add Berkeley specific copyright
[unix-history] / usr / src / lib / libm / ieee / cabs.c
CommitLineData
98cc7428 1/*
f9fea09f 2 * Copyright (c) 1985 Regents of the University of California.
98cc7428
KB
3 * All rights reserved.
4 *
7e3eac84 5 * %sccs.include.redist.c%
f9fea09f
ZAL
6 */
7
8#ifndef lint
2bc65d90 9static char sccsid[] = "@(#)cabs.c 5.6 (Berkeley) %G%";
98cc7428 10#endif /* not lint */
f9fea09f 11
f9fea09f
ZAL
12/* HYPOT(X,Y)
13 * RETURN THE SQUARE ROOT OF X^2 + Y^2 WHERE Z=X+iY
14 * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
15 * CODED IN C BY K.C. NG, 11/28/84;
16 * REVISED BY K.C. NG, 7/12/85.
17 *
18 * Required system supported functions :
19 * copysign(x,y)
20 * finite(x)
21 * scalb(x,N)
22 * sqrt(x)
23 *
24 * Method :
25 * 1. replace x by |x| and y by |y|, and swap x and
26 * y if y > x (hence x is never smaller than y).
27 * 2. Hypot(x,y) is computed by:
28 * Case I, x/y > 2
29 *
30 * y
31 * hypot = x + -----------------------------
32 * 2
33 * sqrt ( 1 + [x/y] ) + x/y
34 *
35 * Case II, x/y <= 2
36 * y
37 * hypot = x + --------------------------------------------------
38 * 2
39 * [x/y] - 2
40 * (sqrt(2)+1) + (x-y)/y + -----------------------------
41 * 2
42 * sqrt ( 1 + [x/y] ) + sqrt(2)
43 *
44 *
45 *
46 * Special cases:
47 * hypot(x,y) is INF if x or y is +INF or -INF; else
48 * hypot(x,y) is NAN if x or y is NAN.
49 *
50 * Accuracy:
51 * hypot(x,y) returns the sqrt(x^2+y^2) with error less than 1 ulps (units
52 * in the last place). See Kahan's "Interval Arithmetic Options in the
53 * Proposed IEEE Floating Point Arithmetic Standard", Interval Mathematics
54 * 1980, Edited by Karl L.E. Nickel, pp 99-128. (A faster but less accurate
55 * code follows in comments.) In a test run with 500,000 random arguments
56 * on a VAX, the maximum observed error was .959 ulps.
57 *
58 * Constants:
59 * The hexadecimal values are the intended ones for the following constants.
60 * The decimal values may be used, provided that the compiler will convert
61 * from decimal to binary accurately enough to produce the hexadecimal values
62 * shown.
63 */
9eda3584 64#include "mathimpl.h"
f9fea09f 65
9eda3584
KB
66vc(r2p1hi, 2.4142135623730950345E0 ,8279,411a,ef32,99fc, 2, .9A827999FCEF32)
67vc(r2p1lo, 1.4349369327986523769E-17 ,597d,2484,754b,89b3, -55, .84597D89B3754B)
68vc(sqrt2, 1.4142135623730950622E0 ,04f3,40b5,de65,33f9, 1, .B504F333F9DE65)
69
70ic(r2p1hi, 2.4142135623730949234E0 , 1, 1.3504F333F9DE6)
71ic(r2p1lo, 1.2537167179050217666E-16 , -53, 1.21165F626CDD5)
72ic(sqrt2, 1.4142135623730951455E0 , 0, 1.6A09E667F3BCD)
73
74#ifdef vccast
75#define r2p1hi vccast(r2p1hi)
76#define r2p1lo vccast(r2p1lo)
77#define sqrt2 vccast(sqrt2)
78#endif
f9fea09f 79
74920388
ZAL
80double
81hypot(x,y)
f9fea09f
ZAL
82double x, y;
83{
9eda3584 84 static const double zero=0, one=1,
f9fea09f 85 small=1.0E-18; /* fl(1+small)==1 */
9eda3584
KB
86 static const ibig=30; /* fl(1+2**(2*ibig))==1 */
87 double t,r;
88 int exp;
f9fea09f
ZAL
89
90 if(finite(x))
91 if(finite(y))
92 {
93 x=copysign(x,one);
94 y=copysign(y,one);
95 if(y > x)
96 { t=x; x=y; y=t; }
97 if(x == zero) return(zero);
98 if(y == zero) return(x);
99 exp= logb(x);
100 if(exp-(int)logb(y) > ibig )
101 /* raise inexact flag and return |x| */
102 { one+small; return(x); }
103
104 /* start computing sqrt(x^2 + y^2) */
105 r=x-y;
106 if(r>y) { /* x/y > 2 */
107 r=x/y;
108 r=r+sqrt(one+r*r); }
109 else { /* 1 <= x/y <= 2 */
110 r/=y; t=r*(r+2.0);
111 r+=t/(sqrt2+sqrt(2.0+t));
112 r+=r2p1lo; r+=r2p1hi; }
113
114 r=y/r;
115 return(x+r);
116
117 }
118
119 else if(y==y) /* y is +-INF */
120 return(copysign(y,one));
121 else
122 return(y); /* y is NaN and x is finite */
123
124 else if(x==x) /* x is +-INF */
125 return (copysign(x,one));
126 else if(finite(y))
127 return(x); /* x is NaN, y is finite */
859dc438 128#if !defined(vax)&&!defined(tahoe)
f9fea09f 129 else if(y!=y) return(y); /* x and y is NaN */
859dc438 130#endif /* !defined(vax)&&!defined(tahoe) */
f9fea09f
ZAL
131 else return(copysign(y,one)); /* y is INF */
132}
133
74920388
ZAL
134/* CABS(Z)
135 * RETURN THE ABSOLUTE VALUE OF THE COMPLEX NUMBER Z = X + iY
136 * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
137 * CODED IN C BY K.C. NG, 11/28/84.
138 * REVISED BY K.C. NG, 7/12/85.
139 *
140 * Required kernel function :
141 * hypot(x,y)
142 *
143 * Method :
144 * cabs(z) = hypot(x,y) .
145 */
146
147double
148cabs(z)
149struct { double x, y;} z;
150{
151 return hypot(z.x,z.y);
152}
153
154double
155z_abs(z)
156struct { double x,y;} *z;
157{
158 return hypot(z->x,z->y);
159}
160
f9fea09f
ZAL
161/* A faster but less accurate version of cabs(x,y) */
162#if 0
163double hypot(x,y)
164double x, y;
165{
9eda3584 166 static const double zero=0, one=1;
f9fea09f 167 small=1.0E-18; /* fl(1+small)==1 */
9eda3584
KB
168 static const ibig=30; /* fl(1+2**(2*ibig))==1 */
169 double temp;
170 int exp;
f9fea09f
ZAL
171
172 if(finite(x))
173 if(finite(y))
174 {
175 x=copysign(x,one);
176 y=copysign(y,one);
177 if(y > x)
178 { temp=x; x=y; y=temp; }
179 if(x == zero) return(zero);
180 if(y == zero) return(x);
181 exp= logb(x);
182 x=scalb(x,-exp);
183 if(exp-(int)logb(y) > ibig )
184 /* raise inexact flag and return |x| */
185 { one+small; return(scalb(x,exp)); }
186 else y=scalb(y,-exp);
187 return(scalb(sqrt(x*x+y*y),exp));
188 }
189
190 else if(y==y) /* y is +-INF */
191 return(copysign(y,one));
192 else
193 return(y); /* y is NaN and x is finite */
194
195 else if(x==x) /* x is +-INF */
196 return (copysign(x,one));
197 else if(finite(y))
198 return(x); /* x is NaN, y is finite */
199 else if(y!=y) return(y); /* x and y is NaN */
200 else return(copysign(y,one)); /* y is INF */
201}
202#endif