Initial commit of OpenSPARC T2 design and verification files.
[OpenSPARC-T2-DV] / verif / env / ilu_peu / vera / N2fc / N2fcilupeuIngressDmaRdStr.vr
// ========== Copyright Header Begin ==========================================
//
// OpenSPARC T2 Processor File: N2fcilupeuIngressDmaRdStr.vr
// Copyright (C) 1995-2007 Sun Microsystems, Inc. All Rights Reserved
// 4150 Network Circle, Santa Clara, California 95054, U.S.A.
//
// * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; version 2 of the License.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
// For the avoidance of doubt, and except that if any non-GPL license
// choice is available it will apply instead, Sun elects to use only
// the General Public License version 2 (GPLv2) at this time for any
// software where a choice of GPL license versions is made
// available with the language indicating that GPLv2 or any later version
// may be used, or where a choice of which version of the GPL is applied is
// otherwise unspecified.
//
// Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
// CA 95054 USA or visit www.sun.com if you need additional information or
// have any questions.
//
// ========== Copyright Header End ============================================
extern integer fc_peu_dma_ptr;
class N2fcDmaRdPEUStr extends PEUStrBase {
local bit [63:0] N2fcSAddr;
local bit [63:0] N2fcEAddr;
local bit N2fcAddrSpecified;
local bit [31:0] length;
local bit [31:0] dat;
integer f_len; // The packet's payload length
bit[3:0] f_firstDWBE; // It's "first DWBE" field
bit[3:0] f_lastDWBE; // It's "last DWBE" field
integer f_bndy; // The address' boundary
bit f_lenSpecified; // Was a length specified?
bit f_firstSpecified; // Was a "firstDWBE" specified?
bit f_lastSpecified; // Was a "lastDWBE" specified?
bit f_bndySpecified; // Was an addr bndy specified?
bit f_poison; // Is the completion poisoned?
bit f_UR; // Is the completion UR?
bit f_CA; // Is the completion CA?
bit f_INTx; // Do an INTx after completion?
bit f_dma_read_lk; // Do a DMA Read Lock
bit f_drop_cmpl; // Drop the completion
string intx_cmd;
N2fcIommuMgr MMU;
bit [7:0] bus_id;
integer f_tc; // The packet's traffic class
task new( PEUTestEnv a_env )
{
super.new( a_env );
f_lenSpecified = 0;
f_firstSpecified = 0;
f_lastSpecified = 0;
f_bndySpecified = 0;
f_poison = 0;
f_UR = 0;
f_CA = 0;
f_INTx = 0;
f_dma_read_lk = 0;
f_drop_cmpl = 0;
f_tc = -1;
MMU = new();
printf ("%0d- N2fcDmaRdPEUStr:new first random # = %0h\n", get_time(LO), random() );
}
task SetLen( integer a_len )
{
f_len = a_len;
f_lenSpecified = 1;
}
task SetFirstDWBE( bit[3:0] a_dwbe )
{
f_firstDWBE = a_dwbe;
f_firstSpecified = 1;
}
task SetLastDWBE( bit[3:0] a_dwbe )
{
f_lastDWBE = a_dwbe;
f_lastSpecified = 1;
}
task SetAddrBndy( integer a_bndy )
{
f_bndy = a_bndy;
f_bndySpecified = 1;
}
task SetPoisonedPayload()
{
f_poison = 1;
}
task SetUC( bit isUR )
{
if ( isUR )
f_UR = 1;
else
f_CA = 1;
}
task DoIntxAfterCompletion(string cmd)
{
f_INTx = 1;
intx_cmd = cmd;
}
task SetRdLk()
{
f_dma_read_lk = 1;
}
task DropCmpl()
{
f_drop_cmpl = 1;
}
task N2fcSetAddr( bit [63:0] i_saddr, bit [63:0] i_eaddr )
{
N2fcAddrSpecified = 1;
N2fcSAddr = i_saddr;
N2fcEAddr = i_eaddr;
}
task Execute()
{
bit [63:0] address = 64'b0; // Virtual address
bit [39:0] pa = 40'b0; // Physical address
bit hdr_4dw;
bit[PEC_PCI__HDR] ingressHdr; // The ingress TLP's header
integer ingressData; // A payload descriptor
bit[7:0] ingressTag; // The tag for the TLP
bit[7:0] egressAddr; // The payload's DOU address
integer dwTotal; // #DWs required for completion
integer dwDone; // #DWs completed so far
bit zero_len_read;
shadow bit[PEC_PCI__HDR] egressHdr; // The egress TLP's header
shadow integer egressData; // The completion payload
shadow integer dma_ptr; // dma id
if (N2fcAddrSpecified == 1) {
address = N2fcSAddr;
}
else {
error ("N2fcDmaRdPEUStr::Execute() : the start and end address must be specifed\n");
}
// First, get in line for a DMA tag...
f_env.allocDmaTag( ingressTag );
// Then build a TLP
if ( f_lenSpecified )
f_env.genIngressRdReq( ingressTag, ingressHdr, ingressData, f_len );
else
error ("N2fcDmaRdPEUStr::Execute() : the length must be specifed\n");
// Special case for DMA RD LK
if ( f_dma_read_lk ) {
ingressHdr[PEC_PCI__TYPE] = PEC_PCI__TYPE_MEM_LK;
ingressHdr[PEC_PCI__TC] = 0;
f_env.Pod.FNXPCIEEnableTrans.tempSuppressDenaliErr( PCIE_TL_NONFATAL_TLP_MF_vlLkReq );
f_env.Pod.FNXPCIEEnableTrans.tempSuppressDenaliErr( PCIE_TL_NONFATAL_TLP_MF_vlLkEP );
f_env.Pod.FNXPCIEEnableTrans.tempSuppressDenaliErr( PCIE_TL_NONFATAL_TLP_CPLST_LKUR_2 );
}
// set the Traffic Class (for non - DMA RD LK)
else if( f_tc != -1 ) {
ingressHdr[PEC_PCI__TC] = f_tc;
}
if( address[63:32] != 32'h00000000 ) {
ingressHdr[PEC_PCI__FMT_4DW] = 1; // 4DW hdr fmt, 64-bit address
ingressHdr[PEC_PCI__ADDR] = address;
}
else {
ingressHdr[PEC_PCI__FMT_4DW] = 0; // 3DW hdr fmt, 32-bit address
ingressHdr[PEC_PCI__ADDR32] = address[31:0];
}
printf ("%0d- UDEBUG N2fcDmaRdPEUStr:Execute Address = %0h Byp = %0h, Len = 'd%0d\n",
get_time(LO), address, address[63:39], f_len);
// ...and set fields as requested
// by the caller.
if ( f_bndySpecified )
f_env.setAddrBndy( ingressHdr, f_bndy, 4 );
//N2 Set the DWBE after setAddrBndy since it adjusts the DWBE now
if ( f_firstSpecified )
ingressHdr[PEC_PCI__FIRST_DWBE] = f_firstDWBE;
if ( f_lastSpecified )
ingressHdr[PEC_PCI__LAST_DWBE] = f_lastDWBE;
// Send the read-request through the
// ingress pipeline.
f_env.drivePCIE( ingressHdr, ingressData,*,*,*,*,*,1 );
zero_len_read = (ingressHdr[PEC_PCI__LEN] == 1) &&
(ingressHdr[PEC_PCI__FIRST_DWBE] == 0) &&
(ingressHdr[PEC_PCI__LAST_DWBE] == 0) ;
bus_id = ingressHdr[ILUPEU_TLP_HDR_REQ_BUS_NUM_BITS];
fork {
f_env.MMU.get_mmu_cntl_reg();
if (!MMU.get_physical_address(address, pa, bus_id, 1)) {
f_CA = 1;
}
// get the l2sio_stub lock, to serialize new requests
semaphore_get (WAIT, l2sio_stub.reqst_semph_id, 1);
// Now send a completion to our original request through the
// egress pipeline.
if ( f_drop_cmpl )
{
// no completion was requested, probably due to
// error injection. However, the siu<->l2 monitor needs to
// know to expect the RDD and rd return packets.
dma_ptr = fc_peu_dma_ptr++;
// l2sio_stub.l2_cl_idx = l2sio_stub.l2_cl_idx + 1;
fork
l2sio_stub.reassemble_dma_pkt("N2fcDmaRdPEUStr::Execute",
ingressHdr[PEC_PCI__LEN],
address,
dma_ptr);
join none
repeat (1) @(posedge CLOCK);
}
else if ( f_UR || f_CA )
{
printf ("UDEBUG : N2fcDmaRdPEUStr UR or CA\n");
f_env.genEgressCpl( ingressHdr, egressHdr, egressData );
egressHdr[PEC_PCI__FMT_DATA] = 0;
egressHdr[PEC_PCI__LEN] = 0;
egressHdr[PEC_PCI__CPL_ID] = 0;
if ( f_UR )
egressHdr[PEC_PCI__CPL_STATUS] = PEC_PCI__CPL_STATUS_UR;
else {
egressHdr[PEC_PCI__CPL_STATUS] = PEC_PCI__CPL_STATUS_CA;
f_env.Pod.FNXPCIEEnableTrans.tempSuppressDenaliErr( PCIE_TL_NONFATAL_TLP_CPLST_CA_2 );
}
fork
f_env.expectPCIE( egressHdr, egressData, *, 1 );
join none
repeat (1) @(posedge CLOCK);
}
else if ( ingressHdr[PEC_PCI__LEN] > 0 &&
4*ingressHdr[PEC_PCI__LEN] <= f_env.getMaxPayloadSize() ||
f_dma_read_lk)
{
f_env.genEgressCpl( ingressHdr, egressHdr, egressData );
if ( f_poison ) {
f_env.poisonPayload( egressData );
egressHdr[PEC_PCI__EP] = 1;
f_env.Pod.FNXPCIEEnableTrans.tempSuppressDenaliErr( PCIE_TL_NONFATAL_TLP_CPL_Poison );
}
else if ( f_dma_read_lk ) {
egressHdr[PEC_PCI__TYPE] = PEC_PCI__TYPE_CPL_LK;
egressHdr[PEC_PCI__FMT ] = PEC_PCI__FMT_NO_DATA_3DW;
egressHdr[PEC_PCI__LEN] = 0;
egressHdr[PEC_PCI__CPL_STATUS] = PEC_PCI__CPL_STATUS_UR;
egressHdr[PEC_PCI__BYTECOUNT] = 12'hxxx; //ingressHdr[PEC_PCI__LEN] * 4;
egressHdr[PEC_PCI__LOWADDR] = 7'hxx;
}
egressHdr [PEC_PCI__CPL_ID] = 0;
dma_ptr = fc_peu_dma_ptr++;
fork
f_env.expectPCIE( egressHdr, egressData, *, 1 , dma_ptr);
join none
repeat (1) @(posedge CLOCK);
}
// ...or as many as it takes for a
// complex ('bulk') request.
else
{
dwTotal = ingressHdr[PEC_PCI__LEN];
if ( dwTotal == 0 ) dwTotal = 1024;
dwDone = 0;
while( dwTotal > dwDone )
{
f_env.genEgressPartialCpl( ingressHdr, egressHdr, egressData, dwDone );
dwDone = dwDone + egressHdr[PEC_PCI__LEN];
if ( f_poison ) {
f_env.poisonPayload( egressData );
egressHdr[PEC_PCI__EP] = 1;
f_env.Pod.FNXPCIEEnableTrans.tempSuppressDenaliErr( PCIE_TL_NONFATAL_TLP_CPL_Poison );
}
egressHdr [PEC_PCI__CPL_ID] = 0;
dma_ptr = fc_peu_dma_ptr++;
fork
f_env.expectPCIE( egressHdr, egressData, *, 1, dma_ptr );
join none
@(posedge CLOCK);
}
}
if ( f_poison ) {
f_env.Pod.FNXPCIEEnableTrans.unSuppressDenaliErr( PCIE_TL_NONFATAL_TLP_CPL_Poison );
}
if ( f_CA ) {
f_env.Pod.FNXPCIEEnableTrans.unSuppressDenaliErr( PCIE_TL_NONFATAL_TLP_CPLST_CA_2 );
}
// The environment frees the completion's DOU space
// So we only have to free the tag.
f_env.freeDmaTag( ingressTag );
// release the l2sio_stub lock
semaphore_put (l2sio_stub.reqst_semph_id, 1);
// Does the cpu want an interrupt when the DMARD is done?
if (f_INTx) {
N2fcIntxStr intxStr;
// wait for read completion
wait_child();
// now do an INTx ASSERT command to let the cpu know the dmard is completed
intxStr = new(f_env, intx_cmd, "ASSERT");
}
} join none
} /* end Execute */
} /* end DmaRdPECStr class*/