syscons util remove use kbdcontrol & vidcontrol instead
[unix-history] / lib / msun / src / e_sqrt.c
CommitLineData
4acf9396
GCI
1/* @(#)e_sqrt.c 5.1 93/09/24 */
2/*
3 * ====================================================
4 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5 *
6 * Developed at SunPro, a Sun Microsystems, Inc. business.
7 * Permission to use, copy, modify, and distribute this
8 * software is freely granted, provided that this notice
9 * is preserved.
10 * ====================================================
11 */
12
13#ifndef lint
14static char rcsid[] = "$Id: e_sqrt.c,v 1.4 1994/03/03 17:04:21 jtc Exp $";
15#endif
16
17/* __ieee754_sqrt(x)
18 * Return correctly rounded sqrt.
19 * ------------------------------------------
20 * | Use the hardware sqrt if you have one |
21 * ------------------------------------------
22 * Method:
23 * Bit by bit method using integer arithmetic. (Slow, but portable)
24 * 1. Normalization
25 * Scale x to y in [1,4) with even powers of 2:
26 * find an integer k such that 1 <= (y=x*2^(2k)) < 4, then
27 * sqrt(x) = 2^k * sqrt(y)
28 * 2. Bit by bit computation
29 * Let q = sqrt(y) truncated to i bit after binary point (q = 1),
30 * i 0
31 * i+1 2
32 * s = 2*q , and y = 2 * ( y - q ). (1)
33 * i i i i
34 *
35 * To compute q from q , one checks whether
36 * i+1 i
37 *
38 * -(i+1) 2
39 * (q + 2 ) <= y. (2)
40 * i
41 * -(i+1)
42 * If (2) is false, then q = q ; otherwise q = q + 2 .
43 * i+1 i i+1 i
44 *
45 * With some algebric manipulation, it is not difficult to see
46 * that (2) is equivalent to
47 * -(i+1)
48 * s + 2 <= y (3)
49 * i i
50 *
51 * The advantage of (3) is that s and y can be computed by
52 * i i
53 * the following recurrence formula:
54 * if (3) is false
55 *
56 * s = s , y = y ; (4)
57 * i+1 i i+1 i
58 *
59 * otherwise,
60 * -i -(i+1)
61 * s = s + 2 , y = y - s - 2 (5)
62 * i+1 i i+1 i i
63 *
64 * One may easily use induction to prove (4) and (5).
65 * Note. Since the left hand side of (3) contain only i+2 bits,
66 * it does not necessary to do a full (53-bit) comparison
67 * in (3).
68 * 3. Final rounding
69 * After generating the 53 bits result, we compute one more bit.
70 * Together with the remainder, we can decide whether the
71 * result is exact, bigger than 1/2ulp, or less than 1/2ulp
72 * (it will never equal to 1/2ulp).
73 * The rounding mode can be detected by checking whether
74 * huge + tiny is equal to huge, and whether huge - tiny is
75 * equal to huge for some floating point number "huge" and "tiny".
76 *
77 * Special cases:
78 * sqrt(+-0) = +-0 ... exact
79 * sqrt(inf) = inf
80 * sqrt(-ve) = NaN ... with invalid signal
81 * sqrt(NaN) = NaN ... with invalid signal for signaling NaN
82 *
83 * Other methods : see the appended file at the end of the program below.
84 *---------------
85 */
86
87#include "math.h"
88#include <machine/endian.h>
89
90#if BYTE_ORDER == LITTLE_ENDIAN
91#define n0 1
92#else
93#define n0 0
94#endif
95
96#ifdef __STDC__
97static const double one = 1.0, tiny=1.0e-300;
98#else
99static double one = 1.0, tiny=1.0e-300;
100#endif
101
102#ifdef __STDC__
103 double __ieee754_sqrt(double x)
104#else
105 double __ieee754_sqrt(x)
106 double x;
107#endif
108{
109 double z;
110 int sign = (int)0x80000000;
111 unsigned r,t1,s1,ix1,q1;
112 int ix0,s0,q,m,t,i;
113
114 ix0 = *(n0+(int*)&x); /* high word of x */
115 ix1 = *((1-n0)+(int*)&x); /* low word of x */
116
117 /* take care of Inf and NaN */
118 if((ix0&0x7ff00000)==0x7ff00000) {
119 return x*x+x; /* sqrt(NaN)=NaN, sqrt(+inf)=+inf
120 sqrt(-inf)=sNaN */
121 }
122 /* take care of zero */
123 if(ix0<=0) {
124 if(((ix0&(~sign))|ix1)==0) return x;/* sqrt(+-0) = +-0 */
125 else if(ix0<0)
126 return (x-x)/(x-x); /* sqrt(-ve) = sNaN */
127 }
128 /* normalize x */
129 m = (ix0>>20);
130 if(m==0) { /* subnormal x */
131 while(ix0==0) {
132 m -= 21;
133 ix0 |= (ix1>>11); ix1 <<= 21;
134 }
135 for(i=0;(ix0&0x00100000)==0;i++) ix0<<=1;
136 m -= i-1;
137 ix0 |= (ix1>>(32-i));
138 ix1 <<= i;
139 }
140 m -= 1023; /* unbias exponent */
141 ix0 = (ix0&0x000fffff)|0x00100000;
142 if(m&1){ /* odd m, double x to make it even */
143 ix0 += ix0 + ((ix1&sign)>>31);
144 ix1 += ix1;
145 }
146 m >>= 1; /* m = [m/2] */
147
148 /* generate sqrt(x) bit by bit */
149 ix0 += ix0 + ((ix1&sign)>>31);
150 ix1 += ix1;
151 q = q1 = s0 = s1 = 0; /* [q,q1] = sqrt(x) */
152 r = 0x00200000; /* r = moving bit from right to left */
153
154 while(r!=0) {
155 t = s0+r;
156 if(t<=ix0) {
157 s0 = t+r;
158 ix0 -= t;
159 q += r;
160 }
161 ix0 += ix0 + ((ix1&sign)>>31);
162 ix1 += ix1;
163 r>>=1;
164 }
165
166 r = sign;
167 while(r!=0) {
168 t1 = s1+r;
169 t = s0;
170 if((t<ix0)||((t==ix0)&&(t1<=ix1))) {
171 s1 = t1+r;
172 if(((t1&sign)==sign)&&(s1&sign)==0) s0 += 1;
173 ix0 -= t;
174 if (ix1 < t1) ix0 -= 1;
175 ix1 -= t1;
176 q1 += r;
177 }
178 ix0 += ix0 + ((ix1&sign)>>31);
179 ix1 += ix1;
180 r>>=1;
181 }
182
183 /* use floating add to find out rounding direction */
184 if((ix0|ix1)!=0) {
185 z = one-tiny; /* trigger inexact flag */
186 if (z>=one) {
187 z = one+tiny;
188 if (q1==(unsigned)0xffffffff) { q1=0; q += 1;}
189 else if (z>one) {
190 if (q1==(unsigned)0xfffffffe) q+=1;
191 q1+=2;
192 } else
193 q1 += (q1&1);
194 }
195 }
196 ix0 = (q>>1)+0x3fe00000;
197 ix1 = q1>>1;
198 if ((q&1)==1) ix1 |= sign;
199 ix0 += (m <<20);
200 *(n0+(int*)&z) = ix0;
201 *((1-n0)+(int*)&z) = ix1;
202 return z;
203}
204
205/*
206Other methods (use floating-point arithmetic)
207-------------
208(This is a copy of a drafted paper by Prof W. Kahan
209and K.C. Ng, written in May, 1986)
210
211 Two algorithms are given here to implement sqrt(x)
212 (IEEE double precision arithmetic) in software.
213 Both supply sqrt(x) correctly rounded. The first algorithm (in
214 Section A) uses newton iterations and involves four divisions.
215 The second one uses reciproot iterations to avoid division, but
216 requires more multiplications. Both algorithms need the ability
217 to chop results of arithmetic operations instead of round them,
218 and the INEXACT flag to indicate when an arithmetic operation
219 is executed exactly with no roundoff error, all part of the
220 standard (IEEE 754-1985). The ability to perform shift, add,
221 subtract and logical AND operations upon 32-bit words is needed
222 too, though not part of the standard.
223
224A. sqrt(x) by Newton Iteration
225
226 (1) Initial approximation
227
228 Let x0 and x1 be the leading and the trailing 32-bit words of
229 a floating point number x (in IEEE double format) respectively
230
231 1 11 52 ...widths
232 ------------------------------------------------------
233 x: |s| e | f |
234 ------------------------------------------------------
235 msb lsb msb lsb ...order
236
237
238 ------------------------ ------------------------
239 x0: |s| e | f1 | x1: | f2 |
240 ------------------------ ------------------------
241
242 By performing shifts and subtracts on x0 and x1 (both regarded
243 as integers), we obtain an 8-bit approximation of sqrt(x) as
244 follows.
245
246 k := (x0>>1) + 0x1ff80000;
247 y0 := k - T1[31&(k>>15)]. ... y ~ sqrt(x) to 8 bits
248 Here k is a 32-bit integer and T1[] is an integer array containing
249 correction terms. Now magically the floating value of y (y's
250 leading 32-bit word is y0, the value of its trailing word is 0)
251 approximates sqrt(x) to almost 8-bit.
252
253 Value of T1:
254 static int T1[32]= {
255 0, 1024, 3062, 5746, 9193, 13348, 18162, 23592,
256 29598, 36145, 43202, 50740, 58733, 67158, 75992, 85215,
257 83599, 71378, 60428, 50647, 41945, 34246, 27478, 21581,
258 16499, 12183, 8588, 5674, 3403, 1742, 661, 130,};
259
260 (2) Iterative refinement
261
262 Apply Heron's rule three times to y, we have y approximates
263 sqrt(x) to within 1 ulp (Unit in the Last Place):
264
265 y := (y+x/y)/2 ... almost 17 sig. bits
266 y := (y+x/y)/2 ... almost 35 sig. bits
267 y := y-(y-x/y)/2 ... within 1 ulp
268
269
270 Remark 1.
271 Another way to improve y to within 1 ulp is:
272
273 y := (y+x/y) ... almost 17 sig. bits to 2*sqrt(x)
274 y := y - 0x00100006 ... almost 18 sig. bits to sqrt(x)
275
276 2
277 (x-y )*y
278 y := y + 2* ---------- ...within 1 ulp
279 2
280 3y + x
281
282
283 This formula has one division fewer than the one above; however,
284 it requires more multiplications and additions. Also x must be
285 scaled in advance to avoid spurious overflow in evaluating the
286 expression 3y*y+x. Hence it is not recommended uless division
287 is slow. If division is very slow, then one should use the
288 reciproot algorithm given in section B.
289
290 (3) Final adjustment
291
292 By twiddling y's last bit it is possible to force y to be
293 correctly rounded according to the prevailing rounding mode
294 as follows. Let r and i be copies of the rounding mode and
295 inexact flag before entering the square root program. Also we
296 use the expression y+-ulp for the next representable floating
297 numbers (up and down) of y. Note that y+-ulp = either fixed
298 point y+-1, or multiply y by nextafter(1,+-inf) in chopped
299 mode.
300
301 I := FALSE; ... reset INEXACT flag I
302 R := RZ; ... set rounding mode to round-toward-zero
303 z := x/y; ... chopped quotient, possibly inexact
304 If(not I) then { ... if the quotient is exact
305 if(z=y) {
306 I := i; ... restore inexact flag
307 R := r; ... restore rounded mode
308 return sqrt(x):=y.
309 } else {
310 z := z - ulp; ... special rounding
311 }
312 }
313 i := TRUE; ... sqrt(x) is inexact
314 If (r=RN) then z=z+ulp ... rounded-to-nearest
315 If (r=RP) then { ... round-toward-+inf
316 y = y+ulp; z=z+ulp;
317 }
318 y := y+z; ... chopped sum
319 y0:=y0-0x00100000; ... y := y/2 is correctly rounded.
320 I := i; ... restore inexact flag
321 R := r; ... restore rounded mode
322 return sqrt(x):=y.
323
324 (4) Special cases
325
326 Square root of +inf, +-0, or NaN is itself;
327 Square root of a negative number is NaN with invalid signal.
328
329
330B. sqrt(x) by Reciproot Iteration
331
332 (1) Initial approximation
333
334 Let x0 and x1 be the leading and the trailing 32-bit words of
335 a floating point number x (in IEEE double format) respectively
336 (see section A). By performing shifs and subtracts on x0 and y0,
337 we obtain a 7.8-bit approximation of 1/sqrt(x) as follows.
338
339 k := 0x5fe80000 - (x0>>1);
340 y0:= k - T2[63&(k>>14)]. ... y ~ 1/sqrt(x) to 7.8 bits
341
342 Here k is a 32-bit integer and T2[] is an integer array
343 containing correction terms. Now magically the floating
344 value of y (y's leading 32-bit word is y0, the value of
345 its trailing word y1 is set to zero) approximates 1/sqrt(x)
346 to almost 7.8-bit.
347
348 Value of T2:
349 static int T2[64]= {
350 0x1500, 0x2ef8, 0x4d67, 0x6b02, 0x87be, 0xa395, 0xbe7a, 0xd866,
351 0xf14a, 0x1091b,0x11fcd,0x13552,0x14999,0x15c98,0x16e34,0x17e5f,
352 0x18d03,0x19a01,0x1a545,0x1ae8a,0x1b5c4,0x1bb01,0x1bfde,0x1c28d,
353 0x1c2de,0x1c0db,0x1ba73,0x1b11c,0x1a4b5,0x1953d,0x18266,0x16be0,
354 0x1683e,0x179d8,0x18a4d,0x19992,0x1a789,0x1b445,0x1bf61,0x1c989,
355 0x1d16d,0x1d77b,0x1dddf,0x1e2ad,0x1e5bf,0x1e6e8,0x1e654,0x1e3cd,
356 0x1df2a,0x1d635,0x1cb16,0x1be2c,0x1ae4e,0x19bde,0x1868e,0x16e2e,
357 0x1527f,0x1334a,0x11051,0xe951, 0xbe01, 0x8e0d, 0x5924, 0x1edd,};
358
359 (2) Iterative refinement
360
361 Apply Reciproot iteration three times to y and multiply the
362 result by x to get an approximation z that matches sqrt(x)
363 to about 1 ulp. To be exact, we will have
364 -1ulp < sqrt(x)-z<1.0625ulp.
365
366 ... set rounding mode to Round-to-nearest
367 y := y*(1.5-0.5*x*y*y) ... almost 15 sig. bits to 1/sqrt(x)
368 y := y*((1.5-2^-30)+0.5*x*y*y)... about 29 sig. bits to 1/sqrt(x)
369 ... special arrangement for better accuracy
370 z := x*y ... 29 bits to sqrt(x), with z*y<1
371 z := z + 0.5*z*(1-z*y) ... about 1 ulp to sqrt(x)
372
373 Remark 2. The constant 1.5-2^-30 is chosen to bias the error so that
374 (a) the term z*y in the final iteration is always less than 1;
375 (b) the error in the final result is biased upward so that
376 -1 ulp < sqrt(x) - z < 1.0625 ulp
377 instead of |sqrt(x)-z|<1.03125ulp.
378
379 (3) Final adjustment
380
381 By twiddling y's last bit it is possible to force y to be
382 correctly rounded according to the prevailing rounding mode
383 as follows. Let r and i be copies of the rounding mode and
384 inexact flag before entering the square root program. Also we
385 use the expression y+-ulp for the next representable floating
386 numbers (up and down) of y. Note that y+-ulp = either fixed
387 point y+-1, or multiply y by nextafter(1,+-inf) in chopped
388 mode.
389
390 R := RZ; ... set rounding mode to round-toward-zero
391 switch(r) {
392 case RN: ... round-to-nearest
393 if(x<= z*(z-ulp)...chopped) z = z - ulp; else
394 if(x<= z*(z+ulp)...chopped) z = z; else z = z+ulp;
395 break;
396 case RZ:case RM: ... round-to-zero or round-to--inf
397 R:=RP; ... reset rounding mod to round-to-+inf
398 if(x<z*z ... rounded up) z = z - ulp; else
399 if(x>=(z+ulp)*(z+ulp) ...rounded up) z = z+ulp;
400 break;
401 case RP: ... round-to-+inf
402 if(x>(z+ulp)*(z+ulp)...chopped) z = z+2*ulp; else
403 if(x>z*z ...chopped) z = z+ulp;
404 break;
405 }
406
407 Remark 3. The above comparisons can be done in fixed point. For
408 example, to compare x and w=z*z chopped, it suffices to compare
409 x1 and w1 (the trailing parts of x and w), regarding them as
410 two's complement integers.
411
412 ...Is z an exact square root?
413 To determine whether z is an exact square root of x, let z1 be the
414 trailing part of z, and also let x0 and x1 be the leading and
415 trailing parts of x.
416
417 If ((z1&0x03ffffff)!=0) ... not exact if trailing 26 bits of z!=0
418 I := 1; ... Raise Inexact flag: z is not exact
419 else {
420 j := 1 - [(x0>>20)&1] ... j = logb(x) mod 2
421 k := z1 >> 26; ... get z's 25-th and 26-th
422 fraction bits
423 I := i or (k&j) or ((k&(j+j+1))!=(x1&3));
424 }
425 R:= r ... restore rounded mode
426 return sqrt(x):=z.
427
428 If multiplication is cheaper then the foregoing red tape, the
429 Inexact flag can be evaluated by
430
431 I := i;
432 I := (z*z!=x) or I.
433
434 Note that z*z can overwrite I; this value must be sensed if it is
435 True.
436
437 Remark 4. If z*z = x exactly, then bit 25 to bit 0 of z1 must be
438 zero.
439
440 --------------------
441 z1: | f2 |
442 --------------------
443 bit 31 bit 0
444
445 Further more, bit 27 and 26 of z1, bit 0 and 1 of x1, and the odd
446 or even of logb(x) have the following relations:
447
448 -------------------------------------------------
449 bit 27,26 of z1 bit 1,0 of x1 logb(x)
450 -------------------------------------------------
451 00 00 odd and even
452 01 01 even
453 10 10 odd
454 10 00 even
455 11 01 even
456 -------------------------------------------------
457
458 (4) Special cases (see (4) of Section A).
459
460 */
461