Initial commit of OpenSPARC T2 architecture model.
[OpenSPARC-T2-SAM] / sam-t2 / devtools / v9 / man / man1 / perlxs.1
CommitLineData
920dae64
AT
1.\" Automatically generated by Pod::Man v1.37, Pod::Parser v1.32
2.\"
3.\" Standard preamble:
4.\" ========================================================================
5.de Sh \" Subsection heading
6.br
7.if t .Sp
8.ne 5
9.PP
10\fB\\$1\fR
11.PP
12..
13.de Sp \" Vertical space (when we can't use .PP)
14.if t .sp .5v
15.if n .sp
16..
17.de Vb \" Begin verbatim text
18.ft CW
19.nf
20.ne \\$1
21..
22.de Ve \" End verbatim text
23.ft R
24.fi
25..
26.\" Set up some character translations and predefined strings. \*(-- will
27.\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
28.\" double quote, and \*(R" will give a right double quote. | will give a
29.\" real vertical bar. \*(C+ will give a nicer C++. Capital omega is used to
30.\" do unbreakable dashes and therefore won't be available. \*(C` and \*(C'
31.\" expand to `' in nroff, nothing in troff, for use with C<>.
32.tr \(*W-|\(bv\*(Tr
33.ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p'
34.ie n \{\
35. ds -- \(*W-
36. ds PI pi
37. if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch
38. if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch
39. ds L" ""
40. ds R" ""
41. ds C` ""
42. ds C' ""
43'br\}
44.el\{\
45. ds -- \|\(em\|
46. ds PI \(*p
47. ds L" ``
48. ds R" ''
49'br\}
50.\"
51.\" If the F register is turned on, we'll generate index entries on stderr for
52.\" titles (.TH), headers (.SH), subsections (.Sh), items (.Ip), and index
53.\" entries marked with X<> in POD. Of course, you'll have to process the
54.\" output yourself in some meaningful fashion.
55.if \nF \{\
56. de IX
57. tm Index:\\$1\t\\n%\t"\\$2"
58..
59. nr % 0
60. rr F
61.\}
62.\"
63.\" For nroff, turn off justification. Always turn off hyphenation; it makes
64.\" way too many mistakes in technical documents.
65.hy 0
66.if n .na
67.\"
68.\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
69.\" Fear. Run. Save yourself. No user-serviceable parts.
70. \" fudge factors for nroff and troff
71.if n \{\
72. ds #H 0
73. ds #V .8m
74. ds #F .3m
75. ds #[ \f1
76. ds #] \fP
77.\}
78.if t \{\
79. ds #H ((1u-(\\\\n(.fu%2u))*.13m)
80. ds #V .6m
81. ds #F 0
82. ds #[ \&
83. ds #] \&
84.\}
85. \" simple accents for nroff and troff
86.if n \{\
87. ds ' \&
88. ds ` \&
89. ds ^ \&
90. ds , \&
91. ds ~ ~
92. ds /
93.\}
94.if t \{\
95. ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u"
96. ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u'
97. ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u'
98. ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u'
99. ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u'
100. ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u'
101.\}
102. \" troff and (daisy-wheel) nroff accents
103.ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V'
104.ds 8 \h'\*(#H'\(*b\h'-\*(#H'
105.ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#]
106.ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H'
107.ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u'
108.ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#]
109.ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#]
110.ds ae a\h'-(\w'a'u*4/10)'e
111.ds Ae A\h'-(\w'A'u*4/10)'E
112. \" corrections for vroff
113.if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u'
114.if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u'
115. \" for low resolution devices (crt and lpr)
116.if \n(.H>23 .if \n(.V>19 \
117\{\
118. ds : e
119. ds 8 ss
120. ds o a
121. ds d- d\h'-1'\(ga
122. ds D- D\h'-1'\(hy
123. ds th \o'bp'
124. ds Th \o'LP'
125. ds ae ae
126. ds Ae AE
127.\}
128.rm #[ #] #H #V #F C
129.\" ========================================================================
130.\"
131.IX Title "PERLXS 1"
132.TH PERLXS 1 "2006-01-07" "perl v5.8.8" "Perl Programmers Reference Guide"
133.SH "NAME"
134perlxs \- XS language reference manual
135.SH "DESCRIPTION"
136.IX Header "DESCRIPTION"
137.Sh "Introduction"
138.IX Subsection "Introduction"
139\&\s-1XS\s0 is an interface description file format used to create an extension
140interface between Perl and C code (or a C library) which one wishes
141to use with Perl. The \s-1XS\s0 interface is combined with the library to
142create a new library which can then be either dynamically loaded
143or statically linked into perl. The \s-1XS\s0 interface description is
144written in the \s-1XS\s0 language and is the core component of the Perl
145extension interface.
146.PP
147An \fB\s-1XSUB\s0\fR forms the basic unit of the \s-1XS\s0 interface. After compilation
148by the \fBxsubpp\fR compiler, each \s-1XSUB\s0 amounts to a C function definition
149which will provide the glue between Perl calling conventions and C
150calling conventions.
151.PP
152The glue code pulls the arguments from the Perl stack, converts these
153Perl values to the formats expected by a C function, call this C function,
154transfers the return values of the C function back to Perl.
155Return values here may be a conventional C return value or any C
156function arguments that may serve as output parameters. These return
157values may be passed back to Perl either by putting them on the
158Perl stack, or by modifying the arguments supplied from the Perl side.
159.PP
160The above is a somewhat simplified view of what really happens. Since
161Perl allows more flexible calling conventions than C, XSUBs may do much
162more in practice, such as checking input parameters for validity,
163throwing exceptions (or returning undef/empty list) if the return value
164from the C function indicates failure, calling different C functions
165based on numbers and types of the arguments, providing an object-oriented
166interface, etc.
167.PP
168Of course, one could write such glue code directly in C. However, this
169would be a tedious task, especially if one needs to write glue for
170multiple C functions, and/or one is not familiar enough with the Perl
171stack discipline and other such arcana. \s-1XS\s0 comes to the rescue here:
172instead of writing this glue C code in long\-hand, one can write
173a more concise short-hand \fIdescription\fR of what should be done by
174the glue, and let the \s-1XS\s0 compiler \fBxsubpp\fR handle the rest.
175.PP
176The \s-1XS\s0 language allows one to describe the mapping between how the C
177routine is used, and how the corresponding Perl routine is used. It
178also allows creation of Perl routines which are directly translated to
179C code and which are not related to a pre-existing C function. In cases
180when the C interface coincides with the Perl interface, the \s-1XSUB\s0
181declaration is almost identical to a declaration of a C function (in K&R
182style). In such circumstances, there is another tool called \f(CW\*(C`h2xs\*(C'\fR
183that is able to translate an entire C header file into a corresponding
184\&\s-1XS\s0 file that will provide glue to the functions/macros described in
185the header file.
186.PP
187The \s-1XS\s0 compiler is called \fBxsubpp\fR. This compiler creates
188the constructs necessary to let an \s-1XSUB\s0 manipulate Perl values, and
189creates the glue necessary to let Perl call the \s-1XSUB\s0. The compiler
190uses \fBtypemaps\fR to determine how to map C function parameters
191and output values to Perl values and back. The default typemap
192(which comes with Perl) handles many common C types. A supplementary
193typemap may also be needed to handle any special structures and types
194for the library being linked.
195.PP
196A file in \s-1XS\s0 format starts with a C language section which goes until the
197first \f(CW\*(C`MODULE =\&\*(C'\fR directive. Other \s-1XS\s0 directives and \s-1XSUB\s0 definitions
198may follow this line. The \*(L"language\*(R" used in this part of the file
199is usually referred to as the \s-1XS\s0 language. \fBxsubpp\fR recognizes and
200skips \s-1POD\s0 (see perlpod) in both the C and \s-1XS\s0 language sections, which
201allows the \s-1XS\s0 file to contain embedded documentation.
202.PP
203See perlxstut for a tutorial on the whole extension creation process.
204.PP
205Note: For some extensions, Dave Beazley's \s-1SWIG\s0 system may provide a
206significantly more convenient mechanism for creating the extension
207glue code. See http://www.swig.org/ for more information.
208.Sh "On The Road"
209.IX Subsection "On The Road"
210Many of the examples which follow will concentrate on creating an interface
211between Perl and the \s-1ONC+\s0 \s-1RPC\s0 bind library functions. The \fIrpcb_gettime()\fR
212function is used to demonstrate many features of the \s-1XS\s0 language. This
213function has two parameters; the first is an input parameter and the second
214is an output parameter. The function also returns a status value.
215.PP
216.Vb 1
217\& bool_t rpcb_gettime(const char *host, time_t *timep);
218.Ve
219.PP
220From C this function will be called with the following
221statements.
222.PP
223.Vb 4
224\& #include <rpc/rpc.h>
225\& bool_t status;
226\& time_t timep;
227\& status = rpcb_gettime( "localhost", &timep );
228.Ve
229.PP
230If an \s-1XSUB\s0 is created to offer a direct translation between this function
231and Perl, then this \s-1XSUB\s0 will be used from Perl with the following code.
232The \f(CW$status\fR and \f(CW$timep\fR variables will contain the output of the function.
233.PP
234.Vb 2
235\& use RPC;
236\& $status = rpcb_gettime( "localhost", $timep );
237.Ve
238.PP
239The following \s-1XS\s0 file shows an \s-1XS\s0 subroutine, or \s-1XSUB\s0, which
240demonstrates one possible interface to the \fIrpcb_gettime()\fR
241function. This \s-1XSUB\s0 represents a direct translation between
242C and Perl and so preserves the interface even from Perl.
243This \s-1XSUB\s0 will be invoked from Perl with the usage shown
244above. Note that the first three #include statements, for
245\&\f(CW\*(C`EXTERN.h\*(C'\fR, \f(CW\*(C`perl.h\*(C'\fR, and \f(CW\*(C`XSUB.h\*(C'\fR, will always be present at the
246beginning of an \s-1XS\s0 file. This approach and others will be
247expanded later in this document.
248.PP
249.Vb 4
250\& #include "EXTERN.h"
251\& #include "perl.h"
252\& #include "XSUB.h"
253\& #include <rpc/rpc.h>
254.Ve
255.PP
256.Vb 1
257\& MODULE = RPC PACKAGE = RPC
258.Ve
259.PP
260.Vb 6
261\& bool_t
262\& rpcb_gettime(host,timep)
263\& char *host
264\& time_t &timep
265\& OUTPUT:
266\& timep
267.Ve
268.PP
269Any extension to Perl, including those containing XSUBs,
270should have a Perl module to serve as the bootstrap which
271pulls the extension into Perl. This module will export the
272extension's functions and variables to the Perl program and
273will cause the extension's XSUBs to be linked into Perl.
274The following module will be used for most of the examples
275in this document and should be used from Perl with the \f(CW\*(C`use\*(C'\fR
276command as shown earlier. Perl modules are explained in
277more detail later in this document.
278.PP
279.Vb 1
280\& package RPC;
281.Ve
282.PP
283.Vb 4
284\& require Exporter;
285\& require DynaLoader;
286\& @ISA = qw(Exporter DynaLoader);
287\& @EXPORT = qw( rpcb_gettime );
288.Ve
289.PP
290.Vb 2
291\& bootstrap RPC;
292\& 1;
293.Ve
294.PP
295Throughout this document a variety of interfaces to the \fIrpcb_gettime()\fR
296\&\s-1XSUB\s0 will be explored. The XSUBs will take their parameters in different
297orders or will take different numbers of parameters. In each case the
298\&\s-1XSUB\s0 is an abstraction between Perl and the real C \fIrpcb_gettime()\fR
299function, and the \s-1XSUB\s0 must always ensure that the real \fIrpcb_gettime()\fR
300function is called with the correct parameters. This abstraction will
301allow the programmer to create a more Perl-like interface to the C
302function.
303.Sh "The Anatomy of an \s-1XSUB\s0"
304.IX Subsection "The Anatomy of an XSUB"
305The simplest XSUBs consist of 3 parts: a description of the return
306value, the name of the \s-1XSUB\s0 routine and the names of its arguments,
307and a description of types or formats of the arguments.
308.PP
309The following \s-1XSUB\s0 allows a Perl program to access a C library function
310called \fIsin()\fR. The \s-1XSUB\s0 will imitate the C function which takes a single
311argument and returns a single value.
312.PP
313.Vb 3
314\& double
315\& sin(x)
316\& double x
317.Ve
318.PP
319Optionally, one can merge the description of types and the list of
320argument names, rewriting this as
321.PP
322.Vb 2
323\& double
324\& sin(double x)
325.Ve
326.PP
327This makes this \s-1XSUB\s0 look similar to an \s-1ANSI\s0 C declaration. An optional
328semicolon is allowed after the argument list, as in
329.PP
330.Vb 2
331\& double
332\& sin(double x);
333.Ve
334.PP
335Parameters with C pointer types can have different semantic: C functions
336with similar declarations
337.PP
338.Vb 2
339\& bool string_looks_as_a_number(char *s);
340\& bool make_char_uppercase(char *c);
341.Ve
342.PP
343are used in absolutely incompatible manner. Parameters to these functions
344could be described \fBxsubpp\fR like this:
345.PP
346.Vb 2
347\& char * s
348\& char &c
349.Ve
350.PP
351Both these \s-1XS\s0 declarations correspond to the \f(CW\*(C`char*\*(C'\fR C type, but they have
352different semantics, see \*(L"The & Unary Operator\*(R".
353.PP
354It is convenient to think that the indirection operator
355\&\f(CW\*(C`*\*(C'\fR should be considered as a part of the type and the address operator \f(CW\*(C`&\*(C'\fR
356should be considered part of the variable. See \*(L"The Typemap\*(R"
357for more info about handling qualifiers and unary operators in C types.
358.PP
359The function name and the return type must be placed on
360separate lines and should be flush left\-adjusted.
361.PP
362.Vb 1
363\& INCORRECT CORRECT
364.Ve
365.PP
366.Vb 3
367\& double sin(x) double
368\& double x sin(x)
369\& double x
370.Ve
371.PP
372The rest of the function description may be indented or left\-adjusted. The
373following example shows a function with its body left\-adjusted. Most
374examples in this document will indent the body for better readability.
375.PP
376.Vb 1
377\& CORRECT
378.Ve
379.PP
380.Vb 3
381\& double
382\& sin(x)
383\& double x
384.Ve
385.PP
386More complicated XSUBs may contain many other sections. Each section of
387an \s-1XSUB\s0 starts with the corresponding keyword, such as \s-1INIT:\s0 or \s-1CLEANUP:\s0.
388However, the first two lines of an \s-1XSUB\s0 always contain the same data:
389descriptions of the return type and the names of the function and its
390parameters. Whatever immediately follows these is considered to be
391an \s-1INPUT:\s0 section unless explicitly marked with another keyword.
392(See \*(L"The \s-1INPUT:\s0 Keyword\*(R".)
393.PP
394An \s-1XSUB\s0 section continues until another section-start keyword is found.
395.Sh "The Argument Stack"
396.IX Subsection "The Argument Stack"
397The Perl argument stack is used to store the values which are
398sent as parameters to the \s-1XSUB\s0 and to store the \s-1XSUB\s0's
399return value(s). In reality all Perl functions (including non-XSUB
400ones) keep their values on this stack all the same time, each limited
401to its own range of positions on the stack. In this document the
402first position on that stack which belongs to the active
403function will be referred to as position 0 for that function.
404.PP
405XSUBs refer to their stack arguments with the macro \fB\s-1ST\s0(x)\fR, where \fIx\fR
406refers to a position in this \s-1XSUB\s0's part of the stack. Position 0 for that
407function would be known to the \s-1XSUB\s0 as \s-1\fIST\s0\fR\|(0). The \s-1XSUB\s0's incoming
408parameters and outgoing return values always begin at \s-1\fIST\s0\fR\|(0). For many
409simple cases the \fBxsubpp\fR compiler will generate the code necessary to
410handle the argument stack by embedding code fragments found in the
411typemaps. In more complex cases the programmer must supply the code.
412.Sh "The \s-1RETVAL\s0 Variable"
413.IX Subsection "The RETVAL Variable"
414The \s-1RETVAL\s0 variable is a special C variable that is declared automatically
415for you. The C type of \s-1RETVAL\s0 matches the return type of the C library
416function. The \fBxsubpp\fR compiler will declare this variable in each \s-1XSUB\s0
417with non\-\f(CW\*(C`void\*(C'\fR return type. By default the generated C function
418will use \s-1RETVAL\s0 to hold the return value of the C library function being
419called. In simple cases the value of \s-1RETVAL\s0 will be placed in \s-1\fIST\s0\fR\|(0) of
420the argument stack where it can be received by Perl as the return value
421of the \s-1XSUB\s0.
422.PP
423If the \s-1XSUB\s0 has a return type of \f(CW\*(C`void\*(C'\fR then the compiler will
424not declare a \s-1RETVAL\s0 variable for that function. When using
425a \s-1PPCODE:\s0 section no manipulation of the \s-1RETVAL\s0 variable is required, the
426section may use direct stack manipulation to place output values on the stack.
427.PP
428If \s-1PPCODE:\s0 directive is not used, \f(CW\*(C`void\*(C'\fR return value should be used
429only for subroutines which do not return a value, \fIeven if\fR \s-1CODE:\s0
430directive is used which sets \s-1\fIST\s0\fR\|(0) explicitly.
431.PP
432Older versions of this document recommended to use \f(CW\*(C`void\*(C'\fR return
433value in such cases. It was discovered that this could lead to
434segfaults in cases when \s-1XSUB\s0 was \fItruly\fR \f(CW\*(C`void\*(C'\fR. This practice is
435now deprecated, and may be not supported at some future version. Use
436the return value \f(CW\*(C`SV *\*(C'\fR in such cases. (Currently \f(CW\*(C`xsubpp\*(C'\fR contains
437some heuristic code which tries to disambiguate between \*(L"truly\-void\*(R"
438and \*(L"old\-practice\-declared\-as\-void\*(R" functions. Hence your code is at
439mercy of this heuristics unless you use \f(CW\*(C`SV *\*(C'\fR as return value.)
440.Sh "Returning SVs, AVs and HVs through \s-1RETVAL\s0"
441.IX Subsection "Returning SVs, AVs and HVs through RETVAL"
442When you're using \s-1RETVAL\s0 to return an \f(CW\*(C`SV *\*(C'\fR, there's some magic
443going on behind the scenes that should be mentioned. When you're
444manipulating the argument stack using the \s-1ST\s0(x) macro, for example,
445you usually have to pay special attention to reference counts. (For
446more about reference counts, see perlguts.) To make your life
447easier, the typemap file automatically makes \f(CW\*(C`RETVAL\*(C'\fR mortal when
448you're returning an \f(CW\*(C`SV *\*(C'\fR. Thus, the following two XSUBs are more
449or less equivalent:
450.PP
451.Vb 6
452\& void
453\& alpha()
454\& PPCODE:
455\& ST(0) = newSVpv("Hello World",0);
456\& sv_2mortal(ST(0));
457\& XSRETURN(1);
458.Ve
459.PP
460.Vb 6
461\& SV *
462\& beta()
463\& CODE:
464\& RETVAL = newSVpv("Hello World",0);
465\& OUTPUT:
466\& RETVAL
467.Ve
468.PP
469This is quite useful as it usually improves readability. While
470this works fine for an \f(CW\*(C`SV *\*(C'\fR, it's unfortunately not as easy
471to have \f(CW\*(C`AV *\*(C'\fR or \f(CW\*(C`HV *\*(C'\fR as a return value. You \fIshould\fR be
472able to write:
473.PP
474.Vb 7
475\& AV *
476\& array()
477\& CODE:
478\& RETVAL = newAV();
479\& /* do something with RETVAL */
480\& OUTPUT:
481\& RETVAL
482.Ve
483.PP
484But due to an unfixable bug (fixing it would break lots of existing
485\&\s-1CPAN\s0 modules) in the typemap file, the reference count of the \f(CW\*(C`AV *\*(C'\fR
486is not properly decremented. Thus, the above \s-1XSUB\s0 would leak memory
487whenever it is being called. The same problem exists for \f(CW\*(C`HV *\*(C'\fR.
488.PP
489When you're returning an \f(CW\*(C`AV *\*(C'\fR or a \f(CW\*(C`HV *\*(C'\fR, you have make sure
490their reference count is decremented by making the \s-1AV\s0 or \s-1HV\s0 mortal:
491.PP
492.Vb 8
493\& AV *
494\& array()
495\& CODE:
496\& RETVAL = newAV();
497\& sv_2mortal((SV*)RETVAL);
498\& /* do something with RETVAL */
499\& OUTPUT:
500\& RETVAL
501.Ve
502.PP
503And also remember that you don't have to do this for an \f(CW\*(C`SV *\*(C'\fR.
504.Sh "The \s-1MODULE\s0 Keyword"
505.IX Subsection "The MODULE Keyword"
506The \s-1MODULE\s0 keyword is used to start the \s-1XS\s0 code and to specify the package
507of the functions which are being defined. All text preceding the first
508\&\s-1MODULE\s0 keyword is considered C code and is passed through to the output with
509\&\s-1POD\s0 stripped, but otherwise untouched. Every \s-1XS\s0 module will have a
510bootstrap function which is used to hook the XSUBs into Perl. The package
511name of this bootstrap function will match the value of the last \s-1MODULE\s0
512statement in the \s-1XS\s0 source files. The value of \s-1MODULE\s0 should always remain
513constant within the same \s-1XS\s0 file, though this is not required.
514.PP
515The following example will start the \s-1XS\s0 code and will place
516all functions in a package named \s-1RPC\s0.
517.PP
518.Vb 1
519\& MODULE = RPC
520.Ve
521.Sh "The \s-1PACKAGE\s0 Keyword"
522.IX Subsection "The PACKAGE Keyword"
523When functions within an \s-1XS\s0 source file must be separated into packages
524the \s-1PACKAGE\s0 keyword should be used. This keyword is used with the \s-1MODULE\s0
525keyword and must follow immediately after it when used.
526.PP
527.Vb 1
528\& MODULE = RPC PACKAGE = RPC
529.Ve
530.PP
531.Vb 1
532\& [ XS code in package RPC ]
533.Ve
534.PP
535.Vb 1
536\& MODULE = RPC PACKAGE = RPCB
537.Ve
538.PP
539.Vb 1
540\& [ XS code in package RPCB ]
541.Ve
542.PP
543.Vb 1
544\& MODULE = RPC PACKAGE = RPC
545.Ve
546.PP
547.Vb 1
548\& [ XS code in package RPC ]
549.Ve
550.PP
551The same package name can be used more than once, allowing for
552non-contiguous code. This is useful if you have a stronger ordering
553principle than package names.
554.PP
555Although this keyword is optional and in some cases provides redundant
556information it should always be used. This keyword will ensure that the
557XSUBs appear in the desired package.
558.Sh "The \s-1PREFIX\s0 Keyword"
559.IX Subsection "The PREFIX Keyword"
560The \s-1PREFIX\s0 keyword designates prefixes which should be
561removed from the Perl function names. If the C function is
562\&\f(CW\*(C`rpcb_gettime()\*(C'\fR and the \s-1PREFIX\s0 value is \f(CW\*(C`rpcb_\*(C'\fR then Perl will
563see this function as \f(CW\*(C`gettime()\*(C'\fR.
564.PP
565This keyword should follow the \s-1PACKAGE\s0 keyword when used.
566If \s-1PACKAGE\s0 is not used then \s-1PREFIX\s0 should follow the \s-1MODULE\s0
567keyword.
568.PP
569.Vb 1
570\& MODULE = RPC PREFIX = rpc_
571.Ve
572.PP
573.Vb 1
574\& MODULE = RPC PACKAGE = RPCB PREFIX = rpcb_
575.Ve
576.Sh "The \s-1OUTPUT:\s0 Keyword"
577.IX Subsection "The OUTPUT: Keyword"
578The \s-1OUTPUT:\s0 keyword indicates that certain function parameters should be
579updated (new values made visible to Perl) when the \s-1XSUB\s0 terminates or that
580certain values should be returned to the calling Perl function. For
581simple functions which have no \s-1CODE:\s0 or \s-1PPCODE:\s0 section,
582such as the \fIsin()\fR function above, the \s-1RETVAL\s0 variable is
583automatically designated as an output value. For more complex functions
584the \fBxsubpp\fR compiler will need help to determine which variables are output
585variables.
586.PP
587This keyword will normally be used to complement the \s-1CODE:\s0 keyword.
588The \s-1RETVAL\s0 variable is not recognized as an output variable when the
589\&\s-1CODE:\s0 keyword is present. The \s-1OUTPUT:\s0 keyword is used in this
590situation to tell the compiler that \s-1RETVAL\s0 really is an output
591variable.
592.PP
593The \s-1OUTPUT:\s0 keyword can also be used to indicate that function parameters
594are output variables. This may be necessary when a parameter has been
595modified within the function and the programmer would like the update to
596be seen by Perl.
597.PP
598.Vb 6
599\& bool_t
600\& rpcb_gettime(host,timep)
601\& char *host
602\& time_t &timep
603\& OUTPUT:
604\& timep
605.Ve
606.PP
607The \s-1OUTPUT:\s0 keyword will also allow an output parameter to
608be mapped to a matching piece of code rather than to a
609typemap.
610.PP
611.Vb 6
612\& bool_t
613\& rpcb_gettime(host,timep)
614\& char *host
615\& time_t &timep
616\& OUTPUT:
617\& timep sv_setnv(ST(1), (double)timep);
618.Ve
619.PP
620\&\fBxsubpp\fR emits an automatic \f(CW\*(C`SvSETMAGIC()\*(C'\fR for all parameters in the
621\&\s-1OUTPUT\s0 section of the \s-1XSUB\s0, except \s-1RETVAL\s0. This is the usually desired
622behavior, as it takes care of properly invoking 'set' magic on output
623parameters (needed for hash or array element parameters that must be
624created if they didn't exist). If for some reason, this behavior is
625not desired, the \s-1OUTPUT\s0 section may contain a \f(CW\*(C`SETMAGIC: DISABLE\*(C'\fR line
626to disable it for the remainder of the parameters in the \s-1OUTPUT\s0 section.
627Likewise, \f(CW\*(C`SETMAGIC: ENABLE\*(C'\fR can be used to reenable it for the
628remainder of the \s-1OUTPUT\s0 section. See perlguts for more details
629about 'set' magic.
630.Sh "The \s-1NO_OUTPUT\s0 Keyword"
631.IX Subsection "The NO_OUTPUT Keyword"
632The \s-1NO_OUTPUT\s0 can be placed as the first token of the \s-1XSUB\s0. This keyword
633indicates that while the C subroutine we provide an interface to has
634a non\-\f(CW\*(C`void\*(C'\fR return type, the return value of this C subroutine should not
635be returned from the generated Perl subroutine.
636.PP
637With this keyword present \*(L"The \s-1RETVAL\s0 Variable\*(R" is created, and in the
638generated call to the subroutine this variable is assigned to, but the value
639of this variable is not going to be used in the auto-generated code.
640.PP
641This keyword makes sense only if \f(CW\*(C`RETVAL\*(C'\fR is going to be accessed by the
642user-supplied code. It is especially useful to make a function interface
643more Perl\-like, especially when the C return value is just an error condition
644indicator. For example,
645.PP
646.Vb 5
647\& NO_OUTPUT int
648\& delete_file(char *name)
649\& POSTCALL:
650\& if (RETVAL != 0)
651\& croak("Error %d while deleting file '%s'", RETVAL, name);
652.Ve
653.PP
654Here the generated \s-1XS\s0 function returns nothing on success, and will \fIdie()\fR
655with a meaningful error message on error.
656.Sh "The \s-1CODE:\s0 Keyword"
657.IX Subsection "The CODE: Keyword"
658This keyword is used in more complicated XSUBs which require
659special handling for the C function. The \s-1RETVAL\s0 variable is
660still declared, but it will not be returned unless it is specified
661in the \s-1OUTPUT:\s0 section.
662.PP
663The following \s-1XSUB\s0 is for a C function which requires special handling of
664its parameters. The Perl usage is given first.
665.PP
666.Vb 1
667\& $status = rpcb_gettime( "localhost", $timep );
668.Ve
669.PP
670The \s-1XSUB\s0 follows.
671.PP
672.Vb 9
673\& bool_t
674\& rpcb_gettime(host,timep)
675\& char *host
676\& time_t timep
677\& CODE:
678\& RETVAL = rpcb_gettime( host, &timep );
679\& OUTPUT:
680\& timep
681\& RETVAL
682.Ve
683.Sh "The \s-1INIT:\s0 Keyword"
684.IX Subsection "The INIT: Keyword"
685The \s-1INIT:\s0 keyword allows initialization to be inserted into the \s-1XSUB\s0 before
686the compiler generates the call to the C function. Unlike the \s-1CODE:\s0 keyword
687above, this keyword does not affect the way the compiler handles \s-1RETVAL\s0.
688.PP
689.Vb 8
690\& bool_t
691\& rpcb_gettime(host,timep)
692\& char *host
693\& time_t &timep
694\& INIT:
695\& printf("# Host is %s\en", host );
696\& OUTPUT:
697\& timep
698.Ve
699.PP
700Another use for the \s-1INIT:\s0 section is to check for preconditions before
701making a call to the C function:
702.PP
703.Vb 9
704\& long long
705\& lldiv(a,b)
706\& long long a
707\& long long b
708\& INIT:
709\& if (a == 0 && b == 0)
710\& XSRETURN_UNDEF;
711\& if (b == 0)
712\& croak("lldiv: cannot divide by 0");
713.Ve
714.Sh "The \s-1NO_INIT\s0 Keyword"
715.IX Subsection "The NO_INIT Keyword"
716The \s-1NO_INIT\s0 keyword is used to indicate that a function
717parameter is being used only as an output value. The \fBxsubpp\fR
718compiler will normally generate code to read the values of
719all function parameters from the argument stack and assign
720them to C variables upon entry to the function. \s-1NO_INIT\s0
721will tell the compiler that some parameters will be used for
722output rather than for input and that they will be handled
723before the function terminates.
724.PP
725The following example shows a variation of the \fIrpcb_gettime()\fR function.
726This function uses the timep variable only as an output variable and does
727not care about its initial contents.
728.PP
729.Vb 6
730\& bool_t
731\& rpcb_gettime(host,timep)
732\& char *host
733\& time_t &timep = NO_INIT
734\& OUTPUT:
735\& timep
736.Ve
737.Sh "Initializing Function Parameters"
738.IX Subsection "Initializing Function Parameters"
739C function parameters are normally initialized with their values from
740the argument stack (which in turn contains the parameters that were
741passed to the \s-1XSUB\s0 from Perl). The typemaps contain the
742code segments which are used to translate the Perl values to
743the C parameters. The programmer, however, is allowed to
744override the typemaps and supply alternate (or additional)
745initialization code. Initialization code starts with the first
746\&\f(CW\*(C`=\*(C'\fR, \f(CW\*(C`;\*(C'\fR or \f(CW\*(C`+\*(C'\fR on a line in the \s-1INPUT:\s0 section. The only
747exception happens if this \f(CW\*(C`;\*(C'\fR terminates the line, then this \f(CW\*(C`;\*(C'\fR
748is quietly ignored.
749.PP
750The following code demonstrates how to supply initialization code for
751function parameters. The initialization code is eval'd within double
752quotes by the compiler before it is added to the output so anything
753which should be interpreted literally [mainly \f(CW\*(C`$\*(C'\fR, \f(CW\*(C`@\*(C'\fR, or \f(CW\*(C`\e\e\*(C'\fR]
754must be protected with backslashes. The variables \f(CW$var\fR, \f(CW$arg\fR,
755and \f(CW$type\fR can be used as in typemaps.
756.PP
757.Vb 6
758\& bool_t
759\& rpcb_gettime(host,timep)
760\& char *host = (char *)SvPV($arg,PL_na);
761\& time_t &timep = 0;
762\& OUTPUT:
763\& timep
764.Ve
765.PP
766This should not be used to supply default values for parameters. One
767would normally use this when a function parameter must be processed by
768another library function before it can be used. Default parameters are
769covered in the next section.
770.PP
771If the initialization begins with \f(CW\*(C`=\*(C'\fR, then it is output in
772the declaration for the input variable, replacing the initialization
773supplied by the typemap. If the initialization
774begins with \f(CW\*(C`;\*(C'\fR or \f(CW\*(C`+\*(C'\fR, then it is performed after
775all of the input variables have been declared. In the \f(CW\*(C`;\*(C'\fR
776case the initialization normally supplied by the typemap is not performed.
777For the \f(CW\*(C`+\*(C'\fR case, the declaration for the variable will include the
778initialization from the typemap. A global
779variable, \f(CW%v\fR, is available for the truly rare case where
780information from one initialization is needed in another
781initialization.
782.PP
783Here's a truly obscure example:
784.PP
785.Vb 6
786\& bool_t
787\& rpcb_gettime(host,timep)
788\& time_t &timep; /* \e$v{timep}=@{[$v{timep}=$arg]} */
789\& char *host + SvOK($v{timep}) ? SvPV($arg,PL_na) : NULL;
790\& OUTPUT:
791\& timep
792.Ve
793.PP
794The construct \f(CW\*(C`\e$v{timep}=@{[$v{timep}=$arg]}\*(C'\fR used in the above
795example has a two-fold purpose: first, when this line is processed by
796\&\fBxsubpp\fR, the Perl snippet \f(CW\*(C`$v{timep}=$arg\*(C'\fR is evaluated. Second,
797the text of the evaluated snippet is output into the generated C file
798(inside a C comment)! During the processing of \f(CW\*(C`char *host\*(C'\fR line,
799\&\f(CW$arg\fR will evaluate to \f(CWST(0)\fR, and \f(CW$v{timep}\fR will evaluate to
800\&\f(CWST(1)\fR.
801.Sh "Default Parameter Values"
802.IX Subsection "Default Parameter Values"
803Default values for \s-1XSUB\s0 arguments can be specified by placing an
804assignment statement in the parameter list. The default value may
805be a number, a string or the special string \f(CW\*(C`NO_INIT\*(C'\fR. Defaults should
806always be used on the right-most parameters only.
807.PP
808To allow the \s-1XSUB\s0 for \fIrpcb_gettime()\fR to have a default host
809value the parameters to the \s-1XSUB\s0 could be rearranged. The
810\&\s-1XSUB\s0 will then call the real \fIrpcb_gettime()\fR function with
811the parameters in the correct order. This \s-1XSUB\s0 can be called
812from Perl with either of the following statements:
813.PP
814.Vb 1
815\& $status = rpcb_gettime( $timep, $host );
816.Ve
817.PP
818.Vb 1
819\& $status = rpcb_gettime( $timep );
820.Ve
821.PP
822The \s-1XSUB\s0 will look like the code which follows. A \s-1CODE:\s0
823block is used to call the real \fIrpcb_gettime()\fR function with
824the parameters in the correct order for that function.
825.PP
826.Vb 9
827\& bool_t
828\& rpcb_gettime(timep,host="localhost")
829\& char *host
830\& time_t timep = NO_INIT
831\& CODE:
832\& RETVAL = rpcb_gettime( host, &timep );
833\& OUTPUT:
834\& timep
835\& RETVAL
836.Ve
837.Sh "The \s-1PREINIT:\s0 Keyword"
838.IX Subsection "The PREINIT: Keyword"
839The \s-1PREINIT:\s0 keyword allows extra variables to be declared immediately
840before or after the declarations of the parameters from the \s-1INPUT:\s0 section
841are emitted.
842.PP
843If a variable is declared inside a \s-1CODE:\s0 section it will follow any typemap
844code that is emitted for the input parameters. This may result in the
845declaration ending up after C code, which is C syntax error. Similar
846errors may happen with an explicit \f(CW\*(C`;\*(C'\fR\-type or \f(CW\*(C`+\*(C'\fR\-type initialization of
847parameters is used (see \*(L"Initializing Function Parameters\*(R"). Declaring
848these variables in an \s-1INIT:\s0 section will not help.
849.PP
850In such cases, to force an additional variable to be declared together
851with declarations of other variables, place the declaration into a
852\&\s-1PREINIT:\s0 section. The \s-1PREINIT:\s0 keyword may be used one or more times
853within an \s-1XSUB\s0.
854.PP
855The following examples are equivalent, but if the code is using complex
856typemaps then the first example is safer.
857.PP
858.Vb 10
859\& bool_t
860\& rpcb_gettime(timep)
861\& time_t timep = NO_INIT
862\& PREINIT:
863\& char *host = "localhost";
864\& CODE:
865\& RETVAL = rpcb_gettime( host, &timep );
866\& OUTPUT:
867\& timep
868\& RETVAL
869.Ve
870.PP
871For this particular case an \s-1INIT:\s0 keyword would generate the
872same C code as the \s-1PREINIT:\s0 keyword. Another correct, but error-prone example:
873.PP
874.Vb 9
875\& bool_t
876\& rpcb_gettime(timep)
877\& time_t timep = NO_INIT
878\& CODE:
879\& char *host = "localhost";
880\& RETVAL = rpcb_gettime( host, &timep );
881\& OUTPUT:
882\& timep
883\& RETVAL
884.Ve
885.PP
886Another way to declare \f(CW\*(C`host\*(C'\fR is to use a C block in the \s-1CODE:\s0 section:
887.PP
888.Vb 11
889\& bool_t
890\& rpcb_gettime(timep)
891\& time_t timep = NO_INIT
892\& CODE:
893\& {
894\& char *host = "localhost";
895\& RETVAL = rpcb_gettime( host, &timep );
896\& }
897\& OUTPUT:
898\& timep
899\& RETVAL
900.Ve
901.PP
902The ability to put additional declarations before the typemap entries are
903processed is very handy in the cases when typemap conversions manipulate
904some global state:
905.PP
906.Vb 8
907\& MyObject
908\& mutate(o)
909\& PREINIT:
910\& MyState st = global_state;
911\& INPUT:
912\& MyObject o;
913\& CLEANUP:
914\& reset_to(global_state, st);
915.Ve
916.PP
917Here we suppose that conversion to \f(CW\*(C`MyObject\*(C'\fR in the \s-1INPUT:\s0 section and from
918MyObject when processing \s-1RETVAL\s0 will modify a global variable \f(CW\*(C`global_state\*(C'\fR.
919After these conversions are performed, we restore the old value of
920\&\f(CW\*(C`global_state\*(C'\fR (to avoid memory leaks, for example).
921.PP
922There is another way to trade clarity for compactness: \s-1INPUT\s0 sections allow
923declaration of C variables which do not appear in the parameter list of
924a subroutine. Thus the above code for \fImutate()\fR can be rewritten as
925.PP
926.Vb 6
927\& MyObject
928\& mutate(o)
929\& MyState st = global_state;
930\& MyObject o;
931\& CLEANUP:
932\& reset_to(global_state, st);
933.Ve
934.PP
935and the code for \fIrpcb_gettime()\fR can be rewritten as
936.PP
937.Vb 9
938\& bool_t
939\& rpcb_gettime(timep)
940\& time_t timep = NO_INIT
941\& char *host = "localhost";
942\& C_ARGS:
943\& host, &timep
944\& OUTPUT:
945\& timep
946\& RETVAL
947.Ve
948.Sh "The \s-1SCOPE:\s0 Keyword"
949.IX Subsection "The SCOPE: Keyword"
950The \s-1SCOPE:\s0 keyword allows scoping to be enabled for a particular \s-1XSUB\s0. If
951enabled, the \s-1XSUB\s0 will invoke \s-1ENTER\s0 and \s-1LEAVE\s0 automatically.
952.PP
953To support potentially complex type mappings, if a typemap entry used
954by an \s-1XSUB\s0 contains a comment like \f(CW\*(C`/*scope*/\*(C'\fR then scoping will
955be automatically enabled for that \s-1XSUB\s0.
956.PP
957To enable scoping:
958.PP
959.Vb 1
960\& SCOPE: ENABLE
961.Ve
962.PP
963To disable scoping:
964.PP
965.Vb 1
966\& SCOPE: DISABLE
967.Ve
968.Sh "The \s-1INPUT:\s0 Keyword"
969.IX Subsection "The INPUT: Keyword"
970The \s-1XSUB\s0's parameters are usually evaluated immediately after entering the
971\&\s-1XSUB\s0. The \s-1INPUT:\s0 keyword can be used to force those parameters to be
972evaluated a little later. The \s-1INPUT:\s0 keyword can be used multiple times
973within an \s-1XSUB\s0 and can be used to list one or more input variables. This
974keyword is used with the \s-1PREINIT:\s0 keyword.
975.PP
976The following example shows how the input parameter \f(CW\*(C`timep\*(C'\fR can be
977evaluated late, after a \s-1PREINIT\s0.
978.PP
979.Vb 13
980\& bool_t
981\& rpcb_gettime(host,timep)
982\& char *host
983\& PREINIT:
984\& time_t tt;
985\& INPUT:
986\& time_t timep
987\& CODE:
988\& RETVAL = rpcb_gettime( host, &tt );
989\& timep = tt;
990\& OUTPUT:
991\& timep
992\& RETVAL
993.Ve
994.PP
995The next example shows each input parameter evaluated late.
996.PP
997.Vb 17
998\& bool_t
999\& rpcb_gettime(host,timep)
1000\& PREINIT:
1001\& time_t tt;
1002\& INPUT:
1003\& char *host
1004\& PREINIT:
1005\& char *h;
1006\& INPUT:
1007\& time_t timep
1008\& CODE:
1009\& h = host;
1010\& RETVAL = rpcb_gettime( h, &tt );
1011\& timep = tt;
1012\& OUTPUT:
1013\& timep
1014\& RETVAL
1015.Ve
1016.PP
1017Since \s-1INPUT\s0 sections allow declaration of C variables which do not appear
1018in the parameter list of a subroutine, this may be shortened to:
1019.PP
1020.Vb 12
1021\& bool_t
1022\& rpcb_gettime(host,timep)
1023\& time_t tt;
1024\& char *host;
1025\& char *h = host;
1026\& time_t timep;
1027\& CODE:
1028\& RETVAL = rpcb_gettime( h, &tt );
1029\& timep = tt;
1030\& OUTPUT:
1031\& timep
1032\& RETVAL
1033.Ve
1034.PP
1035(We used our knowledge that input conversion for \f(CW\*(C`char *\*(C'\fR is a \*(L"simple\*(R" one,
1036thus \f(CW\*(C`host\*(C'\fR is initialized on the declaration line, and our assignment
1037\&\f(CW\*(C`h = host\*(C'\fR is not performed too early. Otherwise one would need to have the
1038assignment \f(CW\*(C`h = host\*(C'\fR in a \s-1CODE:\s0 or \s-1INIT:\s0 section.)
1039.Sh "The \s-1IN/OUTLIST/IN_OUTLIST/OUT/IN_OUT\s0 Keywords"
1040.IX Subsection "The IN/OUTLIST/IN_OUTLIST/OUT/IN_OUT Keywords"
1041In the list of parameters for an \s-1XSUB\s0, one can precede parameter names
1042by the \f(CW\*(C`IN\*(C'\fR/\f(CW\*(C`OUTLIST\*(C'\fR/\f(CW\*(C`IN_OUTLIST\*(C'\fR/\f(CW\*(C`OUT\*(C'\fR/\f(CW\*(C`IN_OUT\*(C'\fR keywords.
1043\&\f(CW\*(C`IN\*(C'\fR keyword is the default, the other keywords indicate how the Perl
1044interface should differ from the C interface.
1045.PP
1046Parameters preceded by \f(CW\*(C`OUTLIST\*(C'\fR/\f(CW\*(C`IN_OUTLIST\*(C'\fR/\f(CW\*(C`OUT\*(C'\fR/\f(CW\*(C`IN_OUT\*(C'\fR
1047keywords are considered to be used by the C subroutine \fIvia
1048pointers\fR. \f(CW\*(C`OUTLIST\*(C'\fR/\f(CW\*(C`OUT\*(C'\fR keywords indicate that the C subroutine
1049does not inspect the memory pointed by this parameter, but will write
1050through this pointer to provide additional return values.
1051.PP
1052Parameters preceded by \f(CW\*(C`OUTLIST\*(C'\fR keyword do not appear in the usage
1053signature of the generated Perl function.
1054.PP
1055Parameters preceded by \f(CW\*(C`IN_OUTLIST\*(C'\fR/\f(CW\*(C`IN_OUT\*(C'\fR/\f(CW\*(C`OUT\*(C'\fR \fIdo\fR appear as
1056parameters to the Perl function. With the exception of
1057\&\f(CW\*(C`OUT\*(C'\fR\-parameters, these parameters are converted to the corresponding
1058C type, then pointers to these data are given as arguments to the C
1059function. It is expected that the C function will write through these
1060pointers.
1061.PP
1062The return list of the generated Perl function consists of the C return value
1063from the function (unless the \s-1XSUB\s0 is of \f(CW\*(C`void\*(C'\fR return type or
1064\&\f(CW\*(C`The NO_OUTPUT Keyword\*(C'\fR was used) followed by all the \f(CW\*(C`OUTLIST\*(C'\fR
1065and \f(CW\*(C`IN_OUTLIST\*(C'\fR parameters (in the order of appearance). On the
1066return from the \s-1XSUB\s0 the \f(CW\*(C`IN_OUT\*(C'\fR/\f(CW\*(C`OUT\*(C'\fR Perl parameter will be
1067modified to have the values written by the C function.
1068.PP
1069For example, an \s-1XSUB\s0
1070.PP
1071.Vb 5
1072\& void
1073\& day_month(OUTLIST day, IN unix_time, OUTLIST month)
1074\& int day
1075\& int unix_time
1076\& int month
1077.Ve
1078.PP
1079should be used from Perl as
1080.PP
1081.Vb 1
1082\& my ($day, $month) = day_month(time);
1083.Ve
1084.PP
1085The C signature of the corresponding function should be
1086.PP
1087.Vb 1
1088\& void day_month(int *day, int unix_time, int *month);
1089.Ve
1090.PP
1091The \f(CW\*(C`IN\*(C'\fR/\f(CW\*(C`OUTLIST\*(C'\fR/\f(CW\*(C`IN_OUTLIST\*(C'\fR/\f(CW\*(C`IN_OUT\*(C'\fR/\f(CW\*(C`OUT\*(C'\fR keywords can be
1092mixed with ANSI-style declarations, as in
1093.PP
1094.Vb 2
1095\& void
1096\& day_month(OUTLIST int day, int unix_time, OUTLIST int month)
1097.Ve
1098.PP
1099(here the optional \f(CW\*(C`IN\*(C'\fR keyword is omitted).
1100.PP
1101The \f(CW\*(C`IN_OUT\*(C'\fR parameters are identical with parameters introduced with
1102\&\*(L"The & Unary Operator\*(R" and put into the \f(CW\*(C`OUTPUT:\*(C'\fR section (see
1103\&\*(L"The \s-1OUTPUT:\s0 Keyword\*(R"). The \f(CW\*(C`IN_OUTLIST\*(C'\fR parameters are very similar,
1104the only difference being that the value C function writes through the
1105pointer would not modify the Perl parameter, but is put in the output
1106list.
1107.PP
1108The \f(CW\*(C`OUTLIST\*(C'\fR/\f(CW\*(C`OUT\*(C'\fR parameter differ from \f(CW\*(C`IN_OUTLIST\*(C'\fR/\f(CW\*(C`IN_OUT\*(C'\fR
1109parameters only by the initial value of the Perl parameter not
1110being read (and not being given to the C function \- which gets some
1111garbage instead). For example, the same C function as above can be
1112interfaced with as
1113.PP
1114.Vb 1
1115\& void day_month(OUT int day, int unix_time, OUT int month);
1116.Ve
1117.PP
1118or
1119.PP
1120.Vb 8
1121\& void
1122\& day_month(day, unix_time, month)
1123\& int &day = NO_INIT
1124\& int unix_time
1125\& int &month = NO_INIT
1126\& OUTPUT:
1127\& day
1128\& month
1129.Ve
1130.PP
1131However, the generated Perl function is called in very C\-ish style:
1132.PP
1133.Vb 2
1134\& my ($day, $month);
1135\& day_month($day, time, $month);
1136.Ve
1137.ie n .Sh "The ""length(NAME)"" Keyword"
1138.el .Sh "The \f(CWlength(NAME)\fP Keyword"
1139.IX Subsection "The length(NAME) Keyword"
1140If one of the input arguments to the C function is the length of a string
1141argument \f(CW\*(C`NAME\*(C'\fR, one can substitute the name of the length-argument by
1142\&\f(CW\*(C`length(NAME)\*(C'\fR in the \s-1XSUB\s0 declaration. This argument must be omitted when
1143the generated Perl function is called. E.g.,
1144.PP
1145.Vb 9
1146\& void
1147\& dump_chars(char *s, short l)
1148\& {
1149\& short n = 0;
1150\& while (n < l) {
1151\& printf("s[%d] = \e"\e\e%#03o\e"\en", n, (int)s[n]);
1152\& n++;
1153\& }
1154\& }
1155.Ve
1156.PP
1157.Vb 1
1158\& MODULE = x PACKAGE = x
1159.Ve
1160.PP
1161.Vb 1
1162\& void dump_chars(char *s, short length(s))
1163.Ve
1164.PP
1165should be called as \f(CW\*(C`dump_chars($string)\*(C'\fR.
1166.PP
1167This directive is supported with ANSI-type function declarations only.
1168.Sh "Variable-length Parameter Lists"
1169.IX Subsection "Variable-length Parameter Lists"
1170XSUBs can have variable-length parameter lists by specifying an ellipsis
1171\&\f(CW\*(C`(...)\*(C'\fR in the parameter list. This use of the ellipsis is similar to that
1172found in \s-1ANSI\s0 C. The programmer is able to determine the number of
1173arguments passed to the \s-1XSUB\s0 by examining the \f(CW\*(C`items\*(C'\fR variable which the
1174\&\fBxsubpp\fR compiler supplies for all XSUBs. By using this mechanism one can
1175create an \s-1XSUB\s0 which accepts a list of parameters of unknown length.
1176.PP
1177The \fIhost\fR parameter for the \fIrpcb_gettime()\fR \s-1XSUB\s0 can be
1178optional so the ellipsis can be used to indicate that the
1179\&\s-1XSUB\s0 will take a variable number of parameters. Perl should
1180be able to call this \s-1XSUB\s0 with either of the following statements.
1181.PP
1182.Vb 1
1183\& $status = rpcb_gettime( $timep, $host );
1184.Ve
1185.PP
1186.Vb 1
1187\& $status = rpcb_gettime( $timep );
1188.Ve
1189.PP
1190The \s-1XS\s0 code, with ellipsis, follows.
1191.PP
1192.Vb 13
1193\& bool_t
1194\& rpcb_gettime(timep, ...)
1195\& time_t timep = NO_INIT
1196\& PREINIT:
1197\& char *host = "localhost";
1198\& STRLEN n_a;
1199\& CODE:
1200\& if( items > 1 )
1201\& host = (char *)SvPV(ST(1), n_a);
1202\& RETVAL = rpcb_gettime( host, &timep );
1203\& OUTPUT:
1204\& timep
1205\& RETVAL
1206.Ve
1207.Sh "The C_ARGS: Keyword"
1208.IX Subsection "The C_ARGS: Keyword"
1209The C_ARGS: keyword allows creating of \s-1XSUBS\s0 which have different
1210calling sequence from Perl than from C, without a need to write
1211\&\s-1CODE:\s0 or \s-1PPCODE:\s0 section. The contents of the C_ARGS: paragraph is
1212put as the argument to the called C function without any change.
1213.PP
1214For example, suppose that a C function is declared as
1215.PP
1216.Vb 1
1217\& symbolic nth_derivative(int n, symbolic function, int flags);
1218.Ve
1219.PP
1220and that the default flags are kept in a global C variable
1221\&\f(CW\*(C`default_flags\*(C'\fR. Suppose that you want to create an interface which
1222is called as
1223.PP
1224.Vb 1
1225\& $second_deriv = $function->nth_derivative(2);
1226.Ve
1227.PP
1228To do this, declare the \s-1XSUB\s0 as
1229.PP
1230.Vb 6
1231\& symbolic
1232\& nth_derivative(function, n)
1233\& symbolic function
1234\& int n
1235\& C_ARGS:
1236\& n, function, default_flags
1237.Ve
1238.Sh "The \s-1PPCODE:\s0 Keyword"
1239.IX Subsection "The PPCODE: Keyword"
1240The \s-1PPCODE:\s0 keyword is an alternate form of the \s-1CODE:\s0 keyword and is used
1241to tell the \fBxsubpp\fR compiler that the programmer is supplying the code to
1242control the argument stack for the XSUBs return values. Occasionally one
1243will want an \s-1XSUB\s0 to return a list of values rather than a single value.
1244In these cases one must use \s-1PPCODE:\s0 and then explicitly push the list of
1245values on the stack. The \s-1PPCODE:\s0 and \s-1CODE:\s0 keywords should not be used
1246together within the same \s-1XSUB\s0.
1247.PP
1248The actual difference between \s-1PPCODE:\s0 and \s-1CODE:\s0 sections is in the
1249initialization of \f(CW\*(C`SP\*(C'\fR macro (which stands for the \fIcurrent\fR Perl
1250stack pointer), and in the handling of data on the stack when returning
1251from an \s-1XSUB\s0. In \s-1CODE:\s0 sections \s-1SP\s0 preserves the value which was on
1252entry to the \s-1XSUB:\s0 \s-1SP\s0 is on the function pointer (which follows the
1253last parameter). In \s-1PPCODE:\s0 sections \s-1SP\s0 is moved backward to the
1254beginning of the parameter list, which allows \f(CW\*(C`PUSH*()\*(C'\fR macros
1255to place output values in the place Perl expects them to be when
1256the \s-1XSUB\s0 returns back to Perl.
1257.PP
1258The generated trailer for a \s-1CODE:\s0 section ensures that the number of return
1259values Perl will see is either 0 or 1 (depending on the \f(CW\*(C`void\*(C'\fRness of the
1260return value of the C function, and heuristics mentioned in
1261\&\*(L"The \s-1RETVAL\s0 Variable\*(R"). The trailer generated for a \s-1PPCODE:\s0 section
1262is based on the number of return values and on the number of times
1263\&\f(CW\*(C`SP\*(C'\fR was updated by \f(CW\*(C`[X]PUSH*()\*(C'\fR macros.
1264.PP
1265Note that macros \f(CWST(i)\fR, \f(CW\*(C`XST_m*()\*(C'\fR and \f(CW\*(C`XSRETURN*()\*(C'\fR work equally
1266well in \s-1CODE:\s0 sections and \s-1PPCODE:\s0 sections.
1267.PP
1268The following \s-1XSUB\s0 will call the C \fIrpcb_gettime()\fR function
1269and will return its two output values, timep and status, to
1270Perl as a single list.
1271.PP
1272.Vb 11
1273\& void
1274\& rpcb_gettime(host)
1275\& char *host
1276\& PREINIT:
1277\& time_t timep;
1278\& bool_t status;
1279\& PPCODE:
1280\& status = rpcb_gettime( host, &timep );
1281\& EXTEND(SP, 2);
1282\& PUSHs(sv_2mortal(newSViv(status)));
1283\& PUSHs(sv_2mortal(newSViv(timep)));
1284.Ve
1285.PP
1286Notice that the programmer must supply the C code necessary
1287to have the real \fIrpcb_gettime()\fR function called and to have
1288the return values properly placed on the argument stack.
1289.PP
1290The \f(CW\*(C`void\*(C'\fR return type for this function tells the \fBxsubpp\fR compiler that
1291the \s-1RETVAL\s0 variable is not needed or used and that it should not be created.
1292In most scenarios the void return type should be used with the \s-1PPCODE:\s0
1293directive.
1294.PP
1295The \s-1\fIEXTEND\s0()\fR macro is used to make room on the argument
1296stack for 2 return values. The \s-1PPCODE:\s0 directive causes the
1297\&\fBxsubpp\fR compiler to create a stack pointer available as \f(CW\*(C`SP\*(C'\fR, and it
1298is this pointer which is being used in the \s-1\fIEXTEND\s0()\fR macro.
1299The values are then pushed onto the stack with the \fIPUSHs()\fR
1300macro.
1301.PP
1302Now the \fIrpcb_gettime()\fR function can be used from Perl with
1303the following statement.
1304.PP
1305.Vb 1
1306\& ($status, $timep) = rpcb_gettime("localhost");
1307.Ve
1308.PP
1309When handling output parameters with a \s-1PPCODE\s0 section, be sure to handle
1310\&'set' magic properly. See perlguts for details about 'set' magic.
1311.Sh "Returning Undef And Empty Lists"
1312.IX Subsection "Returning Undef And Empty Lists"
1313Occasionally the programmer will want to return simply
1314\&\f(CW\*(C`undef\*(C'\fR or an empty list if a function fails rather than a
1315separate status value. The \fIrpcb_gettime()\fR function offers
1316just this situation. If the function succeeds we would like
1317to have it return the time and if it fails we would like to
1318have undef returned. In the following Perl code the value
1319of \f(CW$timep\fR will either be undef or it will be a valid time.
1320.PP
1321.Vb 1
1322\& $timep = rpcb_gettime( "localhost" );
1323.Ve
1324.PP
1325The following \s-1XSUB\s0 uses the \f(CW\*(C`SV *\*(C'\fR return type as a mnemonic only,
1326and uses a \s-1CODE:\s0 block to indicate to the compiler
1327that the programmer has supplied all the necessary code. The
1328\&\fIsv_newmortal()\fR call will initialize the return value to undef, making that
1329the default return value.
1330.PP
1331.Vb 10
1332\& SV *
1333\& rpcb_gettime(host)
1334\& char * host
1335\& PREINIT:
1336\& time_t timep;
1337\& bool_t x;
1338\& CODE:
1339\& ST(0) = sv_newmortal();
1340\& if( rpcb_gettime( host, &timep ) )
1341\& sv_setnv( ST(0), (double)timep);
1342.Ve
1343.PP
1344The next example demonstrates how one would place an explicit undef in the
1345return value, should the need arise.
1346.PP
1347.Vb 14
1348\& SV *
1349\& rpcb_gettime(host)
1350\& char * host
1351\& PREINIT:
1352\& time_t timep;
1353\& bool_t x;
1354\& CODE:
1355\& ST(0) = sv_newmortal();
1356\& if( rpcb_gettime( host, &timep ) ){
1357\& sv_setnv( ST(0), (double)timep);
1358\& }
1359\& else{
1360\& ST(0) = &PL_sv_undef;
1361\& }
1362.Ve
1363.PP
1364To return an empty list one must use a \s-1PPCODE:\s0 block and
1365then not push return values on the stack.
1366.PP
1367.Vb 12
1368\& void
1369\& rpcb_gettime(host)
1370\& char *host
1371\& PREINIT:
1372\& time_t timep;
1373\& PPCODE:
1374\& if( rpcb_gettime( host, &timep ) )
1375\& PUSHs(sv_2mortal(newSViv(timep)));
1376\& else{
1377\& /* Nothing pushed on stack, so an empty
1378\& * list is implicitly returned. */
1379\& }
1380.Ve
1381.PP
1382Some people may be inclined to include an explicit \f(CW\*(C`return\*(C'\fR in the above
1383\&\s-1XSUB\s0, rather than letting control fall through to the end. In those
1384situations \f(CW\*(C`XSRETURN_EMPTY\*(C'\fR should be used, instead. This will ensure that
1385the \s-1XSUB\s0 stack is properly adjusted. Consult perlapi for other
1386\&\f(CW\*(C`XSRETURN\*(C'\fR macros.
1387.PP
1388Since \f(CW\*(C`XSRETURN_*\*(C'\fR macros can be used with \s-1CODE\s0 blocks as well, one can
1389rewrite this example as:
1390.PP
1391.Vb 11
1392\& int
1393\& rpcb_gettime(host)
1394\& char *host
1395\& PREINIT:
1396\& time_t timep;
1397\& CODE:
1398\& RETVAL = rpcb_gettime( host, &timep );
1399\& if (RETVAL == 0)
1400\& XSRETURN_UNDEF;
1401\& OUTPUT:
1402\& RETVAL
1403.Ve
1404.PP
1405In fact, one can put this check into a \s-1POSTCALL:\s0 section as well. Together
1406with \s-1PREINIT:\s0 simplifications, this leads to:
1407.PP
1408.Vb 7
1409\& int
1410\& rpcb_gettime(host)
1411\& char *host
1412\& time_t timep;
1413\& POSTCALL:
1414\& if (RETVAL == 0)
1415\& XSRETURN_UNDEF;
1416.Ve
1417.Sh "The \s-1REQUIRE:\s0 Keyword"
1418.IX Subsection "The REQUIRE: Keyword"
1419The \s-1REQUIRE:\s0 keyword is used to indicate the minimum version of the
1420\&\fBxsubpp\fR compiler needed to compile the \s-1XS\s0 module. An \s-1XS\s0 module which
1421contains the following statement will compile with only \fBxsubpp\fR version
14221.922 or greater:
1423.PP
1424.Vb 1
1425\& REQUIRE: 1.922
1426.Ve
1427.Sh "The \s-1CLEANUP:\s0 Keyword"
1428.IX Subsection "The CLEANUP: Keyword"
1429This keyword can be used when an \s-1XSUB\s0 requires special cleanup procedures
1430before it terminates. When the \s-1CLEANUP:\s0 keyword is used it must follow
1431any \s-1CODE:\s0, \s-1PPCODE:\s0, or \s-1OUTPUT:\s0 blocks which are present in the \s-1XSUB\s0. The
1432code specified for the cleanup block will be added as the last statements
1433in the \s-1XSUB\s0.
1434.Sh "The \s-1POSTCALL:\s0 Keyword"
1435.IX Subsection "The POSTCALL: Keyword"
1436This keyword can be used when an \s-1XSUB\s0 requires special procedures
1437executed after the C subroutine call is performed. When the \s-1POSTCALL:\s0
1438keyword is used it must precede \s-1OUTPUT:\s0 and \s-1CLEANUP:\s0 blocks which are
1439present in the \s-1XSUB\s0.
1440.PP
1441See examples in \*(L"The \s-1NO_OUTPUT\s0 Keyword\*(R" and \*(L"Returning Undef And Empty Lists\*(R".
1442.PP
1443The \s-1POSTCALL:\s0 block does not make a lot of sense when the C subroutine
1444call is supplied by user by providing either \s-1CODE:\s0 or \s-1PPCODE:\s0 section.
1445.Sh "The \s-1BOOT:\s0 Keyword"
1446.IX Subsection "The BOOT: Keyword"
1447The \s-1BOOT:\s0 keyword is used to add code to the extension's bootstrap
1448function. The bootstrap function is generated by the \fBxsubpp\fR compiler and
1449normally holds the statements necessary to register any XSUBs with Perl.
1450With the \s-1BOOT:\s0 keyword the programmer can tell the compiler to add extra
1451statements to the bootstrap function.
1452.PP
1453This keyword may be used any time after the first \s-1MODULE\s0 keyword and should
1454appear on a line by itself. The first blank line after the keyword will
1455terminate the code block.
1456.PP
1457.Vb 4
1458\& BOOT:
1459\& # The following message will be printed when the
1460\& # bootstrap function executes.
1461\& printf("Hello from the bootstrap!\en");
1462.Ve
1463.Sh "The \s-1VERSIONCHECK:\s0 Keyword"
1464.IX Subsection "The VERSIONCHECK: Keyword"
1465The \s-1VERSIONCHECK:\s0 keyword corresponds to \fBxsubpp\fR's \f(CW\*(C`\-versioncheck\*(C'\fR and
1466\&\f(CW\*(C`\-noversioncheck\*(C'\fR options. This keyword overrides the command line
1467options. Version checking is enabled by default. When version checking is
1468enabled the \s-1XS\s0 module will attempt to verify that its version matches the
1469version of the \s-1PM\s0 module.
1470.PP
1471To enable version checking:
1472.PP
1473.Vb 1
1474\& VERSIONCHECK: ENABLE
1475.Ve
1476.PP
1477To disable version checking:
1478.PP
1479.Vb 1
1480\& VERSIONCHECK: DISABLE
1481.Ve
1482.Sh "The \s-1PROTOTYPES:\s0 Keyword"
1483.IX Subsection "The PROTOTYPES: Keyword"
1484The \s-1PROTOTYPES:\s0 keyword corresponds to \fBxsubpp\fR's \f(CW\*(C`\-prototypes\*(C'\fR and
1485\&\f(CW\*(C`\-noprototypes\*(C'\fR options. This keyword overrides the command line options.
1486Prototypes are enabled by default. When prototypes are enabled XSUBs will
1487be given Perl prototypes. This keyword may be used multiple times in an \s-1XS\s0
1488module to enable and disable prototypes for different parts of the module.
1489.PP
1490To enable prototypes:
1491.PP
1492.Vb 1
1493\& PROTOTYPES: ENABLE
1494.Ve
1495.PP
1496To disable prototypes:
1497.PP
1498.Vb 1
1499\& PROTOTYPES: DISABLE
1500.Ve
1501.Sh "The \s-1PROTOTYPE:\s0 Keyword"
1502.IX Subsection "The PROTOTYPE: Keyword"
1503This keyword is similar to the \s-1PROTOTYPES:\s0 keyword above but can be used to
1504force \fBxsubpp\fR to use a specific prototype for the \s-1XSUB\s0. This keyword
1505overrides all other prototype options and keywords but affects only the
1506current \s-1XSUB\s0. Consult \*(L"Prototypes\*(R" in perlsub for information about Perl
1507prototypes.
1508.PP
1509.Vb 14
1510\& bool_t
1511\& rpcb_gettime(timep, ...)
1512\& time_t timep = NO_INIT
1513\& PROTOTYPE: $;$
1514\& PREINIT:
1515\& char *host = "localhost";
1516\& STRLEN n_a;
1517\& CODE:
1518\& if( items > 1 )
1519\& host = (char *)SvPV(ST(1), n_a);
1520\& RETVAL = rpcb_gettime( host, &timep );
1521\& OUTPUT:
1522\& timep
1523\& RETVAL
1524.Ve
1525.PP
1526If the prototypes are enabled, you can disable it locally for a given
1527\&\s-1XSUB\s0 as in the following example:
1528.PP
1529.Vb 4
1530\& void
1531\& rpcb_gettime_noproto()
1532\& PROTOTYPE: DISABLE
1533\& ...
1534.Ve
1535.Sh "The \s-1ALIAS:\s0 Keyword"
1536.IX Subsection "The ALIAS: Keyword"
1537The \s-1ALIAS:\s0 keyword allows an \s-1XSUB\s0 to have two or more unique Perl names
1538and to know which of those names was used when it was invoked. The Perl
1539names may be fully-qualified with package names. Each alias is given an
1540index. The compiler will setup a variable called \f(CW\*(C`ix\*(C'\fR which contain the
1541index of the alias which was used. When the \s-1XSUB\s0 is called with its
1542declared name \f(CW\*(C`ix\*(C'\fR will be 0.
1543.PP
1544The following example will create aliases \f(CW\*(C`FOO::gettime()\*(C'\fR and
1545\&\f(CW\*(C`BAR::getit()\*(C'\fR for this function.
1546.PP
1547.Vb 11
1548\& bool_t
1549\& rpcb_gettime(host,timep)
1550\& char *host
1551\& time_t &timep
1552\& ALIAS:
1553\& FOO::gettime = 1
1554\& BAR::getit = 2
1555\& INIT:
1556\& printf("# ix = %d\en", ix );
1557\& OUTPUT:
1558\& timep
1559.Ve
1560.Sh "The \s-1OVERLOAD:\s0 Keyword"
1561.IX Subsection "The OVERLOAD: Keyword"
1562Instead of writing an overloaded interface using pure Perl, you
1563can also use the \s-1OVERLOAD\s0 keyword to define additional Perl names
1564for your functions (like the \s-1ALIAS:\s0 keyword above). However, the
1565overloaded functions must be defined with three parameters (except
1566for the \fInomethod()\fR function which needs four parameters). If any
1567function has the \s-1OVERLOAD:\s0 keyword, several additional lines
1568will be defined in the c file generated by xsubpp in order to
1569register with the overload magic.
1570.PP
1571Since blessed objects are actually stored as \s-1RV\s0's, it is useful
1572to use the typemap features to preprocess parameters and extract
1573the actual \s-1SV\s0 stored within the blessed \s-1RV\s0. See the sample for
1574T_PTROBJ_SPECIAL below.
1575.PP
1576To use the \s-1OVERLOAD:\s0 keyword, create an \s-1XS\s0 function which takes
1577three input parameters ( or use the c style '...' definition) like
1578this:
1579.PP
1580.Vb 7
1581\& SV *
1582\& cmp (lobj, robj, swap)
1583\& My_Module_obj lobj
1584\& My_Module_obj robj
1585\& IV swap
1586\& OVERLOAD: cmp <=>
1587\& { /* function defined here */}
1588.Ve
1589.PP
1590In this case, the function will overload both of the three way
1591comparison operators. For all overload operations using non-alpha
1592characters, you must type the parameter without quoting, seperating
1593multiple overloads with whitespace. Note that "\*(L" (the stringify
1594overload) should be entered as \e\*(R"\e" (i.e. escaped).
1595.Sh "The \s-1FALLBACK:\s0 Keyword"
1596.IX Subsection "The FALLBACK: Keyword"
1597In addition to the \s-1OVERLOAD\s0 keyword, if you need to control how
1598Perl autogenerates missing overloaded operators, you can set the
1599\&\s-1FALLBACK\s0 keyword in the module header section, like this:
1600.PP
1601.Vb 1
1602\& MODULE = RPC PACKAGE = RPC
1603.Ve
1604.PP
1605.Vb 2
1606\& FALLBACK: TRUE
1607\& ...
1608.Ve
1609.PP
1610where \s-1FALLBACK\s0 can take any of the three values \s-1TRUE\s0, \s-1FALSE\s0, or
1611\&\s-1UNDEF\s0. If you do not set any \s-1FALLBACK\s0 value when using \s-1OVERLOAD\s0,
1612it defaults to \s-1UNDEF\s0. \s-1FALLBACK\s0 is not used except when one or
1613more functions using \s-1OVERLOAD\s0 have been defined. Please see
1614\&\*(L"Fallback\*(R" in overload for more details.
1615.Sh "The \s-1INTERFACE:\s0 Keyword"
1616.IX Subsection "The INTERFACE: Keyword"
1617This keyword declares the current \s-1XSUB\s0 as a keeper of the given
1618calling signature. If some text follows this keyword, it is
1619considered as a list of functions which have this signature, and
1620should be attached to the current \s-1XSUB\s0.
1621.PP
1622For example, if you have 4 C functions \fImultiply()\fR, \fIdivide()\fR, \fIadd()\fR,
1623\&\fIsubtract()\fR all having the signature:
1624.PP
1625.Vb 1
1626\& symbolic f(symbolic, symbolic);
1627.Ve
1628.PP
1629you can make them all to use the same \s-1XSUB\s0 using this:
1630.PP
1631.Vb 7
1632\& symbolic
1633\& interface_s_ss(arg1, arg2)
1634\& symbolic arg1
1635\& symbolic arg2
1636\& INTERFACE:
1637\& multiply divide
1638\& add subtract
1639.Ve
1640.PP
1641(This is the complete \s-1XSUB\s0 code for 4 Perl functions!) Four generated
1642Perl function share names with corresponding C functions.
1643.PP
1644The advantage of this approach comparing to \s-1ALIAS:\s0 keyword is that there
1645is no need to code a switch statement, each Perl function (which shares
1646the same \s-1XSUB\s0) knows which C function it should call. Additionally, one
1647can attach an extra function \fIremainder()\fR at runtime by using
1648.PP
1649.Vb 3
1650\& CV *mycv = newXSproto("Symbolic::remainder",
1651\& XS_Symbolic_interface_s_ss, __FILE__, "$$");
1652\& XSINTERFACE_FUNC_SET(mycv, remainder);
1653.Ve
1654.PP
1655say, from another \s-1XSUB\s0. (This example supposes that there was no
1656\&\s-1INTERFACE_MACRO:\s0 section, otherwise one needs to use something else instead of
1657\&\f(CW\*(C`XSINTERFACE_FUNC_SET\*(C'\fR, see the next section.)
1658.Sh "The \s-1INTERFACE_MACRO:\s0 Keyword"
1659.IX Subsection "The INTERFACE_MACRO: Keyword"
1660This keyword allows one to define an \s-1INTERFACE\s0 using a different way
1661to extract a function pointer from an \s-1XSUB\s0. The text which follows
1662this keyword should give the name of macros which would extract/set a
1663function pointer. The extractor macro is given return type, \f(CW\*(C`CV*\*(C'\fR,
1664and \f(CW\*(C`XSANY.any_dptr\*(C'\fR for this \f(CW\*(C`CV*\*(C'\fR. The setter macro is given cv,
1665and the function pointer.
1666.PP
1667The default value is \f(CW\*(C`XSINTERFACE_FUNC\*(C'\fR and \f(CW\*(C`XSINTERFACE_FUNC_SET\*(C'\fR.
1668An \s-1INTERFACE\s0 keyword with an empty list of functions can be omitted if
1669\&\s-1INTERFACE_MACRO\s0 keyword is used.
1670.PP
1671Suppose that in the previous example functions pointers for
1672\&\fImultiply()\fR, \fIdivide()\fR, \fIadd()\fR, \fIsubtract()\fR are kept in a global C array
1673\&\f(CW\*(C`fp[]\*(C'\fR with offsets being \f(CW\*(C`multiply_off\*(C'\fR, \f(CW\*(C`divide_off\*(C'\fR, \f(CW\*(C`add_off\*(C'\fR,
1674\&\f(CW\*(C`subtract_off\*(C'\fR. Then one can use
1675.PP
1676.Vb 4
1677\& #define XSINTERFACE_FUNC_BYOFFSET(ret,cv,f) \e
1678\& ((XSINTERFACE_CVT(ret,))fp[CvXSUBANY(cv).any_i32])
1679\& #define XSINTERFACE_FUNC_BYOFFSET_set(cv,f) \e
1680\& CvXSUBANY(cv).any_i32 = CAT2( f, _off )
1681.Ve
1682.PP
1683in C section,
1684.PP
1685.Vb 10
1686\& symbolic
1687\& interface_s_ss(arg1, arg2)
1688\& symbolic arg1
1689\& symbolic arg2
1690\& INTERFACE_MACRO:
1691\& XSINTERFACE_FUNC_BYOFFSET
1692\& XSINTERFACE_FUNC_BYOFFSET_set
1693\& INTERFACE:
1694\& multiply divide
1695\& add subtract
1696.Ve
1697.PP
1698in \s-1XSUB\s0 section.
1699.Sh "The \s-1INCLUDE:\s0 Keyword"
1700.IX Subsection "The INCLUDE: Keyword"
1701This keyword can be used to pull other files into the \s-1XS\s0 module. The other
1702files may have \s-1XS\s0 code. \s-1INCLUDE:\s0 can also be used to run a command to
1703generate the \s-1XS\s0 code to be pulled into the module.
1704.PP
1705The file \fIRpcb1.xsh\fR contains our \f(CW\*(C`rpcb_gettime()\*(C'\fR function:
1706.PP
1707.Vb 6
1708\& bool_t
1709\& rpcb_gettime(host,timep)
1710\& char *host
1711\& time_t &timep
1712\& OUTPUT:
1713\& timep
1714.Ve
1715.PP
1716The \s-1XS\s0 module can use \s-1INCLUDE:\s0 to pull that file into it.
1717.PP
1718.Vb 1
1719\& INCLUDE: Rpcb1.xsh
1720.Ve
1721.PP
1722If the parameters to the \s-1INCLUDE:\s0 keyword are followed by a pipe (\f(CW\*(C`|\*(C'\fR) then
1723the compiler will interpret the parameters as a command.
1724.PP
1725.Vb 1
1726\& INCLUDE: cat Rpcb1.xsh |
1727.Ve
1728.Sh "The \s-1CASE:\s0 Keyword"
1729.IX Subsection "The CASE: Keyword"
1730The \s-1CASE:\s0 keyword allows an \s-1XSUB\s0 to have multiple distinct parts with each
1731part acting as a virtual \s-1XSUB\s0. \s-1CASE:\s0 is greedy and if it is used then all
1732other \s-1XS\s0 keywords must be contained within a \s-1CASE:\s0. This means nothing may
1733precede the first \s-1CASE:\s0 in the \s-1XSUB\s0 and anything following the last \s-1CASE:\s0 is
1734included in that case.
1735.PP
1736A \s-1CASE:\s0 might switch via a parameter of the \s-1XSUB\s0, via the \f(CW\*(C`ix\*(C'\fR \s-1ALIAS:\s0
1737variable (see \*(L"The \s-1ALIAS:\s0 Keyword\*(R"), or maybe via the \f(CW\*(C`items\*(C'\fR variable
1738(see \*(L"Variable\-length Parameter Lists\*(R"). The last \s-1CASE:\s0 becomes the
1739\&\fBdefault\fR case if it is not associated with a conditional. The following
1740example shows \s-1CASE\s0 switched via \f(CW\*(C`ix\*(C'\fR with a function \f(CW\*(C`rpcb_gettime()\*(C'\fR
1741having an alias \f(CW\*(C`x_gettime()\*(C'\fR. When the function is called as
1742\&\f(CW\*(C`rpcb_gettime()\*(C'\fR its parameters are the usual \f(CW\*(C`(char *host, time_t *timep)\*(C'\fR,
1743but when the function is called as \f(CW\*(C`x_gettime()\*(C'\fR its parameters are
1744reversed, \f(CW\*(C`(time_t *timep, char *host)\*(C'\fR.
1745.PP
1746.Vb 21
1747\& long
1748\& rpcb_gettime(a,b)
1749\& CASE: ix == 1
1750\& ALIAS:
1751\& x_gettime = 1
1752\& INPUT:
1753\& # 'a' is timep, 'b' is host
1754\& char *b
1755\& time_t a = NO_INIT
1756\& CODE:
1757\& RETVAL = rpcb_gettime( b, &a );
1758\& OUTPUT:
1759\& a
1760\& RETVAL
1761\& CASE:
1762\& # 'a' is host, 'b' is timep
1763\& char *a
1764\& time_t &b = NO_INIT
1765\& OUTPUT:
1766\& b
1767\& RETVAL
1768.Ve
1769.PP
1770That function can be called with either of the following statements. Note
1771the different argument lists.
1772.PP
1773.Vb 1
1774\& $status = rpcb_gettime( $host, $timep );
1775.Ve
1776.PP
1777.Vb 1
1778\& $status = x_gettime( $timep, $host );
1779.Ve
1780.Sh "The & Unary Operator"
1781.IX Subsection "The & Unary Operator"
1782The \f(CW\*(C`&\*(C'\fR unary operator in the \s-1INPUT:\s0 section is used to tell \fBxsubpp\fR
1783that it should convert a Perl value to/from C using the C type to the left
1784of \f(CW\*(C`&\*(C'\fR, but provide a pointer to this value when the C function is called.
1785.PP
1786This is useful to avoid a \s-1CODE:\s0 block for a C function which takes a parameter
1787by reference. Typically, the parameter should be not a pointer type (an
1788\&\f(CW\*(C`int\*(C'\fR or \f(CW\*(C`long\*(C'\fR but not an \f(CW\*(C`int*\*(C'\fR or \f(CW\*(C`long*\*(C'\fR).
1789.PP
1790The following \s-1XSUB\s0 will generate incorrect C code. The \fBxsubpp\fR compiler will
1791turn this into code which calls \f(CW\*(C`rpcb_gettime()\*(C'\fR with parameters \f(CW\*(C`(char
1792*host, time_t timep)\*(C'\fR, but the real \f(CW\*(C`rpcb_gettime()\*(C'\fR wants the \f(CW\*(C`timep\*(C'\fR
1793parameter to be of type \f(CW\*(C`time_t*\*(C'\fR rather than \f(CW\*(C`time_t\*(C'\fR.
1794.PP
1795.Vb 6
1796\& bool_t
1797\& rpcb_gettime(host,timep)
1798\& char *host
1799\& time_t timep
1800\& OUTPUT:
1801\& timep
1802.Ve
1803.PP
1804That problem is corrected by using the \f(CW\*(C`&\*(C'\fR operator. The \fBxsubpp\fR compiler
1805will now turn this into code which calls \f(CW\*(C`rpcb_gettime()\*(C'\fR correctly with
1806parameters \f(CW\*(C`(char *host, time_t *timep)\*(C'\fR. It does this by carrying the
1807\&\f(CW\*(C`&\*(C'\fR through, so the function call looks like \f(CW\*(C`rpcb_gettime(host, &timep)\*(C'\fR.
1808.PP
1809.Vb 6
1810\& bool_t
1811\& rpcb_gettime(host,timep)
1812\& char *host
1813\& time_t &timep
1814\& OUTPUT:
1815\& timep
1816.Ve
1817.Sh "Inserting \s-1POD\s0, Comments and C Preprocessor Directives"
1818.IX Subsection "Inserting POD, Comments and C Preprocessor Directives"
1819C preprocessor directives are allowed within \s-1BOOT:\s0, \s-1PREINIT:\s0 \s-1INIT:\s0, \s-1CODE:\s0,
1820\&\s-1PPCODE:\s0, \s-1POSTCALL:\s0, and \s-1CLEANUP:\s0 blocks, as well as outside the functions.
1821Comments are allowed anywhere after the \s-1MODULE\s0 keyword. The compiler will
1822pass the preprocessor directives through untouched and will remove the
1823commented lines. \s-1POD\s0 documentation is allowed at any point, both in the
1824C and \s-1XS\s0 language sections. \s-1POD\s0 must be terminated with a \f(CW\*(C`=cut\*(C'\fR command;
1825\&\f(CW\*(C`xsubpp\*(C'\fR will exit with an error if it does not. It is very unlikely that
1826human generated C code will be mistaken for \s-1POD\s0, as most indenting styles
1827result in whitespace in front of any line starting with \f(CW\*(C`=\*(C'\fR. Machine
1828generated \s-1XS\s0 files may fall into this trap unless care is taken to
1829ensure that a space breaks the sequence \*(L"\en=\*(R".
1830.PP
1831Comments can be added to XSUBs by placing a \f(CW\*(C`#\*(C'\fR as the first
1832non-whitespace of a line. Care should be taken to avoid making the
1833comment look like a C preprocessor directive, lest it be interpreted as
1834such. The simplest way to prevent this is to put whitespace in front of
1835the \f(CW\*(C`#\*(C'\fR.
1836.PP
1837If you use preprocessor directives to choose one of two
1838versions of a function, use
1839.PP
1840.Vb 3
1841\& #if ... version1
1842\& #else /* ... version2 */
1843\& #endif
1844.Ve
1845.PP
1846and not
1847.PP
1848.Vb 4
1849\& #if ... version1
1850\& #endif
1851\& #if ... version2
1852\& #endif
1853.Ve
1854.PP
1855because otherwise \fBxsubpp\fR will believe that you made a duplicate
1856definition of the function. Also, put a blank line before the
1857#else/#endif so it will not be seen as part of the function body.
1858.Sh "Using \s-1XS\s0 With \*(C+"
1859.IX Subsection "Using XS With "
1860If an \s-1XSUB\s0 name contains \f(CW\*(C`::\*(C'\fR, it is considered to be a \*(C+ method.
1861The generated Perl function will assume that
1862its first argument is an object pointer. The object pointer
1863will be stored in a variable called \s-1THIS\s0. The object should
1864have been created by \*(C+ with the \fInew()\fR function and should
1865be blessed by Perl with the \fIsv_setref_pv()\fR macro. The
1866blessing of the object by Perl can be handled by a typemap. An example
1867typemap is shown at the end of this section.
1868.PP
1869If the return type of the \s-1XSUB\s0 includes \f(CW\*(C`static\*(C'\fR, the method is considered
1870to be a static method. It will call the \*(C+
1871function using the \fIclass::method()\fR syntax. If the method is not static
1872the function will be called using the \s-1THIS\-\s0>\fImethod()\fR syntax.
1873.PP
1874The next examples will use the following \*(C+ class.
1875.PP
1876.Vb 6
1877\& class color {
1878\& public:
1879\& color();
1880\& ~color();
1881\& int blue();
1882\& void set_blue( int );
1883.Ve
1884.PP
1885.Vb 3
1886\& private:
1887\& int c_blue;
1888\& };
1889.Ve
1890.PP
1891The XSUBs for the \fIblue()\fR and \fIset_blue()\fR methods are defined with the class
1892name but the parameter for the object (\s-1THIS\s0, or \*(L"self\*(R") is implicit and is
1893not listed.
1894.PP
1895.Vb 2
1896\& int
1897\& color::blue()
1898.Ve
1899.PP
1900.Vb 3
1901\& void
1902\& color::set_blue( val )
1903\& int val
1904.Ve
1905.PP
1906Both Perl functions will expect an object as the first parameter. In the
1907generated \*(C+ code the object is called \f(CW\*(C`THIS\*(C'\fR, and the method call will
1908be performed on this object. So in the \*(C+ code the \fIblue()\fR and \fIset_blue()\fR
1909methods will be called as this:
1910.PP
1911.Vb 1
1912\& RETVAL = THIS->blue();
1913.Ve
1914.PP
1915.Vb 1
1916\& THIS->set_blue( val );
1917.Ve
1918.PP
1919You could also write a single get/set method using an optional argument:
1920.PP
1921.Vb 10
1922\& int
1923\& color::blue( val = NO_INIT )
1924\& int val
1925\& PROTOTYPE $;$
1926\& CODE:
1927\& if (items > 1)
1928\& THIS->set_blue( val );
1929\& RETVAL = THIS->blue();
1930\& OUTPUT:
1931\& RETVAL
1932.Ve
1933.PP
1934If the function's name is \fB\s-1DESTROY\s0\fR then the \*(C+ \f(CW\*(C`delete\*(C'\fR function will be
1935called and \f(CW\*(C`THIS\*(C'\fR will be given as its parameter. The generated \*(C+ code for
1936.PP
1937.Vb 2
1938\& void
1939\& color::DESTROY()
1940.Ve
1941.PP
1942will look like this:
1943.PP
1944.Vb 1
1945\& color *THIS = ...; // Initialized as in typemap
1946.Ve
1947.PP
1948.Vb 1
1949\& delete THIS;
1950.Ve
1951.PP
1952If the function's name is \fBnew\fR then the \*(C+ \f(CW\*(C`new\*(C'\fR function will be called
1953to create a dynamic \*(C+ object. The \s-1XSUB\s0 will expect the class name, which
1954will be kept in a variable called \f(CW\*(C`CLASS\*(C'\fR, to be given as the first
1955argument.
1956.PP
1957.Vb 2
1958\& color *
1959\& color::new()
1960.Ve
1961.PP
1962The generated \*(C+ code will call \f(CW\*(C`new\*(C'\fR.
1963.PP
1964.Vb 1
1965\& RETVAL = new color();
1966.Ve
1967.PP
1968The following is an example of a typemap that could be used for this \*(C+
1969example.
1970.PP
1971.Vb 2
1972\& TYPEMAP
1973\& color * O_OBJECT
1974.Ve
1975.PP
1976.Vb 5
1977\& OUTPUT
1978\& # The Perl object is blessed into 'CLASS', which should be a
1979\& # char* having the name of the package for the blessing.
1980\& O_OBJECT
1981\& sv_setref_pv( $arg, CLASS, (void*)$var );
1982.Ve
1983.PP
1984.Vb 8
1985\& INPUT
1986\& O_OBJECT
1987\& if( sv_isobject($arg) && (SvTYPE(SvRV($arg)) == SVt_PVMG) )
1988\& $var = ($type)SvIV((SV*)SvRV( $arg ));
1989\& else{
1990\& warn( \e"${Package}::$func_name() -- $var is not a blessed SV reference\e" );
1991\& XSRETURN_UNDEF;
1992\& }
1993.Ve
1994.Sh "Interface Strategy"
1995.IX Subsection "Interface Strategy"
1996When designing an interface between Perl and a C library a straight
1997translation from C to \s-1XS\s0 (such as created by \f(CW\*(C`h2xs \-x\*(C'\fR) is often sufficient.
1998However, sometimes the interface will look
1999very C\-like and occasionally nonintuitive, especially when the C function
2000modifies one of its parameters, or returns failure inband (as in \*(L"negative
2001return values mean failure\*(R"). In cases where the programmer wishes to
2002create a more Perl-like interface the following strategy may help to
2003identify the more critical parts of the interface.
2004.PP
2005Identify the C functions with input/output or output parameters. The XSUBs for
2006these functions may be able to return lists to Perl.
2007.PP
2008Identify the C functions which use some inband info as an indication
2009of failure. They may be
2010candidates to return undef or an empty list in case of failure. If the
2011failure may be detected without a call to the C function, you may want to use
2012an \s-1INIT:\s0 section to report the failure. For failures detectable after the C
2013function returns one may want to use a \s-1POSTCALL:\s0 section to process the
2014failure. In more complicated cases use \s-1CODE:\s0 or \s-1PPCODE:\s0 sections.
2015.PP
2016If many functions use the same failure indication based on the return value,
2017you may want to create a special typedef to handle this situation. Put
2018.PP
2019.Vb 1
2020\& typedef int negative_is_failure;
2021.Ve
2022.PP
2023near the beginning of \s-1XS\s0 file, and create an \s-1OUTPUT\s0 typemap entry
2024for \f(CW\*(C`negative_is_failure\*(C'\fR which converts negative values to \f(CW\*(C`undef\*(C'\fR, or
2025maybe \fIcroak()\fRs. After this the return value of type \f(CW\*(C`negative_is_failure\*(C'\fR
2026will create more Perl-like interface.
2027.PP
2028Identify which values are used by only the C and \s-1XSUB\s0 functions
2029themselves, say, when a parameter to a function should be a contents of a
2030global variable. If Perl does not need to access the contents of the value
2031then it may not be necessary to provide a translation for that value
2032from C to Perl.
2033.PP
2034Identify the pointers in the C function parameter lists and return
2035values. Some pointers may be used to implement input/output or
2036output parameters, they can be handled in \s-1XS\s0 with the \f(CW\*(C`&\*(C'\fR unary operator,
2037and, possibly, using the \s-1NO_INIT\s0 keyword.
2038Some others will require handling of types like \f(CW\*(C`int *\*(C'\fR, and one needs
2039to decide what a useful Perl translation will do in such a case. When
2040the semantic is clear, it is advisable to put the translation into a typemap
2041file.
2042.PP
2043Identify the structures used by the C functions. In many
2044cases it may be helpful to use the T_PTROBJ typemap for
2045these structures so they can be manipulated by Perl as
2046blessed objects. (This is handled automatically by \f(CW\*(C`h2xs \-x\*(C'\fR.)
2047.PP
2048If the same C type is used in several different contexts which require
2049different translations, \f(CW\*(C`typedef\*(C'\fR several new types mapped to this C type,
2050and create separate \fItypemap\fR entries for these new types. Use these
2051types in declarations of return type and parameters to XSUBs.
2052.Sh "Perl Objects And C Structures"
2053.IX Subsection "Perl Objects And C Structures"
2054When dealing with C structures one should select either
2055\&\fBT_PTROBJ\fR or \fBT_PTRREF\fR for the \s-1XS\s0 type. Both types are
2056designed to handle pointers to complex objects. The
2057T_PTRREF type will allow the Perl object to be unblessed
2058while the T_PTROBJ type requires that the object be blessed.
2059By using T_PTROBJ one can achieve a form of type-checking
2060because the \s-1XSUB\s0 will attempt to verify that the Perl object
2061is of the expected type.
2062.PP
2063The following \s-1XS\s0 code shows the \fIgetnetconfigent()\fR function which is used
2064with \s-1ONC+\s0 \s-1TIRPC\s0. The \fIgetnetconfigent()\fR function will return a pointer to a
2065C structure and has the C prototype shown below. The example will
2066demonstrate how the C pointer will become a Perl reference. Perl will
2067consider this reference to be a pointer to a blessed object and will
2068attempt to call a destructor for the object. A destructor will be
2069provided in the \s-1XS\s0 source to free the memory used by \fIgetnetconfigent()\fR.
2070Destructors in \s-1XS\s0 can be created by specifying an \s-1XSUB\s0 function whose name
2071ends with the word \fB\s-1DESTROY\s0\fR. \s-1XS\s0 destructors can be used to free memory
2072which may have been malloc'd by another \s-1XSUB\s0.
2073.PP
2074.Vb 1
2075\& struct netconfig *getnetconfigent(const char *netid);
2076.Ve
2077.PP
2078A \f(CW\*(C`typedef\*(C'\fR will be created for \f(CW\*(C`struct netconfig\*(C'\fR. The Perl
2079object will be blessed in a class matching the name of the C
2080type, with the tag \f(CW\*(C`Ptr\*(C'\fR appended, and the name should not
2081have embedded spaces if it will be a Perl package name. The
2082destructor will be placed in a class corresponding to the
2083class of the object and the \s-1PREFIX\s0 keyword will be used to
2084trim the name to the word \s-1DESTROY\s0 as Perl will expect.
2085.PP
2086.Vb 1
2087\& typedef struct netconfig Netconfig;
2088.Ve
2089.PP
2090.Vb 1
2091\& MODULE = RPC PACKAGE = RPC
2092.Ve
2093.PP
2094.Vb 3
2095\& Netconfig *
2096\& getnetconfigent(netid)
2097\& char *netid
2098.Ve
2099.PP
2100.Vb 1
2101\& MODULE = RPC PACKAGE = NetconfigPtr PREFIX = rpcb_
2102.Ve
2103.PP
2104.Vb 6
2105\& void
2106\& rpcb_DESTROY(netconf)
2107\& Netconfig *netconf
2108\& CODE:
2109\& printf("Now in NetconfigPtr::DESTROY\en");
2110\& free( netconf );
2111.Ve
2112.PP
2113This example requires the following typemap entry. Consult the typemap
2114section for more information about adding new typemaps for an extension.
2115.PP
2116.Vb 2
2117\& TYPEMAP
2118\& Netconfig * T_PTROBJ
2119.Ve
2120.PP
2121This example will be used with the following Perl statements.
2122.PP
2123.Vb 2
2124\& use RPC;
2125\& $netconf = getnetconfigent("udp");
2126.Ve
2127.PP
2128When Perl destroys the object referenced by \f(CW$netconf\fR it will send the
2129object to the supplied \s-1XSUB\s0 \s-1DESTROY\s0 function. Perl cannot determine, and
2130does not care, that this object is a C struct and not a Perl object. In
2131this sense, there is no difference between the object created by the
2132\&\fIgetnetconfigent()\fR \s-1XSUB\s0 and an object created by a normal Perl subroutine.
2133.Sh "The Typemap"
2134.IX Subsection "The Typemap"
2135The typemap is a collection of code fragments which are used by the \fBxsubpp\fR
2136compiler to map C function parameters and values to Perl values. The
2137typemap file may consist of three sections labelled \f(CW\*(C`TYPEMAP\*(C'\fR, \f(CW\*(C`INPUT\*(C'\fR, and
2138\&\f(CW\*(C`OUTPUT\*(C'\fR. An unlabelled initial section is assumed to be a \f(CW\*(C`TYPEMAP\*(C'\fR
2139section. The \s-1INPUT\s0 section tells
2140the compiler how to translate Perl values
2141into variables of certain C types. The \s-1OUTPUT\s0 section tells the compiler
2142how to translate the values from certain C types into values Perl can
2143understand. The \s-1TYPEMAP\s0 section tells the compiler which of the \s-1INPUT\s0 and
2144\&\s-1OUTPUT\s0 code fragments should be used to map a given C type to a Perl value.
2145The section labels \f(CW\*(C`TYPEMAP\*(C'\fR, \f(CW\*(C`INPUT\*(C'\fR, or \f(CW\*(C`OUTPUT\*(C'\fR must begin
2146in the first column on a line by themselves, and must be in uppercase.
2147.PP
2148The default typemap in the \f(CW\*(C`lib/ExtUtils\*(C'\fR directory of the Perl source
2149contains many useful types which can be used by Perl extensions. Some
2150extensions define additional typemaps which they keep in their own directory.
2151These additional typemaps may reference \s-1INPUT\s0 and \s-1OUTPUT\s0 maps in the main
2152typemap. The \fBxsubpp\fR compiler will allow the extension's own typemap to
2153override any mappings which are in the default typemap.
2154.PP
2155Most extensions which require a custom typemap will need only the \s-1TYPEMAP\s0
2156section of the typemap file. The custom typemap used in the
2157\&\fIgetnetconfigent()\fR example shown earlier demonstrates what may be the typical
2158use of extension typemaps. That typemap is used to equate a C structure
2159with the T_PTROBJ typemap. The typemap used by \fIgetnetconfigent()\fR is shown
2160here. Note that the C type is separated from the \s-1XS\s0 type with a tab and
2161that the C unary operator \f(CW\*(C`*\*(C'\fR is considered to be a part of the C type name.
2162.PP
2163.Vb 2
2164\& TYPEMAP
2165\& Netconfig *<tab>T_PTROBJ
2166.Ve
2167.PP
2168Here's a more complicated example: suppose that you wanted \f(CW\*(C`struct
2169netconfig\*(C'\fR to be blessed into the class \f(CW\*(C`Net::Config\*(C'\fR. One way to do
2170this is to use underscores (_) to separate package names, as follows:
2171.PP
2172.Vb 1
2173\& typedef struct netconfig * Net_Config;
2174.Ve
2175.PP
2176And then provide a typemap entry \f(CW\*(C`T_PTROBJ_SPECIAL\*(C'\fR that maps underscores to
2177double-colons (::), and declare \f(CW\*(C`Net_Config\*(C'\fR to be of that type:
2178.PP
2179.Vb 2
2180\& TYPEMAP
2181\& Net_Config T_PTROBJ_SPECIAL
2182.Ve
2183.PP
2184.Vb 8
2185\& INPUT
2186\& T_PTROBJ_SPECIAL
2187\& if (sv_derived_from($arg, \e"${(my $ntt=$ntype)=~s/_/::/g;\e$ntt}\e")) {
2188\& IV tmp = SvIV((SV*)SvRV($arg));
2189\& $var = INT2PTR($type, tmp);
2190\& }
2191\& else
2192\& croak(\e"$var is not of type ${(my $ntt=$ntype)=~s/_/::/g;\e$ntt}\e")
2193.Ve
2194.PP
2195.Vb 4
2196\& OUTPUT
2197\& T_PTROBJ_SPECIAL
2198\& sv_setref_pv($arg, \e"${(my $ntt=$ntype)=~s/_/::/g;\e$ntt}\e",
2199\& (void*)$var);
2200.Ve
2201.PP
2202The \s-1INPUT\s0 and \s-1OUTPUT\s0 sections substitute underscores for double-colons
2203on the fly, giving the desired effect. This example demonstrates some
2204of the power and versatility of the typemap facility.
2205.PP
2206The \s-1INT2PTR\s0 macro (defined in perl.h) casts an integer to a pointer,
2207of a given type, taking care of the possible different size of integers
2208and pointers. There are also \s-1PTR2IV\s0, \s-1PTR2UV\s0, \s-1PTR2NV\s0 macros,
2209to map the other way, which may be useful in \s-1OUTPUT\s0 sections.
2210.Sh "Safely Storing Static Data in \s-1XS\s0"
2211.IX Subsection "Safely Storing Static Data in XS"
2212Starting with Perl 5.8, a macro framework has been defined to allow
2213static data to be safely stored in \s-1XS\s0 modules that will be accessed from
2214a multi-threaded Perl.
2215.PP
2216Although primarily designed for use with multi-threaded Perl, the macros
2217have been designed so that they will work with non-threaded Perl as well.
2218.PP
2219It is therefore strongly recommended that these macros be used by all
2220\&\s-1XS\s0 modules that make use of static data.
2221.PP
2222The easiest way to get a template set of macros to use is by specifying
2223the \f(CW\*(C`\-g\*(C'\fR (\f(CW\*(C`\-\-global\*(C'\fR) option with h2xs (see h2xs).
2224.PP
2225Below is an example module that makes use of the macros.
2226.PP
2227.Vb 3
2228\& #include "EXTERN.h"
2229\& #include "perl.h"
2230\& #include "XSUB.h"
2231.Ve
2232.PP
2233.Vb 1
2234\& /* Global Data */
2235.Ve
2236.PP
2237.Vb 1
2238\& #define MY_CXT_KEY "BlindMice::_guts" XS_VERSION
2239.Ve
2240.PP
2241.Vb 4
2242\& typedef struct {
2243\& int count;
2244\& char name[3][100];
2245\& } my_cxt_t;
2246.Ve
2247.PP
2248.Vb 1
2249\& START_MY_CXT
2250.Ve
2251.PP
2252.Vb 1
2253\& MODULE = BlindMice PACKAGE = BlindMice
2254.Ve
2255.PP
2256.Vb 8
2257\& BOOT:
2258\& {
2259\& MY_CXT_INIT;
2260\& MY_CXT.count = 0;
2261\& strcpy(MY_CXT.name[0], "None");
2262\& strcpy(MY_CXT.name[1], "None");
2263\& strcpy(MY_CXT.name[2], "None");
2264\& }
2265.Ve
2266.PP
2267.Vb 14
2268\& int
2269\& newMouse(char * name)
2270\& char * name;
2271\& PREINIT:
2272\& dMY_CXT;
2273\& CODE:
2274\& if (MY_CXT.count >= 3) {
2275\& warn("Already have 3 blind mice");
2276\& RETVAL = 0;
2277\& }
2278\& else {
2279\& RETVAL = ++ MY_CXT.count;
2280\& strcpy(MY_CXT.name[MY_CXT.count - 1], name);
2281\& }
2282.Ve
2283.PP
2284.Vb 10
2285\& char *
2286\& get_mouse_name(index)
2287\& int index
2288\& CODE:
2289\& dMY_CXT;
2290\& RETVAL = MY_CXT.lives ++;
2291\& if (index > MY_CXT.count)
2292\& croak("There are only 3 blind mice.");
2293\& else
2294\& RETVAL = newSVpv(MY_CXT.name[index - 1]);
2295.Ve
2296.PP
2297\&\fB\s-1REFERENCE\s0\fR
2298.IP "\s-1MY_CXT_KEY\s0" 5
2299.IX Item "MY_CXT_KEY"
2300This macro is used to define a unique key to refer to the static data
2301for an \s-1XS\s0 module. The suggested naming scheme, as used by h2xs, is to
2302use a string that consists of the module name, the string \*(L"::_guts\*(R"
2303and the module version number.
2304.Sp
2305.Vb 1
2306\& #define MY_CXT_KEY "MyModule::_guts" XS_VERSION
2307.Ve
2308.IP "typedef my_cxt_t" 5
2309.IX Item "typedef my_cxt_t"
2310This struct typedef \fImust\fR always be called \f(CW\*(C`my_cxt_t\*(C'\fR \*(-- the other
2311\&\f(CW\*(C`CXT*\*(C'\fR macros assume the existence of the \f(CW\*(C`my_cxt_t\*(C'\fR typedef name.
2312.Sp
2313Declare a typedef named \f(CW\*(C`my_cxt_t\*(C'\fR that is a structure that contains
2314all the data that needs to be interpreter\-local.
2315.Sp
2316.Vb 3
2317\& typedef struct {
2318\& int some_value;
2319\& } my_cxt_t;
2320.Ve
2321.IP "\s-1START_MY_CXT\s0" 5
2322.IX Item "START_MY_CXT"
2323Always place the \s-1START_MY_CXT\s0 macro directly after the declaration
2324of \f(CW\*(C`my_cxt_t\*(C'\fR.
2325.IP "\s-1MY_CXT_INIT\s0" 5
2326.IX Item "MY_CXT_INIT"
2327The \s-1MY_CXT_INIT\s0 macro initialises storage for the \f(CW\*(C`my_cxt_t\*(C'\fR struct.
2328.Sp
2329It \fImust\fR be called exactly once \*(-- typically in a \s-1BOOT:\s0 section.
2330.IP "dMY_CXT" 5
2331.IX Item "dMY_CXT"
2332Use the dMY_CXT macro (a declaration) in all the functions that access
2333\&\s-1MY_CXT\s0.
2334.IP "\s-1MY_CXT\s0" 5
2335.IX Item "MY_CXT"
2336Use the \s-1MY_CXT\s0 macro to access members of the \f(CW\*(C`my_cxt_t\*(C'\fR struct. For
2337example, if \f(CW\*(C`my_cxt_t\*(C'\fR is
2338.Sp
2339.Vb 3
2340\& typedef struct {
2341\& int index;
2342\& } my_cxt_t;
2343.Ve
2344.Sp
2345then use this to access the \f(CW\*(C`index\*(C'\fR member
2346.Sp
2347.Vb 2
2348\& dMY_CXT;
2349\& MY_CXT.index = 2;
2350.Ve
2351.SH "EXAMPLES"
2352.IX Header "EXAMPLES"
2353File \f(CW\*(C`RPC.xs\*(C'\fR: Interface to some \s-1ONC+\s0 \s-1RPC\s0 bind library functions.
2354.PP
2355.Vb 3
2356\& #include "EXTERN.h"
2357\& #include "perl.h"
2358\& #include "XSUB.h"
2359.Ve
2360.PP
2361.Vb 1
2362\& #include <rpc/rpc.h>
2363.Ve
2364.PP
2365.Vb 1
2366\& typedef struct netconfig Netconfig;
2367.Ve
2368.PP
2369.Vb 1
2370\& MODULE = RPC PACKAGE = RPC
2371.Ve
2372.PP
2373.Vb 9
2374\& SV *
2375\& rpcb_gettime(host="localhost")
2376\& char *host
2377\& PREINIT:
2378\& time_t timep;
2379\& CODE:
2380\& ST(0) = sv_newmortal();
2381\& if( rpcb_gettime( host, &timep ) )
2382\& sv_setnv( ST(0), (double)timep );
2383.Ve
2384.PP
2385.Vb 3
2386\& Netconfig *
2387\& getnetconfigent(netid="udp")
2388\& char *netid
2389.Ve
2390.PP
2391.Vb 1
2392\& MODULE = RPC PACKAGE = NetconfigPtr PREFIX = rpcb_
2393.Ve
2394.PP
2395.Vb 6
2396\& void
2397\& rpcb_DESTROY(netconf)
2398\& Netconfig *netconf
2399\& CODE:
2400\& printf("NetconfigPtr::DESTROY\en");
2401\& free( netconf );
2402.Ve
2403.PP
2404File \f(CW\*(C`typemap\*(C'\fR: Custom typemap for \s-1RPC\s0.xs.
2405.PP
2406.Vb 2
2407\& TYPEMAP
2408\& Netconfig * T_PTROBJ
2409.Ve
2410.PP
2411File \f(CW\*(C`RPC.pm\*(C'\fR: Perl module for the \s-1RPC\s0 extension.
2412.PP
2413.Vb 1
2414\& package RPC;
2415.Ve
2416.PP
2417.Vb 4
2418\& require Exporter;
2419\& require DynaLoader;
2420\& @ISA = qw(Exporter DynaLoader);
2421\& @EXPORT = qw(rpcb_gettime getnetconfigent);
2422.Ve
2423.PP
2424.Vb 2
2425\& bootstrap RPC;
2426\& 1;
2427.Ve
2428.PP
2429File \f(CW\*(C`rpctest.pl\*(C'\fR: Perl test program for the \s-1RPC\s0 extension.
2430.PP
2431.Vb 1
2432\& use RPC;
2433.Ve
2434.PP
2435.Vb 4
2436\& $netconf = getnetconfigent();
2437\& $a = rpcb_gettime();
2438\& print "time = $a\en";
2439\& print "netconf = $netconf\en";
2440.Ve
2441.PP
2442.Vb 4
2443\& $netconf = getnetconfigent("tcp");
2444\& $a = rpcb_gettime("poplar");
2445\& print "time = $a\en";
2446\& print "netconf = $netconf\en";
2447.Ve
2448.SH "XS VERSION"
2449.IX Header "XS VERSION"
2450This document covers features supported by \f(CW\*(C`xsubpp\*(C'\fR 1.935.
2451.SH "AUTHOR"
2452.IX Header "AUTHOR"
2453Originally written by Dean Roehrich <\fIroehrich@cray.com\fR>.
2454.PP
2455Maintained since 1996 by The Perl Porters <\fIperlbug@perl.org\fR>.