Corrected msgs.c that it does function now, thanks to mte@hpy.fi.
[unix-history] / usr.bin / bdes / bdes.c
CommitLineData
44a1bce2
AM
1/*-
2 * Copyright (c) 1991 The Regents of the University of California.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * Matt Bishop of Dartmouth College.
7 *
8 * The United States Government has rights in this work pursuant
9 * to contract no. NAG 2-680 between the National Aeronautics and
10 * Space Administration and Dartmouth College.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by the University of
23 * California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 * may be used to endorse or promote products derived from this software
26 * without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 */
40
41#ifndef lint
42char copyright[] =
43"@(#) Copyright (c) 1991 The Regents of the University of California.\n\
44 All rights reserved.\n";
45#endif /* not lint */
46
47#ifndef lint
48static char sccsid[] = "@(#)bdes.c 5.5 (Berkeley) 6/27/91";
49#endif /* not lint */
50
51/*
52 * BDES -- DES encryption package for Berkeley Software Distribution 4.4
53 * options:
54 * -a key is in ASCII
55 * -b use ECB (electronic code book) mode
56 * -d invert (decrypt) input
57 * -f b use b-bit CFB (cipher feedback) mode
58 * -F b use b-bit CFB (cipher feedback) alternative mode
59 * -k key use key as the cryptographic key
60 * -m b generate a MAC of length b
61 * -o b use b-bit OFB (output feedback) mode
62 * -p don't reset the parity bit
63 * -v v use v as the initialization vector (ignored for ECB)
64 * note: the last character of the last block is the integer indicating
65 * how many characters of that block are to be output
66 *
67 * Author: Matt Bishop
68 * Department of Mathematics and Computer Science
69 * Dartmouth College
70 * Hanover, NH 03755
71 * Email: Matt.Bishop@dartmouth.edu
72 * ...!decvax!dartvax!Matt.Bishop
73 *
74 * See Technical Report PCS-TR91-158, Department of Mathematics and Computer
75 * Science, Dartmouth College, for a detailed description of the implemen-
76 * tation and differences between it and Sun's. The DES is described in
77 * FIPS PUB 46, and the modes in FIPS PUB 81 (see either the manual page
78 * or the technical report for a complete reference).
79 */
80
406810fb
AM
81#include <errno.h>
82#include <unistd.h>
83#include <stdio.h>
84#include <ctype.h>
85#include <stdlib.h>
86#include <string.h>
87
44a1bce2
AM
88#ifndef DES
89main()
90{
91 fprintf(stderr, "Crypt not available\n");
92 _exit(1);
93}
94#else
95
44a1bce2
AM
96/*
97 * BSD and System V systems offer special library calls that do
98 * block moves and fills, so if possible we take advantage of them
99 */
100#define MEMCPY(dest,src,len) bcopy((src),(dest),(len))
101#define MEMZERO(dest,len) bzero((dest),(len))
102
103/* Hide the calls to the primitive encryption routines. */
104#define FASTWAY
105#ifdef FASTWAY
106#define DES_KEY(buf) \
107 if (des_setkey(buf)) \
108 err("des_setkey", 0);
109#define DES_XFORM(buf) \
110 if (des_cipher(buf, buf, 0L, (inverse ? -1 : 1))) \
111 err("des_cipher", 0);
112#else
113#define DES_KEY(buf) { \
114 char bits1[64]; /* bits of key */ \
115 expand(buf, bits1); \
116 if (setkey(bits1)) \
117 err("setkey", 0); \
118 }
119#define DES_XFORM(buf) { \
120 char bits1[64]; /* bits of message */ \
121 expand(buf, bits1); \
122 if (encrypt(bits1, inverse)) \
123 err("encrypt", 0); \
124 compress(bits1, buf); \
125 }
126#endif
127
128/*
129 * this does an error-checking write
130 */
131#define READ(buf, n) fread(buf, sizeof(char), n, stdin)
132#define WRITE(buf,n) \
133 if (fwrite(buf, sizeof(char), n, stdout) != n) \
134 err(bn, NULL);
135
136/*
137 * some things to make references easier
138 */
139typedef char Desbuf[8];
140#define CHAR(x,i) (x[i])
141#define UCHAR(x,i) (x[i])
142#define BUFFER(x) (x)
143#define UBUFFER(x) (x)
144
145/*
146 * global variables and related macros
147 */
148#define KEY_DEFAULT 0 /* interpret radix of key from key */
149#define KEY_ASCII 1 /* key is in ASCII characters */
150int keybase = KEY_DEFAULT; /* how to interpret the key */
151
152enum { /* encrypt, decrypt, authenticate */
153 MODE_ENCRYPT, MODE_DECRYPT, MODE_AUTHENTICATE
154} mode = MODE_ENCRYPT;
155enum { /* ecb, cbc, cfb, cfba, ofb? */
156 ALG_ECB, ALG_CBC, ALG_CFB, ALG_OFB, ALG_CFBA
157} alg = ALG_CBC;
158
159Desbuf ivec; /* initialization vector */
160char bits[] = { /* used to extract bits from a char */
161 '\200', '\100', '\040', '\020', '\010', '\004', '\002', '\001'
162};
163int inverse; /* 0 to encrypt, 1 to decrypt */
164int macbits = -1; /* number of bits in authentication */
165int fbbits = -1; /* number of feedback bits */
166int pflag; /* 1 to preserve parity bits */
167
168main(ac, av)
169 int ac; /* arg count */
170 char **av; /* arg vector */
171{
172 extern int optind; /* option (argument) number */
173 extern char *optarg; /* argument to option if any */
174 register int i; /* counter in a for loop */
175 register char *p; /* used to obtain the key */
176 Desbuf msgbuf; /* I/O buffer */
177 int kflag; /* command-line encryptiooon key */
178 int argc; /* the real arg count */
179 char **argv; /* the real argument vector */
180
181 /*
182 * Hide the arguments from ps(1) by making private copies of them
183 * and clobbering the global (visible to ps(1)) ones.
184 */
185 argc = ac;
186 ac = 1;
187 argv = malloc((argc + 1) * sizeof(char *));
188 for (i = 0; i < argc; ++i) {
189 argv[i] = strdup(av[i]);
190 MEMZERO(av[i], strlen(av[i]));
191 }
192 argv[argc] = NULL;
193
194 /* initialize the initialization vctor */
195 MEMZERO(ivec, 8);
196
197 /* process the argument list */
198 kflag = 0;
199 while ((i = getopt(argc, argv, "abdF:f:k:m:o:pv:")) != EOF)
200 switch(i) {
201 case 'a': /* key is ASCII */
202 keybase = KEY_ASCII;
203 break;
204 case 'b': /* use ECB mode */
205 alg = ALG_ECB;
206 break;
207 case 'd': /* decrypt */
208 mode = MODE_DECRYPT;
209 break;
210 case 'F': /* use alternative CFB mode */
211 alg = ALG_CFBA;
212 if ((fbbits = setbits(optarg, 7)) > 56 || fbbits == 0)
213 err(-1, "-F: number must be 1-56 inclusive");
214 else if (fbbits == -1)
215 err(-1, "-F: number must be a multiple of 7");
216 break;
217 case 'f': /* use CFB mode */
218 alg = ALG_CFB;
219 if ((fbbits = setbits(optarg, 8)) > 64 || fbbits == 0)
220 err(-1, "-f: number must be 1-64 inclusive");
221 else if (fbbits == -1)
222 err(-1, "-f: number must be a multiple of 8");
223 break;
224 case 'k': /* encryption key */
225 kflag = 1;
226 cvtkey(BUFFER(msgbuf), optarg);
227 break;
228 case 'm': /* number of bits for MACing */
229 mode = MODE_AUTHENTICATE;
230 if ((macbits = setbits(optarg, 1)) > 64)
231 err(-1, "-m: number must be 0-64 inclusive");
232 break;
233 case 'o': /* use OFB mode */
234 alg = ALG_OFB;
235 if ((fbbits = setbits(optarg, 8)) > 64 || fbbits == 0)
236 err(-1, "-o: number must be 1-64 inclusive");
237 else if (fbbits == -1)
238 err(-1, "-o: number must be a multiple of 8");
239 break;
240 case 'p': /* preserve parity bits */
241 pflag = 1;
242 break;
243 case 'v': /* set initialization vector */
244 cvtkey(BUFFER(ivec), optarg);
245 break;
246 default: /* error */
247 usage();
248 }
249
250 if (!kflag) {
251 /*
252 * if the key's not ASCII, assume it is
253 */
254 keybase = KEY_ASCII;
255 /*
256 * get the key
257 */
258 p = getpass("Enter key: ");
259 /*
260 * copy it, nul-padded, into the key area
261 */
262 cvtkey(BUFFER(msgbuf), p);
263 }
264
265 makekey(msgbuf);
266 inverse = (alg == ALG_CBC || alg == ALG_ECB) && mode == MODE_DECRYPT;
267
268 switch(alg) {
269 case ALG_CBC:
270 switch(mode) {
271 case MODE_AUTHENTICATE: /* authenticate using CBC mode */
272 cbcauth();
273 break;
274 case MODE_DECRYPT: /* decrypt using CBC mode */
275 cbcdec();
276 break;
277 case MODE_ENCRYPT: /* encrypt using CBC mode */
278 cbcenc();
279 break;
280 }
281 break;
282 case ALG_CFB:
283 switch(mode) {
284 case MODE_AUTHENTICATE: /* authenticate using CFB mode */
285 cfbauth();
286 break;
287 case MODE_DECRYPT: /* decrypt using CFB mode */
288 cfbdec();
289 break;
290 case MODE_ENCRYPT: /* encrypt using CFB mode */
291 cfbenc();
292 break;
293 }
294 break;
295 case ALG_CFBA:
296 switch(mode) {
297 case MODE_AUTHENTICATE: /* authenticate using CFBA mode */
298 err(-1, "can't authenticate with CFBA mode");
299 break;
300 case MODE_DECRYPT: /* decrypt using CFBA mode */
301 cfbadec();
302 break;
303 case MODE_ENCRYPT: /* encrypt using CFBA mode */
304 cfbaenc();
305 break;
306 }
307 break;
308 case ALG_ECB:
309 switch(mode) {
310 case MODE_AUTHENTICATE: /* authenticate using ECB mode */
311 err(-1, "can't authenticate with ECB mode");
312 break;
313 case MODE_DECRYPT: /* decrypt using ECB mode */
314 ecbdec();
315 break;
316 case MODE_ENCRYPT: /* encrypt using ECB mode */
317 ecbenc();
318 break;
319 }
320 break;
321 case ALG_OFB:
322 switch(mode) {
323 case MODE_AUTHENTICATE: /* authenticate using OFB mode */
324 err(-1, "can't authenticate with OFB mode");
325 break;
326 case MODE_DECRYPT: /* decrypt using OFB mode */
327 ofbdec();
328 break;
329 case MODE_ENCRYPT: /* encrypt using OFB mode */
330 ofbenc();
331 break;
332 }
333 break;
334 }
335 exit(0);
336}
337
338/*
339 * print a warning message and, possibly, terminate
340 */
341err(n, s)
342 int n; /* offending block number */
343 char *s; /* the message */
344{
345 if (n > 0)
346 (void)fprintf(stderr, "bdes (block %d): ", n);
347 else
348 (void)fprintf(stderr, "bdes: ");
349 (void)fprintf(stderr, "%s\n", s ? s : strerror(errno));
350 exit(1);
351}
352
353/*
354 * map a hex character to an integer
355 */
356tobinhex(c, radix)
357 char c; /* char to be converted */
358 int radix; /* base (2 to 16) */
359{
360 switch(c) {
361 case '0': return(0x0);
362 case '1': return(0x1);
363 case '2': return(radix > 2 ? 0x2 : -1);
364 case '3': return(radix > 3 ? 0x3 : -1);
365 case '4': return(radix > 4 ? 0x4 : -1);
366 case '5': return(radix > 5 ? 0x5 : -1);
367 case '6': return(radix > 6 ? 0x6 : -1);
368 case '7': return(radix > 7 ? 0x7 : -1);
369 case '8': return(radix > 8 ? 0x8 : -1);
370 case '9': return(radix > 9 ? 0x9 : -1);
371 case 'A': case 'a': return(radix > 10 ? 0xa : -1);
372 case 'B': case 'b': return(radix > 11 ? 0xb : -1);
373 case 'C': case 'c': return(radix > 12 ? 0xc : -1);
374 case 'D': case 'd': return(radix > 13 ? 0xd : -1);
375 case 'E': case 'e': return(radix > 14 ? 0xe : -1);
376 case 'F': case 'f': return(radix > 15 ? 0xf : -1);
377 }
378 /*
379 * invalid character
380 */
381 return(-1);
382}
383
384/*
385 * convert the key to a bit pattern
386 */
387cvtkey(obuf, ibuf)
388 char *obuf; /* bit pattern */
389 char *ibuf; /* the key itself */
390{
391 register int i, j; /* counter in a for loop */
392 int nbuf[64]; /* used for hex/key translation */
393
394 /*
395 * just switch on the key base
396 */
397 switch(keybase) {
398 case KEY_ASCII: /* ascii to integer */
399 (void)strncpy(obuf, ibuf, 8);
400 return;
401 case KEY_DEFAULT: /* tell from context */
402 /*
403 * leading '0x' or '0X' == hex key
404 */
405 if (ibuf[0] == '0' && (ibuf[1] == 'x' || ibuf[1] == 'X')) {
406 ibuf = &ibuf[2];
407 /*
408 * now translate it, bombing on any illegal hex digit
409 */
410 for (i = 0; ibuf[i] && i < 16; i++)
411 if ((nbuf[i] = tobinhex(ibuf[i], 16)) == -1)
412 err(-1, "bad hex digit in key");
413 while (i < 16)
414 nbuf[i++] = 0;
415 for (i = 0; i < 8; i++)
416 obuf[i] =
417 ((nbuf[2*i]&0xf)<<4) | (nbuf[2*i+1]&0xf);
418 /* preserve parity bits */
419 pflag = 1;
420 return;
421 }
422 /*
423 * leading '0b' or '0B' == binary key
424 */
425 if (ibuf[0] == '0' && (ibuf[1] == 'b' || ibuf[1] == 'B')) {
426 ibuf = &ibuf[2];
427 /*
428 * now translate it, bombing on any illegal binary digit
429 */
430 for (i = 0; ibuf[i] && i < 16; i++)
431 if ((nbuf[i] = tobinhex(ibuf[i], 2)) == -1)
432 err(-1, "bad binary digit in key");
433 while (i < 64)
434 nbuf[i++] = 0;
435 for (i = 0; i < 8; i++)
436 for (j = 0; j < 8; j++)
437 obuf[i] = (obuf[i]<<1)|nbuf[8*i+j];
438 /* preserve parity bits */
439 pflag = 1;
440 return;
441 }
442 /*
443 * no special leader -- ASCII
444 */
445 (void)strncpy(obuf, ibuf, 8);
446 }
447}
448
449/*
450 * convert an ASCII string into a decimal number:
451 * 1. must be between 0 and 64 inclusive
452 * 2. must be a valid decimal number
453 * 3. must be a multiple of mult
454 */
455setbits(s, mult)
456 char *s; /* the ASCII string */
457 int mult; /* what it must be a multiple of */
458{
459 register char *p; /* pointer in a for loop */
460 register int n = 0; /* the integer collected */
461
462 /*
463 * skip white space
464 */
465 while (isspace(*s))
466 s++;
467 /*
468 * get the integer
469 */
470 for (p = s; *p; p++) {
471 if (isdigit(*p))
472 n = n * 10 + *p - '0';
473 else {
474 err(-1, "bad decimal digit in MAC length");
475 }
476 }
477 /*
478 * be sure it's a multiple of mult
479 */
480 return((n % mult != 0) ? -1 : n);
481}
482
483/*****************
484 * DES FUNCTIONS *
485 *****************/
486/*
487 * This sets the DES key and (if you're using the deszip version)
488 * the direction of the transformation. This uses the Sun
489 * to map the 64-bit key onto the 56 bits that the key schedule
490 * generation routines use: the old way, which just uses the user-
491 * supplied 64 bits as is, and the new way, which resets the parity
492 * bit to be the same as the low-order bit in each character. The
493 * new way generates a greater variety of key schedules, since many
494 * systems set the parity (high) bit of each character to 0, and the
495 * DES ignores the low order bit of each character.
496 */
497makekey(buf)
498 Desbuf buf; /* key block */
499{
500 register int i, j; /* counter in a for loop */
501 register int par; /* parity counter */
502
503 /*
504 * if the parity is not preserved, flip it
505 */
506 if (!pflag) {
507 for (i = 0; i < 8; i++) {
508 par = 0;
509 for (j = 1; j < 8; j++)
510 if ((bits[j]&UCHAR(buf, i)) != 0)
511 par++;
512 if ((par&01) == 01)
513 UCHAR(buf, i) = UCHAR(buf, i)&0177;
514 else
515 UCHAR(buf, i) = (UCHAR(buf, i)&0177)|0200;
516 }
517 }
518
519 DES_KEY(UBUFFER(buf));
520}
521
522/*
523 * This encrypts using the Electronic Code Book mode of DES
524 */
525ecbenc()
526{
527 register int n; /* number of bytes actually read */
528 register int bn; /* block number */
529 Desbuf msgbuf; /* I/O buffer */
530
531 for (bn = 0; (n = READ(BUFFER(msgbuf), 8)) == 8; bn++) {
532 /*
533 * do the transformation
534 */
535 DES_XFORM(UBUFFER(msgbuf));
536 WRITE(BUFFER(msgbuf), 8);
537 }
538 /*
539 * at EOF or last block -- in either ase, the last byte contains
540 * the character representation of the number of bytes in it
541 */
542 bn++;
543 MEMZERO(&CHAR(msgbuf, n), 8 - n);
544 CHAR(msgbuf, 7) = n;
545 DES_XFORM(UBUFFER(msgbuf));
546 WRITE(BUFFER(msgbuf), 8);
547
548}
549
550/*
551 * This decrypts using the Electronic Code Book mode of DES
552 */
553ecbdec()
554{
555 register int n; /* number of bytes actually read */
556 register int c; /* used to test for EOF */
557 register int bn; /* block number */
558 Desbuf msgbuf; /* I/O buffer */
559
560 for (bn = 1; (n = READ(BUFFER(msgbuf), 8)) == 8; bn++) {
561 /*
562 * do the transformation
563 */
564 DES_XFORM(UBUFFER(msgbuf));
565 /*
566 * if the last one, handle it specially
567 */
568 if ((c = getchar()) == EOF) {
569 n = CHAR(msgbuf, 7);
570 if (n < 0 || n > 7)
571 err(bn, "decryption failed (block corrupted)");
572 }
573 else
574 (void)ungetc(c, stdin);
575 WRITE(BUFFER(msgbuf), n);
576 }
577 if (n > 0)
578 err(bn, "decryption failed (incomplete block)");
579}
580
581/*
582 * This encrypts using the Cipher Block Chaining mode of DES
583 */
584cbcenc()
585{
586 register int n; /* number of bytes actually read */
587 register int bn; /* block number */
588 Desbuf msgbuf; /* I/O buffer */
589
590 /*
591 * do the transformation
592 */
593 for (bn = 1; (n = READ(BUFFER(msgbuf), 8)) == 8; bn++) {
594 for (n = 0; n < 8; n++)
595 CHAR(msgbuf, n) ^= CHAR(ivec, n);
596 DES_XFORM(UBUFFER(msgbuf));
597 MEMCPY(BUFFER(ivec), BUFFER(msgbuf), 8);
598 WRITE(BUFFER(msgbuf), 8);
599 }
600 /*
601 * at EOF or last block -- in either case, the last byte contains
602 * the character representation of the number of bytes in it
603 */
604 bn++;
605 MEMZERO(&CHAR(msgbuf, n), 8 - n);
606 CHAR(msgbuf, 7) = n;
607 for (n = 0; n < 8; n++)
608 CHAR(msgbuf, n) ^= CHAR(ivec, n);
609 DES_XFORM(UBUFFER(msgbuf));
610 WRITE(BUFFER(msgbuf), 8);
611
612}
613
614/*
615 * This decrypts using the Cipher Block Chaining mode of DES
616 */
617cbcdec()
618{
619 register int n; /* number of bytes actually read */
620 Desbuf msgbuf; /* I/O buffer */
621 Desbuf ibuf; /* temp buffer for initialization vector */
622 register int c; /* used to test for EOF */
623 register int bn; /* block number */
624
625 for (bn = 0; (n = READ(BUFFER(msgbuf), 8)) == 8; bn++) {
626 /*
627 * do the transformation
628 */
629 MEMCPY(BUFFER(ibuf), BUFFER(msgbuf), 8);
630 DES_XFORM(UBUFFER(msgbuf));
631 for (c = 0; c < 8; c++)
632 UCHAR(msgbuf, c) ^= UCHAR(ivec, c);
633 MEMCPY(BUFFER(ivec), BUFFER(ibuf), 8);
634 /*
635 * if the last one, handle it specially
636 */
637 if ((c = getchar()) == EOF) {
638 n = CHAR(msgbuf, 7);
639 if (n < 0 || n > 7)
640 err(bn, "decryption failed (block corrupted)");
641 }
642 else
643 (void)ungetc(c, stdin);
644 WRITE(BUFFER(msgbuf), n);
645 }
646 if (n > 0)
647 err(bn, "decryption failed (incomplete block)");
648}
649
650/*
651 * This authenticates using the Cipher Block Chaining mode of DES
652 */
653cbcauth()
654{
655 register int n, j; /* number of bytes actually read */
656 Desbuf msgbuf; /* I/O buffer */
657 Desbuf encbuf; /* encryption buffer */
658
659 /*
660 * do the transformation
661 * note we DISCARD the encrypted block;
662 * we only care about the last one
663 */
664 while ((n = READ(BUFFER(msgbuf), 8)) == 8) {
665 for (n = 0; n < 8; n++)
666 CHAR(encbuf, n) = CHAR(msgbuf, n) ^ CHAR(ivec, n);
667 DES_XFORM(UBUFFER(encbuf));
668 MEMCPY(BUFFER(ivec), BUFFER(encbuf), 8);
669 }
670 /*
671 * now compute the last one, right padding with '\0' if need be
672 */
673 if (n > 0) {
674 MEMZERO(&CHAR(msgbuf, n), 8 - n);
675 for (n = 0; n < 8; n++)
676 CHAR(encbuf, n) = CHAR(msgbuf, n) ^ CHAR(ivec, n);
677 DES_XFORM(UBUFFER(encbuf));
678 }
679 /*
680 * drop the bits
681 * we write chars until fewer than 7 bits,
682 * and then pad the last one with 0 bits
683 */
684 for (n = 0; macbits > 7; n++, macbits -= 8)
685 (void)putchar(CHAR(encbuf, n));
686 if (macbits > 0) {
687 CHAR(msgbuf, 0) = 0x00;
688 for (j = 0; j < macbits; j++)
689 CHAR(msgbuf, 0) |= (CHAR(encbuf, n)&bits[j]);
690 (void)putchar(CHAR(msgbuf, 0));
691 }
692}
693
694/*
695 * This encrypts using the Cipher FeedBack mode of DES
696 */
697cfbenc()
698{
699 register int n; /* number of bytes actually read */
700 register int nbytes; /* number of bytes to read */
701 register int bn; /* block number */
702 char ibuf[8]; /* input buffer */
703 Desbuf msgbuf; /* encryption buffer */
704
705 /*
706 * do things in bytes, not bits
707 */
708 nbytes = fbbits / 8;
709 /*
710 * do the transformation
711 */
712 for (bn = 1; (n = READ(ibuf, nbytes)) == nbytes; bn++) {
713 MEMCPY(BUFFER(msgbuf), BUFFER(ivec), 8);
714 DES_XFORM(UBUFFER(msgbuf));
715 for (n = 0; n < 8 - nbytes; n++)
716 UCHAR(ivec, n) = UCHAR(ivec, n+nbytes);
717 for (n = 0; n < nbytes; n++)
718 UCHAR(ivec, 8-nbytes+n) = ibuf[n] ^ UCHAR(msgbuf, n);
719 WRITE(&CHAR(ivec, 8-nbytes), nbytes);
720 }
721 /*
722 * at EOF or last block -- in either case, the last byte contains
723 * the character representation of the number of bytes in it
724 */
725 bn++;
726 MEMZERO(&ibuf[n], nbytes - n);
727 ibuf[nbytes - 1] = n;
728 MEMCPY(BUFFER(msgbuf), BUFFER(ivec), 8);
729 DES_XFORM(UBUFFER(msgbuf));
730 for (n = 0; n < nbytes; n++)
731 ibuf[n] ^= UCHAR(msgbuf, n);
732 WRITE(ibuf, nbytes);
733}
734
735/*
736 * This decrypts using the Cipher Block Chaining mode of DES
737 */
738cfbdec()
739{
740 register int n; /* number of bytes actually read */
741 register int c; /* used to test for EOF */
742 register int nbytes; /* number of bytes to read */
743 register int bn; /* block number */
744 char ibuf[8]; /* input buffer */
745 char obuf[8]; /* output buffer */
746 Desbuf msgbuf; /* encryption buffer */
747
748 /*
749 * do things in bytes, not bits
750 */
751 nbytes = fbbits / 8;
752 /*
753 * do the transformation
754 */
755 for (bn = 1; (n = READ(ibuf, nbytes)) == nbytes; bn++) {
756 MEMCPY(BUFFER(msgbuf), BUFFER(ivec), 8);
757 DES_XFORM(UBUFFER(msgbuf));
758 for (c = 0; c < 8 - nbytes; c++)
759 CHAR(ivec, c) = CHAR(ivec, c+nbytes);
760 for (c = 0; c < nbytes; c++) {
761 CHAR(ivec, 8-nbytes+c) = ibuf[c];
762 obuf[c] = ibuf[c] ^ UCHAR(msgbuf, c);
763 }
764 /*
765 * if the last one, handle it specially
766 */
767 if ((c = getchar()) == EOF) {
768 n = obuf[nbytes-1];
769 if (n < 0 || n > nbytes-1)
770 err(bn, "decryption failed (block corrupted)");
771 }
772 else
773 (void)ungetc(c, stdin);
774 WRITE(obuf, n);
775 }
776 if (n > 0)
777 err(bn, "decryption failed (incomplete block)");
778}
779
780/*
781 * This encrypts using the alternative Cipher FeedBack mode of DES
782 */
783cfbaenc()
784{
785 register int n; /* number of bytes actually read */
786 register int nbytes; /* number of bytes to read */
787 register int bn; /* block number */
788 char ibuf[8]; /* input buffer */
789 char obuf[8]; /* output buffer */
790 Desbuf msgbuf; /* encryption buffer */
791
792 /*
793 * do things in bytes, not bits
794 */
795 nbytes = fbbits / 7;
796 /*
797 * do the transformation
798 */
799 for (bn = 1; (n = READ(ibuf, nbytes)) == nbytes; bn++) {
800 MEMCPY(BUFFER(msgbuf), BUFFER(ivec), 8);
801 DES_XFORM(UBUFFER(msgbuf));
802 for (n = 0; n < 8 - nbytes; n++)
803 UCHAR(ivec, n) = UCHAR(ivec, n+nbytes);
804 for (n = 0; n < nbytes; n++)
805 UCHAR(ivec, 8-nbytes+n) = (ibuf[n] ^ UCHAR(msgbuf, n))
806 |0200;
807 for (n = 0; n < nbytes; n++)
808 obuf[n] = CHAR(ivec, 8-nbytes+n)&0177;
809 WRITE(obuf, nbytes);
810 }
811 /*
812 * at EOF or last block -- in either case, the last byte contains
813 * the character representation of the number of bytes in it
814 */
815 bn++;
816 MEMZERO(&ibuf[n], nbytes - n);
817 ibuf[nbytes - 1] = ('0' + n)|0200;
818 MEMCPY(BUFFER(msgbuf), BUFFER(ivec), 8);
819 DES_XFORM(UBUFFER(msgbuf));
820 for (n = 0; n < nbytes; n++)
821 ibuf[n] ^= UCHAR(msgbuf, n);
822 WRITE(ibuf, nbytes);
823}
824
825/*
826 * This decrypts using the alternative Cipher Block Chaining mode of DES
827 */
828cfbadec()
829{
830 register int n; /* number of bytes actually read */
831 register int c; /* used to test for EOF */
832 register int nbytes; /* number of bytes to read */
833 register int bn; /* block number */
834 char ibuf[8]; /* input buffer */
835 char obuf[8]; /* output buffer */
836 Desbuf msgbuf; /* encryption buffer */
837
838 /*
839 * do things in bytes, not bits
840 */
841 nbytes = fbbits / 7;
842 /*
843 * do the transformation
844 */
845 for (bn = 1; (n = READ(ibuf, nbytes)) == nbytes; bn++) {
846 MEMCPY(BUFFER(msgbuf), BUFFER(ivec), 8);
847 DES_XFORM(UBUFFER(msgbuf));
848 for (c = 0; c < 8 - nbytes; c++)
849 CHAR(ivec, c) = CHAR(ivec, c+nbytes);
850 for (c = 0; c < nbytes; c++) {
851 CHAR(ivec, 8-nbytes+c) = ibuf[c]|0200;
852 obuf[c] = (ibuf[c] ^ UCHAR(msgbuf, c))&0177;
853 }
854 /*
855 * if the last one, handle it specially
856 */
857 if ((c = getchar()) == EOF) {
858 if ((n = (obuf[nbytes-1] - '0')) < 0
859 || n > nbytes-1)
860 err(bn, "decryption failed (block corrupted)");
861 }
862 else
863 (void)ungetc(c, stdin);
864 WRITE(obuf, n);
865 }
866 if (n > 0)
867 err(bn, "decryption failed (incomplete block)");
868}
869
870
871/*
872 * This encrypts using the Output FeedBack mode of DES
873 */
874ofbenc()
875{
876 register int n; /* number of bytes actually read */
877 register int c; /* used to test for EOF */
878 register int nbytes; /* number of bytes to read */
879 register int bn; /* block number */
880 char ibuf[8]; /* input buffer */
881 char obuf[8]; /* output buffer */
882 Desbuf msgbuf; /* encryption buffer */
883
884 /*
885 * do things in bytes, not bits
886 */
887 nbytes = fbbits / 8;
888 /*
889 * do the transformation
890 */
891 for (bn = 1; (n = READ(ibuf, nbytes)) == nbytes; bn++) {
892 MEMCPY(BUFFER(msgbuf), BUFFER(ivec), 8);
893 DES_XFORM(UBUFFER(msgbuf));
894 for (n = 0; n < 8 - nbytes; n++)
895 UCHAR(ivec, n) = UCHAR(ivec, n+nbytes);
896 for (n = 0; n < nbytes; n++) {
897 UCHAR(ivec, 8-nbytes+n) = UCHAR(msgbuf, n);
898 obuf[n] = ibuf[n] ^ UCHAR(msgbuf, n);
899 }
900 WRITE(obuf, nbytes);
901 }
902 /*
903 * at EOF or last block -- in either case, the last byte contains
904 * the character representation of the number of bytes in it
905 */
906 bn++;
907 MEMZERO(&ibuf[n], nbytes - n);
908 ibuf[nbytes - 1] = n;
909 MEMCPY(BUFFER(msgbuf), BUFFER(ivec), 8);
910 DES_XFORM(UBUFFER(msgbuf));
911 for (c = 0; c < nbytes; c++)
912 ibuf[c] ^= UCHAR(msgbuf, c);
913 WRITE(ibuf, nbytes);
914}
915
916/*
917 * This decrypts using the Output Block Chaining mode of DES
918 */
919ofbdec()
920{
921 register int n; /* number of bytes actually read */
922 register int c; /* used to test for EOF */
923 register int nbytes; /* number of bytes to read */
924 register int bn; /* block number */
925 char ibuf[8]; /* input buffer */
926 char obuf[8]; /* output buffer */
927 Desbuf msgbuf; /* encryption buffer */
928
929 /*
930 * do things in bytes, not bits
931 */
932 nbytes = fbbits / 8;
933 /*
934 * do the transformation
935 */
936 for (bn = 1; (n = READ(ibuf, nbytes)) == nbytes; bn++) {
937 MEMCPY(BUFFER(msgbuf), BUFFER(ivec), 8);
938 DES_XFORM(UBUFFER(msgbuf));
939 for (c = 0; c < 8 - nbytes; c++)
940 CHAR(ivec, c) = CHAR(ivec, c+nbytes);
941 for (c = 0; c < nbytes; c++) {
942 CHAR(ivec, 8-nbytes+c) = UCHAR(msgbuf, c);
943 obuf[c] = ibuf[c] ^ UCHAR(msgbuf, c);
944 }
945 /*
946 * if the last one, handle it specially
947 */
948 if ((c = getchar()) == EOF) {
949 n = obuf[nbytes-1];
950 if (n < 0 || n > nbytes-1)
951 err(bn, "decryption failed (block corrupted)");
952 }
953 else
954 (void)ungetc(c, stdin);
955 /*
956 * dump it
957 */
958 WRITE(obuf, n);
959 }
960 if (n > 0)
961 err(bn, "decryption failed (incomplete block)");
962}
963
964/*
965 * This authenticates using the Cipher FeedBack mode of DES
966 */
967cfbauth()
968{
969 register int n, j; /* number of bytes actually read */
970 register int nbytes; /* number of bytes to read */
971 char ibuf[8]; /* input buffer */
972 Desbuf msgbuf; /* encryption buffer */
973
974 /*
975 * do things in bytes, not bits
976 */
977 nbytes = fbbits / 8;
978 /*
979 * do the transformation
980 */
981 while ((n = READ(ibuf, nbytes)) == nbytes) {
982 MEMCPY(BUFFER(msgbuf), BUFFER(ivec), 8);
983 DES_XFORM(UBUFFER(msgbuf));
984 for (n = 0; n < 8 - nbytes; n++)
985 UCHAR(ivec, n) = UCHAR(ivec, n+nbytes);
986 for (n = 0; n < nbytes; n++)
987 UCHAR(ivec, 8-nbytes+n) = ibuf[n] ^ UCHAR(msgbuf, n);
988 }
989 /*
990 * at EOF or last block -- in either case, the last byte contains
991 * the character representation of the number of bytes in it
992 */
993 MEMZERO(&ibuf[n], nbytes - n);
994 ibuf[nbytes - 1] = '0' + n;
995 MEMCPY(BUFFER(msgbuf), BUFFER(ivec), 8);
996 DES_XFORM(UBUFFER(msgbuf));
997 for (n = 0; n < nbytes; n++)
998 ibuf[n] ^= UCHAR(msgbuf, n);
999 /*
1000 * drop the bits
1001 * we write chars until fewer than 7 bits,
1002 * and then pad the last one with 0 bits
1003 */
1004 for (n = 0; macbits > 7; n++, macbits -= 8)
1005 (void)putchar(CHAR(msgbuf, n));
1006 if (macbits > 0) {
1007 CHAR(msgbuf, 0) = 0x00;
1008 for (j = 0; j < macbits; j++)
1009 CHAR(msgbuf, 0) |= (CHAR(msgbuf, n)&bits[j]);
1010 (void)putchar(CHAR(msgbuf, 0));
1011 }
1012}
1013
1014#ifndef FASTWAY
1015/*
1016 * change from 8 bits/Uchar to 1 bit/Uchar
1017 */
1018expand(from, to)
1019 Desbuf from; /* 8bit/unsigned char string */
1020 char *to; /* 1bit/char string */
1021{
1022 register int i, j; /* counters in for loop */
1023
1024 for (i = 0; i < 8; i++)
1025 for (j = 0; j < 8; j++)
1026 *to++ = (CHAR(from, i)>>(7-j))&01;
1027}
1028
1029/*
1030 * change from 1 bit/char to 8 bits/Uchar
1031 */
1032compress(from, to)
1033 char *from; /* 1bit/char string */
1034 Desbuf to; /* 8bit/unsigned char string */
1035{
1036 register int i, j; /* counters in for loop */
1037
1038 for (i = 0; i < 8; i++) {
1039 CHAR(to, i) = 0;
1040 for (j = 0; j < 8; j++)
1041 CHAR(to, i) = ((*from++)<<(7-j))|CHAR(to, i);
1042 }
1043}
1044#endif
1045
1046/*
1047 * message about usage
1048 */
1049usage()
1050{
1051 (void)fprintf(stderr, "%s\n",
1052"usage: bdes [-abdp] [-F bit] [-f bit] [-k key] [-m bit] [-o bit] [-v vector]");
1053 exit(1);
1054}
1055
1056#endif /* DES */