#ifdef LIBC_SCCS .asciz "@(#)divd.s 1.1 (Berkeley/CCI) 7/2/86" #endif LIBC_SCCS #include #include "DEFS.h" #define HIDDEN 23 /* here we count from 0 not from 1 as in fp.h */ XENTRY(divd, R2|R3|R4|R5|R6|R7|R8|R9) clrl r3 # r3 - sign: 0 for positive,1 for negative. movl 4(fp),r0 jgeq 1f movl $1,r3 1: movl 12(fp),r2 jgeq 2f bbc $0,r3,1f # seconed operand is negative. clrl r3 # if first was negative, make result positive. jmp 2f 1: movl $1,r3 # if first was positive, make result negative. 2: andl2 $EXPMASK,r0 # compute first 'pure'exponent. jeql is_res1 shrl $EXPSHIFT,r0,r0 subl2 $BIAS,r0 andl2 $EXPMASK,r2 # compute seconed 'pure'exponent. jeql is_res2 shrl $EXPSHIFT,r2,r2 subl2 $BIAS,r2 subl3 r2,r0,r2 # subtruct the exponents. addl2 $BIAS,r2 jleq underf # normalization can make the exp. smaller. # # We have the sign in r3,the exponent in r2,now is the time to # perform the division... # # fetch dividend. (r4,r5) andl3 $(0!(EXPMASK | SIGNBIT)),4(fp),r4 orl2 $(0!CLEARHID),r4 movl 8(fp),r5 # fetch divisor : (r6,r7) andl3 $(0!(EXPMASK | SIGNBIT)),12(fp),r6 orl2 $(0!CLEARHID),r6 movl 16(fp),r7 movl $0,r0 # init r0,r1 to be zeros movl $0,r1 movl $(0!CLEARHID),r8# r8 first bit to set (if). shll $1,r8,r8 # to have one more bit,because we might # have to shift left to normelize. movl $0,r9 2: subl2 r7,r5 sbwc r6,r4 jgeq 1f addl2 r7,r5 adwc r6,r4 shlq $1,r4,r4 shrq $1,r8,r8 jeql over jmp 2b 1: orl2 r8,r0 orl2 r9,r1 shlq $1,r4,r4 shrq $1,r8,r8 jneq 2b over: callf $4,fnorm sign: 1: bbc $0,r3,done orl2 $SIGNBIT,r0 done: ret is_res1: bbc $31,4(fp),retz callf $4,fpresop ret is_res2: bbc $31,12(fp),z_div callf $4,fpresop ret retz: clrl r0 clrl r1 ret underf: callf $4,fpunder ret z_div: callf $4,fpzdiv ret