Initial commit of OpenSPARC T2 design and verification files.
[OpenSPARC-T2-DV] / tools / perl-5.8.0 / man / man3 / Math::BigInt.3
CommitLineData
86530b38
AT
1.\" Automatically generated by Pod::Man v1.34, Pod::Parser v1.13
2.\"
3.\" Standard preamble:
4.\" ========================================================================
5.de Sh \" Subsection heading
6.br
7.if t .Sp
8.ne 5
9.PP
10\fB\\$1\fR
11.PP
12..
13.de Sp \" Vertical space (when we can't use .PP)
14.if t .sp .5v
15.if n .sp
16..
17.de Vb \" Begin verbatim text
18.ft CW
19.nf
20.ne \\$1
21..
22.de Ve \" End verbatim text
23.ft R
24.fi
25..
26.\" Set up some character translations and predefined strings. \*(-- will
27.\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
28.\" double quote, and \*(R" will give a right double quote. | will give a
29.\" real vertical bar. \*(C+ will give a nicer C++. Capital omega is used to
30.\" do unbreakable dashes and therefore won't be available. \*(C` and \*(C'
31.\" expand to `' in nroff, nothing in troff, for use with C<>.
32.tr \(*W-|\(bv\*(Tr
33.ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p'
34.ie n \{\
35. ds -- \(*W-
36. ds PI pi
37. if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch
38. if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch
39. ds L" ""
40. ds R" ""
41. ds C` ""
42. ds C' ""
43'br\}
44.el\{\
45. ds -- \|\(em\|
46. ds PI \(*p
47. ds L" ``
48. ds R" ''
49'br\}
50.\"
51.\" If the F register is turned on, we'll generate index entries on stderr for
52.\" titles (.TH), headers (.SH), subsections (.Sh), items (.Ip), and index
53.\" entries marked with X<> in POD. Of course, you'll have to process the
54.\" output yourself in some meaningful fashion.
55.if \nF \{\
56. de IX
57. tm Index:\\$1\t\\n%\t"\\$2"
58..
59. nr % 0
60. rr F
61.\}
62.\"
63.\" For nroff, turn off justification. Always turn off hyphenation; it makes
64.\" way too many mistakes in technical documents.
65.hy 0
66.if n .na
67.\"
68.\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
69.\" Fear. Run. Save yourself. No user-serviceable parts.
70. \" fudge factors for nroff and troff
71.if n \{\
72. ds #H 0
73. ds #V .8m
74. ds #F .3m
75. ds #[ \f1
76. ds #] \fP
77.\}
78.if t \{\
79. ds #H ((1u-(\\\\n(.fu%2u))*.13m)
80. ds #V .6m
81. ds #F 0
82. ds #[ \&
83. ds #] \&
84.\}
85. \" simple accents for nroff and troff
86.if n \{\
87. ds ' \&
88. ds ` \&
89. ds ^ \&
90. ds , \&
91. ds ~ ~
92. ds /
93.\}
94.if t \{\
95. ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u"
96. ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u'
97. ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u'
98. ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u'
99. ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u'
100. ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u'
101.\}
102. \" troff and (daisy-wheel) nroff accents
103.ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V'
104.ds 8 \h'\*(#H'\(*b\h'-\*(#H'
105.ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#]
106.ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H'
107.ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u'
108.ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#]
109.ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#]
110.ds ae a\h'-(\w'a'u*4/10)'e
111.ds Ae A\h'-(\w'A'u*4/10)'E
112. \" corrections for vroff
113.if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u'
114.if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u'
115. \" for low resolution devices (crt and lpr)
116.if \n(.H>23 .if \n(.V>19 \
117\{\
118. ds : e
119. ds 8 ss
120. ds o a
121. ds d- d\h'-1'\(ga
122. ds D- D\h'-1'\(hy
123. ds th \o'bp'
124. ds Th \o'LP'
125. ds ae ae
126. ds Ae AE
127.\}
128.rm #[ #] #H #V #F C
129.\" ========================================================================
130.\"
131.IX Title "Math::BigInt 3"
132.TH Math::BigInt 3 "2002-06-01" "perl v5.8.0" "Perl Programmers Reference Guide"
133.SH "NAME"
134Math::BigInt \- Arbitrary size integer math package
135.SH "SYNOPSIS"
136.IX Header "SYNOPSIS"
137.Vb 1
138\& use Math::BigInt;
139.Ve
140.PP
141.Vb 8
142\& # Number creation
143\& $x = Math::BigInt->new($str); # defaults to 0
144\& $nan = Math::BigInt->bnan(); # create a NotANumber
145\& $zero = Math::BigInt->bzero(); # create a +0
146\& $inf = Math::BigInt->binf(); # create a +inf
147\& $inf = Math::BigInt->binf('-'); # create a -inf
148\& $one = Math::BigInt->bone(); # create a +1
149\& $one = Math::BigInt->bone('-'); # create a -1
150.Ve
151.PP
152.Vb 11
153\& # Testing
154\& $x->is_zero(); # true if arg is +0
155\& $x->is_nan(); # true if arg is NaN
156\& $x->is_one(); # true if arg is +1
157\& $x->is_one('-'); # true if arg is -1
158\& $x->is_odd(); # true if odd, false for even
159\& $x->is_even(); # true if even, false for odd
160\& $x->is_positive(); # true if >= 0
161\& $x->is_negative(); # true if < 0
162\& $x->is_inf(sign); # true if +inf, or -inf (sign is default '+')
163\& $x->is_int(); # true if $x is an integer (not a float)
164.Ve
165.PP
166.Vb 5
167\& $x->bcmp($y); # compare numbers (undef,<0,=0,>0)
168\& $x->bacmp($y); # compare absolutely (undef,<0,=0,>0)
169\& $x->sign(); # return the sign, either +,- or NaN
170\& $x->digit($n); # return the nth digit, counting from right
171\& $x->digit(-$n); # return the nth digit, counting from left
172.Ve
173.PP
174.Vb 1
175\& # The following all modify their first argument:
176.Ve
177.PP
178.Vb 7
179\& # set
180\& $x->bzero(); # set $x to 0
181\& $x->bnan(); # set $x to NaN
182\& $x->bone(); # set $x to +1
183\& $x->bone('-'); # set $x to -1
184\& $x->binf(); # set $x to inf
185\& $x->binf('-'); # set $x to -inf
186.Ve
187.PP
188.Vb 6
189\& $x->bneg(); # negation
190\& $x->babs(); # absolute value
191\& $x->bnorm(); # normalize (no-op)
192\& $x->bnot(); # two's complement (bit wise not)
193\& $x->binc(); # increment x by 1
194\& $x->bdec(); # decrement x by 1
195.Ve
196.PP
197.Vb 5
198\& $x->badd($y); # addition (add $y to $x)
199\& $x->bsub($y); # subtraction (subtract $y from $x)
200\& $x->bmul($y); # multiplication (multiply $x by $y)
201\& $x->bdiv($y); # divide, set $x to quotient
202\& # return (quo,rem) or quo if scalar
203.Ve
204.PP
205.Vb 3
206\& $x->bmod($y); # modulus (x % y)
207\& $x->bmodpow($exp,$mod); # modular exponentation (($num**$exp) % $mod))
208\& $x->bmodinv($mod); # the inverse of $x in the given modulus $mod
209.Ve
210.PP
211.Vb 5
212\& $x->bpow($y); # power of arguments (x ** y)
213\& $x->blsft($y); # left shift
214\& $x->brsft($y); # right shift
215\& $x->blsft($y,$n); # left shift, by base $n (like 10)
216\& $x->brsft($y,$n); # right shift, by base $n (like 10)
217.Ve
218.PP
219.Vb 4
220\& $x->band($y); # bitwise and
221\& $x->bior($y); # bitwise inclusive or
222\& $x->bxor($y); # bitwise exclusive or
223\& $x->bnot(); # bitwise not (two's complement)
224.Ve
225.PP
226.Vb 2
227\& $x->bsqrt(); # calculate square-root
228\& $x->bfac(); # factorial of $x (1*2*3*4*..$x)
229.Ve
230.PP
231.Vb 3
232\& $x->round($A,$P,$round_mode); # round to accuracy or precision using mode $r
233\& $x->bround($N); # accuracy: preserve $N digits
234\& $x->bfround($N); # round to $Nth digit, no-op for BigInts
235.Ve
236.PP
237.Vb 3
238\& # The following do not modify their arguments in BigInt, but do in BigFloat:
239\& $x->bfloor(); # return integer less or equal than $x
240\& $x->bceil(); # return integer greater or equal than $x
241.Ve
242.PP
243.Vb 1
244\& # The following do not modify their arguments:
245.Ve
246.PP
247.Vb 2
248\& bgcd(@values); # greatest common divisor (no OO style)
249\& blcm(@values); # lowest common multiplicator (no OO style)
250.Ve
251.PP
252.Vb 3
253\& $x->length(); # return number of digits in number
254\& ($x,$f) = $x->length(); # length of number and length of fraction part,
255\& # latter is always 0 digits long for BigInt's
256.Ve
257.PP
258.Vb 5
259\& $x->exponent(); # return exponent as BigInt
260\& $x->mantissa(); # return (signed) mantissa as BigInt
261\& $x->parts(); # return (mantissa,exponent) as BigInt
262\& $x->copy(); # make a true copy of $x (unlike $y = $x;)
263\& $x->as_number(); # return as BigInt (in BigInt: same as copy())
264.Ve
265.PP
266.Vb 5
267\& # conversation to string
268\& $x->bstr(); # normalized string
269\& $x->bsstr(); # normalized string in scientific notation
270\& $x->as_hex(); # as signed hexadecimal string with prefixed 0x
271\& $x->as_bin(); # as signed binary string with prefixed 0b
272.Ve
273.PP
274.Vb 1
275\& Math::BigInt->config(); # return hash containing configuration/version
276.Ve
277.PP
278.Vb 5
279\& # precision and accuracy (see section about rounding for more)
280\& $x->precision(); # return P of $x (or global, if P of $x undef)
281\& $x->precision($n); # set P of $x to $n
282\& $x->accuracy(); # return A of $x (or global, if A of $x undef)
283\& $x->accuracy($n); # set A $x to $n
284.Ve
285.PP
286.Vb 2
287\& Math::BigInt->precision(); # get/set global P for all BigInt objects
288\& Math::BigInt->accuracy(); # get/set global A for all BigInt objects
289.Ve
290.SH "DESCRIPTION"
291.IX Header "DESCRIPTION"
292All operators (inlcuding basic math operations) are overloaded if you
293declare your big integers as
294.PP
295.Vb 1
296\& $i = new Math::BigInt '123_456_789_123_456_789';
297.Ve
298.PP
299Operations with overloaded operators preserve the arguments which is
300exactly what you expect.
301.IP "Canonical notation" 2
302.IX Item "Canonical notation"
303Big integer values are strings of the form \f(CW\*(C`/^[+\-]\ed+$/\*(C'\fR with leading
304zeros suppressed.
305.Sp
306.Vb 3
307\& '-0' canonical value '-0', normalized '0'
308\& ' -123_123_123' canonical value '-123123123'
309\& '1_23_456_7890' canonical value '1234567890'
310.Ve
311.IP "Input" 2
312.IX Item "Input"
313Input values to these routines may be either Math::BigInt objects or
314strings of the form \f(CW\*(C`/^[+\-]?[\ed]+\e.?[\ed]*E?[+\-]?[\ed]*$/\*(C'\fR.
315.Sp
316You can include one underscore between any two digits. The input string may
317have leading and trailing whitespace, which will be ignored. In later
318versions, a more strict (no whitespace at all) or more lax (whitespace
319allowed everywhere) input checking will also be possible.
320.Sp
321This means integer values like 1.01E2 or even 1000E\-2 are also accepted.
322Non integer values result in NaN.
323.Sp
324\&\fIMath::BigInt::new()\fR defaults to 0, while Math::BigInt::new('') results
325in 'NaN'.
326.Sp
327\&\fIbnorm()\fR on a BigInt object is now effectively a no\-op, since the numbers
328are always stored in normalized form. On a string, it creates a BigInt
329object.
330.IP "Output" 2
331.IX Item "Output"
332Output values are BigInt objects (normalized), except for \fIbstr()\fR, which
333returns a string in normalized form.
334Some routines (\f(CW\*(C`is_odd()\*(C'\fR, \f(CW\*(C`is_even()\*(C'\fR, \f(CW\*(C`is_zero()\*(C'\fR, \f(CW\*(C`is_one()\*(C'\fR,
335\&\f(CW\*(C`is_nan()\*(C'\fR) return true or false, while others (\f(CW\*(C`bcmp()\*(C'\fR, \f(CW\*(C`bacmp()\*(C'\fR)
336return either undef, <0, 0 or >0 and are suited for sort.
337.SH "METHODS"
338.IX Header "METHODS"
339Each of the methods below accepts three additional parameters. These arguments
340\&\f(CW$A\fR, \f(CW$P\fR and \f(CW$R\fR are accuracy, precision and round_mode. Please see more in the
341section about \s-1ACCURACY\s0 and \s-1ROUNDIND\s0.
342.Sh "config"
343.IX Subsection "config"
344.Vb 1
345\& use Data::Dumper;
346.Ve
347.PP
348.Vb 1
349\& print Dumper ( Math::BigInt->config() );
350.Ve
351.PP
352Returns a hash containing the configuration, e.g. the version number, lib
353loaded etc.
354.Sh "accuracy"
355.IX Subsection "accuracy"
356.Vb 2
357\& $x->accuracy(5); # local for $x
358\& $class->accuracy(5); # global for all members of $class
359.Ve
360.PP
361Set or get the global or local accuracy, aka how many significant digits the
362results have. Please see the section about \*(L"\s-1ACCURACY\s0 \s-1AND\s0 \s-1PRECISION\s0\*(R" for
363further details.
364.PP
365Value must be greater than zero. Pass an undef value to disable it:
366.PP
367.Vb 2
368\& $x->accuracy(undef);
369\& Math::BigInt->accuracy(undef);
370.Ve
371.PP
372Returns the current accuracy. For \f(CW\*(C`$x\-\*(C'\fR\fIaccuracy()\fR> it will return either the
373local accuracy, or if not defined, the global. This means the return value
374represents the accuracy that will be in effect for \f(CW$x:\fR
375.PP
376.Vb 9
377\& $y = Math::BigInt->new(1234567); # unrounded
378\& print Math::BigInt->accuracy(4),"\en"; # set 4, print 4
379\& $x = Math::BigInt->new(123456); # will be automatically rounded
380\& print "$x $y\en"; # '123500 1234567'
381\& print $x->accuracy(),"\en"; # will be 4
382\& print $y->accuracy(),"\en"; # also 4, since global is 4
383\& print Math::BigInt->accuracy(5),"\en"; # set to 5, print 5
384\& print $x->accuracy(),"\en"; # still 4
385\& print $y->accuracy(),"\en"; # 5, since global is 5
386.Ve
387.Sh "brsft"
388.IX Subsection "brsft"
389.Vb 1
390\& $x->brsft($y,$n);
391.Ve
392.PP
393Shifts \f(CW$x\fR right by \f(CW$y\fR in base \f(CW$n\fR. Default is base 2, used are usually 10 and
3942, but others work, too.
395.PP
396Right shifting usually amounts to dividing \f(CW$x\fR by \f(CW$n\fR ** \f(CW$y\fR and truncating the
397result:
398.PP
399.Vb 4
400\& $x = Math::BigInt->new(10);
401\& $x->brsft(1); # same as $x >> 1: 5
402\& $x = Math::BigInt->new(1234);
403\& $x->brsft(2,10); # result 12
404.Ve
405.PP
406There is one exception, and that is base 2 with negative \f(CW$x:\fR
407.PP
408.Vb 2
409\& $x = Math::BigInt->new(-5);
410\& print $x->brsft(1);
411.Ve
412.PP
413This will print \-3, not \-2 (as it would if you divide \-5 by 2 and truncate the
414result).
415.Sh "new"
416.IX Subsection "new"
417.Vb 1
418\& $x = Math::BigInt->new($str,$A,$P,$R);
419.Ve
420.PP
421Creates a new BigInt object from a string or another BigInt object. The
422input is accepted as decimal, hex (with leading '0x') or binary (with leading
423\&'0b').
424.Sh "bnan"
425.IX Subsection "bnan"
426.Vb 1
427\& $x = Math::BigInt->bnan();
428.Ve
429.PP
430Creates a new BigInt object representing NaN (Not A Number).
431If used on an object, it will set it to NaN:
432.PP
433.Vb 1
434\& $x->bnan();
435.Ve
436.Sh "bzero"
437.IX Subsection "bzero"
438.Vb 1
439\& $x = Math::BigInt->bzero();
440.Ve
441.PP
442Creates a new BigInt object representing zero.
443If used on an object, it will set it to zero:
444.PP
445.Vb 1
446\& $x->bzero();
447.Ve
448.Sh "binf"
449.IX Subsection "binf"
450.Vb 1
451\& $x = Math::BigInt->binf($sign);
452.Ve
453.PP
454Creates a new BigInt object representing infinity. The optional argument is
455either '\-' or '+', indicating whether you want infinity or minus infinity.
456If used on an object, it will set it to infinity:
457.PP
458.Vb 2
459\& $x->binf();
460\& $x->binf('-');
461.Ve
462.Sh "bone"
463.IX Subsection "bone"
464.Vb 1
465\& $x = Math::BigInt->binf($sign);
466.Ve
467.PP
468Creates a new BigInt object representing one. The optional argument is
469either '\-' or '+', indicating whether you want one or minus one.
470If used on an object, it will set it to one:
471.PP
472.Vb 2
473\& $x->bone(); # +1
474\& $x->bone('-'); # -1
475.Ve
476.Sh "\fIis_one()\fP/\fIis_zero()\fP/\fIis_nan()\fP/\fIis_inf()\fP"
477.IX Subsection "is_one()/is_zero()/is_nan()/is_inf()"
478.Vb 6
479\& $x->is_zero(); # true if arg is +0
480\& $x->is_nan(); # true if arg is NaN
481\& $x->is_one(); # true if arg is +1
482\& $x->is_one('-'); # true if arg is -1
483\& $x->is_inf(); # true if +inf
484\& $x->is_inf('-'); # true if -inf (sign is default '+')
485.Ve
486.PP
487These methods all test the BigInt for beeing one specific value and return
488true or false depending on the input. These are faster than doing something
489like:
490.PP
491.Vb 1
492\& if ($x == 0)
493.Ve
494.Sh "\fIis_positive()\fP/\fIis_negative()\fP"
495.IX Subsection "is_positive()/is_negative()"
496.Vb 2
497\& $x->is_positive(); # true if >= 0
498\& $x->is_negative(); # true if < 0
499.Ve
500.PP
501The methods return true if the argument is positive or negative, respectively.
502\&\f(CW\*(C`NaN\*(C'\fR is neither positive nor negative, while \f(CW\*(C`+inf\*(C'\fR counts as positive, and
503\&\f(CW\*(C`\-inf\*(C'\fR is negative. A \f(CW\*(C`zero\*(C'\fR is positive.
504.PP
505These methods are only testing the sign, and not the value.
506.Sh "\fIis_odd()\fP/\fIis_even()\fP/\fIis_int()\fP"
507.IX Subsection "is_odd()/is_even()/is_int()"
508.Vb 3
509\& $x->is_odd(); # true if odd, false for even
510\& $x->is_even(); # true if even, false for odd
511\& $x->is_int(); # true if $x is an integer
512.Ve
513.PP
514The return true when the argument satisfies the condition. \f(CW\*(C`NaN\*(C'\fR, \f(CW\*(C`+inf\*(C'\fR,
515\&\f(CW\*(C`\-inf\*(C'\fR are not integers and are neither odd nor even.
516.Sh "bcmp"
517.IX Subsection "bcmp"
518.Vb 1
519\& $x->bcmp($y);
520.Ve
521.PP
522Compares \f(CW$x\fR with \f(CW$y\fR and takes the sign into account.
523Returns \-1, 0, 1 or undef.
524.Sh "bacmp"
525.IX Subsection "bacmp"
526.Vb 1
527\& $x->bacmp($y);
528.Ve
529.PP
530Compares \f(CW$x\fR with \f(CW$y\fR while ignoring their. Returns \-1, 0, 1 or undef.
531.Sh "sign"
532.IX Subsection "sign"
533.Vb 1
534\& $x->sign();
535.Ve
536.PP
537Return the sign, of \f(CW$x\fR, meaning either \f(CW\*(C`+\*(C'\fR, \f(CW\*(C`\-\*(C'\fR, \f(CW\*(C`\-inf\*(C'\fR, \f(CW\*(C`+inf\*(C'\fR or NaN.
538.Sh "bcmp"
539.IX Subsection "bcmp"
540.Vb 1
541\& $x->digit($n); # return the nth digit, counting from right
542.Ve
543.Sh "bneg"
544.IX Subsection "bneg"
545.Vb 1
546\& $x->bneg();
547.Ve
548.PP
549Negate the number, e.g. change the sign between '+' and '\-', or between '+inf'
550and '\-inf', respectively. Does nothing for NaN or zero.
551.Sh "babs"
552.IX Subsection "babs"
553.Vb 1
554\& $x->babs();
555.Ve
556.PP
557Set the number to it's absolute value, e.g. change the sign from '\-' to '+'
558and from '\-inf' to '+inf', respectively. Does nothing for NaN or positive
559numbers.
560.Sh "bnorm"
561.IX Subsection "bnorm"
562.Vb 1
563\& $x->bnorm(); # normalize (no-op)
564.Ve
565.Sh "bnot"
566.IX Subsection "bnot"
567.Vb 1
568\& $x->bnot(); # two's complement (bit wise not)
569.Ve
570.Sh "binc"
571.IX Subsection "binc"
572.Vb 1
573\& $x->binc(); # increment x by 1
574.Ve
575.Sh "bdec"
576.IX Subsection "bdec"
577.Vb 1
578\& $x->bdec(); # decrement x by 1
579.Ve
580.Sh "badd"
581.IX Subsection "badd"
582.Vb 1
583\& $x->badd($y); # addition (add $y to $x)
584.Ve
585.Sh "bsub"
586.IX Subsection "bsub"
587.Vb 1
588\& $x->bsub($y); # subtraction (subtract $y from $x)
589.Ve
590.Sh "bmul"
591.IX Subsection "bmul"
592.Vb 1
593\& $x->bmul($y); # multiplication (multiply $x by $y)
594.Ve
595.Sh "bdiv"
596.IX Subsection "bdiv"
597.Vb 2
598\& $x->bdiv($y); # divide, set $x to quotient
599\& # return (quo,rem) or quo if scalar
600.Ve
601.Sh "bmod"
602.IX Subsection "bmod"
603.Vb 1
604\& $x->bmod($y); # modulus (x % y)
605.Ve
606.Sh "bmodinv"
607.IX Subsection "bmodinv"
608.Vb 1
609\& $num->bmodinv($mod); # modular inverse
610.Ve
611.PP
612Returns the inverse of \f(CW$num\fR in the given modulus \f(CW$mod\fR. '\f(CW\*(C`NaN\*(C'\fR' is
613returned unless \f(CW$num\fR is relatively prime to \f(CW$mod\fR, i.e. unless
614\&\f(CW\*(C`bgcd($num, $mod)==1\*(C'\fR.
615.Sh "bmodpow"
616.IX Subsection "bmodpow"
617.Vb 1
618\& $num->bmodpow($exp,$mod); # modular exponentation ($num**$exp % $mod)
619.Ve
620.PP
621Returns the value of \f(CW$num\fR taken to the power \f(CW$exp\fR in the modulus
622\&\f(CW$mod\fR using binary exponentation. \f(CW\*(C`bmodpow\*(C'\fR is far superior to
623writing
624.PP
625.Vb 1
626\& $num ** $exp % $mod
627.Ve
628.PP
629because \f(CW\*(C`bmodpow\*(C'\fR is much faster\*(--it reduces internal variables into
630the modulus whenever possible, so it operates on smaller numbers.
631.PP
632\&\f(CW\*(C`bmodpow\*(C'\fR also supports negative exponents.
633.PP
634.Vb 1
635\& bmodpow($num, -1, $mod)
636.Ve
637.PP
638is exactly equivalent to
639.PP
640.Vb 1
641\& bmodinv($num, $mod)
642.Ve
643.Sh "bpow"
644.IX Subsection "bpow"
645.Vb 1
646\& $x->bpow($y); # power of arguments (x ** y)
647.Ve
648.Sh "blsft"
649.IX Subsection "blsft"
650.Vb 2
651\& $x->blsft($y); # left shift
652\& $x->blsft($y,$n); # left shift, by base $n (like 10)
653.Ve
654.Sh "brsft"
655.IX Subsection "brsft"
656.Vb 2
657\& $x->brsft($y); # right shift
658\& $x->brsft($y,$n); # right shift, by base $n (like 10)
659.Ve
660.Sh "band"
661.IX Subsection "band"
662.Vb 1
663\& $x->band($y); # bitwise and
664.Ve
665.Sh "bior"
666.IX Subsection "bior"
667.Vb 1
668\& $x->bior($y); # bitwise inclusive or
669.Ve
670.Sh "bxor"
671.IX Subsection "bxor"
672.Vb 1
673\& $x->bxor($y); # bitwise exclusive or
674.Ve
675.Sh "bnot"
676.IX Subsection "bnot"
677.Vb 1
678\& $x->bnot(); # bitwise not (two's complement)
679.Ve
680.Sh "bsqrt"
681.IX Subsection "bsqrt"
682.Vb 1
683\& $x->bsqrt(); # calculate square-root
684.Ve
685.Sh "bfac"
686.IX Subsection "bfac"
687.Vb 1
688\& $x->bfac(); # factorial of $x (1*2*3*4*..$x)
689.Ve
690.Sh "round"
691.IX Subsection "round"
692.Vb 1
693\& $x->round($A,$P,$round_mode); # round to accuracy or precision using mode $r
694.Ve
695.Sh "bround"
696.IX Subsection "bround"
697.Vb 1
698\& $x->bround($N); # accuracy: preserve $N digits
699.Ve
700.Sh "bfround"
701.IX Subsection "bfround"
702.Vb 1
703\& $x->bfround($N); # round to $Nth digit, no-op for BigInts
704.Ve
705.Sh "bfloor"
706.IX Subsection "bfloor"
707.Vb 1
708\& $x->bfloor();
709.Ve
710.PP
711Set \f(CW$x\fR to the integer less or equal than \f(CW$x\fR. This is a no-op in BigInt, but
712does change \f(CW$x\fR in BigFloat.
713.Sh "bceil"
714.IX Subsection "bceil"
715.Vb 1
716\& $x->bceil();
717.Ve
718.PP
719Set \f(CW$x\fR to the integer greater or equal than \f(CW$x\fR. This is a no-op in BigInt, but
720does change \f(CW$x\fR in BigFloat.
721.Sh "bgcd"
722.IX Subsection "bgcd"
723.Vb 1
724\& bgcd(@values); # greatest common divisor (no OO style)
725.Ve
726.Sh "blcm"
727.IX Subsection "blcm"
728.Vb 1
729\& blcm(@values); # lowest common multiplicator (no OO style)
730.Ve
731.PP
732head2 length
733.PP
734.Vb 2
735\& $x->length();
736\& ($xl,$fl) = $x->length();
737.Ve
738.PP
739Returns the number of digits in the decimal representation of the number.
740In list context, returns the length of the integer and fraction part. For
741BigInt's, the length of the fraction part will always be 0.
742.Sh "exponent"
743.IX Subsection "exponent"
744.Vb 1
745\& $x->exponent();
746.Ve
747.PP
748Return the exponent of \f(CW$x\fR as BigInt.
749.Sh "mantissa"
750.IX Subsection "mantissa"
751.Vb 1
752\& $x->mantissa();
753.Ve
754.PP
755Return the signed mantissa of \f(CW$x\fR as BigInt.
756.Sh "parts"
757.IX Subsection "parts"
758.Vb 1
759\& $x->parts(); # return (mantissa,exponent) as BigInt
760.Ve
761.Sh "copy"
762.IX Subsection "copy"
763.Vb 1
764\& $x->copy(); # make a true copy of $x (unlike $y = $x;)
765.Ve
766.Sh "as_number"
767.IX Subsection "as_number"
768.Vb 1
769\& $x->as_number(); # return as BigInt (in BigInt: same as copy())
770.Ve
771.Sh "bsrt"
772.IX Subsection "bsrt"
773.Vb 1
774\& $x->bstr(); # normalized string
775.Ve
776.Sh "bsstr"
777.IX Subsection "bsstr"
778.Vb 1
779\& $x->bsstr(); # normalized string in scientific notation
780.Ve
781.Sh "as_hex"
782.IX Subsection "as_hex"
783.Vb 1
784\& $x->as_hex(); # as signed hexadecimal string with prefixed 0x
785.Ve
786.Sh "as_bin"
787.IX Subsection "as_bin"
788.Vb 1
789\& $x->as_bin(); # as signed binary string with prefixed 0b
790.Ve
791.SH "ACCURACY and PRECISION"
792.IX Header "ACCURACY and PRECISION"
793Since version v1.33, Math::BigInt and Math::BigFloat have full support for
794accuracy and precision based rounding, both automatically after every
795operation as well as manually.
796.PP
797This section describes the accuracy/precision handling in Math::Big* as it
798used to be and as it is now, complete with an explanation of all terms and
799abbreviations.
800.PP
801Not yet implemented things (but with correct description) are marked with '!',
802things that need to be answered are marked with '?'.
803.PP
804In the next paragraph follows a short description of terms used here (because
805these may differ from terms used by others people or documentation).
806.PP
807During the rest of this document, the shortcuts A (for accuracy), P (for
808precision), F (fallback) and R (rounding mode) will be used.
809.Sh "Precision P"
810.IX Subsection "Precision P"
811A fixed number of digits before (positive) or after (negative)
812the decimal point. For example, 123.45 has a precision of \-2. 0 means an
813integer like 123 (or 120). A precision of 2 means two digits to the left
814of the decimal point are zero, so 123 with P = 1 becomes 120. Note that
815numbers with zeros before the decimal point may have different precisions,
816because 1200 can have p = 0, 1 or 2 (depending on what the inital value
817was). It could also have p < 0, when the digits after the decimal point
818are zero.
819.PP
820The string output (of floating point numbers) will be padded with zeros:
821.PP
822.Vb 9
823\& Initial value P A Result String
824\& ------------------------------------------------------------
825\& 1234.01 -3 1000 1000
826\& 1234 -2 1200 1200
827\& 1234.5 -1 1230 1230
828\& 1234.001 1 1234 1234.0
829\& 1234.01 0 1234 1234
830\& 1234.01 2 1234.01 1234.01
831\& 1234.01 5 1234.01 1234.01000
832.Ve
833.PP
834For BigInts, no padding occurs.
835.Sh "Accuracy A"
836.IX Subsection "Accuracy A"
837Number of significant digits. Leading zeros are not counted. A
838number may have an accuracy greater than the non-zero digits
839when there are zeros in it or trailing zeros. For example, 123.456 has
840A of 6, 10203 has 5, 123.0506 has 7, 123.450000 has 8 and 0.000123 has 3.
841.PP
842The string output (of floating point numbers) will be padded with zeros:
843.PP
844.Vb 5
845\& Initial value P A Result String
846\& ------------------------------------------------------------
847\& 1234.01 3 1230 1230
848\& 1234.01 6 1234.01 1234.01
849\& 1234.1 8 1234.1 1234.1000
850.Ve
851.PP
852For BigInts, no padding occurs.
853.Sh "Fallback F"
854.IX Subsection "Fallback F"
855When both A and P are undefined, this is used as a fallback accuracy when
856dividing numbers.
857.Sh "Rounding mode R"
858.IX Subsection "Rounding mode R"
859When rounding a number, different 'styles' or 'kinds'
860of rounding are possible. (Note that random rounding, as in
861Math::Round, is not implemented.)
862.IP "'trunc'" 2
863.IX Item "'trunc'"
864truncation invariably removes all digits following the
865rounding place, replacing them with zeros. Thus, 987.65 rounded
866to tens (P=1) becomes 980, and rounded to the fourth sigdig
867becomes 987.6 (A=4). 123.456 rounded to the second place after the
868decimal point (P=\-2) becomes 123.46.
869.Sp
870All other implemented styles of rounding attempt to round to the
871\&\*(L"nearest digit.\*(R" If the digit D immediately to the right of the
872rounding place (skipping the decimal point) is greater than 5, the
873number is incremented at the rounding place (possibly causing a
874cascade of incrementation): e.g. when rounding to units, 0.9 rounds
875to 1, and \-19.9 rounds to \-20. If D < 5, the number is similarly
876truncated at the rounding place: e.g. when rounding to units, 0.4
877rounds to 0, and \-19.4 rounds to \-19.
878.Sp
879However the results of other styles of rounding differ if the
880digit immediately to the right of the rounding place (skipping the
881decimal point) is 5 and if there are no digits, or no digits other
882than 0, after that 5. In such cases:
883.IP "'even'" 2
884.IX Item "'even'"
885rounds the digit at the rounding place to 0, 2, 4, 6, or 8
886if it is not already. E.g., when rounding to the first sigdig, 0.45
887becomes 0.4, \-0.55 becomes \-0.6, but 0.4501 becomes 0.5.
888.IP "'odd'" 2
889.IX Item "'odd'"
890rounds the digit at the rounding place to 1, 3, 5, 7, or 9 if
891it is not already. E.g., when rounding to the first sigdig, 0.45
892becomes 0.5, \-0.55 becomes \-0.5, but 0.5501 becomes 0.6.
893.IP "'+inf'" 2
894.IX Item "'+inf'"
895round to plus infinity, i.e. always round up. E.g., when
896rounding to the first sigdig, 0.45 becomes 0.5, \-0.55 becomes \-0.5,
897and 0.4501 also becomes 0.5.
898.IP "'\-inf'" 2
899.IX Item "'-inf'"
900round to minus infinity, i.e. always round down. E.g., when
901rounding to the first sigdig, 0.45 becomes 0.4, \-0.55 becomes \-0.6,
902but 0.4501 becomes 0.5.
903.IP "'zero'" 2
904.IX Item "'zero'"
905round to zero, i.e. positive numbers down, negative ones up.
906E.g., when rounding to the first sigdig, 0.45 becomes 0.4, \-0.55
907becomes \-0.5, but 0.4501 becomes 0.5.
908.PP
909The handling of A & P in \s-1MBI/MBF\s0 (the old core code shipped with Perl
910versions <= 5.7.2) is like this:
911.IP "Precision" 2
912.IX Item "Precision"
913.Vb 3
914\& * ffround($p) is able to round to $p number of digits after the decimal
915\& point
916\& * otherwise P is unused
917.Ve
918.IP "Accuracy (significant digits)" 2
919.IX Item "Accuracy (significant digits)"
920.Vb 29
921\& * fround($a) rounds to $a significant digits
922\& * only fdiv() and fsqrt() take A as (optional) paramater
923\& + other operations simply create the same number (fneg etc), or more (fmul)
924\& of digits
925\& + rounding/truncating is only done when explicitly calling one of fround
926\& or ffround, and never for BigInt (not implemented)
927\& * fsqrt() simply hands its accuracy argument over to fdiv.
928\& * the documentation and the comment in the code indicate two different ways
929\& on how fdiv() determines the maximum number of digits it should calculate,
930\& and the actual code does yet another thing
931\& POD:
932\& max($Math::BigFloat::div_scale,length(dividend)+length(divisor))
933\& Comment:
934\& result has at most max(scale, length(dividend), length(divisor)) digits
935\& Actual code:
936\& scale = max(scale, length(dividend)-1,length(divisor)-1);
937\& scale += length(divisior) - length(dividend);
938\& So for lx = 3, ly = 9, scale = 10, scale will actually be 16 (10+9-3).
939\& Actually, the 'difference' added to the scale is calculated from the
940\& number of "significant digits" in dividend and divisor, which is derived
941\& by looking at the length of the mantissa. Which is wrong, since it includes
942\& the + sign (oups) and actually gets 2 for '+100' and 4 for '+101'. Oups
943\& again. Thus 124/3 with div_scale=1 will get you '41.3' based on the strange
944\& assumption that 124 has 3 significant digits, while 120/7 will get you
945\& '17', not '17.1' since 120 is thought to have 2 significant digits.
946\& The rounding after the division then uses the remainder and $y to determine
947\& wether it must round up or down.
948\& ? I have no idea which is the right way. That's why I used a slightly more
949\& ? simple scheme and tweaked the few failing testcases to match it.
950.Ve
951.PP
952This is how it works now:
953.IP "Setting/Accessing" 2
954.IX Item "Setting/Accessing"
955.Vb 17
956\& * You can set the A global via Math::BigInt->accuracy() or
957\& Math::BigFloat->accuracy() or whatever class you are using.
958\& * You can also set P globally by using Math::SomeClass->precision() likewise.
959\& * Globals are classwide, and not inherited by subclasses.
960\& * to undefine A, use Math::SomeCLass->accuracy(undef);
961\& * to undefine P, use Math::SomeClass->precision(undef);
962\& * Setting Math::SomeClass->accuracy() clears automatically
963\& Math::SomeClass->precision(), and vice versa.
964\& * To be valid, A must be > 0, P can have any value.
965\& * If P is negative, this means round to the P'th place to the right of the
966\& decimal point; positive values mean to the left of the decimal point.
967\& P of 0 means round to integer.
968\& * to find out the current global A, take Math::SomeClass->accuracy()
969\& * to find out the current global P, take Math::SomeClass->precision()
970\& * use $x->accuracy() respective $x->precision() for the local setting of $x.
971\& * Please note that $x->accuracy() respecive $x->precision() fall back to the
972\& defined globals, when $x's A or P is not set.
973.Ve
974.IP "Creating numbers" 2
975.IX Item "Creating numbers"
976.Vb 12
977\& * When you create a number, you can give it's desired A or P via:
978\& $x = Math::BigInt->new($number,$A,$P);
979\& * Only one of A or P can be defined, otherwise the result is NaN
980\& * If no A or P is give ($x = Math::BigInt->new($number) form), then the
981\& globals (if set) will be used. Thus changing the global defaults later on
982\& will not change the A or P of previously created numbers (i.e., A and P of
983\& $x will be what was in effect when $x was created)
984\& * If given undef for A and P, B<no> rounding will occur, and the globals will
985\& B<not> be used. This is used by subclasses to create numbers without
986\& suffering rounding in the parent. Thus a subclass is able to have it's own
987\& globals enforced upon creation of a number by using
988\& $x = Math::BigInt->new($number,undef,undef):
989.Ve
990.Sp
991.Vb 2
992\& use Math::Bigint::SomeSubclass;
993\& use Math::BigInt;
994.Ve
995.Sp
996.Vb 3
997\& Math::BigInt->accuracy(2);
998\& Math::BigInt::SomeSubClass->accuracy(3);
999\& $x = Math::BigInt::SomeSubClass->new(1234);
1000.Ve
1001.Sp
1002.Vb 2
1003\& $x is now 1230, and not 1200. A subclass might choose to implement
1004\& this otherwise, e.g. falling back to the parent's A and P.
1005.Ve
1006.IP "Usage" 2
1007.IX Item "Usage"
1008.Vb 7
1009\& * If A or P are enabled/defined, they are used to round the result of each
1010\& operation according to the rules below
1011\& * Negative P is ignored in Math::BigInt, since BigInts never have digits
1012\& after the decimal point
1013\& * Math::BigFloat uses Math::BigInts internally, but setting A or P inside
1014\& Math::BigInt as globals should not tamper with the parts of a BigFloat.
1015\& Thus a flag is used to mark all Math::BigFloat numbers as 'never round'
1016.Ve
1017.IP "Precedence" 2
1018.IX Item "Precedence"
1019.Vb 30
1020\& * It only makes sense that a number has only one of A or P at a time.
1021\& Since you can set/get both A and P, there is a rule that will practically
1022\& enforce only A or P to be in effect at a time, even if both are set.
1023\& This is called precedence.
1024\& * If two objects are involved in an operation, and one of them has A in
1025\& effect, and the other P, this results in an error (NaN).
1026\& * A takes precendence over P (Hint: A comes before P). If A is defined, it
1027\& is used, otherwise P is used. If neither of them is defined, nothing is
1028\& used, i.e. the result will have as many digits as it can (with an
1029\& exception for fdiv/fsqrt) and will not be rounded.
1030\& * There is another setting for fdiv() (and thus for fsqrt()). If neither of
1031\& A or P is defined, fdiv() will use a fallback (F) of $div_scale digits.
1032\& If either the dividend's or the divisor's mantissa has more digits than
1033\& the value of F, the higher value will be used instead of F.
1034\& This is to limit the digits (A) of the result (just consider what would
1035\& happen with unlimited A and P in the case of 1/3 :-)
1036\& * fdiv will calculate (at least) 4 more digits than required (determined by
1037\& A, P or F), and, if F is not used, round the result
1038\& (this will still fail in the case of a result like 0.12345000000001 with A
1039\& or P of 5, but this can not be helped - or can it?)
1040\& * Thus you can have the math done by on Math::Big* class in three modes:
1041\& + never round (this is the default):
1042\& This is done by setting A and P to undef. No math operation
1043\& will round the result, with fdiv() and fsqrt() as exceptions to guard
1044\& against overflows. You must explicitely call bround(), bfround() or
1045\& round() (the latter with parameters).
1046\& Note: Once you have rounded a number, the settings will 'stick' on it
1047\& and 'infect' all other numbers engaged in math operations with it, since
1048\& local settings have the highest precedence. So, to get SaferRound[tm],
1049\& use a copy() before rounding like this:
1050.Ve
1051.Sp
1052.Vb 6
1053\& $x = Math::BigFloat->new(12.34);
1054\& $y = Math::BigFloat->new(98.76);
1055\& $z = $x * $y; # 1218.6984
1056\& print $x->copy()->fround(3); # 12.3 (but A is now 3!)
1057\& $z = $x * $y; # still 1218.6984, without
1058\& # copy would have been 1210!
1059.Ve
1060.Sp
1061.Vb 6
1062\& + round after each op:
1063\& After each single operation (except for testing like is_zero()), the
1064\& method round() is called and the result is rounded appropriately. By
1065\& setting proper values for A and P, you can have all-the-same-A or
1066\& all-the-same-P modes. For example, Math::Currency might set A to undef,
1067\& and P to -2, globally.
1068.Ve
1069.Sp
1070.Vb 2
1071\& ?Maybe an extra option that forbids local A & P settings would be in order,
1072\& ?so that intermediate rounding does not 'poison' further math?
1073.Ve
1074.IP "Overriding globals" 2
1075.IX Item "Overriding globals"
1076.Vb 16
1077\& * you will be able to give A, P and R as an argument to all the calculation
1078\& routines; the second parameter is A, the third one is P, and the fourth is
1079\& R (shift right by one for binary operations like badd). P is used only if
1080\& the first parameter (A) is undefined. These three parameters override the
1081\& globals in the order detailed as follows, i.e. the first defined value
1082\& wins:
1083\& (local: per object, global: global default, parameter: argument to sub)
1084\& + parameter A
1085\& + parameter P
1086\& + local A (if defined on both of the operands: smaller one is taken)
1087\& + local P (if defined on both of the operands: bigger one is taken)
1088\& + global A
1089\& + global P
1090\& + global F
1091\& * fsqrt() will hand its arguments to fdiv(), as it used to, only now for two
1092\& arguments (A and P) instead of one
1093.Ve
1094.IP "Local settings" 2
1095.IX Item "Local settings"
1096.Vb 4
1097\& * You can set A and P locally by using $x->accuracy() and $x->precision()
1098\& and thus force different A and P for different objects/numbers.
1099\& * Setting A or P this way immediately rounds $x to the new value.
1100\& * $x->accuracy() clears $x->precision(), and vice versa.
1101.Ve
1102.IP "Rounding" 2
1103.IX Item "Rounding"
1104.Vb 15
1105\& * the rounding routines will use the respective global or local settings.
1106\& fround()/bround() is for accuracy rounding, while ffround()/bfround()
1107\& is for precision
1108\& * the two rounding functions take as the second parameter one of the
1109\& following rounding modes (R):
1110\& 'even', 'odd', '+inf', '-inf', 'zero', 'trunc'
1111\& * you can set and get the global R by using Math::SomeClass->round_mode()
1112\& or by setting $Math::SomeClass::round_mode
1113\& * after each operation, $result->round() is called, and the result may
1114\& eventually be rounded (that is, if A or P were set either locally,
1115\& globally or as parameter to the operation)
1116\& * to manually round a number, call $x->round($A,$P,$round_mode);
1117\& this will round the number by using the appropriate rounding function
1118\& and then normalize it.
1119\& * rounding modifies the local settings of the number:
1120.Ve
1121.Sp
1122.Vb 3
1123\& $x = Math::BigFloat->new(123.456);
1124\& $x->accuracy(5);
1125\& $x->bround(4);
1126.Ve
1127.Sp
1128.Vb 2
1129\& Here 4 takes precedence over 5, so 123.5 is the result and $x->accuracy()
1130\& will be 4 from now on.
1131.Ve
1132.IP "Default values" 2
1133.IX Item "Default values"
1134.Vb 4
1135\& * R: 'even'
1136\& * F: 40
1137\& * A: undef
1138\& * P: undef
1139.Ve
1140.IP "Remarks" 2
1141.IX Item "Remarks"
1142.Vb 5
1143\& * The defaults are set up so that the new code gives the same results as
1144\& the old code (except in a few cases on fdiv):
1145\& + Both A and P are undefined and thus will not be used for rounding
1146\& after each operation.
1147\& + round() is thus a no-op, unless given extra parameters A and P
1148.Ve
1149.SH "INTERNALS"
1150.IX Header "INTERNALS"
1151The actual numbers are stored as unsigned big integers (with seperate sign).
1152You should neither care about nor depend on the internal representation; it
1153might change without notice. Use only method calls like \f(CW\*(C`$x\->sign();\*(C'\fR
1154instead relying on the internal hash keys like in \f(CW\*(C`$x\->{sign};\*(C'\fR.
1155.Sh "\s-1MATH\s0 \s-1LIBRARY\s0"
1156.IX Subsection "MATH LIBRARY"
1157Math with the numbers is done (by default) by a module called
1158Math::BigInt::Calc. This is equivalent to saying:
1159.PP
1160.Vb 1
1161\& use Math::BigInt lib => 'Calc';
1162.Ve
1163.PP
1164You can change this by using:
1165.PP
1166.Vb 1
1167\& use Math::BigInt lib => 'BitVect';
1168.Ve
1169.PP
1170The following would first try to find Math::BigInt::Foo, then
1171Math::BigInt::Bar, and when this also fails, revert to Math::BigInt::Calc:
1172.PP
1173.Vb 1
1174\& use Math::BigInt lib => 'Foo,Math::BigInt::Bar';
1175.Ve
1176.PP
1177Calc.pm uses as internal format an array of elements of some decimal base
1178(usually 1e5 or 1e7) with the least significant digit first, while BitVect.pm
1179uses a bit vector of base 2, most significant bit first. Other modules might
1180use even different means of representing the numbers. See the respective
1181module documentation for further details.
1182.Sh "\s-1SIGN\s0"
1183.IX Subsection "SIGN"
1184The sign is either '+', '\-', 'NaN', '+inf' or '\-inf' and stored seperately.
1185.PP
1186A sign of 'NaN' is used to represent the result when input arguments are not
1187numbers or as a result of 0/0. '+inf' and '\-inf' represent plus respectively
1188minus infinity. You will get '+inf' when dividing a positive number by 0, and
1189\&'\-inf' when dividing any negative number by 0.
1190.Sh "\fImantissa()\fP, \fIexponent()\fP and \fIparts()\fP"
1191.IX Subsection "mantissa(), exponent() and parts()"
1192\&\f(CW\*(C`mantissa()\*(C'\fR and \f(CW\*(C`exponent()\*(C'\fR return the said parts of the BigInt such
1193that:
1194.PP
1195.Vb 4
1196\& $m = $x->mantissa();
1197\& $e = $x->exponent();
1198\& $y = $m * ( 10 ** $e );
1199\& print "ok\en" if $x == $y;
1200.Ve
1201.PP
1202\&\f(CW\*(C`($m,$e) = $x\->parts()\*(C'\fR is just a shortcut that gives you both of them
1203in one go. Both the returned mantissa and exponent have a sign.
1204.PP
1205Currently, for BigInts \f(CW$e\fR will be always 0, except for NaN, +inf and \-inf,
1206where it will be NaN; and for \f(CW$x\fR == 0, where it will be 1
1207(to be compatible with Math::BigFloat's internal representation of a zero as
1208\&\f(CW0E1\fR).
1209.PP
1210\&\f(CW$m\fR will always be a copy of the original number. The relation between \f(CW$e\fR
1211and \f(CW$m\fR might change in the future, but will always be equivalent in a
1212numerical sense, e.g. \f(CW$m\fR might get minimized.
1213.SH "EXAMPLES"
1214.IX Header "EXAMPLES"
1215.Vb 1
1216\& use Math::BigInt;
1217.Ve
1218.PP
1219.Vb 1
1220\& sub bint { Math::BigInt->new(shift); }
1221.Ve
1222.PP
1223.Vb 15
1224\& $x = Math::BigInt->bstr("1234") # string "1234"
1225\& $x = "$x"; # same as bstr()
1226\& $x = Math::BigInt->bneg("1234"); # Bigint "-1234"
1227\& $x = Math::BigInt->babs("-12345"); # Bigint "12345"
1228\& $x = Math::BigInt->bnorm("-0 00"); # BigInt "0"
1229\& $x = bint(1) + bint(2); # BigInt "3"
1230\& $x = bint(1) + "2"; # ditto (auto-BigIntify of "2")
1231\& $x = bint(1); # BigInt "1"
1232\& $x = $x + 5 / 2; # BigInt "3"
1233\& $x = $x ** 3; # BigInt "27"
1234\& $x *= 2; # BigInt "54"
1235\& $x = Math::BigInt->new(0); # BigInt "0"
1236\& $x--; # BigInt "-1"
1237\& $x = Math::BigInt->badd(4,5) # BigInt "9"
1238\& print $x->bsstr(); # 9e+0
1239.Ve
1240.PP
1241Examples for rounding:
1242.PP
1243.Vb 2
1244\& use Math::BigFloat;
1245\& use Test;
1246.Ve
1247.PP
1248.Vb 3
1249\& $x = Math::BigFloat->new(123.4567);
1250\& $y = Math::BigFloat->new(123.456789);
1251\& Math::BigFloat->accuracy(4); # no more A than 4
1252.Ve
1253.PP
1254.Vb 9
1255\& ok ($x->copy()->fround(),123.4); # even rounding
1256\& print $x->copy()->fround(),"\en"; # 123.4
1257\& Math::BigFloat->round_mode('odd'); # round to odd
1258\& print $x->copy()->fround(),"\en"; # 123.5
1259\& Math::BigFloat->accuracy(5); # no more A than 5
1260\& Math::BigFloat->round_mode('odd'); # round to odd
1261\& print $x->copy()->fround(),"\en"; # 123.46
1262\& $y = $x->copy()->fround(4),"\en"; # A = 4: 123.4
1263\& print "$y, ",$y->accuracy(),"\en"; # 123.4, 4
1264.Ve
1265.PP
1266.Vb 4
1267\& Math::BigFloat->accuracy(undef); # A not important now
1268\& Math::BigFloat->precision(2); # P important
1269\& print $x->copy()->bnorm(),"\en"; # 123.46
1270\& print $x->copy()->fround(),"\en"; # 123.46
1271.Ve
1272.PP
1273Examples for converting:
1274.PP
1275.Vb 2
1276\& my $x = Math::BigInt->new('0b1'.'01' x 123);
1277\& print "bin: ",$x->as_bin()," hex:",$x->as_hex()," dec: ",$x,"\en";
1278.Ve
1279.SH "Autocreating constants"
1280.IX Header "Autocreating constants"
1281After \f(CW\*(C`use Math::BigInt ':constant'\*(C'\fR all the \fBinteger\fR decimal, hexadecimal
1282and binary constants in the given scope are converted to \f(CW\*(C`Math::BigInt\*(C'\fR.
1283This conversion happens at compile time.
1284.PP
1285In particular,
1286.PP
1287.Vb 1
1288\& perl -MMath::BigInt=:constant -e 'print 2**100,"\en"'
1289.Ve
1290.PP
1291prints the integer value of \f(CW\*(C`2**100\*(C'\fR. Note that without conversion of
1292constants the expression 2**100 will be calculated as perl scalar.
1293.PP
1294Please note that strings and floating point constants are not affected,
1295so that
1296.PP
1297.Vb 1
1298\& use Math::BigInt qw/:constant/;
1299.Ve
1300.PP
1301.Vb 4
1302\& $x = 1234567890123456789012345678901234567890
1303\& + 123456789123456789;
1304\& $y = '1234567890123456789012345678901234567890'
1305\& + '123456789123456789';
1306.Ve
1307.PP
1308do not work. You need an explicit Math::BigInt\->\fInew()\fR around one of the
1309operands. You should also quote large constants to protect loss of precision:
1310.PP
1311.Vb 1
1312\& use Math::Bigint;
1313.Ve
1314.PP
1315.Vb 1
1316\& $x = Math::BigInt->new('1234567889123456789123456789123456789');
1317.Ve
1318.PP
1319Without the quotes Perl would convert the large number to a floating point
1320constant at compile time and then hand the result to BigInt, which results in
1321an truncated result or a NaN.
1322.PP
1323This also applies to integers that look like floating point constants:
1324.PP
1325.Vb 1
1326\& use Math::BigInt ':constant';
1327.Ve
1328.PP
1329.Vb 2
1330\& print ref(123e2),"\en";
1331\& print ref(123.2e2),"\en";
1332.Ve
1333.PP
1334will print nothing but newlines. Use either bignum or Math::BigFloat
1335to get this to work.
1336.SH "PERFORMANCE"
1337.IX Header "PERFORMANCE"
1338Using the form \f(CW$x\fR += \f(CW$y\fR; etc over \f(CW$x\fR = \f(CW$x\fR + \f(CW$y\fR is faster, since a copy of \f(CW$x\fR
1339must be made in the second case. For long numbers, the copy can eat up to 20%
1340of the work (in the case of addition/subtraction, less for
1341multiplication/division). If \f(CW$y\fR is very small compared to \f(CW$x\fR, the form
1342\&\f(CW$x\fR += \f(CW$y\fR is \s-1MUCH\s0 faster than \f(CW$x\fR = \f(CW$x\fR + \f(CW$y\fR since making the copy of \f(CW$x\fR takes
1343more time then the actual addition.
1344.PP
1345With a technique called copy\-on\-write, the cost of copying with overload could
1346be minimized or even completely avoided. A test implementation of \s-1COW\s0 did show
1347performance gains for overloaded math, but introduced a performance loss due
1348to a constant overhead for all other operatons.
1349.PP
1350The rewritten version of this module is slower on certain operations, like
1351\&\fInew()\fR, \fIbstr()\fR and \fInumify()\fR. The reason are that it does now more work and
1352handles more cases. The time spent in these operations is usually gained in
1353the other operations so that programs on the average should get faster. If
1354they don't, please contect the author.
1355.PP
1356Some operations may be slower for small numbers, but are significantly faster
1357for big numbers. Other operations are now constant (O(1), like \fIbneg()\fR, \fIbabs()\fR
1358etc), instead of O(N) and thus nearly always take much less time. These
1359optimizations were done on purpose.
1360.PP
1361If you find the Calc module to slow, try to install any of the replacement
1362modules and see if they help you.
1363.Sh "Alternative math libraries"
1364.IX Subsection "Alternative math libraries"
1365You can use an alternative library to drive Math::BigInt via:
1366.PP
1367.Vb 1
1368\& use Math::BigInt lib => 'Module';
1369.Ve
1370.PP
1371See \*(L"\s-1MATH\s0 \s-1LIBRARY\s0\*(R" for more information.
1372.PP
1373For more benchmark results see <http://bloodgate.com/perl/benchmarks.html>.
1374.Sh "\s-1SUBCLASSING\s0"
1375.IX Subsection "SUBCLASSING"
1376.SH "Subclassing Math::BigInt"
1377.IX Header "Subclassing Math::BigInt"
1378The basic design of Math::BigInt allows simple subclasses with very little
1379work, as long as a few simple rules are followed:
1380.IP "\(bu" 2
1381The public \s-1API\s0 must remain consistent, i.e. if a sub-class is overloading
1382addition, the sub-class must use the same name, in this case \fIbadd()\fR. The
1383reason for this is that Math::BigInt is optimized to call the object methods
1384directly.
1385.IP "\(bu" 2
1386The private object hash keys like \f(CW\*(C`$x\-\*(C'\fR{sign}> may not be changed, but
1387additional keys can be added, like \f(CW\*(C`$x\-\*(C'\fR{_custom}>.
1388.IP "\(bu" 2
1389Accessor functions are available for all existing object hash keys and should
1390be used instead of directly accessing the internal hash keys. The reason for
1391this is that Math::BigInt itself has a pluggable interface which permits it
1392to support different storage methods.
1393.PP
1394More complex sub-classes may have to replicate more of the logic internal of
1395Math::BigInt if they need to change more basic behaviors. A subclass that
1396needs to merely change the output only needs to overload \f(CW\*(C`bstr()\*(C'\fR.
1397.PP
1398All other object methods and overloaded functions can be directly inherited
1399from the parent class.
1400.PP
1401At the very minimum, any subclass will need to provide it's own \f(CW\*(C`new()\*(C'\fR and can
1402store additional hash keys in the object. There are also some package globals
1403that must be defined, e.g.:
1404.PP
1405.Vb 5
1406\& # Globals
1407\& $accuracy = undef;
1408\& $precision = -2; # round to 2 decimal places
1409\& $round_mode = 'even';
1410\& $div_scale = 40;
1411.Ve
1412.PP
1413Additionally, you might want to provide the following two globals to allow
1414auto-upgrading and auto-downgrading to work correctly:
1415.PP
1416.Vb 2
1417\& $upgrade = undef;
1418\& $downgrade = undef;
1419.Ve
1420.PP
1421This allows Math::BigInt to correctly retrieve package globals from the
1422subclass, like \f(CW$SubClass::precision\fR. See t/Math/BigInt/Subclass.pm or
1423t/Math/BigFloat/SubClass.pm completely functional subclass examples.
1424.PP
1425Don't forget to
1426.PP
1427.Vb 1
1428\& use overload;
1429.Ve
1430.PP
1431in your subclass to automatically inherit the overloading from the parent. If
1432you like, you can change part of the overloading, look at Math::String for an
1433example.
1434.SH "UPGRADING"
1435.IX Header "UPGRADING"
1436When used like this:
1437.PP
1438.Vb 1
1439\& use Math::BigInt upgrade => 'Foo::Bar';
1440.Ve
1441.PP
1442certain operations will 'upgrade' their calculation and thus the result to
1443the class Foo::Bar. Usually this is used in conjunction with Math::BigFloat:
1444.PP
1445.Vb 1
1446\& use Math::BigInt upgrade => 'Math::BigFloat';
1447.Ve
1448.PP
1449As a shortcut, you can use the module \f(CW\*(C`bignum\*(C'\fR:
1450.PP
1451.Vb 1
1452\& use bignum;
1453.Ve
1454.PP
1455Also good for oneliners:
1456.PP
1457.Vb 1
1458\& perl -Mbignum -le 'print 2 ** 255'
1459.Ve
1460.PP
1461This makes it possible to mix arguments of different classes (as in 2.5 + 2)
1462as well es preserve accuracy (as in \fIsqrt\fR\|(3)).
1463.PP
1464Beware: This feature is not fully implemented yet.
1465.Sh "Auto-upgrade"
1466.IX Subsection "Auto-upgrade"
1467The following methods upgrade themselves unconditionally; that is if upgrade
1468is in effect, they will always hand up their work:
1469.IP "\fIbsqrt()\fR" 2
1470.IX Item "bsqrt()"
1471.PD 0
1472.IP "\fIdiv()\fR" 2
1473.IX Item "div()"
1474.IP "\fIblog()\fR" 2
1475.IX Item "blog()"
1476.PD
1477.PP
1478Beware: This list is not complete.
1479.PP
1480All other methods upgrade themselves only when one (or all) of their
1481arguments are of the class mentioned in \f(CW$upgrade\fR (This might change in later
1482versions to a more sophisticated scheme):
1483.SH "BUGS"
1484.IX Header "BUGS"
1485.IP "Out of Memory!" 2
1486.IX Item "Out of Memory!"
1487Under Perl prior to 5.6.0 having an \f(CW\*(C`use Math::BigInt ':constant';\*(C'\fR and
1488\&\f(CW\*(C`eval()\*(C'\fR in your code will crash with \*(L"Out of memory\*(R". This is probably an
1489overload/exporter bug. You can workaround by not having \f(CW\*(C`eval()\*(C'\fR
1490and ':constant' at the same time or upgrade your Perl to a newer version.
1491.IP "Fails to load Calc on Perl prior 5.6.0" 2
1492.IX Item "Fails to load Calc on Perl prior 5.6.0"
1493Since eval(' use ...') can not be used in conjunction with ':constant', BigInt
1494will fall back to eval { require ... } when loading the math lib on Perls
1495prior to 5.6.0. This simple replaces '::' with '/' and thus might fail on
1496filesystems using a different seperator.
1497.SH "CAVEATS"
1498.IX Header "CAVEATS"
1499Some things might not work as you expect them. Below is documented what is
1500known to be troublesome:
1501.IP "stringify, \fIbstr()\fR, \fIbsstr()\fR and 'cmp'" 1
1502.IX Item "stringify, bstr(), bsstr() and 'cmp'"
1503Both stringify and \fIbstr()\fR now drop the leading '+'. The old code would return
1504\&'+3', the new returns '3'. This is to be consistent with Perl and to make
1505cmp (especially with overloading) to work as you expect. It also solves
1506problems with Test.pm, it's \fIok()\fR uses 'eq' internally.
1507.Sp
1508Mark said, when asked about to drop the '+' altogether, or make only cmp work:
1509.Sp
1510.Vb 4
1511\& I agree (with the first alternative), don't add the '+' on positive
1512\& numbers. It's not as important anymore with the new internal
1513\& form for numbers. It made doing things like abs and neg easier,
1514\& but those have to be done differently now anyway.
1515.Ve
1516.Sp
1517So, the following examples will now work all as expected:
1518.Sp
1519.Vb 3
1520\& use Test;
1521\& BEGIN { plan tests => 1 }
1522\& use Math::BigInt;
1523.Ve
1524.Sp
1525.Vb 2
1526\& my $x = new Math::BigInt 3*3;
1527\& my $y = new Math::BigInt 3*3;
1528.Ve
1529.Sp
1530.Vb 4
1531\& ok ($x,3*3);
1532\& print "$x eq 9" if $x eq $y;
1533\& print "$x eq 9" if $x eq '9';
1534\& print "$x eq 9" if $x eq 3*3;
1535.Ve
1536.Sp
1537Additionally, the following still works:
1538.Sp
1539.Vb 3
1540\& print "$x == 9" if $x == $y;
1541\& print "$x == 9" if $x == 9;
1542\& print "$x == 9" if $x == 3*3;
1543.Ve
1544.Sp
1545There is now a \f(CW\*(C`bsstr()\*(C'\fR method to get the string in scientific notation aka
1546\&\f(CW1e+2\fR instead of \f(CW100\fR. Be advised that overloaded 'eq' always uses \fIbstr()\fR
1547for comparisation, but Perl will represent some numbers as 100 and others
1548as 1e+308. If in doubt, convert both arguments to Math::BigInt before doing eq:
1549.Sp
1550.Vb 3
1551\& use Test;
1552\& BEGIN { plan tests => 3 }
1553\& use Math::BigInt;
1554.Ve
1555.Sp
1556.Vb 5
1557\& $x = Math::BigInt->new('1e56'); $y = 1e56;
1558\& ok ($x,$y); # will fail
1559\& ok ($x->bsstr(),$y); # okay
1560\& $y = Math::BigInt->new($y);
1561\& ok ($x,$y); # okay
1562.Ve
1563.Sp
1564Alternatively, simple use <=> for comparisations, that will get it always
1565right. There is not yet a way to get a number automatically represented as
1566a string that matches exactly the way Perl represents it.
1567.IP "\fIint()\fR" 1
1568.IX Item "int()"
1569\&\f(CW\*(C`int()\*(C'\fR will return (at least for Perl v5.7.1 and up) another BigInt, not a
1570Perl scalar:
1571.Sp
1572.Vb 4
1573\& $x = Math::BigInt->new(123);
1574\& $y = int($x); # BigInt 123
1575\& $x = Math::BigFloat->new(123.45);
1576\& $y = int($x); # BigInt 123
1577.Ve
1578.Sp
1579In all Perl versions you can use \f(CW\*(C`as_number()\*(C'\fR for the same effect:
1580.Sp
1581.Vb 2
1582\& $x = Math::BigFloat->new(123.45);
1583\& $y = $x->as_number(); # BigInt 123
1584.Ve
1585.Sp
1586This also works for other subclasses, like Math::String.
1587.Sp
1588It is yet unlcear whether overloaded \fIint()\fR should return a scalar or a BigInt.
1589.IP "length" 1
1590.IX Item "length"
1591The following will probably not do what you expect:
1592.Sp
1593.Vb 2
1594\& $c = Math::BigInt->new(123);
1595\& print $c->length(),"\en"; # prints 30
1596.Ve
1597.Sp
1598It prints both the number of digits in the number and in the fraction part
1599since print calls \f(CW\*(C`length()\*(C'\fR in list context. Use something like:
1600.Sp
1601.Vb 1
1602\& print scalar $c->length(),"\en"; # prints 3
1603.Ve
1604.IP "bdiv" 1
1605.IX Item "bdiv"
1606The following will probably not do what you expect:
1607.Sp
1608.Vb 1
1609\& print $c->bdiv(10000),"\en";
1610.Ve
1611.Sp
1612It prints both quotient and remainder since print calls \f(CW\*(C`bdiv()\*(C'\fR in list
1613context. Also, \f(CW\*(C`bdiv()\*(C'\fR will modify \f(CW$c\fR, so be carefull. You probably want
1614to use
1615.Sp
1616.Vb 2
1617\& print $c / 10000,"\en";
1618\& print scalar $c->bdiv(10000),"\en"; # or if you want to modify $c
1619.Ve
1620.Sp
1621instead.
1622.Sp
1623The quotient is always the greatest integer less than or equal to the
1624real-valued quotient of the two operands, and the remainder (when it is
1625nonzero) always has the same sign as the second operand; so, for
1626example,
1627.Sp
1628.Vb 6
1629\& 1 / 4 => ( 0, 1)
1630\& 1 / -4 => (-1,-3)
1631\& -3 / 4 => (-1, 1)
1632\& -3 / -4 => ( 0,-3)
1633\& -11 / 2 => (-5,1)
1634\& 11 /-2 => (-5,-1)
1635.Ve
1636.Sp
1637As a consequence, the behavior of the operator % agrees with the
1638behavior of Perl's built-in % operator (as documented in the perlop
1639manpage), and the equation
1640.Sp
1641.Vb 1
1642\& $x == ($x / $y) * $y + ($x % $y)
1643.Ve
1644.Sp
1645holds true for any \f(CW$x\fR and \f(CW$y\fR, which justifies calling the two return
1646values of \fIbdiv()\fR the quotient and remainder. The only exception to this rule
1647are when \f(CW$y\fR == 0 and \f(CW$x\fR is negative, then the remainder will also be
1648negative. See below under \*(L"infinity handling\*(R" for the reasoning behing this.
1649.Sp
1650Perl's 'use integer;' changes the behaviour of % and / for scalars, but will
1651not change BigInt's way to do things. This is because under 'use integer' Perl
1652will do what the underlying C thinks is right and this is different for each
1653system. If you need BigInt's behaving exactly like Perl's 'use integer', bug
1654the author to implement it ;)
1655.IP "infinity handling" 1
1656.IX Item "infinity handling"
1657Here are some examples that explain the reasons why certain results occur while
1658handling infinity:
1659.Sp
1660The following table shows the result of the division and the remainder, so that
1661the equation above holds true. Some \*(L"ordinary\*(R" cases are strewn in to show more
1662clearly the reasoning:
1663.Sp
1664.Vb 23
1665\& A / B = C, R so that C * B + R = A
1666\& =========================================================
1667\& 5 / 8 = 0, 5 0 * 8 + 5 = 5
1668\& 0 / 8 = 0, 0 0 * 8 + 0 = 0
1669\& 0 / inf = 0, 0 0 * inf + 0 = 0
1670\& 0 /-inf = 0, 0 0 * -inf + 0 = 0
1671\& 5 / inf = 0, 5 0 * inf + 5 = 5
1672\& 5 /-inf = 0, 5 0 * -inf + 5 = 5
1673\& -5/ inf = 0, -5 0 * inf + -5 = -5
1674\& -5/-inf = 0, -5 0 * -inf + -5 = -5
1675\& inf/ 5 = inf, 0 inf * 5 + 0 = inf
1676\& -inf/ 5 = -inf, 0 -inf * 5 + 0 = -inf
1677\& inf/ -5 = -inf, 0 -inf * -5 + 0 = inf
1678\& -inf/ -5 = inf, 0 inf * -5 + 0 = -inf
1679\& 5/ 5 = 1, 0 1 * 5 + 0 = 5
1680\& -5/ -5 = 1, 0 1 * -5 + 0 = -5
1681\& inf/ inf = 1, 0 1 * inf + 0 = inf
1682\& -inf/-inf = 1, 0 1 * -inf + 0 = -inf
1683\& inf/-inf = -1, 0 -1 * -inf + 0 = inf
1684\& -inf/ inf = -1, 0 1 * -inf + 0 = -inf
1685\& 8/ 0 = inf, 8 inf * 0 + 8 = 8
1686\& inf/ 0 = inf, inf inf * 0 + inf = inf
1687\& 0/ 0 = NaN
1688.Ve
1689.Sp
1690These cases below violate the \*(L"remainder has the sign of the second of the two
1691arguments\*(R", since they wouldn't match up otherwise.
1692.Sp
1693.Vb 4
1694\& A / B = C, R so that C * B + R = A
1695\& ========================================================
1696\& -inf/ 0 = -inf, -inf -inf * 0 + inf = -inf
1697\& -8/ 0 = -inf, -8 -inf * 0 + 8 = -8
1698.Ve
1699.IP "Modifying and =" 1
1700.IX Item "Modifying and ="
1701Beware of:
1702.Sp
1703.Vb 2
1704\& $x = Math::BigFloat->new(5);
1705\& $y = $x;
1706.Ve
1707.Sp
1708It will not do what you think, e.g. making a copy of \f(CW$x\fR. Instead it just makes
1709a second reference to the \fBsame\fR object and stores it in \f(CW$y\fR. Thus anything
1710that modifies \f(CW$x\fR (except overloaded operators) will modify \f(CW$y\fR, and vice versa.
1711Or in other words, \f(CW\*(C`=\*(C'\fR is only safe if you modify your BigInts only via
1712overloaded math. As soon as you use a method call it breaks:
1713.Sp
1714.Vb 2
1715\& $x->bmul(2);
1716\& print "$x, $y\en"; # prints '10, 10'
1717.Ve
1718.Sp
1719If you want a true copy of \f(CW$x\fR, use:
1720.Sp
1721.Vb 1
1722\& $y = $x->copy();
1723.Ve
1724.Sp
1725You can also chain the calls like this, this will make first a copy and then
1726multiply it by 2:
1727.Sp
1728.Vb 1
1729\& $y = $x->copy()->bmul(2);
1730.Ve
1731.Sp
1732See also the documentation for overload.pm regarding \f(CW\*(C`=\*(C'\fR.
1733.IP "bpow" 1
1734.IX Item "bpow"
1735\&\f(CW\*(C`bpow()\*(C'\fR (and the rounding functions) now modifies the first argument and
1736returns it, unlike the old code which left it alone and only returned the
1737result. This is to be consistent with \f(CW\*(C`badd()\*(C'\fR etc. The first three will
1738modify \f(CW$x\fR, the last one won't:
1739.Sp
1740.Vb 4
1741\& print bpow($x,$i),"\en"; # modify $x
1742\& print $x->bpow($i),"\en"; # ditto
1743\& print $x **= $i,"\en"; # the same
1744\& print $x ** $i,"\en"; # leave $x alone
1745.Ve
1746.Sp
1747The form \f(CW\*(C`$x **= $y\*(C'\fR is faster than \f(CW\*(C`$x = $x ** $y;\*(C'\fR, though.
1748.IP "Overloading \-$x" 1
1749.IX Item "Overloading -$x"
1750The following:
1751.Sp
1752.Vb 1
1753\& $x = -$x;
1754.Ve
1755.Sp
1756is slower than
1757.Sp
1758.Vb 1
1759\& $x->bneg();
1760.Ve
1761.Sp
1762since overload calls \f(CW\*(C`sub($x,0,1);\*(C'\fR instead of \f(CW\*(C`neg($x)\*(C'\fR. The first variant
1763needs to preserve \f(CW$x\fR since it does not know that it later will get overwritten.
1764This makes a copy of \f(CW$x\fR and takes O(N), but \f(CW$x\fR\->\fIbneg()\fR is O(1).
1765.Sp
1766With Copy\-On\-Write, this issue would be gone, but C\-o-W is not implemented
1767since it is slower for all other things.
1768.IP "Mixing different object types" 1
1769.IX Item "Mixing different object types"
1770In Perl you will get a floating point value if you do one of the following:
1771.Sp
1772.Vb 3
1773\& $float = 5.0 + 2;
1774\& $float = 2 + 5.0;
1775\& $float = 5 / 2;
1776.Ve
1777.Sp
1778With overloaded math, only the first two variants will result in a BigFloat:
1779.Sp
1780.Vb 2
1781\& use Math::BigInt;
1782\& use Math::BigFloat;
1783.Ve
1784.Sp
1785.Vb 3
1786\& $mbf = Math::BigFloat->new(5);
1787\& $mbi2 = Math::BigInteger->new(5);
1788\& $mbi = Math::BigInteger->new(2);
1789.Ve
1790.Sp
1791.Vb 6
1792\& # what actually gets called:
1793\& $float = $mbf + $mbi; # $mbf->badd()
1794\& $float = $mbf / $mbi; # $mbf->bdiv()
1795\& $integer = $mbi + $mbf; # $mbi->badd()
1796\& $integer = $mbi2 / $mbi; # $mbi2->bdiv()
1797\& $integer = $mbi2 / $mbf; # $mbi2->bdiv()
1798.Ve
1799.Sp
1800This is because math with overloaded operators follows the first (dominating)
1801operand, and the operation of that is called and returns thus the result. So,
1802\&\fIMath::BigInt::bdiv()\fR will always return a Math::BigInt, regardless whether
1803the result should be a Math::BigFloat or the second operant is one.
1804.Sp
1805To get a Math::BigFloat you either need to call the operation manually,
1806make sure the operands are already of the proper type or casted to that type
1807via Math::BigFloat\->\fInew()\fR:
1808.Sp
1809.Vb 1
1810\& $float = Math::BigFloat->new($mbi2) / $mbi; # = 2.5
1811.Ve
1812.Sp
1813Beware of simple \*(L"casting\*(R" the entire expression, this would only convert
1814the already computed result:
1815.Sp
1816.Vb 1
1817\& $float = Math::BigFloat->new($mbi2 / $mbi); # = 2.0 thus wrong!
1818.Ve
1819.Sp
1820Beware also of the order of more complicated expressions like:
1821.Sp
1822.Vb 2
1823\& $integer = ($mbi2 + $mbi) / $mbf; # int / float => int
1824\& $integer = $mbi2 / Math::BigFloat->new($mbi); # ditto
1825.Ve
1826.Sp
1827If in doubt, break the expression into simpler terms, or cast all operands
1828to the desired resulting type.
1829.Sp
1830Scalar values are a bit different, since:
1831.Sp
1832.Vb 2
1833\& $float = 2 + $mbf;
1834\& $float = $mbf + 2;
1835.Ve
1836.Sp
1837will both result in the proper type due to the way the overloaded math works.
1838.Sp
1839This section also applies to other overloaded math packages, like Math::String.
1840.Sp
1841One solution to you problem might be autoupgrading.
1842.IP "\fIbsqrt()\fR" 1
1843.IX Item "bsqrt()"
1844\&\f(CW\*(C`bsqrt()\*(C'\fR works only good if the result is a big integer, e.g. the square
1845root of 144 is 12, but from 12 the square root is 3, regardless of rounding
1846mode.
1847.Sp
1848If you want a better approximation of the square root, then use:
1849.Sp
1850.Vb 4
1851\& $x = Math::BigFloat->new(12);
1852\& Math::BigFloat->precision(0);
1853\& Math::BigFloat->round_mode('even');
1854\& print $x->copy->bsqrt(),"\en"; # 4
1855.Ve
1856.Sp
1857.Vb 3
1858\& Math::BigFloat->precision(2);
1859\& print $x->bsqrt(),"\en"; # 3.46
1860\& print $x->bsqrt(3),"\en"; # 3.464
1861.Ve
1862.IP "\fIbrsft()\fR" 1
1863.IX Item "brsft()"
1864For negative numbers in base see also brsft.
1865.SH "LICENSE"
1866.IX Header "LICENSE"
1867This program is free software; you may redistribute it and/or modify it under
1868the same terms as Perl itself.
1869.SH "SEE ALSO"
1870.IX Header "SEE ALSO"
1871Math::BigFloat and Math::Big as well as Math::BigInt::BitVect,
1872Math::BigInt::Pari and Math::BigInt::GMP.
1873.PP
1874The package at
1875<http://search.cpan.org/search?mode=module&query=Math%3A%3ABigInt> contains
1876more documentation including a full version history, testcases, empty
1877subclass files and benchmarks.
1878.SH "AUTHORS"
1879.IX Header "AUTHORS"
1880Original code by Mark Biggar, overloaded interface by Ilya Zakharevich.
1881Completely rewritten by Tels http://bloodgate.com in late 2000, 2001.