1. Remove a rather strangely gratuitous bit of profanity
[unix-history] / sys / netns / spp_usrreq.c
CommitLineData
15637ed4
RG
1/*
2 * Copyright (c) 1984, 1985, 1986, 1987 Regents of the University of California.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by the University of
16 * California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
136b31f1 33 * from: @(#)spp_usrreq.c 7.15 (Berkeley) 6/27/91
fde1aeb2 34 * $Id: spp_usrreq.c,v 1.4 1993/11/25 01:36:36 wollman Exp $
15637ed4
RG
35 */
36
37#include "param.h"
38#include "systm.h"
39#include "malloc.h"
40#include "mbuf.h"
41#include "protosw.h"
42#include "socket.h"
43#include "socketvar.h"
44#include "errno.h"
45
46#include "../net/if.h"
47#include "../net/route.h"
48#include "../netinet/tcp_fsm.h"
49
50#include "ns.h"
51#include "ns_pcb.h"
52#include "idp.h"
53#include "idp_var.h"
54#include "ns_error.h"
55#include "sp.h"
56#include "spidp.h"
57#include "spp_timer.h"
58#include "spp_var.h"
59#include "spp_debug.h"
60
fde1aeb2
GW
61static void spp_quench(struct nspcb *, int);
62static void spp_abort(struct nspcb *, int);
4c45483e
GW
63static void spp_setpersist(struct sppcb *);
64static void spp_template(struct sppcb *);
65
8ace4366
GW
66struct spp_istat spp_istat;
67u_short spp_iss;
68
15637ed4
RG
69/*
70 * SP protocol implementation.
71 */
4c45483e 72void
15637ed4
RG
73spp_init()
74{
75
76 spp_iss = 1; /* WRONG !! should fish it out of TODR */
77}
78struct spidp spp_savesi;
79int traceallspps = 0;
80extern int sppconsdebug;
81int spp_hardnosed;
82int spp_use_delack = 0;
83u_short spp_newchecks[50];
84
85/*ARGSUSED*/
4c45483e 86void
15637ed4
RG
87spp_input(m, nsp)
88 register struct mbuf *m;
89 register struct nspcb *nsp;
90{
91 register struct sppcb *cb;
92 register struct spidp *si = mtod(m, struct spidp *);
93 register struct socket *so;
4c45483e 94 short ostate = 0;
15637ed4
RG
95 int dropsocket = 0;
96
97
98 sppstat.spps_rcvtotal++;
99 if (nsp == 0) {
100 panic("No nspcb in spp_input\n");
101 return;
102 }
103
104 cb = nstosppcb(nsp);
105 if (cb == 0) goto bad;
106
107 if (m->m_len < sizeof(*si)) {
108 if ((m = m_pullup(m, sizeof(*si))) == 0) {
109 sppstat.spps_rcvshort++;
110 return;
111 }
112 si = mtod(m, struct spidp *);
113 }
114 si->si_seq = ntohs(si->si_seq);
115 si->si_ack = ntohs(si->si_ack);
116 si->si_alo = ntohs(si->si_alo);
117
118 so = nsp->nsp_socket;
119 if (so->so_options & SO_DEBUG || traceallspps) {
120 ostate = cb->s_state;
121 spp_savesi = *si;
122 }
123 if (so->so_options & SO_ACCEPTCONN) {
124 struct sppcb *ocb = cb;
125
126 so = sonewconn(so, 0);
127 if (so == 0) {
128 goto drop;
129 }
130 /*
131 * This is ugly, but ....
132 *
133 * Mark socket as temporary until we're
134 * committed to keeping it. The code at
135 * ``drop'' and ``dropwithreset'' check the
136 * flag dropsocket to see if the temporary
137 * socket created here should be discarded.
138 * We mark the socket as discardable until
139 * we're committed to it below in TCPS_LISTEN.
140 */
141 dropsocket++;
142 nsp = (struct nspcb *)so->so_pcb;
143 nsp->nsp_laddr = si->si_dna;
144 cb = nstosppcb(nsp);
145 cb->s_mtu = ocb->s_mtu; /* preserve sockopts */
146 cb->s_flags = ocb->s_flags; /* preserve sockopts */
147 cb->s_flags2 = ocb->s_flags2; /* preserve sockopts */
148 cb->s_state = TCPS_LISTEN;
149 }
150
151 /*
152 * Packet received on connection.
153 * reset idle time and keep-alive timer;
154 */
155 cb->s_idle = 0;
156 cb->s_timer[SPPT_KEEP] = SPPTV_KEEP;
157
158 switch (cb->s_state) {
159
160 case TCPS_LISTEN:{
161 struct mbuf *am;
162 register struct sockaddr_ns *sns;
163 struct ns_addr laddr;
164
165 /*
166 * If somebody here was carying on a conversation
167 * and went away, and his pen pal thinks he can
168 * still talk, we get the misdirected packet.
169 */
170 if (spp_hardnosed && (si->si_did != 0 || si->si_seq != 0)) {
171 spp_istat.gonawy++;
172 goto dropwithreset;
173 }
174 am = m_get(M_DONTWAIT, MT_SONAME);
175 if (am == NULL)
176 goto drop;
177 am->m_len = sizeof (struct sockaddr_ns);
178 sns = mtod(am, struct sockaddr_ns *);
179 sns->sns_len = sizeof(*sns);
180 sns->sns_family = AF_NS;
181 sns->sns_addr = si->si_sna;
182 laddr = nsp->nsp_laddr;
183 if (ns_nullhost(laddr))
184 nsp->nsp_laddr = si->si_dna;
185 if (ns_pcbconnect(nsp, am)) {
186 nsp->nsp_laddr = laddr;
187 (void) m_free(am);
188 spp_istat.noconn++;
189 goto drop;
190 }
191 (void) m_free(am);
192 spp_template(cb);
193 dropsocket = 0; /* committed to socket */
194 cb->s_did = si->si_sid;
195 cb->s_rack = si->si_ack;
196 cb->s_ralo = si->si_alo;
197#define THREEWAYSHAKE
198#ifdef THREEWAYSHAKE
199 cb->s_state = TCPS_SYN_RECEIVED;
200 cb->s_force = 1 + SPPT_KEEP;
201 sppstat.spps_accepts++;
202 cb->s_timer[SPPT_KEEP] = SPPTV_KEEP;
203 }
204 break;
205 /*
206 * This state means that we have heard a response
207 * to our acceptance of their connection
208 * It is probably logically unnecessary in this
209 * implementation.
210 */
211 case TCPS_SYN_RECEIVED: {
212 if (si->si_did!=cb->s_sid) {
213 spp_istat.wrncon++;
214 goto drop;
215 }
216#endif
217 nsp->nsp_fport = si->si_sport;
218 cb->s_timer[SPPT_REXMT] = 0;
219 cb->s_timer[SPPT_KEEP] = SPPTV_KEEP;
220 soisconnected(so);
221 cb->s_state = TCPS_ESTABLISHED;
222 sppstat.spps_accepts++;
223 }
224 break;
225
226 /*
227 * This state means that we have gotten a response
228 * to our attempt to establish a connection.
229 * We fill in the data from the other side,
230 * telling us which port to respond to, instead of the well-
231 * known one we might have sent to in the first place.
232 * We also require that this is a response to our
233 * connection id.
234 */
235 case TCPS_SYN_SENT:
236 if (si->si_did!=cb->s_sid) {
237 spp_istat.notme++;
238 goto drop;
239 }
240 sppstat.spps_connects++;
241 cb->s_did = si->si_sid;
242 cb->s_rack = si->si_ack;
243 cb->s_ralo = si->si_alo;
244 cb->s_dport = nsp->nsp_fport = si->si_sport;
245 cb->s_timer[SPPT_REXMT] = 0;
246 cb->s_flags |= SF_ACKNOW;
247 soisconnected(so);
248 cb->s_state = TCPS_ESTABLISHED;
249 /* Use roundtrip time of connection request for initial rtt */
250 if (cb->s_rtt) {
251 cb->s_srtt = cb->s_rtt << 3;
252 cb->s_rttvar = cb->s_rtt << 1;
253 SPPT_RANGESET(cb->s_rxtcur,
254 ((cb->s_srtt >> 2) + cb->s_rttvar) >> 1,
255 SPPTV_MIN, SPPTV_REXMTMAX);
256 cb->s_rtt = 0;
257 }
258 }
259 if (so->so_options & SO_DEBUG || traceallspps)
260 spp_trace(SA_INPUT, (u_char)ostate, cb, &spp_savesi, 0);
261
262 m->m_len -= sizeof (struct idp);
263 m->m_pkthdr.len -= sizeof (struct idp);
264 m->m_data += sizeof (struct idp);
265
266 if (spp_reass(cb, si)) {
267 (void) m_freem(m);
268 }
269 if (cb->s_force || (cb->s_flags & (SF_ACKNOW|SF_WIN|SF_RXT)))
270 (void) spp_output(cb, (struct mbuf *)0);
271 cb->s_flags &= ~(SF_WIN|SF_RXT);
272 return;
273
274dropwithreset:
275 if (dropsocket)
276 (void) soabort(so);
277 si->si_seq = ntohs(si->si_seq);
278 si->si_ack = ntohs(si->si_ack);
279 si->si_alo = ntohs(si->si_alo);
280 ns_error(dtom(si), NS_ERR_NOSOCK, 0);
281 if (cb->s_nspcb->nsp_socket->so_options & SO_DEBUG || traceallspps)
282 spp_trace(SA_DROP, (u_char)ostate, cb, &spp_savesi, 0);
283 return;
284
285drop:
286bad:
287 if (cb == 0 || cb->s_nspcb->nsp_socket->so_options & SO_DEBUG ||
288 traceallspps)
289 spp_trace(SA_DROP, (u_char)ostate, cb, &spp_savesi, 0);
290 m_freem(m);
291}
292
293int spprexmtthresh = 3;
294
295/*
296 * This is structurally similar to the tcp reassembly routine
297 * but its function is somewhat different: It merely queues
298 * packets up, and suppresses duplicates.
299 */
4c45483e 300int
15637ed4 301spp_reass(cb, si)
fde1aeb2
GW
302 register struct sppcb *cb;
303 register struct spidp *si;
15637ed4
RG
304{
305 register struct spidp_q *q;
306 register struct mbuf *m;
307 register struct socket *so = cb->s_nspcb->nsp_socket;
308 char packetp = cb->s_flags & SF_HI;
309 int incr;
310 char wakeup = 0;
311
312 if (si == SI(0))
313 goto present;
314 /*
315 * Update our news from them.
316 */
317 if (si->si_cc & SP_SA)
318 cb->s_flags |= (spp_use_delack ? SF_DELACK : SF_ACKNOW);
319 if (SSEQ_GT(si->si_alo, cb->s_ralo))
320 cb->s_flags |= SF_WIN;
321 if (SSEQ_LEQ(si->si_ack, cb->s_rack)) {
322 if ((si->si_cc & SP_SP) && cb->s_rack != (cb->s_smax + 1)) {
323 sppstat.spps_rcvdupack++;
324 /*
325 * If this is a completely duplicate ack
326 * and other conditions hold, we assume
327 * a packet has been dropped and retransmit
328 * it exactly as in tcp_input().
329 */
330 if (si->si_ack != cb->s_rack ||
331 si->si_alo != cb->s_ralo)
332 cb->s_dupacks = 0;
333 else if (++cb->s_dupacks == spprexmtthresh) {
334 u_short onxt = cb->s_snxt;
335 int cwnd = cb->s_cwnd;
336
337 cb->s_snxt = si->si_ack;
338 cb->s_cwnd = CUNIT;
339 cb->s_force = 1 + SPPT_REXMT;
340 (void) spp_output(cb, (struct mbuf *)0);
341 cb->s_timer[SPPT_REXMT] = cb->s_rxtcur;
342 cb->s_rtt = 0;
343 if (cwnd >= 4 * CUNIT)
344 cb->s_cwnd = cwnd / 2;
345 if (SSEQ_GT(onxt, cb->s_snxt))
346 cb->s_snxt = onxt;
347 return (1);
348 }
349 } else
350 cb->s_dupacks = 0;
351 goto update_window;
352 }
353 cb->s_dupacks = 0;
354 /*
355 * If our correspondent acknowledges data we haven't sent
356 * TCP would drop the packet after acking. We'll be a little
357 * more permissive
358 */
359 if (SSEQ_GT(si->si_ack, (cb->s_smax + 1))) {
360 sppstat.spps_rcvacktoomuch++;
361 si->si_ack = cb->s_smax + 1;
362 }
363 sppstat.spps_rcvackpack++;
364 /*
365 * If transmit timer is running and timed sequence
366 * number was acked, update smoothed round trip time.
367 * See discussion of algorithm in tcp_input.c
368 */
369 if (cb->s_rtt && SSEQ_GT(si->si_ack, cb->s_rtseq)) {
370 sppstat.spps_rttupdated++;
371 if (cb->s_srtt != 0) {
372 register short delta;
373 delta = cb->s_rtt - (cb->s_srtt >> 3);
374 if ((cb->s_srtt += delta) <= 0)
375 cb->s_srtt = 1;
376 if (delta < 0)
377 delta = -delta;
378 delta -= (cb->s_rttvar >> 2);
379 if ((cb->s_rttvar += delta) <= 0)
380 cb->s_rttvar = 1;
381 } else {
382 /*
383 * No rtt measurement yet
384 */
385 cb->s_srtt = cb->s_rtt << 3;
386 cb->s_rttvar = cb->s_rtt << 1;
387 }
388 cb->s_rtt = 0;
389 cb->s_rxtshift = 0;
390 SPPT_RANGESET(cb->s_rxtcur,
391 ((cb->s_srtt >> 2) + cb->s_rttvar) >> 1,
392 SPPTV_MIN, SPPTV_REXMTMAX);
393 }
394 /*
395 * If all outstanding data is acked, stop retransmit
396 * timer and remember to restart (more output or persist).
397 * If there is more data to be acked, restart retransmit
398 * timer, using current (possibly backed-off) value;
399 */
400 if (si->si_ack == cb->s_smax + 1) {
401 cb->s_timer[SPPT_REXMT] = 0;
402 cb->s_flags |= SF_RXT;
403 } else if (cb->s_timer[SPPT_PERSIST] == 0)
404 cb->s_timer[SPPT_REXMT] = cb->s_rxtcur;
405 /*
406 * When new data is acked, open the congestion window.
407 * If the window gives us less than ssthresh packets
408 * in flight, open exponentially (maxseg at a time).
409 * Otherwise open linearly (maxseg^2 / cwnd at a time).
410 */
411 incr = CUNIT;
412 if (cb->s_cwnd > cb->s_ssthresh)
413 incr = max(incr * incr / cb->s_cwnd, 1);
414 cb->s_cwnd = min(cb->s_cwnd + incr, cb->s_cwmx);
415 /*
416 * Trim Acked data from output queue.
417 */
418 while ((m = so->so_snd.sb_mb) != NULL) {
419 if (SSEQ_LT((mtod(m, struct spidp *))->si_seq, si->si_ack))
420 sbdroprecord(&so->so_snd);
421 else
422 break;
423 }
424 sowwakeup(so);
425 cb->s_rack = si->si_ack;
426update_window:
427 if (SSEQ_LT(cb->s_snxt, cb->s_rack))
428 cb->s_snxt = cb->s_rack;
429 if (SSEQ_LT(cb->s_swl1, si->si_seq) || cb->s_swl1 == si->si_seq &&
430 (SSEQ_LT(cb->s_swl2, si->si_ack) ||
431 cb->s_swl2 == si->si_ack && SSEQ_LT(cb->s_ralo, si->si_alo))) {
432 /* keep track of pure window updates */
433 if ((si->si_cc & SP_SP) && cb->s_swl2 == si->si_ack
434 && SSEQ_LT(cb->s_ralo, si->si_alo)) {
435 sppstat.spps_rcvwinupd++;
436 sppstat.spps_rcvdupack--;
437 }
438 cb->s_ralo = si->si_alo;
439 cb->s_swl1 = si->si_seq;
440 cb->s_swl2 = si->si_ack;
441 cb->s_swnd = (1 + si->si_alo - si->si_ack);
442 if (cb->s_swnd > cb->s_smxw)
443 cb->s_smxw = cb->s_swnd;
444 cb->s_flags |= SF_WIN;
445 }
446 /*
447 * If this packet number is higher than that which
448 * we have allocated refuse it, unless urgent
449 */
450 if (SSEQ_GT(si->si_seq, cb->s_alo)) {
451 if (si->si_cc & SP_SP) {
452 sppstat.spps_rcvwinprobe++;
453 return (1);
454 } else
455 sppstat.spps_rcvpackafterwin++;
456 if (si->si_cc & SP_OB) {
457 if (SSEQ_GT(si->si_seq, cb->s_alo + 60)) {
458 ns_error(dtom(si), NS_ERR_FULLUP, 0);
459 return (0);
460 } /* else queue this packet; */
461 } else {
462 /*register struct socket *so = cb->s_nspcb->nsp_socket;
463 if (so->so_state && SS_NOFDREF) {
464 ns_error(dtom(si), NS_ERR_NOSOCK, 0);
465 (void)spp_close(cb);
466 } else
467 would crash system*/
468 spp_istat.notyet++;
469 ns_error(dtom(si), NS_ERR_FULLUP, 0);
470 return (0);
471 }
472 }
473 /*
474 * If this is a system packet, we don't need to
475 * queue it up, and won't update acknowledge #
476 */
477 if (si->si_cc & SP_SP) {
478 return (1);
479 }
480 /*
481 * We have already seen this packet, so drop.
482 */
483 if (SSEQ_LT(si->si_seq, cb->s_ack)) {
484 spp_istat.bdreas++;
485 sppstat.spps_rcvduppack++;
486 if (si->si_seq == cb->s_ack - 1)
487 spp_istat.lstdup++;
488 return (1);
489 }
490 /*
491 * Loop through all packets queued up to insert in
492 * appropriate sequence.
493 */
494 for (q = cb->s_q.si_next; q!=&cb->s_q; q = q->si_next) {
495 if (si->si_seq == SI(q)->si_seq) {
496 sppstat.spps_rcvduppack++;
497 return (1);
498 }
499 if (SSEQ_LT(si->si_seq, SI(q)->si_seq)) {
500 sppstat.spps_rcvoopack++;
501 break;
502 }
503 }
504 insque(si, q->si_prev);
505 /*
506 * If this packet is urgent, inform process
507 */
508 if (si->si_cc & SP_OB) {
509 cb->s_iobc = ((char *)si)[1 + sizeof(*si)];
510 sohasoutofband(so);
511 cb->s_oobflags |= SF_IOOB;
512 }
513present:
514#define SPINC sizeof(struct sphdr)
515 /*
516 * Loop through all packets queued up to update acknowledge
517 * number, and present all acknowledged data to user;
518 * If in packet interface mode, show packet headers.
519 */
520 for (q = cb->s_q.si_next; q!=&cb->s_q; q = q->si_next) {
521 if (SI(q)->si_seq == cb->s_ack) {
522 cb->s_ack++;
523 m = dtom(q);
524 if (SI(q)->si_cc & SP_OB) {
525 cb->s_oobflags &= ~SF_IOOB;
526 if (so->so_rcv.sb_cc)
527 so->so_oobmark = so->so_rcv.sb_cc;
528 else
529 so->so_state |= SS_RCVATMARK;
530 }
531 q = q->si_prev;
532 remque(q->si_next);
533 wakeup = 1;
534 sppstat.spps_rcvpack++;
535#ifdef SF_NEWCALL
536 if (cb->s_flags2 & SF_NEWCALL) {
537 struct sphdr *sp = mtod(m, struct sphdr *);
538 u_char dt = sp->sp_dt;
539 spp_newchecks[4]++;
540 if (dt != cb->s_rhdr.sp_dt) {
541 struct mbuf *mm =
542 m_getclr(M_DONTWAIT, MT_CONTROL);
543 spp_newchecks[0]++;
544 if (mm != NULL) {
545 u_short *s =
546 mtod(mm, u_short *);
547 cb->s_rhdr.sp_dt = dt;
548 mm->m_len = 5; /*XXX*/
549 s[0] = 5;
550 s[1] = 1;
551 *(u_char *)(&s[2]) = dt;
552 sbappend(&so->so_rcv, mm);
553 }
554 }
555 if (sp->sp_cc & SP_OB) {
556 MCHTYPE(m, MT_OOBDATA);
557 spp_newchecks[1]++;
558 so->so_oobmark = 0;
559 so->so_state &= ~SS_RCVATMARK;
560 }
561 if (packetp == 0) {
562 m->m_data += SPINC;
563 m->m_len -= SPINC;
564 m->m_pkthdr.len -= SPINC;
565 }
566 if ((sp->sp_cc & SP_EM) || packetp) {
567 sbappendrecord(&so->so_rcv, m);
568 spp_newchecks[9]++;
569 } else
570 sbappend(&so->so_rcv, m);
571 } else
572#endif
573 if (packetp) {
574 sbappendrecord(&so->so_rcv, m);
575 } else {
576 cb->s_rhdr = *mtod(m, struct sphdr *);
577 m->m_data += SPINC;
578 m->m_len -= SPINC;
579 m->m_pkthdr.len -= SPINC;
580 sbappend(&so->so_rcv, m);
581 }
582 } else
583 break;
584 }
585 if (wakeup) sorwakeup(so);
586 return (0);
587}
588
4c45483e 589void
15637ed4
RG
590spp_ctlinput(cmd, arg)
591 int cmd;
592 caddr_t arg;
593{
594 struct ns_addr *na;
4c45483e 595 struct ns_errp *errp = 0;
15637ed4
RG
596 struct nspcb *nsp;
597 struct sockaddr_ns *sns;
598 int type;
599
600 if (cmd < 0 || cmd > PRC_NCMDS)
601 return;
602 type = NS_ERR_UNREACH_HOST;
603
604 switch (cmd) {
605
606 case PRC_ROUTEDEAD:
607 return;
608
609 case PRC_IFDOWN:
610 case PRC_HOSTDEAD:
611 case PRC_HOSTUNREACH:
612 sns = (struct sockaddr_ns *)arg;
613 if (sns->sns_family != AF_NS)
614 return;
615 na = &sns->sns_addr;
616 break;
617
618 default:
619 errp = (struct ns_errp *)arg;
620 na = &errp->ns_err_idp.idp_dna;
621 type = errp->ns_err_num;
622 type = ntohs((u_short)type);
623 }
624 switch (type) {
625
626 case NS_ERR_UNREACH_HOST:
627 ns_pcbnotify(na, (int)nsctlerrmap[cmd], spp_abort, (long) 0);
628 break;
629
630 case NS_ERR_TOO_BIG:
631 case NS_ERR_NOSOCK:
632 nsp = ns_pcblookup(na, errp->ns_err_idp.idp_sna.x_port,
633 NS_WILDCARD);
634 if (nsp) {
635 if(nsp->nsp_pcb)
636 (void) spp_drop((struct sppcb *)nsp->nsp_pcb,
637 (int)nsctlerrmap[cmd]);
638 else
639 (void) idp_drop(nsp, (int)nsctlerrmap[cmd]);
640 }
641 break;
642
643 case NS_ERR_FULLUP:
644 ns_pcbnotify(na, 0, spp_quench, (long) 0);
645 }
646}
647/*
648 * When a source quench is received, close congestion window
649 * to one packet. We will gradually open it again as we proceed.
650 */
4c45483e 651static void
fde1aeb2 652spp_quench(nsp, errno)
15637ed4 653 struct nspcb *nsp;
fde1aeb2 654 int errno;
15637ed4
RG
655{
656 struct sppcb *cb = nstosppcb(nsp);
657
658 if (cb)
659 cb->s_cwnd = CUNIT;
660}
661
662#ifdef notdef
663int
664spp_fixmtu(nsp)
665register struct nspcb *nsp;
666{
667 register struct sppcb *cb = (struct sppcb *)(nsp->nsp_pcb);
668 register struct mbuf *m;
669 register struct spidp *si;
670 struct ns_errp *ep;
671 struct sockbuf *sb;
672 int badseq, len;
673 struct mbuf *firstbad, *m0;
674
675 if (cb) {
676 /*
677 * The notification that we have sent
678 * too much is bad news -- we will
679 * have to go through queued up so far
680 * splitting ones which are too big and
681 * reassigning sequence numbers and checksums.
682 * we should then retransmit all packets from
683 * one above the offending packet to the last one
684 * we had sent (or our allocation)
685 * then the offending one so that the any queued
686 * data at our destination will be discarded.
687 */
688 ep = (struct ns_errp *)nsp->nsp_notify_param;
689 sb = &nsp->nsp_socket->so_snd;
690 cb->s_mtu = ep->ns_err_param;
691 badseq = SI(&ep->ns_err_idp)->si_seq;
692 for (m = sb->sb_mb; m; m = m->m_act) {
693 si = mtod(m, struct spidp *);
694 if (si->si_seq == badseq)
695 break;
696 }
697 if (m == 0) return;
698 firstbad = m;
699 /*for (;;) {*/
700 /* calculate length */
701 for (m0 = m, len = 0; m ; m = m->m_next)
702 len += m->m_len;
703 if (len > cb->s_mtu) {
704 }
705 /* FINISH THIS
706 } */
707 }
708}
709#endif
710
4c45483e 711int
15637ed4
RG
712spp_output(cb, m0)
713 register struct sppcb *cb;
714 struct mbuf *m0;
715{
716 struct socket *so = cb->s_nspcb->nsp_socket;
717 register struct mbuf *m;
718 register struct spidp *si = (struct spidp *) 0;
719 register struct sockbuf *sb = &so->so_snd;
720 int len = 0, win, rcv_win;
721 short span, off, recordp = 0;
722 u_short alo;
723 int error = 0, sendalot;
724#ifdef notdef
725 int idle;
726#endif
727 struct mbuf *mprev;
728 extern int idpcksum;
729
730 if (m0) {
731 int mtu = cb->s_mtu;
732 int datalen;
733 /*
734 * Make sure that packet isn't too big.
735 */
736 for (m = m0; m ; m = m->m_next) {
737 mprev = m;
738 len += m->m_len;
739 if (m->m_flags & M_EOR)
740 recordp = 1;
741 }
742 datalen = (cb->s_flags & SF_HO) ?
743 len - sizeof (struct sphdr) : len;
744 if (datalen > mtu) {
745 if (cb->s_flags & SF_PI) {
746 m_freem(m0);
747 return (EMSGSIZE);
748 } else {
749 int oldEM = cb->s_cc & SP_EM;
750
751 cb->s_cc &= ~SP_EM;
752 while (len > mtu) {
753 /*
754 * Here we are only being called
755 * from usrreq(), so it is OK to
756 * block.
757 */
758 m = m_copym(m0, 0, mtu, M_WAIT);
759 if (cb->s_flags & SF_NEWCALL) {
760 struct mbuf *mm = m;
761 spp_newchecks[7]++;
762 while (mm) {
763 mm->m_flags &= ~M_EOR;
764 mm = mm->m_next;
765 }
766 }
767 error = spp_output(cb, m);
768 if (error) {
769 cb->s_cc |= oldEM;
770 m_freem(m0);
771 return(error);
772 }
773 m_adj(m0, mtu);
774 len -= mtu;
775 }
776 cb->s_cc |= oldEM;
777 }
778 }
779 /*
780 * Force length even, by adding a "garbage byte" if
781 * necessary.
782 */
783 if (len & 1) {
784 m = mprev;
785 if (M_TRAILINGSPACE(m) >= 1)
786 m->m_len++;
787 else {
788 struct mbuf *m1 = m_get(M_DONTWAIT, MT_DATA);
789
790 if (m1 == 0) {
791 m_freem(m0);
792 return (ENOBUFS);
793 }
794 m1->m_len = 1;
795 *(mtod(m1, u_char *)) = 0;
796 m->m_next = m1;
797 }
798 }
799 m = m_gethdr(M_DONTWAIT, MT_HEADER);
800 if (m == 0) {
801 m_freem(m0);
802 return (ENOBUFS);
803 }
804 /*
805 * Fill in mbuf with extended SP header
806 * and addresses and length put into network format.
807 */
808 MH_ALIGN(m, sizeof (struct spidp));
809 m->m_len = sizeof (struct spidp);
810 m->m_next = m0;
811 si = mtod(m, struct spidp *);
812 si->si_i = *cb->s_idp;
813 si->si_s = cb->s_shdr;
814 if ((cb->s_flags & SF_PI) && (cb->s_flags & SF_HO)) {
815 register struct sphdr *sh;
816 if (m0->m_len < sizeof (*sh)) {
817 if((m0 = m_pullup(m0, sizeof(*sh))) == NULL) {
818 (void) m_free(m);
819 m_freem(m0);
820 return (EINVAL);
821 }
822 m->m_next = m0;
823 }
824 sh = mtod(m0, struct sphdr *);
825 si->si_dt = sh->sp_dt;
826 si->si_cc |= sh->sp_cc & SP_EM;
827 m0->m_len -= sizeof (*sh);
828 m0->m_data += sizeof (*sh);
829 len -= sizeof (*sh);
830 }
831 len += sizeof(*si);
832 if ((cb->s_flags2 & SF_NEWCALL) && recordp) {
833 si->si_cc |= SP_EM;
834 spp_newchecks[8]++;
835 }
836 if (cb->s_oobflags & SF_SOOB) {
837 /*
838 * Per jqj@cornell:
839 * make sure OB packets convey exactly 1 byte.
840 * If the packet is 1 byte or larger, we
841 * have already guaranted there to be at least
842 * one garbage byte for the checksum, and
843 * extra bytes shouldn't hurt!
844 */
845 if (len > sizeof(*si)) {
846 si->si_cc |= SP_OB;
847 len = (1 + sizeof(*si));
848 }
849 }
850 si->si_len = htons((u_short)len);
851 m->m_pkthdr.len = ((len - 1) | 1) + 1;
852 /*
853 * queue stuff up for output
854 */
855 sbappendrecord(sb, m);
856 cb->s_seq++;
857 }
858#ifdef notdef
859 idle = (cb->s_smax == (cb->s_rack - 1));
860#endif
861again:
862 sendalot = 0;
863 off = cb->s_snxt - cb->s_rack;
864 win = min(cb->s_swnd, (cb->s_cwnd/CUNIT));
865
866 /*
867 * If in persist timeout with window of 0, send a probe.
868 * Otherwise, if window is small but nonzero
869 * and timer expired, send what we can and go into
870 * transmit state.
871 */
872 if (cb->s_force == 1 + SPPT_PERSIST) {
873 if (win != 0) {
874 cb->s_timer[SPPT_PERSIST] = 0;
875 cb->s_rxtshift = 0;
876 }
877 }
878 span = cb->s_seq - cb->s_rack;
879 len = min(span, win) - off;
880
881 if (len < 0) {
882 /*
883 * Window shrank after we went into it.
884 * If window shrank to 0, cancel pending
885 * restransmission and pull s_snxt back
886 * to (closed) window. We will enter persist
887 * state below. If the widndow didn't close completely,
888 * just wait for an ACK.
889 */
890 len = 0;
891 if (win == 0) {
892 cb->s_timer[SPPT_REXMT] = 0;
893 cb->s_snxt = cb->s_rack;
894 }
895 }
896 if (len > 1)
897 sendalot = 1;
898 rcv_win = sbspace(&so->so_rcv);
899
900 /*
901 * Send if we owe peer an ACK.
902 */
903 if (cb->s_oobflags & SF_SOOB) {
904 /*
905 * must transmit this out of band packet
906 */
907 cb->s_oobflags &= ~ SF_SOOB;
908 sendalot = 1;
909 sppstat.spps_sndurg++;
910 goto found;
911 }
912 if (cb->s_flags & SF_ACKNOW)
913 goto send;
914 if (cb->s_state < TCPS_ESTABLISHED)
915 goto send;
916 /*
917 * Silly window can't happen in spp.
918 * Code from tcp deleted.
919 */
920 if (len)
921 goto send;
922 /*
923 * Compare available window to amount of window
924 * known to peer (as advertised window less
925 * next expected input.) If the difference is at least two
926 * packets or at least 35% of the mximum possible window,
927 * then want to send a window update to peer.
928 */
929 if (rcv_win > 0) {
930 u_short delta = 1 + cb->s_alo - cb->s_ack;
931 int adv = rcv_win - (delta * cb->s_mtu);
932
933 if ((so->so_rcv.sb_cc == 0 && adv >= (2 * cb->s_mtu)) ||
934 (100 * adv / so->so_rcv.sb_hiwat >= 35)) {
935 sppstat.spps_sndwinup++;
936 cb->s_flags |= SF_ACKNOW;
937 goto send;
938 }
939
940 }
941 /*
942 * Many comments from tcp_output.c are appropriate here
943 * including . . .
944 * If send window is too small, there is data to transmit, and no
945 * retransmit or persist is pending, then go to persist state.
946 * If nothing happens soon, send when timer expires:
947 * if window is nonzero, transmit what we can,
948 * otherwise send a probe.
949 */
950 if (so->so_snd.sb_cc && cb->s_timer[SPPT_REXMT] == 0 &&
951 cb->s_timer[SPPT_PERSIST] == 0) {
952 cb->s_rxtshift = 0;
953 spp_setpersist(cb);
954 }
955 /*
956 * No reason to send a packet, just return.
957 */
958 cb->s_outx = 1;
959 return (0);
960
961send:
962 /*
963 * Find requested packet.
964 */
965 si = 0;
966 if (len > 0) {
967 cb->s_want = cb->s_snxt;
968 for (m = sb->sb_mb; m; m = m->m_act) {
969 si = mtod(m, struct spidp *);
970 if (SSEQ_LEQ(cb->s_snxt, si->si_seq))
971 break;
972 }
973 found:
974 if (si) {
975 if (si->si_seq == cb->s_snxt)
976 cb->s_snxt++;
977 else
978 sppstat.spps_sndvoid++, si = 0;
979 }
980 }
981 /*
982 * update window
983 */
984 if (rcv_win < 0)
985 rcv_win = 0;
986 alo = cb->s_ack - 1 + (rcv_win / ((short)cb->s_mtu));
987 if (SSEQ_LT(alo, cb->s_alo))
988 alo = cb->s_alo;
989
990 if (si) {
991 /*
992 * must make a copy of this packet for
993 * idp_output to monkey with
994 */
995 m = m_copy(dtom(si), 0, (int)M_COPYALL);
996 if (m == NULL) {
997 return (ENOBUFS);
998 }
999 si = mtod(m, struct spidp *);
1000 if (SSEQ_LT(si->si_seq, cb->s_smax))
1001 sppstat.spps_sndrexmitpack++;
1002 else
1003 sppstat.spps_sndpack++;
1004 } else if (cb->s_force || cb->s_flags & SF_ACKNOW) {
1005 /*
1006 * Must send an acknowledgement or a probe
1007 */
1008 if (cb->s_force)
1009 sppstat.spps_sndprobe++;
1010 if (cb->s_flags & SF_ACKNOW)
1011 sppstat.spps_sndacks++;
1012 m = m_gethdr(M_DONTWAIT, MT_HEADER);
1013 if (m == 0)
1014 return (ENOBUFS);
1015 /*
1016 * Fill in mbuf with extended SP header
1017 * and addresses and length put into network format.
1018 */
1019 MH_ALIGN(m, sizeof (struct spidp));
1020 m->m_len = sizeof (*si);
1021 m->m_pkthdr.len = sizeof (*si);
1022 si = mtod(m, struct spidp *);
1023 si->si_i = *cb->s_idp;
1024 si->si_s = cb->s_shdr;
1025 si->si_seq = cb->s_smax + 1;
1026 si->si_len = htons(sizeof (*si));
1027 si->si_cc |= SP_SP;
1028 } else {
1029 cb->s_outx = 3;
1030 if (so->so_options & SO_DEBUG || traceallspps)
1031 spp_trace(SA_OUTPUT, cb->s_state, cb, si, 0);
1032 return (0);
1033 }
1034 /*
1035 * Stuff checksum and output datagram.
1036 */
1037 if ((si->si_cc & SP_SP) == 0) {
1038 if (cb->s_force != (1 + SPPT_PERSIST) ||
1039 cb->s_timer[SPPT_PERSIST] == 0) {
1040 /*
1041 * If this is a new packet and we are not currently
1042 * timing anything, time this one.
1043 */
1044 if (SSEQ_LT(cb->s_smax, si->si_seq)) {
1045 cb->s_smax = si->si_seq;
1046 if (cb->s_rtt == 0) {
1047 sppstat.spps_segstimed++;
1048 cb->s_rtseq = si->si_seq;
1049 cb->s_rtt = 1;
1050 }
1051 }
1052 /*
1053 * Set rexmt timer if not currently set,
1054 * Initial value for retransmit timer is smoothed
1055 * round-trip time + 2 * round-trip time variance.
1056 * Initialize shift counter which is used for backoff
1057 * of retransmit time.
1058 */
1059 if (cb->s_timer[SPPT_REXMT] == 0 &&
1060 cb->s_snxt != cb->s_rack) {
1061 cb->s_timer[SPPT_REXMT] = cb->s_rxtcur;
1062 if (cb->s_timer[SPPT_PERSIST]) {
1063 cb->s_timer[SPPT_PERSIST] = 0;
1064 cb->s_rxtshift = 0;
1065 }
1066 }
1067 } else if (SSEQ_LT(cb->s_smax, si->si_seq)) {
1068 cb->s_smax = si->si_seq;
1069 }
1070 } else if (cb->s_state < TCPS_ESTABLISHED) {
1071 if (cb->s_rtt == 0)
1072 cb->s_rtt = 1; /* Time initial handshake */
1073 if (cb->s_timer[SPPT_REXMT] == 0)
1074 cb->s_timer[SPPT_REXMT] = cb->s_rxtcur;
1075 }
1076 {
1077 /*
1078 * Do not request acks when we ack their data packets or
1079 * when we do a gratuitous window update.
1080 */
1081 if (((si->si_cc & SP_SP) == 0) || cb->s_force)
1082 si->si_cc |= SP_SA;
1083 si->si_seq = htons(si->si_seq);
1084 si->si_alo = htons(alo);
1085 si->si_ack = htons(cb->s_ack);
1086
1087 if (idpcksum) {
1088 si->si_sum = 0;
1089 len = ntohs(si->si_len);
1090 if (len & 1)
1091 len++;
1092 si->si_sum = ns_cksum(m, len);
1093 } else
1094 si->si_sum = 0xffff;
1095
1096 cb->s_outx = 4;
1097 if (so->so_options & SO_DEBUG || traceallspps)
1098 spp_trace(SA_OUTPUT, cb->s_state, cb, si, 0);
1099
1100 if (so->so_options & SO_DONTROUTE)
1101 error = ns_output(m, (struct route *)0, NS_ROUTETOIF);
1102 else
1103 error = ns_output(m, &cb->s_nspcb->nsp_route, 0);
1104 }
1105 if (error) {
1106 return (error);
1107 }
1108 sppstat.spps_sndtotal++;
1109 /*
1110 * Data sent (as far as we can tell).
1111 * If this advertises a larger window than any other segment,
1112 * then remember the size of the advertized window.
1113 * Any pending ACK has now been sent.
1114 */
1115 cb->s_force = 0;
1116 cb->s_flags &= ~(SF_ACKNOW|SF_DELACK);
1117 if (SSEQ_GT(alo, cb->s_alo))
1118 cb->s_alo = alo;
1119 if (sendalot)
1120 goto again;
1121 cb->s_outx = 5;
1122 return (0);
1123}
1124
1125int spp_do_persist_panics = 0;
1126
4c45483e 1127static void
15637ed4
RG
1128spp_setpersist(cb)
1129 register struct sppcb *cb;
1130{
1131 register t = ((cb->s_srtt >> 2) + cb->s_rttvar) >> 1;
1132 extern int spp_backoff[];
1133
1134 if (cb->s_timer[SPPT_REXMT] && spp_do_persist_panics)
1135 panic("spp_output REXMT");
1136 /*
1137 * Start/restart persistance timer.
1138 */
1139 SPPT_RANGESET(cb->s_timer[SPPT_PERSIST],
1140 t*spp_backoff[cb->s_rxtshift],
1141 SPPTV_PERSMIN, SPPTV_PERSMAX);
1142 if (cb->s_rxtshift < SPP_MAXRXTSHIFT)
1143 cb->s_rxtshift++;
1144}
4c45483e 1145
15637ed4 1146/*ARGSUSED*/
4c45483e 1147int
15637ed4
RG
1148spp_ctloutput(req, so, level, name, value)
1149 int req;
1150 struct socket *so;
4c45483e 1151 int level;
15637ed4
RG
1152 int name;
1153 struct mbuf **value;
1154{
1155 register struct mbuf *m;
1156 struct nspcb *nsp = sotonspcb(so);
1157 register struct sppcb *cb;
1158 int mask, error = 0;
1159
1160 if (level != NSPROTO_SPP) {
1161 /* This will have to be changed when we do more general
1162 stacking of protocols */
1163 return (idp_ctloutput(req, so, level, name, value));
1164 }
1165 if (nsp == NULL) {
1166 error = EINVAL;
1167 goto release;
1168 } else
1169 cb = nstosppcb(nsp);
1170
1171 switch (req) {
1172
1173 case PRCO_GETOPT:
1174 if (value == NULL)
1175 return (EINVAL);
1176 m = m_get(M_DONTWAIT, MT_DATA);
1177 if (m == NULL)
1178 return (ENOBUFS);
1179 switch (name) {
1180
1181 case SO_HEADERS_ON_INPUT:
1182 mask = SF_HI;
1183 goto get_flags;
1184
1185 case SO_HEADERS_ON_OUTPUT:
1186 mask = SF_HO;
1187 get_flags:
1188 m->m_len = sizeof(short);
1189 *mtod(m, short *) = cb->s_flags & mask;
1190 break;
1191
1192 case SO_MTU:
1193 m->m_len = sizeof(u_short);
1194 *mtod(m, short *) = cb->s_mtu;
1195 break;
1196
1197 case SO_LAST_HEADER:
1198 m->m_len = sizeof(struct sphdr);
1199 *mtod(m, struct sphdr *) = cb->s_rhdr;
1200 break;
1201
1202 case SO_DEFAULT_HEADERS:
1203 m->m_len = sizeof(struct spidp);
1204 *mtod(m, struct sphdr *) = cb->s_shdr;
1205 break;
1206
1207 default:
1208 error = EINVAL;
1209 }
1210 *value = m;
1211 break;
1212
1213 case PRCO_SETOPT:
1214 if (value == 0 || *value == 0) {
1215 error = EINVAL;
1216 break;
1217 }
1218 switch (name) {
1219 int *ok;
1220
1221 case SO_HEADERS_ON_INPUT:
1222 mask = SF_HI;
1223 goto set_head;
1224
1225 case SO_HEADERS_ON_OUTPUT:
1226 mask = SF_HO;
1227 set_head:
1228 if (cb->s_flags & SF_PI) {
1229 ok = mtod(*value, int *);
1230 if (*ok)
1231 cb->s_flags |= mask;
1232 else
1233 cb->s_flags &= ~mask;
1234 } else error = EINVAL;
1235 break;
1236
1237 case SO_MTU:
1238 cb->s_mtu = *(mtod(*value, u_short *));
1239 break;
1240
1241#ifdef SF_NEWCALL
1242 case SO_NEWCALL:
1243 ok = mtod(*value, int *);
1244 if (*ok) {
1245 cb->s_flags2 |= SF_NEWCALL;
1246 spp_newchecks[5]++;
1247 } else {
1248 cb->s_flags2 &= ~SF_NEWCALL;
1249 spp_newchecks[6]++;
1250 }
1251 break;
1252#endif
1253
1254 case SO_DEFAULT_HEADERS:
1255 {
1256 register struct sphdr *sp
1257 = mtod(*value, struct sphdr *);
1258 cb->s_dt = sp->sp_dt;
1259 cb->s_cc = sp->sp_cc & SP_EM;
1260 }
1261 break;
1262
1263 default:
1264 error = EINVAL;
1265 }
1266 m_freem(*value);
1267 break;
1268 }
1269 release:
1270 return (error);
1271}
1272
1273/*ARGSUSED*/
4c45483e 1274int
fde1aeb2 1275spp_usrreq(so, req, m, nam, controlp, dummy)
15637ed4
RG
1276 struct socket *so;
1277 int req;
1278 struct mbuf *m, *nam, *controlp;
fde1aeb2 1279 struct mbuf *dummy;
15637ed4
RG
1280{
1281 struct nspcb *nsp = sotonspcb(so);
4c45483e 1282 register struct sppcb *cb = 0;
15637ed4
RG
1283 int s = splnet();
1284 int error = 0, ostate;
1285 struct mbuf *mm;
1286 register struct sockbuf *sb;
1287
1288 if (req == PRU_CONTROL)
1289 return (ns_control(so, (int)m, (caddr_t)nam,
1290 (struct ifnet *)controlp));
1291 if (nsp == NULL) {
1292 if (req != PRU_ATTACH) {
1293 error = EINVAL;
1294 goto release;
1295 }
1296 } else
1297 cb = nstosppcb(nsp);
1298
1299 ostate = cb ? cb->s_state : 0;
1300
1301 switch (req) {
1302
1303 case PRU_ATTACH:
1304 if (nsp != NULL) {
1305 error = EISCONN;
1306 break;
1307 }
1308 error = ns_pcballoc(so, &nspcb);
1309 if (error)
1310 break;
1311 if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
1312 error = soreserve(so, (u_long) 3072, (u_long) 3072);
1313 if (error)
1314 break;
1315 }
1316 nsp = sotonspcb(so);
1317
1318 mm = m_getclr(M_DONTWAIT, MT_PCB);
1319 sb = &so->so_snd;
1320
1321 if (mm == NULL) {
1322 error = ENOBUFS;
1323 break;
1324 }
1325 cb = mtod(mm, struct sppcb *);
1326 mm = m_getclr(M_DONTWAIT, MT_HEADER);
1327 if (mm == NULL) {
1328 (void) m_free(dtom(m));
1329 error = ENOBUFS;
1330 break;
1331 }
1332 cb->s_idp = mtod(mm, struct idp *);
1333 cb->s_state = TCPS_LISTEN;
1334 cb->s_smax = -1;
1335 cb->s_swl1 = -1;
1336 cb->s_q.si_next = cb->s_q.si_prev = &cb->s_q;
1337 cb->s_nspcb = nsp;
1338 cb->s_mtu = 576 - sizeof (struct spidp);
1339 cb->s_cwnd = sbspace(sb) * CUNIT / cb->s_mtu;
1340 cb->s_ssthresh = cb->s_cwnd;
1341 cb->s_cwmx = sbspace(sb) * CUNIT /
1342 (2 * sizeof (struct spidp));
1343 /* Above is recomputed when connecting to account
1344 for changed buffering or mtu's */
1345 cb->s_rtt = SPPTV_SRTTBASE;
1346 cb->s_rttvar = SPPTV_SRTTDFLT << 2;
1347 SPPT_RANGESET(cb->s_rxtcur,
1348 ((SPPTV_SRTTBASE >> 2) + (SPPTV_SRTTDFLT << 2)) >> 1,
1349 SPPTV_MIN, SPPTV_REXMTMAX);
1350 nsp->nsp_pcb = (caddr_t) cb;
1351 break;
1352
1353 case PRU_DETACH:
1354 if (nsp == NULL) {
1355 error = ENOTCONN;
1356 break;
1357 }
1358 if (cb->s_state > TCPS_LISTEN)
1359 cb = spp_disconnect(cb);
1360 else
1361 cb = spp_close(cb);
1362 break;
1363
1364 case PRU_BIND:
1365 error = ns_pcbbind(nsp, nam);
1366 break;
1367
1368 case PRU_LISTEN:
1369 if (nsp->nsp_lport == 0)
1370 error = ns_pcbbind(nsp, (struct mbuf *)0);
1371 if (error == 0)
1372 cb->s_state = TCPS_LISTEN;
1373 break;
1374
1375 /*
1376 * Initiate connection to peer.
1377 * Enter SYN_SENT state, and mark socket as connecting.
1378 * Start keep-alive timer, setup prototype header,
1379 * Send initial system packet requesting connection.
1380 */
1381 case PRU_CONNECT:
1382 if (nsp->nsp_lport == 0) {
1383 error = ns_pcbbind(nsp, (struct mbuf *)0);
1384 if (error)
1385 break;
1386 }
1387 error = ns_pcbconnect(nsp, nam);
1388 if (error)
1389 break;
1390 soisconnecting(so);
1391 sppstat.spps_connattempt++;
1392 cb->s_state = TCPS_SYN_SENT;
1393 cb->s_did = 0;
1394 spp_template(cb);
1395 cb->s_timer[SPPT_KEEP] = SPPTV_KEEP;
1396 cb->s_force = 1 + SPPTV_KEEP;
1397 /*
1398 * Other party is required to respond to
1399 * the port I send from, but he is not
1400 * required to answer from where I am sending to,
1401 * so allow wildcarding.
1402 * original port I am sending to is still saved in
1403 * cb->s_dport.
1404 */
1405 nsp->nsp_fport = 0;
1406 error = spp_output(cb, (struct mbuf *) 0);
1407 break;
1408
1409 case PRU_CONNECT2:
1410 error = EOPNOTSUPP;
1411 break;
1412
1413 /*
1414 * We may decide later to implement connection closing
1415 * handshaking at the spp level optionally.
1416 * here is the hook to do it:
1417 */
1418 case PRU_DISCONNECT:
1419 cb = spp_disconnect(cb);
1420 break;
1421
1422 /*
1423 * Accept a connection. Essentially all the work is
1424 * done at higher levels; just return the address
1425 * of the peer, storing through addr.
1426 */
1427 case PRU_ACCEPT: {
1428 struct sockaddr_ns *sns = mtod(nam, struct sockaddr_ns *);
1429
1430 nam->m_len = sizeof (struct sockaddr_ns);
1431 sns->sns_family = AF_NS;
1432 sns->sns_addr = nsp->nsp_faddr;
1433 break;
1434 }
1435
1436 case PRU_SHUTDOWN:
1437 socantsendmore(so);
1438 cb = spp_usrclosed(cb);
1439 if (cb)
1440 error = spp_output(cb, (struct mbuf *) 0);
1441 break;
1442
1443 /*
1444 * After a receive, possibly send acknowledgment
1445 * updating allocation.
1446 */
1447 case PRU_RCVD:
1448 cb->s_flags |= SF_RVD;
1449 (void) spp_output(cb, (struct mbuf *) 0);
1450 cb->s_flags &= ~SF_RVD;
1451 break;
1452
1453 case PRU_ABORT:
1454 (void) spp_drop(cb, ECONNABORTED);
1455 break;
1456
1457 case PRU_SENSE:
1458 case PRU_CONTROL:
1459 m = NULL;
1460 error = EOPNOTSUPP;
1461 break;
1462
1463 case PRU_RCVOOB:
1464 if ((cb->s_oobflags & SF_IOOB) || so->so_oobmark ||
1465 (so->so_state & SS_RCVATMARK)) {
1466 m->m_len = 1;
1467 *mtod(m, caddr_t) = cb->s_iobc;
1468 break;
1469 }
1470 error = EINVAL;
1471 break;
1472
1473 case PRU_SENDOOB:
1474 if (sbspace(&so->so_snd) < -512) {
1475 error = ENOBUFS;
1476 break;
1477 }
1478 cb->s_oobflags |= SF_SOOB;
1479 /* fall into */
1480 case PRU_SEND:
1481 if (controlp) {
1482 u_short *p = mtod(controlp, u_short *);
1483 spp_newchecks[2]++;
1484 if ((p[0] == 5) && p[1] == 1) { /* XXXX, for testing */
1485 cb->s_shdr.sp_dt = *(u_char *)(&p[2]);
1486 spp_newchecks[3]++;
1487 }
1488 m_freem(controlp);
1489 }
1490 controlp = NULL;
1491 error = spp_output(cb, m);
1492 m = NULL;
1493 break;
1494
1495 case PRU_SOCKADDR:
1496 ns_setsockaddr(nsp, nam);
1497 break;
1498
1499 case PRU_PEERADDR:
1500 ns_setpeeraddr(nsp, nam);
1501 break;
1502
1503 case PRU_SLOWTIMO:
1504 cb = spp_timers(cb, (int)nam);
1505 req |= ((int)nam) << 8;
1506 break;
1507
1508 case PRU_FASTTIMO:
1509 case PRU_PROTORCV:
1510 case PRU_PROTOSEND:
1511 error = EOPNOTSUPP;
1512 break;
1513
1514 default:
1515 panic("sp_usrreq");
1516 }
1517 if (cb && (so->so_options & SO_DEBUG || traceallspps))
1518 spp_trace(SA_USER, (u_char)ostate, cb, (struct spidp *)0, req);
1519release:
1520 if (controlp != NULL)
1521 m_freem(controlp);
1522 if (m != NULL)
1523 m_freem(m);
1524 splx(s);
1525 return (error);
1526}
1527
4c45483e 1528int
fde1aeb2 1529spp_usrreq_sp(so, req, m, nam, controlp, dummy)
15637ed4
RG
1530 struct socket *so;
1531 int req;
1532 struct mbuf *m, *nam, *controlp;
fde1aeb2 1533 struct mbuf *dummy;
15637ed4 1534{
fde1aeb2 1535 int error = spp_usrreq(so, req, m, nam, controlp, dummy);
15637ed4
RG
1536
1537 if (req == PRU_ATTACH && error == 0) {
1538 struct nspcb *nsp = sotonspcb(so);
1539 ((struct sppcb *)nsp->nsp_pcb)->s_flags |=
1540 (SF_HI | SF_HO | SF_PI);
1541 }
1542 return (error);
1543}
1544
1545/*
1546 * Create template to be used to send spp packets on a connection.
1547 * Called after host entry created, fills
1548 * in a skeletal spp header (choosing connection id),
1549 * minimizing the amount of work necessary when the connection is used.
1550 */
4c45483e 1551static void
15637ed4
RG
1552spp_template(cb)
1553 register struct sppcb *cb;
1554{
1555 register struct nspcb *nsp = cb->s_nspcb;
1556 register struct idp *idp = cb->s_idp;
1557 register struct sockbuf *sb = &(nsp->nsp_socket->so_snd);
1558
1559 idp->idp_pt = NSPROTO_SPP;
1560 idp->idp_sna = nsp->nsp_laddr;
1561 idp->idp_dna = nsp->nsp_faddr;
1562 cb->s_sid = htons(spp_iss);
1563 spp_iss += SPP_ISSINCR/2;
1564 cb->s_alo = 1;
1565 cb->s_cwnd = (sbspace(sb) * CUNIT) / cb->s_mtu;
1566 cb->s_ssthresh = cb->s_cwnd; /* Try to expand fast to full complement
1567 of large packets */
1568 cb->s_cwmx = (sbspace(sb) * CUNIT) / (2 * sizeof(struct spidp));
1569 cb->s_cwmx = max(cb->s_cwmx, cb->s_cwnd);
1570 /* But allow for lots of little packets as well */
1571}
1572
1573/*
1574 * Close a SPIP control block:
1575 * discard spp control block itself
1576 * discard ns protocol control block
1577 * wake up any sleepers
1578 */
1579struct sppcb *
1580spp_close(cb)
1581 register struct sppcb *cb;
1582{
1583 register struct spidp_q *s;
1584 struct nspcb *nsp = cb->s_nspcb;
1585 struct socket *so = nsp->nsp_socket;
1586 register struct mbuf *m;
1587
1588 s = cb->s_q.si_next;
1589 while (s != &(cb->s_q)) {
1590 s = s->si_next;
1591 m = dtom(s->si_prev);
1592 remque(s->si_prev);
1593 m_freem(m);
1594 }
1595 (void) m_free(dtom(cb->s_idp));
1596 (void) m_free(dtom(cb));
1597 nsp->nsp_pcb = 0;
1598 soisdisconnected(so);
1599 ns_pcbdetach(nsp);
1600 sppstat.spps_closed++;
1601 return ((struct sppcb *)0);
1602}
1603/*
1604 * Someday we may do level 3 handshaking
1605 * to close a connection or send a xerox style error.
1606 * For now, just close.
1607 */
1608struct sppcb *
1609spp_usrclosed(cb)
1610 register struct sppcb *cb;
1611{
1612 return (spp_close(cb));
1613}
1614struct sppcb *
1615spp_disconnect(cb)
1616 register struct sppcb *cb;
1617{
1618 return (spp_close(cb));
1619}
1620/*
1621 * Drop connection, reporting
1622 * the specified error.
1623 */
1624struct sppcb *
1625spp_drop(cb, errno)
1626 register struct sppcb *cb;
1627 int errno;
1628{
1629 struct socket *so = cb->s_nspcb->nsp_socket;
1630
1631 /*
1632 * someday, in the xerox world
1633 * we will generate error protocol packets
1634 * announcing that the socket has gone away.
1635 */
1636 if (TCPS_HAVERCVDSYN(cb->s_state)) {
1637 sppstat.spps_drops++;
1638 cb->s_state = TCPS_CLOSED;
1639 /*(void) tcp_output(cb);*/
1640 } else
1641 sppstat.spps_conndrops++;
1642 so->so_error = errno;
1643 return (spp_close(cb));
1644}
1645
4c45483e 1646static void
fde1aeb2 1647spp_abort(nsp, errno)
15637ed4 1648 struct nspcb *nsp;
fde1aeb2 1649 int errno;
15637ed4
RG
1650{
1651
1652 (void) spp_close((struct sppcb *)nsp->nsp_pcb);
1653}
1654
1655int spp_backoff[SPP_MAXRXTSHIFT+1] =
1656 { 1, 2, 4, 8, 16, 32, 64, 64, 64, 64, 64, 64, 64 };
1657/*
1658 * Fast timeout routine for processing delayed acks
1659 */
4c45483e 1660void
15637ed4
RG
1661spp_fasttimo()
1662{
1663 register struct nspcb *nsp;
1664 register struct sppcb *cb;
1665 int s = splnet();
1666
1667 nsp = nspcb.nsp_next;
1668 if (nsp)
1669 for (; nsp != &nspcb; nsp = nsp->nsp_next)
1670 if ((cb = (struct sppcb *)nsp->nsp_pcb) &&
1671 (cb->s_flags & SF_DELACK)) {
1672 cb->s_flags &= ~SF_DELACK;
1673 cb->s_flags |= SF_ACKNOW;
1674 sppstat.spps_delack++;
1675 (void) spp_output(cb, (struct mbuf *) 0);
1676 }
1677 splx(s);
1678}
1679
1680/*
1681 * spp protocol timeout routine called every 500 ms.
1682 * Updates the timers in all active pcb's and
1683 * causes finite state machine actions if timers expire.
1684 */
4c45483e 1685void
15637ed4
RG
1686spp_slowtimo()
1687{
1688 register struct nspcb *ip, *ipnxt;
1689 register struct sppcb *cb;
1690 int s = splnet();
1691 register int i;
1692
1693 /*
1694 * Search through tcb's and update active timers.
1695 */
1696 ip = nspcb.nsp_next;
1697 if (ip == 0) {
1698 splx(s);
1699 return;
1700 }
1701 while (ip != &nspcb) {
1702 cb = nstosppcb(ip);
1703 ipnxt = ip->nsp_next;
1704 if (cb == 0)
1705 goto tpgone;
1706 for (i = 0; i < SPPT_NTIMERS; i++) {
1707 if (cb->s_timer[i] && --cb->s_timer[i] == 0) {
1708 (void) spp_usrreq(cb->s_nspcb->nsp_socket,
fde1aeb2
GW
1709 PRU_SLOWTIMO,
1710 (struct mbuf *)0,
1711 (struct mbuf *)i,
1712 (struct mbuf *)0,
1713 (struct mbuf *)0);
15637ed4
RG
1714 if (ipnxt->nsp_prev != ip)
1715 goto tpgone;
1716 }
1717 }
1718 cb->s_idle++;
1719 if (cb->s_rtt)
1720 cb->s_rtt++;
1721tpgone:
1722 ip = ipnxt;
1723 }
1724 spp_iss += SPP_ISSINCR/PR_SLOWHZ; /* increment iss */
1725 splx(s);
1726}
1727/*
1728 * SPP timer processing.
1729 */
1730struct sppcb *
1731spp_timers(cb, timer)
1732 register struct sppcb *cb;
1733 int timer;
1734{
1735 long rexmt;
1736 int win;
1737
1738 cb->s_force = 1 + timer;
1739 switch (timer) {
1740
1741 /*
1742 * 2 MSL timeout in shutdown went off. TCP deletes connection
1743 * control block.
1744 */
1745 case SPPT_2MSL:
1746 printf("spp: SPPT_2MSL went off for no reason\n");
1747 cb->s_timer[timer] = 0;
1748 break;
1749
1750 /*
1751 * Retransmission timer went off. Message has not
1752 * been acked within retransmit interval. Back off
1753 * to a longer retransmit interval and retransmit one packet.
1754 */
1755 case SPPT_REXMT:
1756 if (++cb->s_rxtshift > SPP_MAXRXTSHIFT) {
1757 cb->s_rxtshift = SPP_MAXRXTSHIFT;
1758 sppstat.spps_timeoutdrop++;
1759 cb = spp_drop(cb, ETIMEDOUT);
1760 break;
1761 }
1762 sppstat.spps_rexmttimeo++;
1763 rexmt = ((cb->s_srtt >> 2) + cb->s_rttvar) >> 1;
1764 rexmt *= spp_backoff[cb->s_rxtshift];
1765 SPPT_RANGESET(cb->s_rxtcur, rexmt, SPPTV_MIN, SPPTV_REXMTMAX);
1766 cb->s_timer[SPPT_REXMT] = cb->s_rxtcur;
1767 /*
1768 * If we have backed off fairly far, our srtt
1769 * estimate is probably bogus. Clobber it
1770 * so we'll take the next rtt measurement as our srtt;
1771 * move the current srtt into rttvar to keep the current
1772 * retransmit times until then.
1773 */
1774 if (cb->s_rxtshift > SPP_MAXRXTSHIFT / 4 ) {
1775 cb->s_rttvar += (cb->s_srtt >> 2);
1776 cb->s_srtt = 0;
1777 }
1778 cb->s_snxt = cb->s_rack;
1779 /*
1780 * If timing a packet, stop the timer.
1781 */
1782 cb->s_rtt = 0;
1783 /*
1784 * See very long discussion in tcp_timer.c about congestion
1785 * window and sstrhesh
1786 */
1787 win = min(cb->s_swnd, (cb->s_cwnd/CUNIT)) / 2;
1788 if (win < 2)
1789 win = 2;
1790 cb->s_cwnd = CUNIT;
1791 cb->s_ssthresh = win * CUNIT;
1792 (void) spp_output(cb, (struct mbuf *) 0);
1793 break;
1794
1795 /*
1796 * Persistance timer into zero window.
1797 * Force a probe to be sent.
1798 */
1799 case SPPT_PERSIST:
1800 sppstat.spps_persisttimeo++;
1801 spp_setpersist(cb);
1802 (void) spp_output(cb, (struct mbuf *) 0);
1803 break;
1804
1805 /*
1806 * Keep-alive timer went off; send something
1807 * or drop connection if idle for too long.
1808 */
1809 case SPPT_KEEP:
1810 sppstat.spps_keeptimeo++;
1811 if (cb->s_state < TCPS_ESTABLISHED)
1812 goto dropit;
1813 if (cb->s_nspcb->nsp_socket->so_options & SO_KEEPALIVE) {
1814 if (cb->s_idle >= SPPTV_MAXIDLE)
1815 goto dropit;
1816 sppstat.spps_keepprobe++;
1817 (void) spp_output(cb, (struct mbuf *) 0);
1818 } else
1819 cb->s_idle = 0;
1820 cb->s_timer[SPPT_KEEP] = SPPTV_KEEP;
1821 break;
1822 dropit:
1823 sppstat.spps_keepdrops++;
1824 cb = spp_drop(cb, ETIMEDOUT);
1825 break;
1826 }
1827 return (cb);
1828}
fde1aeb2 1829#if 0
15637ed4
RG
1830int SppcbSize = sizeof (struct sppcb);
1831int NspcbSize = sizeof (struct nspcb);
fde1aeb2 1832#endif