Initial commit of OpenSPARC T2 design and verification files.
[OpenSPARC-T2-DV] / tools / src / nas,5.n2.os.2 / lib / python / lib / python2.4 / test / test_random.py
CommitLineData
86530b38
AT
1#!/usr/bin/env python
2
3import unittest
4import random
5import time
6import pickle
7import warnings
8from math import log, exp, sqrt, pi
9from test import test_support
10
11class TestBasicOps(unittest.TestCase):
12 # Superclass with tests common to all generators.
13 # Subclasses must arrange for self.gen to retrieve the Random instance
14 # to be tested.
15
16 def randomlist(self, n):
17 """Helper function to make a list of random numbers"""
18 return [self.gen.random() for i in xrange(n)]
19
20 def test_autoseed(self):
21 self.gen.seed()
22 state1 = self.gen.getstate()
23 time.sleep(0.1)
24 self.gen.seed() # diffent seeds at different times
25 state2 = self.gen.getstate()
26 self.assertNotEqual(state1, state2)
27
28 def test_saverestore(self):
29 N = 1000
30 self.gen.seed()
31 state = self.gen.getstate()
32 randseq = self.randomlist(N)
33 self.gen.setstate(state) # should regenerate the same sequence
34 self.assertEqual(randseq, self.randomlist(N))
35
36 def test_seedargs(self):
37 for arg in [None, 0, 0L, 1, 1L, -1, -1L, 10**20, -(10**20),
38 3.14, 1+2j, 'a', tuple('abc')]:
39 self.gen.seed(arg)
40 for arg in [range(3), dict(one=1)]:
41 self.assertRaises(TypeError, self.gen.seed, arg)
42 self.assertRaises(TypeError, self.gen.seed, 1, 2)
43 self.assertRaises(TypeError, type(self.gen), [])
44
45 def test_jumpahead(self):
46 self.gen.seed()
47 state1 = self.gen.getstate()
48 self.gen.jumpahead(100)
49 state2 = self.gen.getstate() # s/b distinct from state1
50 self.assertNotEqual(state1, state2)
51 self.gen.jumpahead(100)
52 state3 = self.gen.getstate() # s/b distinct from state2
53 self.assertNotEqual(state2, state3)
54
55 self.assertRaises(TypeError, self.gen.jumpahead) # needs an arg
56 self.assertRaises(TypeError, self.gen.jumpahead, "ick") # wrong type
57 self.assertRaises(TypeError, self.gen.jumpahead, 2.3) # wrong type
58 self.assertRaises(TypeError, self.gen.jumpahead, 2, 3) # too many
59
60 def test_sample(self):
61 # For the entire allowable range of 0 <= k <= N, validate that
62 # the sample is of the correct length and contains only unique items
63 N = 100
64 population = xrange(N)
65 for k in xrange(N+1):
66 s = self.gen.sample(population, k)
67 self.assertEqual(len(s), k)
68 uniq = set(s)
69 self.assertEqual(len(uniq), k)
70 self.failUnless(uniq <= set(population))
71 self.assertEqual(self.gen.sample([], 0), []) # test edge case N==k==0
72
73 def test_sample_distribution(self):
74 # For the entire allowable range of 0 <= k <= N, validate that
75 # sample generates all possible permutations
76 n = 5
77 pop = range(n)
78 trials = 10000 # large num prevents false negatives without slowing normal case
79 def factorial(n):
80 return reduce(int.__mul__, xrange(1, n), 1)
81 for k in xrange(n):
82 expected = factorial(n) // factorial(n-k)
83 perms = {}
84 for i in xrange(trials):
85 perms[tuple(self.gen.sample(pop, k))] = None
86 if len(perms) == expected:
87 break
88 else:
89 self.fail()
90
91 def test_sample_inputs(self):
92 # SF bug #801342 -- population can be any iterable defining __len__()
93 self.gen.sample(set(range(20)), 2)
94 self.gen.sample(range(20), 2)
95 self.gen.sample(xrange(20), 2)
96 self.gen.sample(dict.fromkeys('abcdefghijklmnopqrst'), 2)
97 self.gen.sample(str('abcdefghijklmnopqrst'), 2)
98 self.gen.sample(tuple('abcdefghijklmnopqrst'), 2)
99
100 def test_gauss(self):
101 # Ensure that the seed() method initializes all the hidden state. In
102 # particular, through 2.2.1 it failed to reset a piece of state used
103 # by (and only by) the .gauss() method.
104
105 for seed in 1, 12, 123, 1234, 12345, 123456, 654321:
106 self.gen.seed(seed)
107 x1 = self.gen.random()
108 y1 = self.gen.gauss(0, 1)
109
110 self.gen.seed(seed)
111 x2 = self.gen.random()
112 y2 = self.gen.gauss(0, 1)
113
114 self.assertEqual(x1, x2)
115 self.assertEqual(y1, y2)
116
117 def test_pickling(self):
118 state = pickle.dumps(self.gen)
119 origseq = [self.gen.random() for i in xrange(10)]
120 newgen = pickle.loads(state)
121 restoredseq = [newgen.random() for i in xrange(10)]
122 self.assertEqual(origseq, restoredseq)
123
124class WichmannHill_TestBasicOps(TestBasicOps):
125 gen = random.WichmannHill()
126
127 def test_setstate_first_arg(self):
128 self.assertRaises(ValueError, self.gen.setstate, (2, None, None))
129
130 def test_strong_jumpahead(self):
131 # tests that jumpahead(n) semantics correspond to n calls to random()
132 N = 1000
133 s = self.gen.getstate()
134 self.gen.jumpahead(N)
135 r1 = self.gen.random()
136 # now do it the slow way
137 self.gen.setstate(s)
138 for i in xrange(N):
139 self.gen.random()
140 r2 = self.gen.random()
141 self.assertEqual(r1, r2)
142
143 def test_gauss_with_whseed(self):
144 # Ensure that the seed() method initializes all the hidden state. In
145 # particular, through 2.2.1 it failed to reset a piece of state used
146 # by (and only by) the .gauss() method.
147
148 for seed in 1, 12, 123, 1234, 12345, 123456, 654321:
149 self.gen.whseed(seed)
150 x1 = self.gen.random()
151 y1 = self.gen.gauss(0, 1)
152
153 self.gen.whseed(seed)
154 x2 = self.gen.random()
155 y2 = self.gen.gauss(0, 1)
156
157 self.assertEqual(x1, x2)
158 self.assertEqual(y1, y2)
159
160 def test_bigrand(self):
161 # Verify warnings are raised when randrange is too large for random()
162 oldfilters = warnings.filters[:]
163 warnings.filterwarnings("error", "Underlying random")
164 self.assertRaises(UserWarning, self.gen.randrange, 2**60)
165 warnings.filters[:] = oldfilters
166
167class SystemRandom_TestBasicOps(TestBasicOps):
168 gen = random.SystemRandom()
169
170 def test_autoseed(self):
171 # Doesn't need to do anything except not fail
172 self.gen.seed()
173
174 def test_saverestore(self):
175 self.assertRaises(NotImplementedError, self.gen.getstate)
176 self.assertRaises(NotImplementedError, self.gen.setstate, None)
177
178 def test_seedargs(self):
179 # Doesn't need to do anything except not fail
180 self.gen.seed(100)
181
182 def test_jumpahead(self):
183 # Doesn't need to do anything except not fail
184 self.gen.jumpahead(100)
185
186 def test_gauss(self):
187 self.gen.gauss_next = None
188 self.gen.seed(100)
189 self.assertEqual(self.gen.gauss_next, None)
190
191 def test_pickling(self):
192 self.assertRaises(NotImplementedError, pickle.dumps, self.gen)
193
194 def test_53_bits_per_float(self):
195 # This should pass whenever a C double has 53 bit precision.
196 span = 2 ** 53
197 cum = 0
198 for i in xrange(100):
199 cum |= int(self.gen.random() * span)
200 self.assertEqual(cum, span-1)
201
202 def test_bigrand(self):
203 # The randrange routine should build-up the required number of bits
204 # in stages so that all bit positions are active.
205 span = 2 ** 500
206 cum = 0
207 for i in xrange(100):
208 r = self.gen.randrange(span)
209 self.assert_(0 <= r < span)
210 cum |= r
211 self.assertEqual(cum, span-1)
212
213 def test_bigrand_ranges(self):
214 for i in [40,80, 160, 200, 211, 250, 375, 512, 550]:
215 start = self.gen.randrange(2 ** i)
216 stop = self.gen.randrange(2 ** (i-2))
217 if stop <= start:
218 return
219 self.assert_(start <= self.gen.randrange(start, stop) < stop)
220
221 def test_rangelimits(self):
222 for start, stop in [(-2,0), (-(2**60)-2,-(2**60)), (2**60,2**60+2)]:
223 self.assertEqual(set(range(start,stop)),
224 set([self.gen.randrange(start,stop) for i in xrange(100)]))
225
226 def test_genrandbits(self):
227 # Verify ranges
228 for k in xrange(1, 1000):
229 self.assert_(0 <= self.gen.getrandbits(k) < 2**k)
230
231 # Verify all bits active
232 getbits = self.gen.getrandbits
233 for span in [1, 2, 3, 4, 31, 32, 32, 52, 53, 54, 119, 127, 128, 129]:
234 cum = 0
235 for i in xrange(100):
236 cum |= getbits(span)
237 self.assertEqual(cum, 2**span-1)
238
239 # Verify argument checking
240 self.assertRaises(TypeError, self.gen.getrandbits)
241 self.assertRaises(TypeError, self.gen.getrandbits, 1, 2)
242 self.assertRaises(ValueError, self.gen.getrandbits, 0)
243 self.assertRaises(ValueError, self.gen.getrandbits, -1)
244 self.assertRaises(TypeError, self.gen.getrandbits, 10.1)
245
246 def test_randbelow_logic(self, _log=log, int=int):
247 # check bitcount transition points: 2**i and 2**(i+1)-1
248 # show that: k = int(1.001 + _log(n, 2))
249 # is equal to or one greater than the number of bits in n
250 for i in xrange(1, 1000):
251 n = 1L << i # check an exact power of two
252 numbits = i+1
253 k = int(1.00001 + _log(n, 2))
254 self.assertEqual(k, numbits)
255 self.assert_(n == 2**(k-1))
256
257 n += n - 1 # check 1 below the next power of two
258 k = int(1.00001 + _log(n, 2))
259 self.assert_(k in [numbits, numbits+1])
260 self.assert_(2**k > n > 2**(k-2))
261
262 n -= n >> 15 # check a little farther below the next power of two
263 k = int(1.00001 + _log(n, 2))
264 self.assertEqual(k, numbits) # note the stronger assertion
265 self.assert_(2**k > n > 2**(k-1)) # note the stronger assertion
266
267
268class MersenneTwister_TestBasicOps(TestBasicOps):
269 gen = random.Random()
270
271 def test_setstate_first_arg(self):
272 self.assertRaises(ValueError, self.gen.setstate, (1, None, None))
273
274 def test_setstate_middle_arg(self):
275 # Wrong type, s/b tuple
276 self.assertRaises(TypeError, self.gen.setstate, (2, None, None))
277 # Wrong length, s/b 625
278 self.assertRaises(ValueError, self.gen.setstate, (2, (1,2,3), None))
279 # Wrong type, s/b tuple of 625 ints
280 self.assertRaises(TypeError, self.gen.setstate, (2, ('a',)*625, None))
281 # Last element s/b an int also
282 self.assertRaises(TypeError, self.gen.setstate, (2, (0,)*624+('a',), None))
283
284 def test_referenceImplementation(self):
285 # Compare the python implementation with results from the original
286 # code. Create 2000 53-bit precision random floats. Compare only
287 # the last ten entries to show that the independent implementations
288 # are tracking. Here is the main() function needed to create the
289 # list of expected random numbers:
290 # void main(void){
291 # int i;
292 # unsigned long init[4]={61731, 24903, 614, 42143}, length=4;
293 # init_by_array(init, length);
294 # for (i=0; i<2000; i++) {
295 # printf("%.15f ", genrand_res53());
296 # if (i%5==4) printf("\n");
297 # }
298 # }
299 expected = [0.45839803073713259,
300 0.86057815201978782,
301 0.92848331726782152,
302 0.35932681119782461,
303 0.081823493762449573,
304 0.14332226470169329,
305 0.084297823823520024,
306 0.53814864671831453,
307 0.089215024911993401,
308 0.78486196105372907]
309
310 self.gen.seed(61731L + (24903L<<32) + (614L<<64) + (42143L<<96))
311 actual = self.randomlist(2000)[-10:]
312 for a, e in zip(actual, expected):
313 self.assertAlmostEqual(a,e,places=14)
314
315 def test_strong_reference_implementation(self):
316 # Like test_referenceImplementation, but checks for exact bit-level
317 # equality. This should pass on any box where C double contains
318 # at least 53 bits of precision (the underlying algorithm suffers
319 # no rounding errors -- all results are exact).
320 from math import ldexp
321
322 expected = [0x0eab3258d2231fL,
323 0x1b89db315277a5L,
324 0x1db622a5518016L,
325 0x0b7f9af0d575bfL,
326 0x029e4c4db82240L,
327 0x04961892f5d673L,
328 0x02b291598e4589L,
329 0x11388382c15694L,
330 0x02dad977c9e1feL,
331 0x191d96d4d334c6L]
332 self.gen.seed(61731L + (24903L<<32) + (614L<<64) + (42143L<<96))
333 actual = self.randomlist(2000)[-10:]
334 for a, e in zip(actual, expected):
335 self.assertEqual(long(ldexp(a, 53)), e)
336
337 def test_long_seed(self):
338 # This is most interesting to run in debug mode, just to make sure
339 # nothing blows up. Under the covers, a dynamically resized array
340 # is allocated, consuming space proportional to the number of bits
341 # in the seed. Unfortunately, that's a quadratic-time algorithm,
342 # so don't make this horribly big.
343 seed = (1L << (10000 * 8)) - 1 # about 10K bytes
344 self.gen.seed(seed)
345
346 def test_53_bits_per_float(self):
347 # This should pass whenever a C double has 53 bit precision.
348 span = 2 ** 53
349 cum = 0
350 for i in xrange(100):
351 cum |= int(self.gen.random() * span)
352 self.assertEqual(cum, span-1)
353
354 def test_bigrand(self):
355 # The randrange routine should build-up the required number of bits
356 # in stages so that all bit positions are active.
357 span = 2 ** 500
358 cum = 0
359 for i in xrange(100):
360 r = self.gen.randrange(span)
361 self.assert_(0 <= r < span)
362 cum |= r
363 self.assertEqual(cum, span-1)
364
365 def test_bigrand_ranges(self):
366 for i in [40,80, 160, 200, 211, 250, 375, 512, 550]:
367 start = self.gen.randrange(2 ** i)
368 stop = self.gen.randrange(2 ** (i-2))
369 if stop <= start:
370 return
371 self.assert_(start <= self.gen.randrange(start, stop) < stop)
372
373 def test_rangelimits(self):
374 for start, stop in [(-2,0), (-(2**60)-2,-(2**60)), (2**60,2**60+2)]:
375 self.assertEqual(set(range(start,stop)),
376 set([self.gen.randrange(start,stop) for i in xrange(100)]))
377
378 def test_genrandbits(self):
379 # Verify cross-platform repeatability
380 self.gen.seed(1234567)
381 self.assertEqual(self.gen.getrandbits(100),
382 97904845777343510404718956115L)
383 # Verify ranges
384 for k in xrange(1, 1000):
385 self.assert_(0 <= self.gen.getrandbits(k) < 2**k)
386
387 # Verify all bits active
388 getbits = self.gen.getrandbits
389 for span in [1, 2, 3, 4, 31, 32, 32, 52, 53, 54, 119, 127, 128, 129]:
390 cum = 0
391 for i in xrange(100):
392 cum |= getbits(span)
393 self.assertEqual(cum, 2**span-1)
394
395 # Verify argument checking
396 self.assertRaises(TypeError, self.gen.getrandbits)
397 self.assertRaises(TypeError, self.gen.getrandbits, 'a')
398 self.assertRaises(TypeError, self.gen.getrandbits, 1, 2)
399 self.assertRaises(ValueError, self.gen.getrandbits, 0)
400 self.assertRaises(ValueError, self.gen.getrandbits, -1)
401
402 def test_randbelow_logic(self, _log=log, int=int):
403 # check bitcount transition points: 2**i and 2**(i+1)-1
404 # show that: k = int(1.001 + _log(n, 2))
405 # is equal to or one greater than the number of bits in n
406 for i in xrange(1, 1000):
407 n = 1L << i # check an exact power of two
408 numbits = i+1
409 k = int(1.00001 + _log(n, 2))
410 self.assertEqual(k, numbits)
411 self.assert_(n == 2**(k-1))
412
413 n += n - 1 # check 1 below the next power of two
414 k = int(1.00001 + _log(n, 2))
415 self.assert_(k in [numbits, numbits+1])
416 self.assert_(2**k > n > 2**(k-2))
417
418 n -= n >> 15 # check a little farther below the next power of two
419 k = int(1.00001 + _log(n, 2))
420 self.assertEqual(k, numbits) # note the stronger assertion
421 self.assert_(2**k > n > 2**(k-1)) # note the stronger assertion
422
423_gammacoeff = (0.9999999999995183, 676.5203681218835, -1259.139216722289,
424 771.3234287757674, -176.6150291498386, 12.50734324009056,
425 -0.1385710331296526, 0.9934937113930748e-05, 0.1659470187408462e-06)
426
427def gamma(z, cof=_gammacoeff, g=7):
428 z -= 1.0
429 sum = cof[0]
430 for i in xrange(1,len(cof)):
431 sum += cof[i] / (z+i)
432 z += 0.5
433 return (z+g)**z / exp(z+g) * sqrt(2*pi) * sum
434
435class TestDistributions(unittest.TestCase):
436 def test_zeroinputs(self):
437 # Verify that distributions can handle a series of zero inputs'
438 g = random.Random()
439 x = [g.random() for i in xrange(50)] + [0.0]*5
440 g.random = x[:].pop; g.uniform(1,10)
441 g.random = x[:].pop; g.paretovariate(1.0)
442 g.random = x[:].pop; g.expovariate(1.0)
443 g.random = x[:].pop; g.weibullvariate(1.0, 1.0)
444 g.random = x[:].pop; g.normalvariate(0.0, 1.0)
445 g.random = x[:].pop; g.gauss(0.0, 1.0)
446 g.random = x[:].pop; g.lognormvariate(0.0, 1.0)
447 g.random = x[:].pop; g.vonmisesvariate(0.0, 1.0)
448 g.random = x[:].pop; g.gammavariate(0.01, 1.0)
449 g.random = x[:].pop; g.gammavariate(1.0, 1.0)
450 g.random = x[:].pop; g.gammavariate(200.0, 1.0)
451 g.random = x[:].pop; g.betavariate(3.0, 3.0)
452
453 def test_avg_std(self):
454 # Use integration to test distribution average and standard deviation.
455 # Only works for distributions which do not consume variates in pairs
456 g = random.Random()
457 N = 5000
458 x = [i/float(N) for i in xrange(1,N)]
459 for variate, args, mu, sigmasqrd in [
460 (g.uniform, (1.0,10.0), (10.0+1.0)/2, (10.0-1.0)**2/12),
461 (g.expovariate, (1.5,), 1/1.5, 1/1.5**2),
462 (g.paretovariate, (5.0,), 5.0/(5.0-1),
463 5.0/((5.0-1)**2*(5.0-2))),
464 (g.weibullvariate, (1.0, 3.0), gamma(1+1/3.0),
465 gamma(1+2/3.0)-gamma(1+1/3.0)**2) ]:
466 g.random = x[:].pop
467 y = []
468 for i in xrange(len(x)):
469 try:
470 y.append(variate(*args))
471 except IndexError:
472 pass
473 s1 = s2 = 0
474 for e in y:
475 s1 += e
476 s2 += (e - mu) ** 2
477 N = len(y)
478 self.assertAlmostEqual(s1/N, mu, 2)
479 self.assertAlmostEqual(s2/(N-1), sigmasqrd, 2)
480
481class TestModule(unittest.TestCase):
482 def testMagicConstants(self):
483 self.assertAlmostEqual(random.NV_MAGICCONST, 1.71552776992141)
484 self.assertAlmostEqual(random.TWOPI, 6.28318530718)
485 self.assertAlmostEqual(random.LOG4, 1.38629436111989)
486 self.assertAlmostEqual(random.SG_MAGICCONST, 2.50407739677627)
487
488 def test__all__(self):
489 # tests validity but not completeness of the __all__ list
490 self.failUnless(set(random.__all__) <= set(dir(random)))
491
492def test_main(verbose=None):
493 testclasses = [WichmannHill_TestBasicOps,
494 MersenneTwister_TestBasicOps,
495 TestDistributions,
496 TestModule]
497
498 try:
499 random.SystemRandom().random()
500 except NotImplementedError:
501 pass
502 else:
503 testclasses.append(SystemRandom_TestBasicOps)
504
505 test_support.run_unittest(*testclasses)
506
507 # verify reference counting
508 import sys
509 if verbose and hasattr(sys, "gettotalrefcount"):
510 counts = [None] * 5
511 for i in xrange(len(counts)):
512 test_support.run_unittest(*testclasses)
513 counts[i] = sys.gettotalrefcount()
514 print counts
515
516if __name__ == "__main__":
517 test_main(verbose=True)