Initial commit of OpenSPARC T2 architecture model.
[OpenSPARC-T2-SAM] / sam-t2 / devtools / v8plus / share / swig / 1.3.26 / ruby / std_vector.i
//
// SWIG typemaps for std::vector
// Luigi Ballabio
// Apr 8, 2002
//
// Ruby implementation
%include <std_common.i>
// ------------------------------------------------------------------------
// std::vector
//
// The aim of all that follows would be to integrate std::vector with
// Ruby as much as possible, namely, to allow the user to pass and
// be returned Ruby arrays
// const declarations are used to guess the intent of the function being
// exported; therefore, the following rationale is applied:
//
// -- f(std::vector<T>), f(const std::vector<T>&), f(const std::vector<T>*):
// the parameter being read-only, either a Ruby array or a
// previously wrapped std::vector<T> can be passed.
// -- f(std::vector<T>&), f(std::vector<T>*):
// the parameter must be modified; therefore, only a wrapped std::vector
// can be passed.
// -- std::vector<T> f():
// the vector is returned by copy; therefore, a Ruby array of T:s
// is returned which is most easily used in other Ruby functions
// -- std::vector<T>& f(), std::vector<T>* f(), const std::vector<T>& f(),
// const std::vector<T>* f():
// the vector is returned by reference; therefore, a wrapped std::vector
// is returned
// ------------------------------------------------------------------------
%{
#include <vector>
#include <algorithm>
#include <stdexcept>
%}
// exported class
namespace std {
%mixin vector "Enumerable";
template<class T> class vector {
%typemap(in) vector<T> {
if (rb_obj_is_kind_of($input,rb_cArray)) {
unsigned int size = RARRAY($input)->len;
$1 = std::vector<T >(size);
for (unsigned int i=0; i<size; i++) {
VALUE o = RARRAY($input)->ptr[i];
T* x;
SWIG_ConvertPtr(o, (void **) &x, $descriptor(T *), 1);
(($1_type &)$1)[i] = *x;
}
} else {
void *ptr;
SWIG_ConvertPtr($input, &ptr, $&1_descriptor, 1);
$1 = *(($&1_type) ptr);
}
}
%typemap(in) const vector<T>& (std::vector<T> temp),
const vector<T>* (std::vector<T> temp) {
if (rb_obj_is_kind_of($input,rb_cArray)) {
unsigned int size = RARRAY($input)->len;
temp = std::vector<T >(size);
$1 = &temp;
for (unsigned int i=0; i<size; i++) {
VALUE o = RARRAY($input)->ptr[i];
T* x;
SWIG_ConvertPtr(o, (void **) &x, $descriptor(T *), 1);
temp[i] = *x;
}
} else {
SWIG_ConvertPtr($input, (void **) &$1, $1_descriptor, 1);
}
}
%typemap(out) vector<T> {
$result = rb_ary_new2($1.size());
for (unsigned int i=0; i<$1.size(); i++) {
T* x = new T((($1_type &)$1)[i]);
rb_ary_store($result,i,
SWIG_NewPointerObj((void *) x,
$descriptor(T *), 1));
}
}
%typecheck(SWIG_TYPECHECK_VECTOR) vector<T> {
/* native sequence? */
if (rb_obj_is_kind_of($input,rb_cArray)) {
unsigned int size = RARRAY($input)->len;
if (size == 0) {
/* an empty sequence can be of any type */
$1 = 1;
} else {
/* check the first element only */
T* x;
VALUE o = RARRAY($input)->ptr[0];
if ((SWIG_ConvertPtr(o,(void **) &x,
$descriptor(T *),0)) != -1)
$1 = 1;
else
$1 = 0;
}
} else {
/* wrapped vector? */
std::vector<T >* v;
if (SWIG_ConvertPtr($input,(void **) &v,
$&1_descriptor,0) != -1)
$1 = 1;
else
$1 = 0;
}
}
%typecheck(SWIG_TYPECHECK_VECTOR) const vector<T>&,
const vector<T>* {
/* native sequence? */
if (rb_obj_is_kind_of($input,rb_cArray)) {
unsigned int size = RARRAY($input)->len;
if (size == 0) {
/* an empty sequence can be of any type */
$1 = 1;
} else {
/* check the first element only */
T* x;
VALUE o = RARRAY($input)->ptr[0];
if ((SWIG_ConvertPtr(o,(void **) &x,
$descriptor(T *),0)) != -1)
$1 = 1;
else
$1 = 0;
}
} else {
/* wrapped vector? */
std::vector<T >* v;
if (SWIG_ConvertPtr($input,(void **) &v,
$1_descriptor,0) != -1)
$1 = 1;
else
$1 = 0;
}
}
public:
vector(unsigned int size = 0);
vector(unsigned int size, const T& value);
vector(const vector<T> &);
%rename(__len__) size;
unsigned int size() const;
%rename("empty?") empty;
bool empty() const;
void clear();
%rename(push) push_back;
void push_back(const T& x);
%extend {
T pop() throw (std::out_of_range) {
if (self->size() == 0)
throw std::out_of_range("pop from empty vector");
T x = self->back();
self->pop_back();
return x;
}
T& __getitem__(int i) throw (std::out_of_range) {
int size = int(self->size());
if (i<0) i += size;
if (i>=0 && i<size)
return (*self)[i];
else
throw std::out_of_range("vector index out of range");
}
void __setitem__(int i, const T& x) throw (std::out_of_range) {
int size = int(self->size());
if (i<0) i+= size;
if (i>=0 && i<size)
(*self)[i] = x;
else
throw std::out_of_range("vector index out of range");
}
void each() {
for (unsigned int i=0; i<self->size(); i++) {
T* x = &((*self)[i]);
rb_yield(SWIG_NewPointerObj((void *) x,
$descriptor(T *), 0));
}
}
}
};
// Partial specialization for vectors of pointers. [ beazley ]
%mixin vector<T*> "Enumerable";
template<class T> class vector<T*> {
%typemap(in) vector<T*> {
if (rb_obj_is_kind_of($input,rb_cArray)) {
unsigned int size = RARRAY($input)->len;
$1 = std::vector<T* >(size);
for (unsigned int i=0; i<size; i++) {
VALUE o = RARRAY($input)->ptr[i];
T* x;
SWIG_ConvertPtr(o, (void **) &x, $descriptor(T *), 1);
(($1_type &)$1)[i] = x;
}
} else {
void *ptr;
SWIG_ConvertPtr($input, &ptr, $&1_descriptor, 1);
$1 = *(($&1_type) ptr);
}
}
%typemap(in) const vector<T*>& (std::vector<T*> temp),
const vector<T*>* (std::vector<T*> temp) {
if (rb_obj_is_kind_of($input,rb_cArray)) {
unsigned int size = RARRAY($input)->len;
temp = std::vector<T* >(size);
$1 = &temp;
for (unsigned int i=0; i<size; i++) {
VALUE o = RARRAY($input)->ptr[i];
T* x;
SWIG_ConvertPtr(o, (void **) &x, $descriptor(T *), 1);
temp[i] = x;
}
} else {
SWIG_ConvertPtr($input, (void **) &$1, $1_descriptor, 1);
}
}
%typemap(out) vector<T*> {
$result = rb_ary_new2($1.size());
for (unsigned int i=0; i<$1.size(); i++) {
T* x = new T((($1_type &)$1)[i]);
rb_ary_store($result,i,
SWIG_NewPointerObj((void *) x,
$descriptor(T *), 0));
}
}
%typecheck(SWIG_TYPECHECK_VECTOR) vector<T*> {
/* native sequence? */
if (rb_obj_is_kind_of($input,rb_cArray)) {
unsigned int size = RARRAY($input)->len;
if (size == 0) {
/* an empty sequence can be of any type */
$1 = 1;
} else {
/* check the first element only */
T* x;
VALUE o = RARRAY($input)->ptr[0];
if ((SWIG_ConvertPtr(o,(void **) &x,
$descriptor(T *),0)) != -1)
$1 = 1;
else
$1 = 0;
}
} else {
/* wrapped vector? */
std::vector<T* >* v;
if (SWIG_ConvertPtr($input,(void **) &v,
$&1_descriptor,0) != -1)
$1 = 1;
else
$1 = 0;
}
}
%typecheck(SWIG_TYPECHECK_VECTOR) const vector<T*>&,
const vector<T*>* {
/* native sequence? */
if (rb_obj_is_kind_of($input,rb_cArray)) {
unsigned int size = RARRAY($input)->len;
if (size == 0) {
/* an empty sequence can be of any type */
$1 = 1;
} else {
/* check the first element only */
T* x;
VALUE o = RARRAY($input)->ptr[0];
if ((SWIG_ConvertPtr(o,(void **) &x,
$descriptor(T *),0)) != -1)
$1 = 1;
else
$1 = 0;
}
} else {
/* wrapped vector? */
std::vector<T* >* v;
if (SWIG_ConvertPtr($input,(void **) &v,
$1_descriptor,0) != -1)
$1 = 1;
else
$1 = 0;
}
}
public:
vector(unsigned int size = 0);
vector(unsigned int size, T * &value);
vector(const vector<T*> &);
%rename(__len__) size;
unsigned int size() const;
%rename("empty?") empty;
bool empty() const;
void clear();
%rename(push) push_back;
void push_back(T* x);
%extend {
T* pop() throw (std::out_of_range) {
if (self->size() == 0)
throw std::out_of_range("pop from empty vector");
T* x = self->back();
self->pop_back();
return x;
}
T* __getitem__(int i) throw (std::out_of_range) {
int size = int(self->size());
if (i<0) i += size;
if (i>=0 && i<size)
return (*self)[i];
else
throw std::out_of_range("vector index out of range");
}
void __setitem__(int i, T* x) throw (std::out_of_range) {
int size = int(self->size());
if (i<0) i+= size;
if (i>=0 && i<size)
(*self)[i] = x;
else
throw std::out_of_range("vector index out of range");
}
void each() {
for (unsigned int i=0; i<self->size(); i++) {
T* x = (*self)[i];
rb_yield(SWIG_NewPointerObj((void *) x,
$descriptor(T *), 0));
}
}
}
};
// specializations for built-ins
%define specialize_std_vector(T,CHECK,CONVERT_FROM,CONVERT_TO)
%mixin vector<T> "Enumerable";
template<> class vector<T> {
%typemap(in) vector<T> {
if (rb_obj_is_kind_of($input,rb_cArray)) {
unsigned int size = RARRAY($input)->len;
$1 = std::vector<T >(size);
for (unsigned int i=0; i<size; i++) {
VALUE o = RARRAY($input)->ptr[i];
if (CHECK(o))
(($1_type &)$1)[i] = (T)(CONVERT_FROM(o));
else
rb_raise(rb_eTypeError,
"wrong argument type"
" (expected vector<" #T ">)");
}
} else {
void *ptr;
SWIG_ConvertPtr($input, &ptr, $&1_descriptor, 1);
$1 = *(($&1_type) ptr);
}
}
%typemap(in) const vector<T>& (std::vector<T> temp),
const vector<T>* (std::vector<T> temp) {
if (rb_obj_is_kind_of($input,rb_cArray)) {
unsigned int size = RARRAY($input)->len;
temp = std::vector<T >(size);
$1 = &temp;
for (unsigned int i=0; i<size; i++) {
VALUE o = RARRAY($input)->ptr[i];
if (CHECK(o))
temp[i] = (T)(CONVERT_FROM(o));
else
rb_raise(rb_eTypeError,
"wrong argument type"
" (expected vector<" #T ">)");
}
} else {
SWIG_ConvertPtr($input, (void **) &$1, $1_descriptor, 1);
}
}
%typemap(out) vector<T> {
$result = rb_ary_new2($1.size());
for (unsigned int i=0; i<$1.size(); i++)
rb_ary_store($result,i,CONVERT_TO((($1_type &)$1)[i]));
}
%typecheck(SWIG_TYPECHECK_VECTOR) vector<T> {
/* native sequence? */
if (rb_obj_is_kind_of($input,rb_cArray)) {
unsigned int size = RARRAY($input)->len;
if (size == 0) {
/* an empty sequence can be of any type */
$1 = 1;
} else {
/* check the first element only */
VALUE o = RARRAY($input)->ptr[0];
if (CHECK(o))
$1 = 1;
else
$1 = 0;
}
} else {
/* wrapped vector? */
std::vector<T >* v;
if (SWIG_ConvertPtr($input,(void **) &v,
$&1_descriptor,0) != -1)
$1 = 1;
else
$1 = 0;
}
}
%typecheck(SWIG_TYPECHECK_VECTOR) const vector<T>&,
const vector<T>* {
/* native sequence? */
if (rb_obj_is_kind_of($input,rb_cArray)) {
unsigned int size = RARRAY($input)->len;
if (size == 0) {
/* an empty sequence can be of any type */
$1 = 1;
} else {
/* check the first element only */
VALUE o = RARRAY($input)->ptr[0];
if (CHECK(o))
$1 = 1;
else
$1 = 0;
}
} else {
/* wrapped vector? */
std::vector<T >* v;
if (SWIG_ConvertPtr($input,(void **) &v,
$1_descriptor,0) != -1)
$1 = 1;
else
$1 = 0;
}
}
public:
vector(unsigned int size = 0);
vector(unsigned int size, const T& value);
vector(const vector<T> &);
%rename(__len__) size;
unsigned int size() const;
%rename("empty?") empty;
bool empty() const;
void clear();
%rename(push) push_back;
void push_back(T x);
%extend {
T pop() throw (std::out_of_range) {
if (self->size() == 0)
throw std::out_of_range("pop from empty vector");
T x = self->back();
self->pop_back();
return x;
}
T __getitem__(int i) throw (std::out_of_range) {
int size = int(self->size());
if (i<0) i += size;
if (i>=0 && i<size)
return (*self)[i];
else
throw std::out_of_range("vector index out of range");
}
void __setitem__(int i, T x) throw (std::out_of_range) {
int size = int(self->size());
if (i<0) i+= size;
if (i>=0 && i<size)
(*self)[i] = x;
else
throw std::out_of_range("vector index out of range");
}
void each() {
for (unsigned int i=0; i<self->size(); i++)
rb_yield(CONVERT_TO((*self)[i]));
}
}
};
%enddef
specialize_std_vector(bool,SWIG_BOOL_P,SWIG_RB2BOOL,SWIG_BOOL2RB);
specialize_std_vector(char,FIXNUM_P,FIX2INT,INT2NUM);
specialize_std_vector(int,FIXNUM_P,FIX2INT,INT2NUM);
specialize_std_vector(short,FIXNUM_P,FIX2INT,INT2NUM);
specialize_std_vector(long,FIXNUM_P,FIX2INT,INT2NUM);
specialize_std_vector(unsigned char,FIXNUM_P,FIX2INT,INT2NUM);
specialize_std_vector(unsigned int,FIXNUM_P,FIX2INT,INT2NUM);
specialize_std_vector(unsigned short,FIXNUM_P,FIX2INT,INT2NUM);
specialize_std_vector(unsigned long,FIXNUM_P,FIX2INT,INT2NUM);
specialize_std_vector(double,SWIG_FLOAT_P,SWIG_NUM2DBL,rb_float_new);
specialize_std_vector(float,SWIG_FLOAT_P,SWIG_NUM2DBL,rb_float_new);
specialize_std_vector(std::string,SWIG_STRING_P,SWIG_RB2STR,SWIG_STR2RB);
}