Initial commit of OpenSPARC T2 design and verification files.
[OpenSPARC-T2-DV] / tools / src / nas,5.n2.os.2 / lib / python / include / python2.4 / object.h
CommitLineData
86530b38
AT
1#ifndef Py_OBJECT_H
2#define Py_OBJECT_H
3#ifdef __cplusplus
4extern "C" {
5#endif
6
7
8/* Object and type object interface */
9
10/*
11Objects are structures allocated on the heap. Special rules apply to
12the use of objects to ensure they are properly garbage-collected.
13Objects are never allocated statically or on the stack; they must be
14accessed through special macros and functions only. (Type objects are
15exceptions to the first rule; the standard types are represented by
16statically initialized type objects, although work on type/class unification
17for Python 2.2 made it possible to have heap-allocated type objects too).
18
19An object has a 'reference count' that is increased or decreased when a
20pointer to the object is copied or deleted; when the reference count
21reaches zero there are no references to the object left and it can be
22removed from the heap.
23
24An object has a 'type' that determines what it represents and what kind
25of data it contains. An object's type is fixed when it is created.
26Types themselves are represented as objects; an object contains a
27pointer to the corresponding type object. The type itself has a type
28pointer pointing to the object representing the type 'type', which
29contains a pointer to itself!).
30
31Objects do not float around in memory; once allocated an object keeps
32the same size and address. Objects that must hold variable-size data
33can contain pointers to variable-size parts of the object. Not all
34objects of the same type have the same size; but the size cannot change
35after allocation. (These restrictions are made so a reference to an
36object can be simply a pointer -- moving an object would require
37updating all the pointers, and changing an object's size would require
38moving it if there was another object right next to it.)
39
40Objects are always accessed through pointers of the type 'PyObject *'.
41The type 'PyObject' is a structure that only contains the reference count
42and the type pointer. The actual memory allocated for an object
43contains other data that can only be accessed after casting the pointer
44to a pointer to a longer structure type. This longer type must start
45with the reference count and type fields; the macro PyObject_HEAD should be
46used for this (to accommodate for future changes). The implementation
47of a particular object type can cast the object pointer to the proper
48type and back.
49
50A standard interface exists for objects that contain an array of items
51whose size is determined when the object is allocated.
52*/
53
54/* Py_DEBUG implies Py_TRACE_REFS. */
55#if defined(Py_DEBUG) && !defined(Py_TRACE_REFS)
56#define Py_TRACE_REFS
57#endif
58
59/* Py_TRACE_REFS implies Py_REF_DEBUG. */
60#if defined(Py_TRACE_REFS) && !defined(Py_REF_DEBUG)
61#define Py_REF_DEBUG
62#endif
63
64#ifdef Py_TRACE_REFS
65/* Define pointers to support a doubly-linked list of all live heap objects. */
66#define _PyObject_HEAD_EXTRA \
67 struct _object *_ob_next; \
68 struct _object *_ob_prev;
69
70#define _PyObject_EXTRA_INIT 0, 0,
71
72#else
73#define _PyObject_HEAD_EXTRA
74#define _PyObject_EXTRA_INIT
75#endif
76
77/* PyObject_HEAD defines the initial segment of every PyObject. */
78#define PyObject_HEAD \
79 _PyObject_HEAD_EXTRA \
80 int ob_refcnt; \
81 struct _typeobject *ob_type;
82
83#define PyObject_HEAD_INIT(type) \
84 _PyObject_EXTRA_INIT \
85 1, type,
86
87/* PyObject_VAR_HEAD defines the initial segment of all variable-size
88 * container objects. These end with a declaration of an array with 1
89 * element, but enough space is malloc'ed so that the array actually
90 * has room for ob_size elements. Note that ob_size is an element count,
91 * not necessarily a byte count.
92 */
93#define PyObject_VAR_HEAD \
94 PyObject_HEAD \
95 int ob_size; /* Number of items in variable part */
96
97/* Nothing is actually declared to be a PyObject, but every pointer to
98 * a Python object can be cast to a PyObject*. This is inheritance built
99 * by hand. Similarly every pointer to a variable-size Python object can,
100 * in addition, be cast to PyVarObject*.
101 */
102typedef struct _object {
103 PyObject_HEAD
104} PyObject;
105
106typedef struct {
107 PyObject_VAR_HEAD
108} PyVarObject;
109
110
111/*
112Type objects contain a string containing the type name (to help somewhat
113in debugging), the allocation parameters (see PyObject_New() and
114PyObject_NewVar()),
115and methods for accessing objects of the type. Methods are optional, a
116nil pointer meaning that particular kind of access is not available for
117this type. The Py_DECREF() macro uses the tp_dealloc method without
118checking for a nil pointer; it should always be implemented except if
119the implementation can guarantee that the reference count will never
120reach zero (e.g., for statically allocated type objects).
121
122NB: the methods for certain type groups are now contained in separate
123method blocks.
124*/
125
126typedef PyObject * (*unaryfunc)(PyObject *);
127typedef PyObject * (*binaryfunc)(PyObject *, PyObject *);
128typedef PyObject * (*ternaryfunc)(PyObject *, PyObject *, PyObject *);
129typedef int (*inquiry)(PyObject *);
130typedef int (*coercion)(PyObject **, PyObject **);
131typedef PyObject *(*intargfunc)(PyObject *, int);
132typedef PyObject *(*intintargfunc)(PyObject *, int, int);
133typedef int(*intobjargproc)(PyObject *, int, PyObject *);
134typedef int(*intintobjargproc)(PyObject *, int, int, PyObject *);
135typedef int(*objobjargproc)(PyObject *, PyObject *, PyObject *);
136typedef int (*getreadbufferproc)(PyObject *, int, void **);
137typedef int (*getwritebufferproc)(PyObject *, int, void **);
138typedef int (*getsegcountproc)(PyObject *, int *);
139typedef int (*getcharbufferproc)(PyObject *, int, const char **);
140typedef int (*objobjproc)(PyObject *, PyObject *);
141typedef int (*visitproc)(PyObject *, void *);
142typedef int (*traverseproc)(PyObject *, visitproc, void *);
143
144typedef struct {
145 /* For numbers without flag bit Py_TPFLAGS_CHECKTYPES set, all
146 arguments are guaranteed to be of the object's type (modulo
147 coercion hacks -- i.e. if the type's coercion function
148 returns other types, then these are allowed as well). Numbers that
149 have the Py_TPFLAGS_CHECKTYPES flag bit set should check *both*
150 arguments for proper type and implement the necessary conversions
151 in the slot functions themselves. */
152
153 binaryfunc nb_add;
154 binaryfunc nb_subtract;
155 binaryfunc nb_multiply;
156 binaryfunc nb_divide;
157 binaryfunc nb_remainder;
158 binaryfunc nb_divmod;
159 ternaryfunc nb_power;
160 unaryfunc nb_negative;
161 unaryfunc nb_positive;
162 unaryfunc nb_absolute;
163 inquiry nb_nonzero;
164 unaryfunc nb_invert;
165 binaryfunc nb_lshift;
166 binaryfunc nb_rshift;
167 binaryfunc nb_and;
168 binaryfunc nb_xor;
169 binaryfunc nb_or;
170 coercion nb_coerce;
171 unaryfunc nb_int;
172 unaryfunc nb_long;
173 unaryfunc nb_float;
174 unaryfunc nb_oct;
175 unaryfunc nb_hex;
176 /* Added in release 2.0 */
177 binaryfunc nb_inplace_add;
178 binaryfunc nb_inplace_subtract;
179 binaryfunc nb_inplace_multiply;
180 binaryfunc nb_inplace_divide;
181 binaryfunc nb_inplace_remainder;
182 ternaryfunc nb_inplace_power;
183 binaryfunc nb_inplace_lshift;
184 binaryfunc nb_inplace_rshift;
185 binaryfunc nb_inplace_and;
186 binaryfunc nb_inplace_xor;
187 binaryfunc nb_inplace_or;
188
189 /* Added in release 2.2 */
190 /* The following require the Py_TPFLAGS_HAVE_CLASS flag */
191 binaryfunc nb_floor_divide;
192 binaryfunc nb_true_divide;
193 binaryfunc nb_inplace_floor_divide;
194 binaryfunc nb_inplace_true_divide;
195} PyNumberMethods;
196
197typedef struct {
198 inquiry sq_length;
199 binaryfunc sq_concat;
200 intargfunc sq_repeat;
201 intargfunc sq_item;
202 intintargfunc sq_slice;
203 intobjargproc sq_ass_item;
204 intintobjargproc sq_ass_slice;
205 objobjproc sq_contains;
206 /* Added in release 2.0 */
207 binaryfunc sq_inplace_concat;
208 intargfunc sq_inplace_repeat;
209} PySequenceMethods;
210
211typedef struct {
212 inquiry mp_length;
213 binaryfunc mp_subscript;
214 objobjargproc mp_ass_subscript;
215} PyMappingMethods;
216
217typedef struct {
218 getreadbufferproc bf_getreadbuffer;
219 getwritebufferproc bf_getwritebuffer;
220 getsegcountproc bf_getsegcount;
221 getcharbufferproc bf_getcharbuffer;
222} PyBufferProcs;
223
224
225typedef void (*freefunc)(void *);
226typedef void (*destructor)(PyObject *);
227typedef int (*printfunc)(PyObject *, FILE *, int);
228typedef PyObject *(*getattrfunc)(PyObject *, char *);
229typedef PyObject *(*getattrofunc)(PyObject *, PyObject *);
230typedef int (*setattrfunc)(PyObject *, char *, PyObject *);
231typedef int (*setattrofunc)(PyObject *, PyObject *, PyObject *);
232typedef int (*cmpfunc)(PyObject *, PyObject *);
233typedef PyObject *(*reprfunc)(PyObject *);
234typedef long (*hashfunc)(PyObject *);
235typedef PyObject *(*richcmpfunc) (PyObject *, PyObject *, int);
236typedef PyObject *(*getiterfunc) (PyObject *);
237typedef PyObject *(*iternextfunc) (PyObject *);
238typedef PyObject *(*descrgetfunc) (PyObject *, PyObject *, PyObject *);
239typedef int (*descrsetfunc) (PyObject *, PyObject *, PyObject *);
240typedef int (*initproc)(PyObject *, PyObject *, PyObject *);
241typedef PyObject *(*newfunc)(struct _typeobject *, PyObject *, PyObject *);
242typedef PyObject *(*allocfunc)(struct _typeobject *, int);
243
244typedef struct _typeobject {
245 PyObject_VAR_HEAD
246 char *tp_name; /* For printing, in format "<module>.<name>" */
247 int tp_basicsize, tp_itemsize; /* For allocation */
248
249 /* Methods to implement standard operations */
250
251 destructor tp_dealloc;
252 printfunc tp_print;
253 getattrfunc tp_getattr;
254 setattrfunc tp_setattr;
255 cmpfunc tp_compare;
256 reprfunc tp_repr;
257
258 /* Method suites for standard classes */
259
260 PyNumberMethods *tp_as_number;
261 PySequenceMethods *tp_as_sequence;
262 PyMappingMethods *tp_as_mapping;
263
264 /* More standard operations (here for binary compatibility) */
265
266 hashfunc tp_hash;
267 ternaryfunc tp_call;
268 reprfunc tp_str;
269 getattrofunc tp_getattro;
270 setattrofunc tp_setattro;
271
272 /* Functions to access object as input/output buffer */
273 PyBufferProcs *tp_as_buffer;
274
275 /* Flags to define presence of optional/expanded features */
276 long tp_flags;
277
278 char *tp_doc; /* Documentation string */
279
280 /* Assigned meaning in release 2.0 */
281 /* call function for all accessible objects */
282 traverseproc tp_traverse;
283
284 /* delete references to contained objects */
285 inquiry tp_clear;
286
287 /* Assigned meaning in release 2.1 */
288 /* rich comparisons */
289 richcmpfunc tp_richcompare;
290
291 /* weak reference enabler */
292 long tp_weaklistoffset;
293
294 /* Added in release 2.2 */
295 /* Iterators */
296 getiterfunc tp_iter;
297 iternextfunc tp_iternext;
298
299 /* Attribute descriptor and subclassing stuff */
300 struct PyMethodDef *tp_methods;
301 struct PyMemberDef *tp_members;
302 struct PyGetSetDef *tp_getset;
303 struct _typeobject *tp_base;
304 PyObject *tp_dict;
305 descrgetfunc tp_descr_get;
306 descrsetfunc tp_descr_set;
307 long tp_dictoffset;
308 initproc tp_init;
309 allocfunc tp_alloc;
310 newfunc tp_new;
311 freefunc tp_free; /* Low-level free-memory routine */
312 inquiry tp_is_gc; /* For PyObject_IS_GC */
313 PyObject *tp_bases;
314 PyObject *tp_mro; /* method resolution order */
315 PyObject *tp_cache;
316 PyObject *tp_subclasses;
317 PyObject *tp_weaklist;
318 destructor tp_del;
319
320#ifdef COUNT_ALLOCS
321 /* these must be last and never explicitly initialized */
322 int tp_allocs;
323 int tp_frees;
324 int tp_maxalloc;
325 struct _typeobject *tp_next;
326#endif
327} PyTypeObject;
328
329
330/* The *real* layout of a type object when allocated on the heap */
331typedef struct _heaptypeobject {
332 /* Note: there's a dependency on the order of these members
333 in slotptr() in typeobject.c . */
334 PyTypeObject type;
335 PyNumberMethods as_number;
336 PyMappingMethods as_mapping;
337 PySequenceMethods as_sequence; /* as_sequence comes after as_mapping,
338 so that the mapping wins when both
339 the mapping and the sequence define
340 a given operator (e.g. __getitem__).
341 see add_operators() in typeobject.c . */
342 PyBufferProcs as_buffer;
343 PyObject *name, *slots;
344 /* here are optional user slots, followed by the members. */
345} PyHeapTypeObject;
346
347/* access macro to the members which are floating "behind" the object */
348#define PyHeapType_GET_MEMBERS(etype) \
349 ((PyMemberDef *)(((char *)etype) + (etype)->type.ob_type->tp_basicsize))
350
351
352/* Generic type check */
353PyAPI_FUNC(int) PyType_IsSubtype(PyTypeObject *, PyTypeObject *);
354#define PyObject_TypeCheck(ob, tp) \
355 ((ob)->ob_type == (tp) || PyType_IsSubtype((ob)->ob_type, (tp)))
356
357PyAPI_DATA(PyTypeObject) PyType_Type; /* built-in 'type' */
358PyAPI_DATA(PyTypeObject) PyBaseObject_Type; /* built-in 'object' */
359PyAPI_DATA(PyTypeObject) PySuper_Type; /* built-in 'super' */
360
361#define PyType_Check(op) PyObject_TypeCheck(op, &PyType_Type)
362#define PyType_CheckExact(op) ((op)->ob_type == &PyType_Type)
363
364PyAPI_FUNC(int) PyType_Ready(PyTypeObject *);
365PyAPI_FUNC(PyObject *) PyType_GenericAlloc(PyTypeObject *, int);
366PyAPI_FUNC(PyObject *) PyType_GenericNew(PyTypeObject *,
367 PyObject *, PyObject *);
368PyAPI_FUNC(PyObject *) _PyType_Lookup(PyTypeObject *, PyObject *);
369
370/* Generic operations on objects */
371PyAPI_FUNC(int) PyObject_Print(PyObject *, FILE *, int);
372PyAPI_FUNC(void) _PyObject_Dump(PyObject *);
373PyAPI_FUNC(PyObject *) PyObject_Repr(PyObject *);
374PyAPI_FUNC(PyObject *) PyObject_Str(PyObject *);
375#ifdef Py_USING_UNICODE
376PyAPI_FUNC(PyObject *) PyObject_Unicode(PyObject *);
377#endif
378PyAPI_FUNC(int) PyObject_Compare(PyObject *, PyObject *);
379PyAPI_FUNC(PyObject *) PyObject_RichCompare(PyObject *, PyObject *, int);
380PyAPI_FUNC(int) PyObject_RichCompareBool(PyObject *, PyObject *, int);
381PyAPI_FUNC(PyObject *) PyObject_GetAttrString(PyObject *, char *);
382PyAPI_FUNC(int) PyObject_SetAttrString(PyObject *, char *, PyObject *);
383PyAPI_FUNC(int) PyObject_HasAttrString(PyObject *, char *);
384PyAPI_FUNC(PyObject *) PyObject_GetAttr(PyObject *, PyObject *);
385PyAPI_FUNC(int) PyObject_SetAttr(PyObject *, PyObject *, PyObject *);
386PyAPI_FUNC(int) PyObject_HasAttr(PyObject *, PyObject *);
387PyAPI_FUNC(PyObject **) _PyObject_GetDictPtr(PyObject *);
388PyAPI_FUNC(PyObject *) PyObject_SelfIter(PyObject *);
389PyAPI_FUNC(PyObject *) PyObject_GenericGetAttr(PyObject *, PyObject *);
390PyAPI_FUNC(int) PyObject_GenericSetAttr(PyObject *,
391 PyObject *, PyObject *);
392PyAPI_FUNC(long) PyObject_Hash(PyObject *);
393PyAPI_FUNC(int) PyObject_IsTrue(PyObject *);
394PyAPI_FUNC(int) PyObject_Not(PyObject *);
395PyAPI_FUNC(int) PyCallable_Check(PyObject *);
396PyAPI_FUNC(int) PyNumber_Coerce(PyObject **, PyObject **);
397PyAPI_FUNC(int) PyNumber_CoerceEx(PyObject **, PyObject **);
398
399PyAPI_FUNC(void) PyObject_ClearWeakRefs(PyObject *);
400
401/* A slot function whose address we need to compare */
402extern int _PyObject_SlotCompare(PyObject *, PyObject *);
403
404
405/* PyObject_Dir(obj) acts like Python __builtin__.dir(obj), returning a
406 list of strings. PyObject_Dir(NULL) is like __builtin__.dir(),
407 returning the names of the current locals. In this case, if there are
408 no current locals, NULL is returned, and PyErr_Occurred() is false.
409*/
410PyAPI_FUNC(PyObject *) PyObject_Dir(PyObject *);
411
412
413/* Helpers for printing recursive container types */
414PyAPI_FUNC(int) Py_ReprEnter(PyObject *);
415PyAPI_FUNC(void) Py_ReprLeave(PyObject *);
416
417/* Helpers for hash functions */
418PyAPI_FUNC(long) _Py_HashDouble(double);
419PyAPI_FUNC(long) _Py_HashPointer(void*);
420
421/* Helper for passing objects to printf and the like */
422#define PyObject_REPR(obj) PyString_AS_STRING(PyObject_Repr(obj))
423
424/* Flag bits for printing: */
425#define Py_PRINT_RAW 1 /* No string quotes etc. */
426
427/*
428`Type flags (tp_flags)
429
430These flags are used to extend the type structure in a backwards-compatible
431fashion. Extensions can use the flags to indicate (and test) when a given
432type structure contains a new feature. The Python core will use these when
433introducing new functionality between major revisions (to avoid mid-version
434changes in the PYTHON_API_VERSION).
435
436Arbitration of the flag bit positions will need to be coordinated among
437all extension writers who publically release their extensions (this will
438be fewer than you might expect!)..
439
440Python 1.5.2 introduced the bf_getcharbuffer slot into PyBufferProcs.
441
442Type definitions should use Py_TPFLAGS_DEFAULT for their tp_flags value.
443
444Code can use PyType_HasFeature(type_ob, flag_value) to test whether the
445given type object has a specified feature.
446*/
447
448/* PyBufferProcs contains bf_getcharbuffer */
449#define Py_TPFLAGS_HAVE_GETCHARBUFFER (1L<<0)
450
451/* PySequenceMethods contains sq_contains */
452#define Py_TPFLAGS_HAVE_SEQUENCE_IN (1L<<1)
453
454/* This is here for backwards compatibility. Extensions that use the old GC
455 * API will still compile but the objects will not be tracked by the GC. */
456#define Py_TPFLAGS_GC 0 /* used to be (1L<<2) */
457
458/* PySequenceMethods and PyNumberMethods contain in-place operators */
459#define Py_TPFLAGS_HAVE_INPLACEOPS (1L<<3)
460
461/* PyNumberMethods do their own coercion */
462#define Py_TPFLAGS_CHECKTYPES (1L<<4)
463
464/* tp_richcompare is defined */
465#define Py_TPFLAGS_HAVE_RICHCOMPARE (1L<<5)
466
467/* Objects which are weakly referencable if their tp_weaklistoffset is >0 */
468#define Py_TPFLAGS_HAVE_WEAKREFS (1L<<6)
469
470/* tp_iter is defined */
471#define Py_TPFLAGS_HAVE_ITER (1L<<7)
472
473/* New members introduced by Python 2.2 exist */
474#define Py_TPFLAGS_HAVE_CLASS (1L<<8)
475
476/* Set if the type object is dynamically allocated */
477#define Py_TPFLAGS_HEAPTYPE (1L<<9)
478
479/* Set if the type allows subclassing */
480#define Py_TPFLAGS_BASETYPE (1L<<10)
481
482/* Set if the type is 'ready' -- fully initialized */
483#define Py_TPFLAGS_READY (1L<<12)
484
485/* Set while the type is being 'readied', to prevent recursive ready calls */
486#define Py_TPFLAGS_READYING (1L<<13)
487
488/* Objects support garbage collection (see objimp.h) */
489#define Py_TPFLAGS_HAVE_GC (1L<<14)
490
491/* These two bits are preserved for Stackless Python, next after this is 16 */
492#ifdef STACKLESS
493#define Py_TPFLAGS_HAVE_STACKLESS_EXTENSION (3L<<15)
494#else
495#define Py_TPFLAGS_HAVE_STACKLESS_EXTENSION 0
496#endif
497
498#define Py_TPFLAGS_DEFAULT ( \
499 Py_TPFLAGS_HAVE_GETCHARBUFFER | \
500 Py_TPFLAGS_HAVE_SEQUENCE_IN | \
501 Py_TPFLAGS_HAVE_INPLACEOPS | \
502 Py_TPFLAGS_HAVE_RICHCOMPARE | \
503 Py_TPFLAGS_HAVE_WEAKREFS | \
504 Py_TPFLAGS_HAVE_ITER | \
505 Py_TPFLAGS_HAVE_CLASS | \
506 Py_TPFLAGS_HAVE_STACKLESS_EXTENSION | \
507 0)
508
509#define PyType_HasFeature(t,f) (((t)->tp_flags & (f)) != 0)
510
511
512/*
513The macros Py_INCREF(op) and Py_DECREF(op) are used to increment or decrement
514reference counts. Py_DECREF calls the object's deallocator function when
515the refcount falls to 0; for
516objects that don't contain references to other objects or heap memory
517this can be the standard function free(). Both macros can be used
518wherever a void expression is allowed. The argument must not be a
519NIL pointer. If it may be NIL, use Py_XINCREF/Py_XDECREF instead.
520The macro _Py_NewReference(op) initialize reference counts to 1, and
521in special builds (Py_REF_DEBUG, Py_TRACE_REFS) performs additional
522bookkeeping appropriate to the special build.
523
524We assume that the reference count field can never overflow; this can
525be proven when the size of the field is the same as the pointer size, so
526we ignore the possibility. Provided a C int is at least 32 bits (which
527is implicitly assumed in many parts of this code), that's enough for
528about 2**31 references to an object.
529
530XXX The following became out of date in Python 2.2, but I'm not sure
531XXX what the full truth is now. Certainly, heap-allocated type objects
532XXX can and should be deallocated.
533Type objects should never be deallocated; the type pointer in an object
534is not considered to be a reference to the type object, to save
535complications in the deallocation function. (This is actually a
536decision that's up to the implementer of each new type so if you want,
537you can count such references to the type object.)
538
539*** WARNING*** The Py_DECREF macro must have a side-effect-free argument
540since it may evaluate its argument multiple times. (The alternative
541would be to mace it a proper function or assign it to a global temporary
542variable first, both of which are slower; and in a multi-threaded
543environment the global variable trick is not safe.)
544*/
545
546/* First define a pile of simple helper macros, one set per special
547 * build symbol. These either expand to the obvious things, or to
548 * nothing at all when the special mode isn't in effect. The main
549 * macros can later be defined just once then, yet expand to different
550 * things depending on which special build options are and aren't in effect.
551 * Trust me <wink>: while painful, this is 20x easier to understand than,
552 * e.g, defining _Py_NewReference five different times in a maze of nested
553 * #ifdefs (we used to do that -- it was impenetrable).
554 */
555#ifdef Py_REF_DEBUG
556PyAPI_DATA(long) _Py_RefTotal;
557PyAPI_FUNC(void) _Py_NegativeRefcount(const char *fname,
558 int lineno, PyObject *op);
559#define _Py_INC_REFTOTAL _Py_RefTotal++
560#define _Py_DEC_REFTOTAL _Py_RefTotal--
561#define _Py_REF_DEBUG_COMMA ,
562#define _Py_CHECK_REFCNT(OP) \
563{ if ((OP)->ob_refcnt < 0) \
564 _Py_NegativeRefcount(__FILE__, __LINE__, \
565 (PyObject *)(OP)); \
566}
567#else
568#define _Py_INC_REFTOTAL
569#define _Py_DEC_REFTOTAL
570#define _Py_REF_DEBUG_COMMA
571#define _Py_CHECK_REFCNT(OP) /* a semicolon */;
572#endif /* Py_REF_DEBUG */
573
574#ifdef COUNT_ALLOCS
575PyAPI_FUNC(void) inc_count(PyTypeObject *);
576#define _Py_INC_TPALLOCS(OP) inc_count((OP)->ob_type)
577#define _Py_INC_TPFREES(OP) (OP)->ob_type->tp_frees++
578#define _Py_DEC_TPFREES(OP) (OP)->ob_type->tp_frees--
579#define _Py_COUNT_ALLOCS_COMMA ,
580#else
581#define _Py_INC_TPALLOCS(OP)
582#define _Py_INC_TPFREES(OP)
583#define _Py_DEC_TPFREES(OP)
584#define _Py_COUNT_ALLOCS_COMMA
585#endif /* COUNT_ALLOCS */
586
587#ifdef Py_TRACE_REFS
588/* Py_TRACE_REFS is such major surgery that we call external routines. */
589PyAPI_FUNC(void) _Py_NewReference(PyObject *);
590PyAPI_FUNC(void) _Py_ForgetReference(PyObject *);
591PyAPI_FUNC(void) _Py_Dealloc(PyObject *);
592PyAPI_FUNC(void) _Py_PrintReferences(FILE *);
593PyAPI_FUNC(void) _Py_PrintReferenceAddresses(FILE *);
594PyAPI_FUNC(void) _Py_AddToAllObjects(PyObject *, int force);
595
596#else
597/* Without Py_TRACE_REFS, there's little enough to do that we expand code
598 * inline.
599 */
600#define _Py_NewReference(op) ( \
601 _Py_INC_TPALLOCS(op) _Py_COUNT_ALLOCS_COMMA \
602 _Py_INC_REFTOTAL _Py_REF_DEBUG_COMMA \
603 (op)->ob_refcnt = 1)
604
605#define _Py_ForgetReference(op) _Py_INC_TPFREES(op)
606
607#define _Py_Dealloc(op) ( \
608 _Py_INC_TPFREES(op) _Py_COUNT_ALLOCS_COMMA \
609 (*(op)->ob_type->tp_dealloc)((PyObject *)(op)))
610#endif /* !Py_TRACE_REFS */
611
612#define Py_INCREF(op) ( \
613 _Py_INC_REFTOTAL _Py_REF_DEBUG_COMMA \
614 (op)->ob_refcnt++)
615
616#define Py_DECREF(op) \
617 if (_Py_DEC_REFTOTAL _Py_REF_DEBUG_COMMA \
618 --(op)->ob_refcnt != 0) \
619 _Py_CHECK_REFCNT(op) \
620 else \
621 _Py_Dealloc((PyObject *)(op))
622
623#define Py_CLEAR(op) \
624 do { \
625 if (op) { \
626 PyObject *tmp = (PyObject *)(op); \
627 (op) = NULL; \
628 Py_DECREF(tmp); \
629 } \
630 } while (0)
631
632/* Macros to use in case the object pointer may be NULL: */
633#define Py_XINCREF(op) if ((op) == NULL) ; else Py_INCREF(op)
634#define Py_XDECREF(op) if ((op) == NULL) ; else Py_DECREF(op)
635
636/*
637These are provided as conveniences to Python runtime embedders, so that
638they can have object code that is not dependent on Python compilation flags.
639*/
640PyAPI_FUNC(void) Py_IncRef(PyObject *);
641PyAPI_FUNC(void) Py_DecRef(PyObject *);
642
643/*
644_Py_NoneStruct is an object of undefined type which can be used in contexts
645where NULL (nil) is not suitable (since NULL often means 'error').
646
647Don't forget to apply Py_INCREF() when returning this value!!!
648*/
649PyAPI_DATA(PyObject) _Py_NoneStruct; /* Don't use this directly */
650#define Py_None (&_Py_NoneStruct)
651
652/* Macro for returning Py_None from a function */
653#define Py_RETURN_NONE return Py_INCREF(Py_None), Py_None
654
655/*
656Py_NotImplemented is a singleton used to signal that an operation is
657not implemented for a given type combination.
658*/
659PyAPI_DATA(PyObject) _Py_NotImplementedStruct; /* Don't use this directly */
660#define Py_NotImplemented (&_Py_NotImplementedStruct)
661
662/* Rich comparison opcodes */
663#define Py_LT 0
664#define Py_LE 1
665#define Py_EQ 2
666#define Py_NE 3
667#define Py_GT 4
668#define Py_GE 5
669
670/* Maps Py_LT to Py_GT, ..., Py_GE to Py_LE.
671 * Defined in object.c.
672 */
673PyAPI_DATA(int) _Py_SwappedOp[];
674
675/*
676Define staticforward and statichere for source compatibility with old
677C extensions.
678
679The staticforward define was needed to support certain broken C
680compilers (notably SCO ODT 3.0, perhaps early AIX as well) botched the
681static keyword when it was used with a forward declaration of a static
682initialized structure. Standard C allows the forward declaration with
683static, and we've decided to stop catering to broken C compilers.
684(In fact, we expect that the compilers are all fixed eight years later.)
685*/
686
687#define staticforward static
688#define statichere static
689
690
691/*
692More conventions
693================
694
695Argument Checking
696-----------------
697
698Functions that take objects as arguments normally don't check for nil
699arguments, but they do check the type of the argument, and return an
700error if the function doesn't apply to the type.
701
702Failure Modes
703-------------
704
705Functions may fail for a variety of reasons, including running out of
706memory. This is communicated to the caller in two ways: an error string
707is set (see errors.h), and the function result differs: functions that
708normally return a pointer return NULL for failure, functions returning
709an integer return -1 (which could be a legal return value too!), and
710other functions return 0 for success and -1 for failure.
711Callers should always check for errors before using the result. If
712an error was set, the caller must either explicitly clear it, or pass
713the error on to its caller.
714
715Reference Counts
716----------------
717
718It takes a while to get used to the proper usage of reference counts.
719
720Functions that create an object set the reference count to 1; such new
721objects must be stored somewhere or destroyed again with Py_DECREF().
722Some functions that 'store' objects, such as PyTuple_SetItem() and
723PyList_SetItem(),
724don't increment the reference count of the object, since the most
725frequent use is to store a fresh object. Functions that 'retrieve'
726objects, such as PyTuple_GetItem() and PyDict_GetItemString(), also
727don't increment
728the reference count, since most frequently the object is only looked at
729quickly. Thus, to retrieve an object and store it again, the caller
730must call Py_INCREF() explicitly.
731
732NOTE: functions that 'consume' a reference count, like
733PyList_SetItem(), consume the reference even if the object wasn't
734successfully stored, to simplify error handling.
735
736It seems attractive to make other functions that take an object as
737argument consume a reference count; however, this may quickly get
738confusing (even the current practice is already confusing). Consider
739it carefully, it may save lots of calls to Py_INCREF() and Py_DECREF() at
740times.
741*/
742
743
744/* Trashcan mechanism, thanks to Christian Tismer.
745
746When deallocating a container object, it's possible to trigger an unbounded
747chain of deallocations, as each Py_DECREF in turn drops the refcount on "the
748next" object in the chain to 0. This can easily lead to stack faults, and
749especially in threads (which typically have less stack space to work with).
750
751A container object that participates in cyclic gc can avoid this by
752bracketing the body of its tp_dealloc function with a pair of macros:
753
754static void
755mytype_dealloc(mytype *p)
756{
757 ... declarations go here ...
758
759 PyObject_GC_UnTrack(p); // must untrack first
760 Py_TRASHCAN_SAFE_BEGIN(p)
761 ... The body of the deallocator goes here, including all calls ...
762 ... to Py_DECREF on contained objects. ...
763 Py_TRASHCAN_SAFE_END(p)
764}
765
766CAUTION: Never return from the middle of the body! If the body needs to
767"get out early", put a label immediately before the Py_TRASHCAN_SAFE_END
768call, and goto it. Else the call-depth counter (see below) will stay
769above 0 forever, and the trashcan will never get emptied.
770
771How it works: The BEGIN macro increments a call-depth counter. So long
772as this counter is small, the body of the deallocator is run directly without
773further ado. But if the counter gets large, it instead adds p to a list of
774objects to be deallocated later, skips the body of the deallocator, and
775resumes execution after the END macro. The tp_dealloc routine then returns
776without deallocating anything (and so unbounded call-stack depth is avoided).
777
778When the call stack finishes unwinding again, code generated by the END macro
779notices this, and calls another routine to deallocate all the objects that
780may have been added to the list of deferred deallocations. In effect, a
781chain of N deallocations is broken into N / PyTrash_UNWIND_LEVEL pieces,
782with the call stack never exceeding a depth of PyTrash_UNWIND_LEVEL.
783*/
784
785PyAPI_FUNC(void) _PyTrash_deposit_object(PyObject*);
786PyAPI_FUNC(void) _PyTrash_destroy_chain(void);
787PyAPI_DATA(int) _PyTrash_delete_nesting;
788PyAPI_DATA(PyObject *) _PyTrash_delete_later;
789
790#define PyTrash_UNWIND_LEVEL 50
791
792#define Py_TRASHCAN_SAFE_BEGIN(op) \
793 if (_PyTrash_delete_nesting < PyTrash_UNWIND_LEVEL) { \
794 ++_PyTrash_delete_nesting;
795 /* The body of the deallocator is here. */
796#define Py_TRASHCAN_SAFE_END(op) \
797 --_PyTrash_delete_nesting; \
798 if (_PyTrash_delete_later && _PyTrash_delete_nesting <= 0) \
799 _PyTrash_destroy_chain(); \
800 } \
801 else \
802 _PyTrash_deposit_object((PyObject*)op);
803
804#ifdef __cplusplus
805}
806#endif
807#endif /* !Py_OBJECT_H */