Initial commit of OpenSPARC T2 design and verification files.
[OpenSPARC-T2-DV] / design / sys / iop / db0 / rtl / db0_reduct_ctl.v
// ========== Copyright Header Begin ==========================================
//
// OpenSPARC T2 Processor File: db0_reduct_ctl.v
// Copyright (C) 1995-2007 Sun Microsystems, Inc. All Rights Reserved
// 4150 Network Circle, Santa Clara, California 95054, U.S.A.
//
// * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; version 2 of the License.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
// For the avoidance of doubt, and except that if any non-GPL license
// choice is available it will apply instead, Sun elects to use only
// the General Public License version 2 (GPLv2) at this time for any
// software where a choice of GPL license versions is made
// available with the language indicating that GPLv2 or any later version
// may be used, or where a choice of which version of the GPL is applied is
// otherwise unspecified.
//
// Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
// CA 95054 USA or visit www.sun.com if you need additional information or
// have any questions.
//
// ========== Copyright Header End ============================================
module db0_reduct_ctl (
iol2clk,
scan_in,
scan_out,
tcu_pce_ov,
tcu_clk_stop,
tcu_aclk,
tcu_bclk,
tcu_scan_en,
dmu_ncu_vld,
wr_en0,
wr_en1,
wr_en2,
wr_en3,
mux1_sel0,
mux1_sel1,
mux1_sel2,
mux2_sel0,
mux2_sel1,
mux2_sel2,
mux3_sel0,
mux3_sel1,
mux3_sel2,
mux4_sel0,
mux4_sel1,
mux4_sel2,
mux5_sel0,
mux5_sel1,
mux5_sel2,
mux5_sel3);
wire pce_ov;
wire stop;
wire siclk;
wire soclk;
wire se;
wire dmu_ncu_vld_r;
wire ff_dmu_ncu_vld_scanin;
wire ff_dmu_ncu_vld_scanout;
wire l1clk;
wire reg0_vld_din;
wire reg0_vld;
wire reg1_vld;
wire reg2_vld;
wire reg3_vld;
wire reg0_vld_r;
wire reg0_vld_r2;
wire ff_reg0_vld_scanin;
wire ff_reg0_vld_scanout;
wire ff_reg0_vld_r_scanin;
wire ff_reg0_vld_r_scanout;
wire ff_reg0_vld_r2_scanin;
wire ff_reg0_vld_r2_scanout;
wire reg1_vld_din;
wire reg1_vld_r_din;
wire reg1_vld_r;
wire reg1_vld_r2;
wire ff_reg1_vld_scanin;
wire ff_reg1_vld_scanout;
wire ff_reg1_vld_r_scanin;
wire ff_reg1_vld_r_scanout;
wire ff_reg1_vld_r2_scanin;
wire ff_reg1_vld_r2_scanout;
wire reg2_vld_din;
wire reg2_vld_r_din;
wire reg2_vld_r;
wire reg2_vld_r2;
wire ff_reg2_vld_scanin;
wire ff_reg2_vld_scanout;
wire ff_reg2_vld_r_scanin;
wire ff_reg2_vld_r_scanout;
wire ff_reg2_vld_r2_scanin;
wire ff_reg2_vld_r2_scanout;
wire reg3_vld_din;
wire reg3_vld_r_din;
wire reg3_vld_r;
wire reg3_vld_r2;
wire ff_reg3_vld_scanin;
wire ff_reg3_vld_scanout;
wire ff_reg3_vld_r_scanin;
wire ff_reg3_vld_r_scanout;
wire ff_reg3_vld_r2_scanin;
wire ff_reg3_vld_r2_scanout;
wire spares_scanin;
wire spares_scanout;
input iol2clk; // Internal IO clock from CCU
input scan_in;
output scan_out;
input tcu_pce_ov;
input tcu_clk_stop;
input tcu_aclk;
input tcu_bclk;
input tcu_scan_en;
input dmu_ncu_vld; //CSR Data return valid from DMU to NCU
output wr_en0;
output wr_en1;
output wr_en2;
output wr_en3;
output mux1_sel0;
output mux1_sel1;
output mux1_sel2;
output mux2_sel0;
output mux2_sel1;
output mux2_sel2;
output mux3_sel0;
output mux3_sel1;
output mux3_sel2;
output mux4_sel0;
output mux4_sel1;
output mux4_sel2;
output mux5_sel0;
output mux5_sel1;
output mux5_sel2;
output mux5_sel3;
// Scan reassigns
assign pce_ov = tcu_pce_ov;
assign stop = tcu_clk_stop;
assign siclk = tcu_aclk;
assign soclk = tcu_bclk;
assign se = tcu_scan_en;
// flop dmu_ncu_vld
db0_reduct_ctl_msff_ctl_macro__width_1 ff_dmu_ncu_vld
(.dout(dmu_ncu_vld_r),
.scan_in(ff_dmu_ncu_vld_scanin),
.scan_out(ff_dmu_ncu_vld_scanout),
.l1clk(l1clk),
.din(dmu_ncu_vld),
.siclk(siclk),
.soclk(soclk)
);
// Reg0 vld bits
assign reg0_vld_din = (dmu_ncu_vld_r &
~(reg0_vld | reg1_vld | reg2_vld | reg3_vld)
) | reg0_vld; // set if dmu_ncu_vld_r is true
// and reg0_vld,reg1_vld,reg2_vld,reg3_vld are
// all 1'b0
// held at 1 with reg0_vld until
// cleared
assign mux1_sel0 = reg0_vld & ~reg0_vld_r;
assign mux1_sel1 = reg0_vld_r & ~reg0_vld_r2;
assign mux1_sel2 = reg0_vld_r2;
assign mux5_sel0 = mux1_sel0 | mux1_sel1 | mux1_sel2;
assign wr_en0 = (dmu_ncu_vld_r &
~(reg0_vld | reg1_vld | reg2_vld | reg3_vld));
// write to reg0 when none of the valid bits are on and dmu_ncu_vld_r is true
db0_reduct_ctl_msff_ctl_macro__clr_1__width_1 ff_reg0_vld
(.dout(reg0_vld),
.scan_in(ff_reg0_vld_scanin),
.scan_out(ff_reg0_vld_scanout),
.clr(reg0_vld_r2),
.l1clk(l1clk),
.din(reg0_vld_din),
.siclk(siclk),
.soclk(soclk)
);
db0_reduct_ctl_msff_ctl_macro__clr_1__width_1 ff_reg0_vld_r
(.dout(reg0_vld_r),
.scan_in(ff_reg0_vld_r_scanin),
.scan_out(ff_reg0_vld_r_scanout),
.clr(reg0_vld_r2),
.l1clk(l1clk),
.din(reg0_vld),
.siclk(siclk),
.soclk(soclk)
);
db0_reduct_ctl_msff_ctl_macro__clr_1__width_1 ff_reg0_vld_r2
(.dout(reg0_vld_r2),
.scan_in(ff_reg0_vld_r2_scanin),
.scan_out(ff_reg0_vld_r2_scanout),
.clr(reg0_vld_r2),
.l1clk(l1clk),
.din(reg0_vld_r),
.siclk(siclk),
.soclk(soclk)
);
// Reg1 vld bits
assign reg1_vld_din = (dmu_ncu_vld_r & reg0_vld ) | reg1_vld; // set if dmu_ncu_vld_r is true
// and reg0_vld is 1'b1
// held at 1 with reg1_vld until
// cleared
assign reg1_vld_r_din = reg1_vld & ~reg0_vld; // propagate the value of reg1_vld to reg1_vld_r
// only when reg0_vld = 0
assign mux2_sel0 = reg1_vld & ~reg1_vld_r & ~reg0_vld;
assign mux2_sel1 = reg1_vld_r & ~reg1_vld_r2;
assign mux2_sel2 = reg1_vld_r2;
assign mux5_sel1 = mux2_sel0 | mux2_sel1 | mux2_sel2;
assign wr_en1 = (dmu_ncu_vld_r & reg0_vld & ~reg1_vld);
// write to reg1 when reg0 valid bit is true and dmu_ncu_vld_r is true
db0_reduct_ctl_msff_ctl_macro__clr_1__width_1 ff_reg1_vld
(.dout(reg1_vld),
.scan_in(ff_reg1_vld_scanin),
.scan_out(ff_reg1_vld_scanout),
.clr(reg1_vld_r2),
.l1clk(l1clk),
.din(reg1_vld_din),
.siclk(siclk),
.soclk(soclk)
);
db0_reduct_ctl_msff_ctl_macro__clr_1__width_1 ff_reg1_vld_r
(.dout(reg1_vld_r),
.scan_in(ff_reg1_vld_r_scanin),
.scan_out(ff_reg1_vld_r_scanout),
.clr(reg1_vld_r2),
.l1clk(l1clk),
.din(reg1_vld_r_din),
.siclk(siclk),
.soclk(soclk)
);
db0_reduct_ctl_msff_ctl_macro__clr_1__width_1 ff_reg1_vld_r2
(.dout(reg1_vld_r2),
.scan_in(ff_reg1_vld_r2_scanin),
.scan_out(ff_reg1_vld_r2_scanout),
.clr(reg1_vld_r2),
.l1clk(l1clk),
.din(reg1_vld_r),
.siclk(siclk),
.soclk(soclk)
);
// Reg2 vld bits
assign reg2_vld_din = (dmu_ncu_vld_r & reg1_vld ) | reg2_vld; // set if dmu_ncu_vld_r is true
// and reg1_vld is 1'b1
// held at 1 with reg2_vld until
// cleared
assign reg2_vld_r_din = reg2_vld & ~reg1_vld; // propagate the value of reg2_vld to reg2_vld_r
// only when reg1_vld = 0
assign mux3_sel0 = reg2_vld & ~reg2_vld_r & ~reg1_vld;
assign mux3_sel1 = reg2_vld_r & ~reg2_vld_r2;
assign mux3_sel2 = reg2_vld_r2;
assign mux5_sel2 = mux3_sel0 | mux3_sel1 | mux3_sel2;
assign wr_en2 = (dmu_ncu_vld_r & reg1_vld & ~reg2_vld);
// write to reg2 when reg1 valid bit is true and dmu_ncu_vld_r is true
db0_reduct_ctl_msff_ctl_macro__clr_1__width_1 ff_reg2_vld
(.dout(reg2_vld),
.scan_in(ff_reg2_vld_scanin),
.scan_out(ff_reg2_vld_scanout),
.clr(reg2_vld_r2),
.l1clk(l1clk),
.din(reg2_vld_din),
.siclk(siclk),
.soclk(soclk)
);
db0_reduct_ctl_msff_ctl_macro__clr_1__width_1 ff_reg2_vld_r
(.dout(reg2_vld_r),
.scan_in(ff_reg2_vld_r_scanin),
.scan_out(ff_reg2_vld_r_scanout),
.clr(reg2_vld_r2),
.l1clk(l1clk),
.din(reg2_vld_r_din),
.siclk(siclk),
.soclk(soclk)
);
db0_reduct_ctl_msff_ctl_macro__clr_1__width_1 ff_reg2_vld_r2
(.dout(reg2_vld_r2),
.scan_in(ff_reg2_vld_r2_scanin),
.scan_out(ff_reg2_vld_r2_scanout),
.clr(reg2_vld_r2),
.l1clk(l1clk),
.din(reg2_vld_r),
.siclk(siclk),
.soclk(soclk)
);
// Reg3 vld bits
assign reg3_vld_din = (dmu_ncu_vld_r & reg2_vld ) | reg3_vld; // set if dmu_ncu_vld_r is true
// and reg2_vld is 1'b1
// held at 1 with reg3_vld until
// cleared
assign reg3_vld_r_din = reg3_vld & ~reg2_vld; // propagate the value of reg3_vld to reg3_vld_r
// only when reg2_vld = 0
assign mux4_sel0 = reg3_vld & ~reg3_vld_r & ~reg2_vld;
assign mux4_sel1 = reg3_vld_r & ~reg3_vld_r2;
assign mux4_sel2 = reg3_vld_r2;
assign mux5_sel3 = mux4_sel0 | mux4_sel1 | mux4_sel2;
assign wr_en3 = (dmu_ncu_vld_r & reg2_vld);
// write to reg3 when reg2 valid bit is true and dmu_ncu_vld_r is true
db0_reduct_ctl_msff_ctl_macro__clr_1__width_1 ff_reg3_vld
(.dout(reg3_vld),
.scan_in(ff_reg3_vld_scanin),
.scan_out(ff_reg3_vld_scanout),
.clr(reg3_vld_r2),
.l1clk(l1clk),
.din(reg3_vld_din),
.siclk(siclk),
.soclk(soclk)
);
db0_reduct_ctl_msff_ctl_macro__clr_1__width_1 ff_reg3_vld_r
(.dout(reg3_vld_r),
.scan_in(ff_reg3_vld_r_scanin),
.scan_out(ff_reg3_vld_r_scanout),
.clr(reg3_vld_r2),
.l1clk(l1clk),
.din(reg3_vld_r_din),
.siclk(siclk),
.soclk(soclk)
);
db0_reduct_ctl_msff_ctl_macro__clr_1__width_1 ff_reg3_vld_r2
(.dout(reg3_vld_r2),
.scan_in(ff_reg3_vld_r2_scanin),
.scan_out(ff_reg3_vld_r2_scanout),
.clr(reg3_vld_r2),
.l1clk(l1clk),
.din(reg3_vld_r),
.siclk(siclk),
.soclk(soclk)
);
// Spare gates
db0_reduct_ctl_spare_ctl_macro__num_5 spares (
.scan_in(spares_scanin),
.scan_out(spares_scanout),
.l1clk (l1clk),
.siclk(siclk),
.soclk(soclk)
);
/**** adding clock header ****/
db0_reduct_ctl_l1clkhdr_ctl_macro clkgen (
.l2clk (iol2clk),
.l1en (1'b1),
.l1clk (l1clk),
.pce_ov(pce_ov),
.stop(stop),
.se(se)
);
// fixscan start:
assign ff_dmu_ncu_vld_scanin = scan_in ;
assign ff_reg0_vld_scanin = ff_dmu_ncu_vld_scanout ;
assign ff_reg0_vld_r_scanin = ff_reg0_vld_scanout ;
assign ff_reg0_vld_r2_scanin = ff_reg0_vld_r_scanout ;
assign ff_reg1_vld_scanin = ff_reg0_vld_r2_scanout ;
assign ff_reg1_vld_r_scanin = ff_reg1_vld_scanout ;
assign ff_reg1_vld_r2_scanin = ff_reg1_vld_r_scanout ;
assign ff_reg2_vld_scanin = ff_reg1_vld_r2_scanout ;
assign ff_reg2_vld_r_scanin = ff_reg2_vld_scanout ;
assign ff_reg2_vld_r2_scanin = ff_reg2_vld_r_scanout ;
assign ff_reg3_vld_scanin = ff_reg2_vld_r2_scanout ;
assign ff_reg3_vld_r_scanin = ff_reg3_vld_scanout ;
assign ff_reg3_vld_r2_scanin = ff_reg3_vld_r_scanout ;
assign spares_scanin = ff_reg3_vld_r2_scanout ;
assign scan_out = spares_scanout ;
// fixscan end:
endmodule
// any PARAMS parms go into naming of macro
module db0_reduct_ctl_msff_ctl_macro__width_1 (
din,
l1clk,
scan_in,
siclk,
soclk,
dout,
scan_out);
wire [0:0] fdin;
input [0:0] din;
input l1clk;
input scan_in;
input siclk;
input soclk;
output [0:0] dout;
output scan_out;
assign fdin[0:0] = din[0:0];
dff #(1) d0_0 (
.l1clk(l1clk),
.siclk(siclk),
.soclk(soclk),
.d(fdin[0:0]),
.si(scan_in),
.so(scan_out),
.q(dout[0:0])
);
endmodule
// any PARAMS parms go into naming of macro
module db0_reduct_ctl_msff_ctl_macro__clr_1__width_1 (
din,
clr,
l1clk,
scan_in,
siclk,
soclk,
dout,
scan_out);
wire [0:0] fdin;
input [0:0] din;
input clr;
input l1clk;
input scan_in;
input siclk;
input soclk;
output [0:0] dout;
output scan_out;
assign fdin[0:0] = din[0:0] & ~{1{clr}};
dff #(1) d0_0 (
.l1clk(l1clk),
.siclk(siclk),
.soclk(soclk),
.d(fdin[0:0]),
.si(scan_in),
.so(scan_out),
.q(dout[0:0])
);
endmodule
// Description: Spare gate macro for control blocks
//
// Param num controls the number of times the macro is added
// flops=0 can be used to use only combination spare logic
module db0_reduct_ctl_spare_ctl_macro__num_5 (
l1clk,
scan_in,
siclk,
soclk,
scan_out);
wire si_0;
wire so_0;
wire spare0_flop_unused;
wire spare0_buf_32x_unused;
wire spare0_nand3_8x_unused;
wire spare0_inv_8x_unused;
wire spare0_aoi22_4x_unused;
wire spare0_buf_8x_unused;
wire spare0_oai22_4x_unused;
wire spare0_inv_16x_unused;
wire spare0_nand2_16x_unused;
wire spare0_nor3_4x_unused;
wire spare0_nand2_8x_unused;
wire spare0_buf_16x_unused;
wire spare0_nor2_16x_unused;
wire spare0_inv_32x_unused;
wire si_1;
wire so_1;
wire spare1_flop_unused;
wire spare1_buf_32x_unused;
wire spare1_nand3_8x_unused;
wire spare1_inv_8x_unused;
wire spare1_aoi22_4x_unused;
wire spare1_buf_8x_unused;
wire spare1_oai22_4x_unused;
wire spare1_inv_16x_unused;
wire spare1_nand2_16x_unused;
wire spare1_nor3_4x_unused;
wire spare1_nand2_8x_unused;
wire spare1_buf_16x_unused;
wire spare1_nor2_16x_unused;
wire spare1_inv_32x_unused;
wire si_2;
wire so_2;
wire spare2_flop_unused;
wire spare2_buf_32x_unused;
wire spare2_nand3_8x_unused;
wire spare2_inv_8x_unused;
wire spare2_aoi22_4x_unused;
wire spare2_buf_8x_unused;
wire spare2_oai22_4x_unused;
wire spare2_inv_16x_unused;
wire spare2_nand2_16x_unused;
wire spare2_nor3_4x_unused;
wire spare2_nand2_8x_unused;
wire spare2_buf_16x_unused;
wire spare2_nor2_16x_unused;
wire spare2_inv_32x_unused;
wire si_3;
wire so_3;
wire spare3_flop_unused;
wire spare3_buf_32x_unused;
wire spare3_nand3_8x_unused;
wire spare3_inv_8x_unused;
wire spare3_aoi22_4x_unused;
wire spare3_buf_8x_unused;
wire spare3_oai22_4x_unused;
wire spare3_inv_16x_unused;
wire spare3_nand2_16x_unused;
wire spare3_nor3_4x_unused;
wire spare3_nand2_8x_unused;
wire spare3_buf_16x_unused;
wire spare3_nor2_16x_unused;
wire spare3_inv_32x_unused;
wire si_4;
wire so_4;
wire spare4_flop_unused;
wire spare4_buf_32x_unused;
wire spare4_nand3_8x_unused;
wire spare4_inv_8x_unused;
wire spare4_aoi22_4x_unused;
wire spare4_buf_8x_unused;
wire spare4_oai22_4x_unused;
wire spare4_inv_16x_unused;
wire spare4_nand2_16x_unused;
wire spare4_nor3_4x_unused;
wire spare4_nand2_8x_unused;
wire spare4_buf_16x_unused;
wire spare4_nor2_16x_unused;
wire spare4_inv_32x_unused;
input l1clk;
input scan_in;
input siclk;
input soclk;
output scan_out;
cl_sc1_msff_8x spare0_flop (.l1clk(l1clk),
.siclk(siclk),
.soclk(soclk),
.si(si_0),
.so(so_0),
.d(1'b0),
.q(spare0_flop_unused));
assign si_0 = scan_in;
cl_u1_buf_32x spare0_buf_32x (.in(1'b1),
.out(spare0_buf_32x_unused));
cl_u1_nand3_8x spare0_nand3_8x (.in0(1'b1),
.in1(1'b1),
.in2(1'b1),
.out(spare0_nand3_8x_unused));
cl_u1_inv_8x spare0_inv_8x (.in(1'b1),
.out(spare0_inv_8x_unused));
cl_u1_aoi22_4x spare0_aoi22_4x (.in00(1'b1),
.in01(1'b1),
.in10(1'b1),
.in11(1'b1),
.out(spare0_aoi22_4x_unused));
cl_u1_buf_8x spare0_buf_8x (.in(1'b1),
.out(spare0_buf_8x_unused));
cl_u1_oai22_4x spare0_oai22_4x (.in00(1'b1),
.in01(1'b1),
.in10(1'b1),
.in11(1'b1),
.out(spare0_oai22_4x_unused));
cl_u1_inv_16x spare0_inv_16x (.in(1'b1),
.out(spare0_inv_16x_unused));
cl_u1_nand2_16x spare0_nand2_16x (.in0(1'b1),
.in1(1'b1),
.out(spare0_nand2_16x_unused));
cl_u1_nor3_4x spare0_nor3_4x (.in0(1'b0),
.in1(1'b0),
.in2(1'b0),
.out(spare0_nor3_4x_unused));
cl_u1_nand2_8x spare0_nand2_8x (.in0(1'b1),
.in1(1'b1),
.out(spare0_nand2_8x_unused));
cl_u1_buf_16x spare0_buf_16x (.in(1'b1),
.out(spare0_buf_16x_unused));
cl_u1_nor2_16x spare0_nor2_16x (.in0(1'b0),
.in1(1'b0),
.out(spare0_nor2_16x_unused));
cl_u1_inv_32x spare0_inv_32x (.in(1'b1),
.out(spare0_inv_32x_unused));
cl_sc1_msff_8x spare1_flop (.l1clk(l1clk),
.siclk(siclk),
.soclk(soclk),
.si(si_1),
.so(so_1),
.d(1'b0),
.q(spare1_flop_unused));
assign si_1 = so_0;
cl_u1_buf_32x spare1_buf_32x (.in(1'b1),
.out(spare1_buf_32x_unused));
cl_u1_nand3_8x spare1_nand3_8x (.in0(1'b1),
.in1(1'b1),
.in2(1'b1),
.out(spare1_nand3_8x_unused));
cl_u1_inv_8x spare1_inv_8x (.in(1'b1),
.out(spare1_inv_8x_unused));
cl_u1_aoi22_4x spare1_aoi22_4x (.in00(1'b1),
.in01(1'b1),
.in10(1'b1),
.in11(1'b1),
.out(spare1_aoi22_4x_unused));
cl_u1_buf_8x spare1_buf_8x (.in(1'b1),
.out(spare1_buf_8x_unused));
cl_u1_oai22_4x spare1_oai22_4x (.in00(1'b1),
.in01(1'b1),
.in10(1'b1),
.in11(1'b1),
.out(spare1_oai22_4x_unused));
cl_u1_inv_16x spare1_inv_16x (.in(1'b1),
.out(spare1_inv_16x_unused));
cl_u1_nand2_16x spare1_nand2_16x (.in0(1'b1),
.in1(1'b1),
.out(spare1_nand2_16x_unused));
cl_u1_nor3_4x spare1_nor3_4x (.in0(1'b0),
.in1(1'b0),
.in2(1'b0),
.out(spare1_nor3_4x_unused));
cl_u1_nand2_8x spare1_nand2_8x (.in0(1'b1),
.in1(1'b1),
.out(spare1_nand2_8x_unused));
cl_u1_buf_16x spare1_buf_16x (.in(1'b1),
.out(spare1_buf_16x_unused));
cl_u1_nor2_16x spare1_nor2_16x (.in0(1'b0),
.in1(1'b0),
.out(spare1_nor2_16x_unused));
cl_u1_inv_32x spare1_inv_32x (.in(1'b1),
.out(spare1_inv_32x_unused));
cl_sc1_msff_8x spare2_flop (.l1clk(l1clk),
.siclk(siclk),
.soclk(soclk),
.si(si_2),
.so(so_2),
.d(1'b0),
.q(spare2_flop_unused));
assign si_2 = so_1;
cl_u1_buf_32x spare2_buf_32x (.in(1'b1),
.out(spare2_buf_32x_unused));
cl_u1_nand3_8x spare2_nand3_8x (.in0(1'b1),
.in1(1'b1),
.in2(1'b1),
.out(spare2_nand3_8x_unused));
cl_u1_inv_8x spare2_inv_8x (.in(1'b1),
.out(spare2_inv_8x_unused));
cl_u1_aoi22_4x spare2_aoi22_4x (.in00(1'b1),
.in01(1'b1),
.in10(1'b1),
.in11(1'b1),
.out(spare2_aoi22_4x_unused));
cl_u1_buf_8x spare2_buf_8x (.in(1'b1),
.out(spare2_buf_8x_unused));
cl_u1_oai22_4x spare2_oai22_4x (.in00(1'b1),
.in01(1'b1),
.in10(1'b1),
.in11(1'b1),
.out(spare2_oai22_4x_unused));
cl_u1_inv_16x spare2_inv_16x (.in(1'b1),
.out(spare2_inv_16x_unused));
cl_u1_nand2_16x spare2_nand2_16x (.in0(1'b1),
.in1(1'b1),
.out(spare2_nand2_16x_unused));
cl_u1_nor3_4x spare2_nor3_4x (.in0(1'b0),
.in1(1'b0),
.in2(1'b0),
.out(spare2_nor3_4x_unused));
cl_u1_nand2_8x spare2_nand2_8x (.in0(1'b1),
.in1(1'b1),
.out(spare2_nand2_8x_unused));
cl_u1_buf_16x spare2_buf_16x (.in(1'b1),
.out(spare2_buf_16x_unused));
cl_u1_nor2_16x spare2_nor2_16x (.in0(1'b0),
.in1(1'b0),
.out(spare2_nor2_16x_unused));
cl_u1_inv_32x spare2_inv_32x (.in(1'b1),
.out(spare2_inv_32x_unused));
cl_sc1_msff_8x spare3_flop (.l1clk(l1clk),
.siclk(siclk),
.soclk(soclk),
.si(si_3),
.so(so_3),
.d(1'b0),
.q(spare3_flop_unused));
assign si_3 = so_2;
cl_u1_buf_32x spare3_buf_32x (.in(1'b1),
.out(spare3_buf_32x_unused));
cl_u1_nand3_8x spare3_nand3_8x (.in0(1'b1),
.in1(1'b1),
.in2(1'b1),
.out(spare3_nand3_8x_unused));
cl_u1_inv_8x spare3_inv_8x (.in(1'b1),
.out(spare3_inv_8x_unused));
cl_u1_aoi22_4x spare3_aoi22_4x (.in00(1'b1),
.in01(1'b1),
.in10(1'b1),
.in11(1'b1),
.out(spare3_aoi22_4x_unused));
cl_u1_buf_8x spare3_buf_8x (.in(1'b1),
.out(spare3_buf_8x_unused));
cl_u1_oai22_4x spare3_oai22_4x (.in00(1'b1),
.in01(1'b1),
.in10(1'b1),
.in11(1'b1),
.out(spare3_oai22_4x_unused));
cl_u1_inv_16x spare3_inv_16x (.in(1'b1),
.out(spare3_inv_16x_unused));
cl_u1_nand2_16x spare3_nand2_16x (.in0(1'b1),
.in1(1'b1),
.out(spare3_nand2_16x_unused));
cl_u1_nor3_4x spare3_nor3_4x (.in0(1'b0),
.in1(1'b0),
.in2(1'b0),
.out(spare3_nor3_4x_unused));
cl_u1_nand2_8x spare3_nand2_8x (.in0(1'b1),
.in1(1'b1),
.out(spare3_nand2_8x_unused));
cl_u1_buf_16x spare3_buf_16x (.in(1'b1),
.out(spare3_buf_16x_unused));
cl_u1_nor2_16x spare3_nor2_16x (.in0(1'b0),
.in1(1'b0),
.out(spare3_nor2_16x_unused));
cl_u1_inv_32x spare3_inv_32x (.in(1'b1),
.out(spare3_inv_32x_unused));
cl_sc1_msff_8x spare4_flop (.l1clk(l1clk),
.siclk(siclk),
.soclk(soclk),
.si(si_4),
.so(so_4),
.d(1'b0),
.q(spare4_flop_unused));
assign si_4 = so_3;
cl_u1_buf_32x spare4_buf_32x (.in(1'b1),
.out(spare4_buf_32x_unused));
cl_u1_nand3_8x spare4_nand3_8x (.in0(1'b1),
.in1(1'b1),
.in2(1'b1),
.out(spare4_nand3_8x_unused));
cl_u1_inv_8x spare4_inv_8x (.in(1'b1),
.out(spare4_inv_8x_unused));
cl_u1_aoi22_4x spare4_aoi22_4x (.in00(1'b1),
.in01(1'b1),
.in10(1'b1),
.in11(1'b1),
.out(spare4_aoi22_4x_unused));
cl_u1_buf_8x spare4_buf_8x (.in(1'b1),
.out(spare4_buf_8x_unused));
cl_u1_oai22_4x spare4_oai22_4x (.in00(1'b1),
.in01(1'b1),
.in10(1'b1),
.in11(1'b1),
.out(spare4_oai22_4x_unused));
cl_u1_inv_16x spare4_inv_16x (.in(1'b1),
.out(spare4_inv_16x_unused));
cl_u1_nand2_16x spare4_nand2_16x (.in0(1'b1),
.in1(1'b1),
.out(spare4_nand2_16x_unused));
cl_u1_nor3_4x spare4_nor3_4x (.in0(1'b0),
.in1(1'b0),
.in2(1'b0),
.out(spare4_nor3_4x_unused));
cl_u1_nand2_8x spare4_nand2_8x (.in0(1'b1),
.in1(1'b1),
.out(spare4_nand2_8x_unused));
cl_u1_buf_16x spare4_buf_16x (.in(1'b1),
.out(spare4_buf_16x_unused));
cl_u1_nor2_16x spare4_nor2_16x (.in0(1'b0),
.in1(1'b0),
.out(spare4_nor2_16x_unused));
cl_u1_inv_32x spare4_inv_32x (.in(1'b1),
.out(spare4_inv_32x_unused));
assign scan_out = so_4;
endmodule
// any PARAMS parms go into naming of macro
module db0_reduct_ctl_l1clkhdr_ctl_macro (
l2clk,
l1en,
pce_ov,
stop,
se,
l1clk);
input l2clk;
input l1en;
input pce_ov;
input stop;
input se;
output l1clk;
cl_sc1_l1hdr_8x c_0 (
.l2clk(l2clk),
.pce(l1en),
.l1clk(l1clk),
.se(se),
.pce_ov(pce_ov),
.stop(stop)
);
endmodule