) andl3 $(0!(EXPMASK | SIGNBIT)),4(fp),r0 orl2 $(0!CLEARHID),r0 clrl r1 # fetch divisor : (r6) andl3 $(0!(EXPMASK | SIGNBIT)),12(fp),r6 orl2 $(0!CLEARHID),r6 shll $2,r6,r6 # make the divisor bigger so we will not # get overflow at the divission. ediv r6,r0,r0,r7 # quo to r0, rem to r7 subl2 $6,r2 # to compensate for: normalization (-24), # ediv (+32), shifting r6 (-2). over: pushl 20(fp) callf $8,_Kfnorm # we can use fnorm because we have data # at r1 as well.(sfnorm takes care only # of r0). sign: 1: bbc $0,r3,done orl2 $SIGNBIT,r0 done: ret retz: clrl r0 ret retz2: bbc $31,12(fp),z_div clrl r0 ret underf: orl2 $HFS_UNDF,*20(fp) ret z_div: orl2 $HFS_DIVZ,*20(fp) ret