Initial commit of OpenSPARC T2 design and verification files.
[OpenSPARC-T2-DV] / design / sys / iop / mcu / rtl / mcu_dmmdly_ctl.v
// ========== Copyright Header Begin ==========================================
//
// OpenSPARC T2 Processor File: mcu_dmmdly_ctl.v
// Copyright (C) 1995-2007 Sun Microsystems, Inc. All Rights Reserved
// 4150 Network Circle, Santa Clara, California 95054, U.S.A.
//
// * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; version 2 of the License.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
// For the avoidance of doubt, and except that if any non-GPL license
// choice is available it will apply instead, Sun elects to use only
// the General Public License version 2 (GPLv2) at this time for any
// software where a choice of GPL license versions is made
// available with the language indicating that GPLv2 or any later version
// may be used, or where a choice of which version of the GPL is applied is
// otherwise unspecified.
//
// Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
// CA 95054 USA or visit www.sun.com if you need additional information or
// have any questions.
//
// ========== Copyright Header End ============================================
module mcu_dmmdly_ctl (
rrd_cnt_is_zero,
rtw_cnt_is_zero,
wtr_cnt_is_zero,
rtr_cnt_is_zero,
wtw_cnt_is_zero,
dmmdly_4_activate_stall,
rrd_reg,
rtw_reg,
wtr_reg,
faw_reg,
drif_rd_ras_picked,
drif_wr_ras_picked,
drif_wrbc_ras_picked,
fbdic_sync_frame_req_l,
l1clk,
scan_in,
scan_out,
tcu_aclk,
tcu_bclk,
tcu_scan_en);
wire siclk;
wire soclk;
wire se;
wire drif_ras_picked;
wire [3:0] rrd_cnt_next;
wire [3:0] rrd_cnt;
wire ff_rrd_cnt_scanin;
wire ff_rrd_cnt_scanout;
wire [3:0] rtw_cnt_next;
wire [3:0] rtw_cnt;
wire ff_rtw_cnt_scanin;
wire ff_rtw_cnt_scanout;
wire [3:0] wtr_cnt_next;
wire [3:0] wtr_cnt;
wire ff_wtr_cnt_scanin;
wire ff_wtr_cnt_scanout;
wire rtr_cnt_next;
wire dmmdly_rd_cas_picked;
wire rtr_cnt;
wire ff_rtr_cnt_scanin;
wire ff_rtr_cnt_scanout;
wire [1:0] wtw_cnt_next;
wire dmmdly_wr_cas_picked;
wire dmmdly_wrbc_cas_picked;
wire [1:0] wtw_cnt;
wire ff_wtw_cnt_scanin;
wire ff_wtw_cnt_scanout;
wire drif_activate_cmd;
wire [4:0] faw0_cnt_in;
wire faw0_cnt_is_zero;
wire [4:0] faw0_cnt;
wire ff_faw0_cnt_scanin;
wire ff_faw0_cnt_scanout;
wire [4:0] faw1_cnt_in;
wire faw1_cnt_is_zero;
wire [4:0] faw1_cnt;
wire ff_faw1_cnt_scanin;
wire ff_faw1_cnt_scanout;
wire [4:0] faw2_cnt_in;
wire faw2_cnt_is_zero;
wire [4:0] faw2_cnt;
wire ff_faw2_cnt_scanin;
wire ff_faw2_cnt_scanout;
wire [4:0] faw3_cnt_in;
wire faw3_cnt_is_zero;
wire [4:0] faw3_cnt;
wire ff_faw3_cnt_scanin;
wire ff_faw3_cnt_scanout;
wire ff_cas_picked_scanin;
wire ff_cas_picked_scanout;
output rrd_cnt_is_zero;
output rtw_cnt_is_zero;
output wtr_cnt_is_zero;
output rtr_cnt_is_zero;
output wtw_cnt_is_zero;
output dmmdly_4_activate_stall;
input [3:0] rrd_reg;
input [3:0] rtw_reg;
input [3:0] wtr_reg;
input [4:0] faw_reg;
input drif_rd_ras_picked;
input drif_wr_ras_picked;
input drif_wrbc_ras_picked;
input fbdic_sync_frame_req_l;
input l1clk;
input scan_in;
output scan_out;
input tcu_aclk;
input tcu_bclk;
input tcu_scan_en;
assign siclk = tcu_aclk;
assign soclk = tcu_bclk;
assign se = tcu_scan_en;
assign drif_ras_picked = drif_rd_ras_picked | drif_wr_ras_picked;
// ras to ras (bankA to bankB) delay timer.
assign rrd_cnt_next[3:0] = drif_ras_picked & rrd_cnt_is_zero ? rrd_reg[3:0] - 4'h1 :
drif_wrbc_ras_picked & rrd_cnt_is_zero ? rrd_reg[3:0] :
(rrd_cnt[3:0] == 4'h0) ? 4'h0 :
fbdic_sync_frame_req_l ? rrd_cnt[3:0] - 4'h1 : rrd_cnt[3:0];
mcu_dmmdly_ctl_msff_ctl_macro__width_4 ff_rrd_cnt (
.scan_in(ff_rrd_cnt_scanin),
.scan_out(ff_rrd_cnt_scanout),
.din(rrd_cnt_next[3:0]),
.dout(rrd_cnt[3:0]),
.l1clk(l1clk),
.siclk(siclk),
.soclk(soclk));
assign rrd_cnt_is_zero = (rrd_cnt[3:0] == 4'h0);
// read to write cas to cas (bankA to bankA/bankB) delay timer for not clashing read and write data.
// If read is picked during cas assert rtw_cnt to regular cnt + rtw delay.
assign rtw_cnt_next[3:0] = drif_rd_ras_picked ? rtw_reg[3:0] :
(rtw_cnt[3:0] == 4'h0) ? 4'h0 :
fbdic_sync_frame_req_l ? rtw_cnt[3:0] - 4'h1 : rtw_cnt[3:0];
mcu_dmmdly_ctl_msff_ctl_macro__width_4 ff_rtw_cnt (
.scan_in(ff_rtw_cnt_scanin),
.scan_out(ff_rtw_cnt_scanout),
.din(rtw_cnt_next[3:0]),
.dout(rtw_cnt[3:0]),
.l1clk(l1clk),
.siclk(siclk),
.soclk(soclk));
assign rtw_cnt_is_zero = (rtw_cnt[3:0] == 4'h0);
// write to read cas to cas (bankA to bankA/bankB) delay timer for not clashing read and write data.
assign wtr_cnt_next[3:0] = drif_wr_ras_picked ? wtr_reg[3:0] :
drif_wrbc_ras_picked ? wtr_reg[3:0] + 4'h1:
(wtr_cnt[3:0] == 4'h0) ? 4'h0 :
fbdic_sync_frame_req_l ? wtr_cnt[3:0] - 4'h1 : wtr_cnt[3:0];
mcu_dmmdly_ctl_msff_ctl_macro__width_4 ff_wtr_cnt (
.scan_in(ff_wtr_cnt_scanin),
.scan_out(ff_wtr_cnt_scanout),
.din(wtr_cnt_next[3:0]),
.dout(wtr_cnt[3:0]),
.l1clk(l1clk),
.siclk(siclk),
.soclk(soclk));
assign wtr_cnt_is_zero = (wtr_cnt[3:0] == 4'h0);
// read to read cas to cas (bankA to bankA/bankB) delay timer for not clashing read data.
assign rtr_cnt_next = dmmdly_rd_cas_picked & fbdic_sync_frame_req_l ? 1'h1 :
(rtr_cnt == 1'h0) ? 1'h0 : rtr_cnt - 1'h1;
mcu_dmmdly_ctl_msff_ctl_macro__width_1 ff_rtr_cnt (
.scan_in(ff_rtr_cnt_scanin),
.scan_out(ff_rtr_cnt_scanout),
.din(rtr_cnt_next),
.dout(rtr_cnt),
.l1clk(l1clk),
.siclk(siclk),
.soclk(soclk));
assign rtr_cnt_is_zero = (rtr_cnt == 1'h0);
// write to write cas to cas (bankA to bankA/bankB) delay timer for not clashing store data.
assign wtw_cnt_next[1:0] = dmmdly_wr_cas_picked & fbdic_sync_frame_req_l ? 2'h1 :
dmmdly_wrbc_cas_picked & fbdic_sync_frame_req_l ? 2'h1 :
(wtw_cnt[1:0] == 2'h0) ? 2'h0 : wtw_cnt[1:0] - 2'h1;
mcu_dmmdly_ctl_msff_ctl_macro__width_2 ff_wtw_cnt (
.scan_in(ff_wtw_cnt_scanin),
.scan_out(ff_wtw_cnt_scanout),
.din(wtw_cnt_next[1:0]),
.dout(wtw_cnt[1:0]),
.l1clk(l1clk),
.siclk(siclk),
.soclk(soclk));
assign wtw_cnt_is_zero = (wtw_cnt[1:0] == 2'h0);
//////////////////////////////////////////////////////////////////
// Limit number of activates within tFAW to 4
// Whenever an activate cmd is detected, a counter is started at
// the tFAW value. If all four counters are active, then the scheduler
// is stalled until one becomes inactive.
//////////////////////////////////////////////////////////////////
assign drif_activate_cmd = drif_rd_ras_picked | drif_wr_ras_picked | drif_wrbc_ras_picked;
assign faw0_cnt_in[4:0] = faw0_cnt_is_zero & drif_activate_cmd & fbdic_sync_frame_req_l ? faw_reg[4:0] - 5'h1 :
faw0_cnt_is_zero ? 5'h0 : faw0_cnt[4:0] - 5'h1;
mcu_dmmdly_ctl_msff_ctl_macro__en_0__width_5 ff_faw0_cnt (
.scan_in(ff_faw0_cnt_scanin),
.scan_out(ff_faw0_cnt_scanout),
.din(faw0_cnt_in[4:0]),
.dout(faw0_cnt[4:0]),
// .en(drif_sync_frame_req_l),
.l1clk(l1clk),
.siclk(siclk),
.soclk(soclk));
assign faw0_cnt_is_zero = (faw0_cnt[4:0] == 5'h0);
assign faw1_cnt_in[4:0] = faw1_cnt_is_zero & ~faw0_cnt_is_zero & drif_activate_cmd & fbdic_sync_frame_req_l ? faw_reg[4:0] - 5'h1 :
faw1_cnt_is_zero ? 5'h0 : faw1_cnt[4:0] - 5'h1;
mcu_dmmdly_ctl_msff_ctl_macro__en_0__width_5 ff_faw1_cnt (
.scan_in(ff_faw1_cnt_scanin),
.scan_out(ff_faw1_cnt_scanout),
.din(faw1_cnt_in[4:0]),
.dout(faw1_cnt[4:0]),
// .en(drif_sync_frame_req_l),
.l1clk(l1clk),
.siclk(siclk),
.soclk(soclk));
assign faw1_cnt_is_zero = (faw1_cnt[4:0] == 5'h0);
assign faw2_cnt_in[4:0] = faw2_cnt_is_zero & ~faw1_cnt_is_zero & ~faw0_cnt_is_zero & drif_activate_cmd & fbdic_sync_frame_req_l ? faw_reg[4:0] - 5'h1 :
faw2_cnt_is_zero ? 5'h0 : faw2_cnt[4:0] - 5'h1;
mcu_dmmdly_ctl_msff_ctl_macro__en_0__width_5 ff_faw2_cnt (
.scan_in(ff_faw2_cnt_scanin),
.scan_out(ff_faw2_cnt_scanout),
.din(faw2_cnt_in[4:0]),
.dout(faw2_cnt[4:0]),
// .en(drif_sync_frame_req_l),
.l1clk(l1clk),
.siclk(siclk),
.soclk(soclk));
assign faw2_cnt_is_zero = (faw2_cnt[4:0] == 5'h0);
assign faw3_cnt_in[4:0] = faw3_cnt_is_zero & ~faw2_cnt_is_zero & ~faw1_cnt_is_zero & ~faw0_cnt_is_zero & drif_activate_cmd & fbdic_sync_frame_req_l ?
faw_reg[4:0] - 5'h1 : faw3_cnt_is_zero ? 5'h0 : faw3_cnt[4:0] - 5'h1;
mcu_dmmdly_ctl_msff_ctl_macro__en_0__width_5 ff_faw3_cnt (
.scan_in(ff_faw3_cnt_scanin),
.scan_out(ff_faw3_cnt_scanout),
.din(faw3_cnt_in[4:0]),
.dout(faw3_cnt[4:0]),
// .en(drif_sync_frame_req_l),
.l1clk(l1clk),
.siclk(siclk),
.soclk(soclk));
assign faw3_cnt_is_zero = (faw3_cnt[4:0] == 5'h0);
assign dmmdly_4_activate_stall = ~faw0_cnt_is_zero & ~faw1_cnt_is_zero & ~faw2_cnt_is_zero & ~faw3_cnt_is_zero;
mcu_dmmdly_ctl_msff_ctl_macro__width_3 ff_cas_picked (
.scan_in(ff_cas_picked_scanin),
.scan_out(ff_cas_picked_scanout),
.din({drif_rd_ras_picked,drif_wr_ras_picked,drif_wrbc_ras_picked}),
.dout({dmmdly_rd_cas_picked,dmmdly_wr_cas_picked,dmmdly_wrbc_cas_picked}),
.l1clk(l1clk),
.siclk(siclk),
.soclk(soclk));
// fixscan start:
assign ff_rrd_cnt_scanin = scan_in ;
assign ff_rtw_cnt_scanin = ff_rrd_cnt_scanout ;
assign ff_wtr_cnt_scanin = ff_rtw_cnt_scanout ;
assign ff_rtr_cnt_scanin = ff_wtr_cnt_scanout ;
assign ff_wtw_cnt_scanin = ff_rtr_cnt_scanout ;
assign ff_faw0_cnt_scanin = ff_wtw_cnt_scanout ;
assign ff_faw1_cnt_scanin = ff_faw0_cnt_scanout ;
assign ff_faw2_cnt_scanin = ff_faw1_cnt_scanout ;
assign ff_faw3_cnt_scanin = ff_faw2_cnt_scanout ;
assign ff_cas_picked_scanin = ff_faw3_cnt_scanout ;
assign scan_out = ff_cas_picked_scanout ;
// fixscan end:
endmodule
// any PARAMS parms go into naming of macro
module mcu_dmmdly_ctl_msff_ctl_macro__width_4 (
din,
l1clk,
scan_in,
siclk,
soclk,
dout,
scan_out);
wire [3:0] fdin;
wire [2:0] so;
input [3:0] din;
input l1clk;
input scan_in;
input siclk;
input soclk;
output [3:0] dout;
output scan_out;
assign fdin[3:0] = din[3:0];
dff #(4) d0_0 (
.l1clk(l1clk),
.siclk(siclk),
.soclk(soclk),
.d(fdin[3:0]),
.si({scan_in,so[2:0]}),
.so({so[2:0],scan_out}),
.q(dout[3:0])
);
endmodule
// any PARAMS parms go into naming of macro
module mcu_dmmdly_ctl_msff_ctl_macro__width_1 (
din,
l1clk,
scan_in,
siclk,
soclk,
dout,
scan_out);
wire [0:0] fdin;
input [0:0] din;
input l1clk;
input scan_in;
input siclk;
input soclk;
output [0:0] dout;
output scan_out;
assign fdin[0:0] = din[0:0];
dff #(1) d0_0 (
.l1clk(l1clk),
.siclk(siclk),
.soclk(soclk),
.d(fdin[0:0]),
.si(scan_in),
.so(scan_out),
.q(dout[0:0])
);
endmodule
// any PARAMS parms go into naming of macro
module mcu_dmmdly_ctl_msff_ctl_macro__width_2 (
din,
l1clk,
scan_in,
siclk,
soclk,
dout,
scan_out);
wire [1:0] fdin;
wire [0:0] so;
input [1:0] din;
input l1clk;
input scan_in;
input siclk;
input soclk;
output [1:0] dout;
output scan_out;
assign fdin[1:0] = din[1:0];
dff #(2) d0_0 (
.l1clk(l1clk),
.siclk(siclk),
.soclk(soclk),
.d(fdin[1:0]),
.si({scan_in,so[0:0]}),
.so({so[0:0],scan_out}),
.q(dout[1:0])
);
endmodule
// any PARAMS parms go into naming of macro
module mcu_dmmdly_ctl_msff_ctl_macro__en_0__width_5 (
din,
l1clk,
scan_in,
siclk,
soclk,
dout,
scan_out);
wire [4:0] fdin;
wire [3:0] so;
input [4:0] din;
input l1clk;
input scan_in;
input siclk;
input soclk;
output [4:0] dout;
output scan_out;
assign fdin[4:0] = din[4:0];
dff #(5) d0_0 (
.l1clk(l1clk),
.siclk(siclk),
.soclk(soclk),
.d(fdin[4:0]),
.si({scan_in,so[3:0]}),
.so({so[3:0],scan_out}),
.q(dout[4:0])
);
endmodule
// any PARAMS parms go into naming of macro
module mcu_dmmdly_ctl_msff_ctl_macro__width_3 (
din,
l1clk,
scan_in,
siclk,
soclk,
dout,
scan_out);
wire [2:0] fdin;
wire [1:0] so;
input [2:0] din;
input l1clk;
input scan_in;
input siclk;
input soclk;
output [2:0] dout;
output scan_out;
assign fdin[2:0] = din[2:0];
dff #(3) d0_0 (
.l1clk(l1clk),
.siclk(siclk),
.soclk(soclk),
.d(fdin[2:0]),
.si({scan_in,so[1:0]}),
.so({so[1:0],scan_out}),
.q(dout[2:0])
);
endmodule