From Prof. Kahan at UC at Berkeley .\" Copyright (c) 1985, 1991 Regents of the University of California. .\" All rights reserved. .\" .\" %sccs.include.redist.man% .\" .\" @(#)ieee.3 6.3 (Berkeley) %G% .\" .Dd .Dt IEEE 3 .Os BSD 4.3 .Sh NAME .Nm copysign , .Nm drem , .Nm finite , .Nm logb , .Nm scalb .Nm copysign , .Nm remainder, .Nd exponent manipulations .Sh SYNOPSIS .Fd #include .Ft double .Fn copysign "double x" "double y" .Ft double .Fn drem "double x" "double y" .Ft int .Fn finite "double x" .Ft double .Fn logb "double x" .Ft double .Fn scalb "double x" "int n" .Sh DESCRIPTION These functions are required for, or recommended by the .Tn IEEE standard 754 for floating\-point arithmetic. .Pp The .Fn copysign function returns .Fa x with its sign changed to .Fa y Ns 's. .Pp The .Fn drem function returns the remainder .Fa r := .Fa x \- .Fa n\(**y where .Fa n is the integer nearest the exact value of .Bk -words .Fa x Ns / Ns Fa y ; .Ek moreover if .Pf \\*(Ba Fa n \- .Sm off .Fa x No / Fa y No \\*(Ba .Sm on = 1/2 then .Fa n is even. Consequently the remainder is computed exactly and .Sm off .Pf \\*(Ba Fa r No \\*(Ba .Sm on \*(Le .Sm off .Pf \\*(Ba Fa y No \\*(Ba/2. .Sm on But .Fn drem x 0 is exceptional. (See below under .Sx DIAGNOSTICS . ) .Pp The .Fn finite function returns the value 1 just when \-\*(If \*(Lt .Fa x \*(Lt +\*(If; otherwise a zero is returned (when .Pf \\*(Ba Ns Fa x Ns \\*(Ba = \*(If or .Fa x is \*(Na or is the .Tn VAX Ns 's reserved operand). .Pp The .Fn logb function returns .Fa x Ns 's exponent .Fa n , a signed integer converted to double\-precision floating\-point and so chosen that 1 (<= .Pf \\*(Ba Ns Fa x Ns \\*(Ba2** Ns Fa n < 2 unless .Fa x = 0 or (only on machines that conform to .Tn IEEE 754) .Pf \\*(Ba Fa x Ns \\*(Ba = \*(If or .Fa x lies between 0 and the Underflow Threshold. (See below under .Sx BUGS . ) .Pp The Fn calb returns .Fa x Ns \(**(2** Ns Fa n ) computed, for integer n, without first computing .Pf 2\(** Fa n . .Sh RETURN VALUES The .Tn IEEE standard 754 defines .Fn drem x 0 and .Fn drem \\*(If y to be invalid operations that produce a \*(Na. On the .Tn VAX , .Fn drem x 0 generates a reserved operand fault. No \*(If exists on a .Tn VAX . .Pp .Tn IEEE 754 defines .if n \ .Fn logb \(+-\\*(If = \*(If and .Fn logb 0 = \-\*(If, and requires the latter to signal Division\-by\-Zero. But on a .Tn VAX , .Fn logb 0 = 1.0 \- 2.0**31 = \-2,147,483,647.0. And if the correct value of .Fn scalb would overflow on a .Tn VAX , it generates a reserved operand fault and sets the global variable .Va errno to .Dv ERANGE . .Sh SEE ALSO .Xr floor 3 , .Xr math 3 , .Xr infnan 3 .Sh AUTHOR Kwok\-Choi Ng .Sh HISTORY The .Nm ieee functions appeared in .Bx 4.3 . .Sh BUGS Should .Fn drem x 0 and .Fn logb 0 on a .Tn VAX signal invalidity by setting .Va errno No = Dv EDOM ? Should .Fn logb 0 return \-1.7e38? .Pp .Tn IEEE 754 currently specifies that .Fn logb "denormalized no." = .Fn logb "tiniest normalized no. > 0" but the consensus has changed to the specification in the new proposed .Tn IEEE standard p854, namely that .Fn logb x satisfy .Bd -filled -offset indent 1 \(<= .Fn scalb \\*(Bax\\*(Ba \-logb(x) < Radix\0 ... = 2 for .Tn IEEE 754 .Ed .Pp for every x except 0, \*(If and \*(Na. Almost every program that assumes 754's specification will work correctly if .Fn logb follows 854's specification instead. .Pp .Tn IEEE 754 requires .Fn copysign x \\*(Na) = .Pf \(+- Ns Fa x but says nothing else about the sign of a \*(Na. A \*(Na .Em N Ns ot .Em a .Em N Ns umber ) is similar in spirit to the .Tn VAX Ns 's reserved operand, but very different in important details. Since the sign bit of a reserved operand makes it look negative, .Bd -filled -offset indent .Fn copysign x "reserved operand" = .Pf \- Fa x ; .Ed .Pp should this return the reserved operand instead?