syscons util remove use kbdcontrol & vidcontrol instead
[unix-history] / lib / msun / src / s_expm1.c
CommitLineData
4acf9396
GCI
1/* @(#)s_expm1.c 5.1 93/09/24 */
2/*
3 * ====================================================
4 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5 *
6 * Developed at SunPro, a Sun Microsystems, Inc. business.
7 * Permission to use, copy, modify, and distribute this
8 * software is freely granted, provided that this notice
9 * is preserved.
10 * ====================================================
11 */
12
13#ifndef lint
14static char rcsid[] = "$Id: s_expm1.c,v 1.4 1994/03/03 17:04:33 jtc Exp $";
15#endif
16
17/* expm1(x)
18 * Returns exp(x)-1, the exponential of x minus 1.
19 *
20 * Method
21 * 1. Argument reduction:
22 * Given x, find r and integer k such that
23 *
24 * x = k*ln2 + r, |r| <= 0.5*ln2 ~ 0.34658
25 *
26 * Here a correction term c will be computed to compensate
27 * the error in r when rounded to a floating-point number.
28 *
29 * 2. Approximating expm1(r) by a special rational function on
30 * the interval [0,0.34658]:
31 * Since
32 * r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ...
33 * we define R1(r*r) by
34 * r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r)
35 * That is,
36 * R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r)
37 * = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r))
38 * = 1 - r^2/60 + r^4/2520 - r^6/100800 + ...
39 * We use a special Reme algorithm on [0,0.347] to generate
40 * a polynomial of degree 5 in r*r to approximate R1. The
41 * maximum error of this polynomial approximation is bounded
42 * by 2**-61. In other words,
43 * R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5
44 * where Q1 = -1.6666666666666567384E-2,
45 * Q2 = 3.9682539681370365873E-4,
46 * Q3 = -9.9206344733435987357E-6,
47 * Q4 = 2.5051361420808517002E-7,
48 * Q5 = -6.2843505682382617102E-9;
49 * (where z=r*r, and the values of Q1 to Q5 are listed below)
50 * with error bounded by
51 * | 5 | -61
52 * | 1.0+Q1*z+...+Q5*z - R1(z) | <= 2
53 * | |
54 *
55 * expm1(r) = exp(r)-1 is then computed by the following
56 * specific way which minimize the accumulation rounding error:
57 * 2 3
58 * r r [ 3 - (R1 + R1*r/2) ]
59 * expm1(r) = r + --- + --- * [--------------------]
60 * 2 2 [ 6 - r*(3 - R1*r/2) ]
61 *
62 * To compensate the error in the argument reduction, we use
63 * expm1(r+c) = expm1(r) + c + expm1(r)*c
64 * ~ expm1(r) + c + r*c
65 * Thus c+r*c will be added in as the correction terms for
66 * expm1(r+c). Now rearrange the term to avoid optimization
67 * screw up:
68 * ( 2 2 )
69 * ({ ( r [ R1 - (3 - R1*r/2) ] ) } r )
70 * expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- )
71 * ({ ( 2 [ 6 - r*(3 - R1*r/2) ] ) } 2 )
72 * ( )
73 *
74 * = r - E
75 * 3. Scale back to obtain expm1(x):
76 * From step 1, we have
77 * expm1(x) = either 2^k*[expm1(r)+1] - 1
78 * = or 2^k*[expm1(r) + (1-2^-k)]
79 * 4. Implementation notes:
80 * (A). To save one multiplication, we scale the coefficient Qi
81 * to Qi*2^i, and replace z by (x^2)/2.
82 * (B). To achieve maximum accuracy, we compute expm1(x) by
83 * (i) if x < -56*ln2, return -1.0, (raise inexact if x!=inf)
84 * (ii) if k=0, return r-E
85 * (iii) if k=-1, return 0.5*(r-E)-0.5
86 * (iv) if k=1 if r < -0.25, return 2*((r+0.5)- E)
87 * else return 1.0+2.0*(r-E);
88 * (v) if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1)
89 * (vi) if k <= 20, return 2^k((1-2^-k)-(E-r)), else
90 * (vii) return 2^k(1-((E+2^-k)-r))
91 *
92 * Special cases:
93 * expm1(INF) is INF, expm1(NaN) is NaN;
94 * expm1(-INF) is -1, and
95 * for finite argument, only expm1(0)=0 is exact.
96 *
97 * Accuracy:
98 * according to an error analysis, the error is always less than
99 * 1 ulp (unit in the last place).
100 *
101 * Misc. info.
102 * For IEEE double
103 * if x > 7.09782712893383973096e+02 then expm1(x) overflow
104 *
105 * Constants:
106 * The hexadecimal values are the intended ones for the following
107 * constants. The decimal values may be used, provided that the
108 * compiler will convert from decimal to binary accurately enough
109 * to produce the hexadecimal values shown.
110 */
111
112#include "math.h"
113#include <machine/endian.h>
114
115#if BYTE_ORDER == LITTLE_ENDIAN
116#define n0 1
117#else
118#define n0 0
119#endif
120
121#ifdef __STDC__
122static const double
123#else
124static double
125#endif
126one = 1.0,
127huge = 1.0e+300,
128tiny = 1.0e-300,
129o_threshold = 7.09782712893383973096e+02,/* 0x40862E42, 0xFEFA39EF */
130ln2_hi = 6.93147180369123816490e-01,/* 0x3fe62e42, 0xfee00000 */
131ln2_lo = 1.90821492927058770002e-10,/* 0x3dea39ef, 0x35793c76 */
132invln2 = 1.44269504088896338700e+00,/* 0x3ff71547, 0x652b82fe */
133 /* scaled coefficients related to expm1 */
134Q1 = -3.33333333333331316428e-02, /* BFA11111 111110F4 */
135Q2 = 1.58730158725481460165e-03, /* 3F5A01A0 19FE5585 */
136Q3 = -7.93650757867487942473e-05, /* BF14CE19 9EAADBB7 */
137Q4 = 4.00821782732936239552e-06, /* 3ED0CFCA 86E65239 */
138Q5 = -2.01099218183624371326e-07; /* BE8AFDB7 6E09C32D */
139
140#ifdef __STDC__
141 double expm1(double x)
142#else
143 double expm1(x)
144 double x;
145#endif
146{
147 double y,hi,lo,c,t,e,hxs,hfx,r1;
148 int k,xsb;
149 unsigned hx;
150
151 hx = *(n0+(unsigned*)&x); /* high word of x */
152 xsb = hx&0x80000000; /* sign bit of x */
153 if(xsb==0) y=x; else y= -x; /* y = |x| */
154 hx &= 0x7fffffff; /* high word of |x| */
155
156 /* filter out huge and non-finite argument */
157 if(hx >= 0x4043687A) { /* if |x|>=56*ln2 */
158 if(hx >= 0x40862E42) { /* if |x|>=709.78... */
159 if(hx>=0x7ff00000) {
160 if(((hx&0xfffff)|*(1-n0+(int*)&x))!=0)
161 return x+x; /* NaN */
162 else return (xsb==0)? x:-1.0;/* exp(+-inf)={inf,-1} */
163 }
164 if(x > o_threshold) return huge*huge; /* overflow */
165 }
166 if(xsb!=0) { /* x < -56*ln2, return -1.0 with inexact */
167 if(x+tiny<0.0) /* raise inexact */
168 return tiny-one; /* return -1 */
169 }
170 }
171
172 /* argument reduction */
173 if(hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */
174 if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */
175 if(xsb==0)
176 {hi = x - ln2_hi; lo = ln2_lo; k = 1;}
177 else
178 {hi = x + ln2_hi; lo = -ln2_lo; k = -1;}
179 } else {
180 k = invln2*x+((xsb==0)?0.5:-0.5);
181 t = k;
182 hi = x - t*ln2_hi; /* t*ln2_hi is exact here */
183 lo = t*ln2_lo;
184 }
185 x = hi - lo;
186 c = (hi-x)-lo;
187 }
188 else if(hx < 0x3c900000) { /* when |x|<2**-54, return x */
189 t = huge+x; /* return x with inexact flags when x!=0 */
190 return x - (t-(huge+x));
191 }
192 else k = 0;
193
194 /* x is now in primary range */
195 hfx = 0.5*x;
196 hxs = x*hfx;
197 r1 = one+hxs*(Q1+hxs*(Q2+hxs*(Q3+hxs*(Q4+hxs*Q5))));
198 t = 3.0-r1*hfx;
199 e = hxs*((r1-t)/(6.0 - x*t));
200 if(k==0) return x - (x*e-hxs); /* c is 0 */
201 else {
202 e = (x*(e-c)-c);
203 e -= hxs;
204 if(k== -1) return 0.5*(x-e)-0.5;
205 if(k==1)
206 if(x < -0.25) return -2.0*(e-(x+0.5));
207 else return one+2.0*(x-e);
208 if (k <= -2 || k>56) { /* suffice to return exp(x)-1 */
209 y = one-(e-x);
210 *(n0+(int*)&y) += (k<<20); /* add k to y's exponent */
211 return y-one;
212 }
213 t = one;
214 if(k<20) {
215 *(n0+(int*)&t) = 0x3ff00000 - (0x200000>>k); /* t=1-2^-k */
216 y = t-(e-x);
217 *(n0+(int*)&y) += (k<<20); /* add k to y's exponent */
218 } else {
219 *(n0+(int*)&t) = ((0x3ff-k)<<20); /* 2^-k */
220 y = x-(e+t);
221 y += one;
222 *(n0+(int*)&y) += (k<<20); /* add k to y's exponent */
223 }
224 }
225 return y;
226}