mountfs declared
[unix-history] / usr / src / sys / ufs / ffs / fs.h
CommitLineData
1ef63481
KM
1/* Copyright (c) 1981 Regents of the University of California */
2
1bbbd864 3/* fs.h 4.2 82/06/14 */
1ef63481
KM
4
5/*
6 * Each disk drive contains some number of file systems.
7 * A file system consists of a number of cylinder groups.
8 * Each cylinder group has inodes and data.
9 *
10 * A file system is described by its super-block, which in turn
11 * describes the cylinder groups. The super-block is critical
12 * data and is replicated in each cylinder group to protect against
13 * catastrophic loss. This is done at mkfs time and the critical
14 * super-block data does not change, so the copies need not be
15 * referenced further unless disaster strikes.
16 *
aca50d72
KM
17 * For file system fs, the offsets of the various blocks of interest
18 * are given in the super block as:
aca50d72
KM
19 * [fs->fs_sblkno] Super-block
20 * [fs->fs_cblkno] Cylinder group block
21 * [fs->fs_iblkno] Inode blocks
22 * [fs->fs_dblkno] Data blocks
23 * The beginning of cylinder group cg in fs, is given by
6994bf5d 24 * the ``cgbase(fs, cg)'' macro.
b6407c9d 25 *
aca50d72 26 * The first boot and super blocks are given in absolute disk addresses.
b6407c9d 27 */
1df1dbcd 28#define BBSIZE 8192
80cc8328
KM
29#define SBSIZE 8192
30#define BBLOCK ((daddr_t)(0))
31#define SBLOCK ((daddr_t)(BBLOCK + BBSIZE / DEV_BSIZE))
1ef63481
KM
32
33/*
b6407c9d
KM
34 * Addresses stored in inodes are capable of addressing fragments
35 * of `blocks'. File system blocks of at most size MAXBSIZE can
36 * be optionally broken into 2, 4, or 8 pieces, each of which is
37 * addressible; these pieces may be DEV_BSIZE, or some multiple of
38 * a DEV_BSIZE unit.
1ef63481 39 *
b6407c9d
KM
40 * Large files consist of exclusively large data blocks. To avoid
41 * undue wasted disk space, the last data block of a small file may be
42 * allocated as only as many fragments of a large block as are
43 * necessary. The file system format retains only a single pointer
44 * to such a fragment, which is a piece of a single large block that
45 * has been divided. The size of such a fragment is determinable from
46 * information in the inode, using the ``blksize(fs, ip, lbn)'' macro.
1ef63481
KM
47 *
48 * The file system records space availability at the fragment level;
49 * to determine block availability, aligned fragments are examined.
743f1ef7 50 *
80cc8328
KM
51 * The root inode is the root of the file system.
52 * Inode 0 can't be used for normal purposes and
53 * historically bad blocks were linked to inode 1,
54 * thus the root inode is 2. (inode 1 is no longer used for
55 * this purpose, however numerous dump tapes make this
56 * assumption, so we are stuck with it)
57 * The lost+found directory is given the next available
58 * inode when it is created by ``mkfs''.
59 */
60#define ROOTINO ((ino_t)2) /* i number of all roots */
61#define LOSTFOUNDINO (ROOTINO + 1)
62
63/*
64 * MINFREE gives the minimum acceptable percentage of file system
65 * blocks which may be free. If the freelist drops below this level
66 * only the superuser may continue to allocate blocks. This may
67 * be set to 0 if no reserve of free blocks is deemed necessary,
68 * however severe performance degredations will be observed if the
69 * file system is run at greater than 90% full; thus the default
70 * value of fs_minfree is 10%.
71 *
72 * Empirically the best trade-off between block fragmentation and
73 * overall disk utilization at a loading of 90% comes with a
74 * fragmentation of 4, thus the default fragment size is a fourth
75 * of the block size.
76 */
77#define MINFREE 10
78#define DESFRAG 4
79
80/*
81 * Under current technology, most 300MB disks have 32 sectors and
26169eda 82 * 16 tracks, thus these are the defaults used for fs_nsect and
80cc8328
KM
83 * fs_ntrak respectively.
84 */
85#define DFLNSECT 32
26169eda 86#define DFLNTRAK 16
80cc8328
KM
87
88/*
89 * Cylinder group related limits.
90 *
743f1ef7
KM
91 * For each cylinder we keep track of the availability of blocks at different
92 * rotational positions, so that we can lay out the data to be picked
93 * up with minimum rotational latency. NRPOS is the number of rotational
94 * positions which we distinguish. With NRPOS 8 the resolution of our
95 * summary information is 2ms for a typical 3600 rpm drive.
80cc8328
KM
96 *
97 * ROTDELAY gives the minimum number of milliseconds to initiate
98 * another disk transfer on the same cylinder. It is used in
99 * determining the rotationally optimal layout for disk blocks
100 * within a file; the default of fs_rotdelay is 2ms.
743f1ef7 101 */
80cc8328
KM
102#define NRPOS 8 /* number distinct rotational positions */
103#define ROTDELAY 2
1ef63481
KM
104
105/*
106 * Each file system has a number of inodes statically allocated.
80cc8328 107 * We allocate one inode slot per NBPI bytes, expecting this
5ae9a796 108 * to be far more than we will ever need.
80cc8328
KM
109 *
110 * MAXIPG bounds the number of inodes per cylinder group, and
111 * is needed only to keep the structure simpler by having the
112 * only a single variable size element (the free bit map).
113 *
114 * N.B.: MAXIPG must be a multiple of INOPB(fs).
1ef63481 115 */
80cc8328
KM
116#define NBPI 2048
117#define MAXIPG 2048 /* max number inodes/cyl group */
1ef63481 118
b6407c9d
KM
119/*
120 * MINBSIZE is the smallest allowable block size.
121 * In order to insure that it is possible to create files of size
122 * 2^32 with only two levels of indirection, MINBSIZE is set to 4096.
123 * MINBSIZE must be big enough to hold a cylinder group block,
124 * thus changes to (struct cg) must keep its size within MINBSIZE.
125 * MAXCPG is limited only to dimension an array in (struct cg);
126 * it can be made larger as long as that structures size remains
127 * within the bounds dictated by MINBSIZE.
128 * Note that super blocks are always of size MAXBSIZE,
129 * and that MAXBSIZE must be >= MINBSIZE.
130 */
131#define MINBSIZE 4096
132#define DESCPG 16 /* desired fs_cpg */
133#define MAXCPG 32 /* maximum fs_cpg */
80cc8328 134
2c9afb08
KM
135/*
136 * The path name on which the file system is mounted is maintained
137 * in fs_fsmnt. MAXMNTLEN defines the amount of space allocated in
138 * the super block for this name.
1b807fc9 139 * The limit on the amount of summary information per file system
26169eda
KM
140 * is defined by MAXCSBUFS. It is currently parameterized for a
141 * maximum of two million cylinders.
2c9afb08 142 */
26169eda
KM
143#define MAXMNTLEN 512
144#define MAXCSBUFS 32
2c9afb08 145
1ef63481 146/*
80cc8328
KM
147 * Per cylinder group information; summarized in blocks allocated
148 * from first cylinder group data blocks. These blocks have to be
149 * read in from fs_csaddr (size fs_cssize) in addition to the
150 * super block.
1ef63481 151 *
80cc8328
KM
152 * N.B. sizeof(struct csum) must be a power of two in order for
153 * the ``fs_cs'' macro to work (see below).
1ef63481 154 */
80cc8328
KM
155struct csum {
156 long cs_ndir; /* number of directories */
157 long cs_nbfree; /* number of free blocks */
158 long cs_nifree; /* number of free inodes */
159 long cs_nffree; /* number of free frags */
160};
1ef63481 161
80cc8328
KM
162/*
163 * Super block for a file system.
164 */
b9b166c6 165#define FS_MAGIC 0x011954
1ef63481
KM
166struct fs
167{
b9b166c6
KM
168 struct fs *fs_link; /* linked list of file systems */
169 struct fs *fs_rlink; /* used for incore super blocks */
26169eda 170 daddr_t fs_sblkno; /* addr of super-block in filesys */
aca50d72
KM
171 daddr_t fs_cblkno; /* offset of cyl-block in filesys */
172 daddr_t fs_iblkno; /* offset of inode-blocks in filesys */
26169eda
KM
173 daddr_t fs_dblkno; /* offset of first data after cg */
174 long fs_cgoffset; /* cylinder group offset in cylinder */
175 long fs_cgmask; /* used to calc mod fs_ntrak */
1ef63481 176 time_t fs_time; /* last time written */
003319d1
KM
177 long fs_size; /* number of blocks in fs */
178 long fs_dsize; /* number of data blocks in fs */
179 long fs_ncg; /* number of cylinder groups */
b6407c9d
KM
180 long fs_bsize; /* size of basic blocks in fs */
181 long fs_fsize; /* size of frag blocks in fs */
26169eda
KM
182 long fs_frag; /* number of frags in a block in fs */
183 long fs_minfree; /* minimum percentage of free blocks */
184 long fs_rotdelay; /* num of ms for optimal next block */
185 long fs_rps; /* disk revolutions per second */
c1ab275c
KM
186 long fs_bmask; /* ``blkoff'' calc of blk offsets */
187 long fs_fmask; /* ``fragoff'' calc of frag offsets */
26169eda
KM
188 long fs_bshift; /* ``lblkno'' calc of logical blkno */
189 long fs_fshift; /* ``numfrags'' calc number of frags */
190 long fs_sparecon[16]; /* reserved for future constants */
1ef63481 191/* sizes determined by number of cylinder groups and their sizes */
b6407c9d 192 daddr_t fs_csaddr; /* blk addr of cyl grp summary area */
003319d1
KM
193 long fs_cssize; /* size of cyl grp summary area */
194 long fs_cgsize; /* cylinder group size */
1ef63481 195/* these fields should be derived from the hardware */
26169eda
KM
196 long fs_ntrak; /* tracks per cylinder */
197 long fs_nsect; /* sectors per track */
003319d1 198 long fs_spc; /* sectors per cylinder */
1ef63481 199/* this comes from the disk driver partitioning */
003319d1 200 long fs_ncyl; /* cylinders in file system */
1ef63481 201/* these fields can be computed from the others */
26169eda
KM
202 long fs_cpg; /* cylinders per group */
203 long fs_ipg; /* inodes per group */
b6407c9d 204 long fs_fpg; /* blocks per group * fs_frag */
003319d1
KM
205/* this data must be re-computed after crashes */
206 struct csum fs_cstotal; /* cylinder summary information */
1ef63481
KM
207/* these fields are cleared at mount time */
208 char fs_fmod; /* super block modified flag */
26169eda 209 char fs_clean; /* file system is clean flag */
1ef63481 210 char fs_ronly; /* mounted read-only flag */
26169eda 211 char fs_flags; /* currently unused flag */
2c9afb08 212 char fs_fsmnt[MAXMNTLEN]; /* name mounted on */
743f1ef7 213/* these fields retain the current block allocation info */
003319d1 214 long fs_cgrotor; /* last cg searched */
1b807fc9 215 struct csum *fs_csp[MAXCSBUFS];/* list of fs_cs info buffers */
26169eda 216 long fs_cpc; /* cyl per cycle in postbl */
aca50d72 217 short fs_postbl[MAXCPG][NRPOS];/* head of blocks for each rotation */
b9b166c6 218 long fs_magic; /* magic number */
aca50d72 219 u_char fs_rotbl[1]; /* list of blocks for each rotation */
743f1ef7 220/* actually longer */
1ef63481 221};
b6407c9d
KM
222
223/*
2c9afb08 224 * Convert cylinder group to base address of its global summary info.
80cc8328 225 *
b6407c9d
KM
226 * N.B. This macro assumes that sizeof(struct csum) is a power of two.
227 */
228#define fs_cs(fs, indx) \
229 fs_csp[(indx) / ((fs)->fs_bsize / sizeof(struct csum))] \
230 [(indx) % ((fs)->fs_bsize / sizeof(struct csum))]
1ef63481
KM
231
232/*
aca50d72
KM
233 * MAXBPC bounds the size of the rotational layout tables and
234 * is limited by the fact that the super block is of size SBSIZE.
235 * The size of these tables is INVERSELY proportional to the block
236 * size of the file system. It is aggravated by sector sizes that
237 * are not powers of two, as this increases the number of cylinders
238 * included before the rotational pattern repeats (fs_cpc).
239 * Its size is derived from the number of bytes remaining in (struct fs)
1ef63481 240 */
aca50d72 241#define MAXBPC (SBSIZE - sizeof (struct fs))
1ef63481
KM
242
243/*
80cc8328 244 * Cylinder group block for a file system.
1ef63481 245 */
b9b166c6 246#define CG_MAGIC 0x090255
1ef63481 247struct cg {
b9b166c6
KM
248 struct cg *cg_link; /* linked list of cyl groups */
249 struct cg *cg_rlink; /* used for incore cyl groups */
1ef63481 250 time_t cg_time; /* time last written */
003319d1 251 long cg_cgx; /* we are the cgx'th cylinder group */
1ef63481
KM
252 short cg_ncyl; /* number of cyl's this cg */
253 short cg_niblk; /* number of inode blocks this cg */
003319d1
KM
254 long cg_ndblk; /* number of data blocks this cg */
255 struct csum cg_cs; /* cylinder summary information */
256 long cg_rotor; /* position of last used block */
257 long cg_frotor; /* position of last used frag */
258 long cg_irotor; /* position of last used inode */
b6407c9d 259 long cg_frsum[MAXFRAG]; /* counts of available frags */
d37938c8 260 long cg_btot[MAXCPG]; /* block totals per cylinder */
1ef63481
KM
261 short cg_b[MAXCPG][NRPOS]; /* positions of free blocks */
262 char cg_iused[MAXIPG/NBBY]; /* used inode map */
b9b166c6 263 long cg_magic; /* magic number */
1ef63481
KM
264 char cg_free[1]; /* free block map */
265/* actually longer */
266};
80cc8328
KM
267
268/*
269 * MAXBPG bounds the number of blocks of data per cylinder group,
270 * and is limited by the fact that cylinder groups are at most one block.
271 * Its size is derived from the size of blocks and the (struct cg) size,
272 * by the number of remaining bits.
273 */
274#define MAXBPG(fs) \
275 (NBBY * ((fs)->fs_bsize - (sizeof (struct cg))) / (fs)->fs_frag)
276
277/*
278 * Turn file system block numbers into disk block addresses.
279 * This maps file system blocks to device size blocks.
280 */
281#define fsbtodb(fs, b) ((b) * ((fs)->fs_fsize / DEV_BSIZE))
282#define dbtofsb(fs, b) ((b) / ((fs)->fs_fsize / DEV_BSIZE))
283
284/*
285 * Cylinder group macros to locate things in cylinder groups.
26169eda 286 * They calc file system addresses of cylinder group data structures.
80cc8328 287 */
26169eda
KM
288#define cgbase(fs, c) ((daddr_t)((fs)->fs_fpg * (c)))
289#define cgstart(fs, c) \
290 (cgbase(fs, c) + (fs)->fs_cgoffset * ((c) & ~((fs)->fs_cgmask)))
291#define cgsblock(fs, c) (cgstart(fs, c) + (fs)->fs_sblkno) /* super blk */
292#define cgtod(fs, c) (cgstart(fs, c) + (fs)->fs_cblkno) /* cg block */
293#define cgimin(fs, c) (cgstart(fs, c) + (fs)->fs_iblkno) /* inode blk */
294#define cgdmin(fs, c) (cgstart(fs, c) + (fs)->fs_dblkno) /* 1st data */
80cc8328
KM
295
296/*
2c9afb08
KM
297 * Macros for handling inode numbers:
298 * inode number to file system block offset.
299 * inode number to cylinder group number.
300 * inode number to file system block address.
80cc8328 301 */
6994bf5d
KM
302#define itoo(fs, x) ((x) % INOPB(fs))
303#define itog(fs, x) ((x) / (fs)->fs_ipg)
304#define itod(fs, x) \
305 ((daddr_t)(cgimin(fs, itog(fs, x)) + \
aca50d72 306 (x) % (fs)->fs_ipg / INOPB(fs) * (fs)->fs_frag))
80cc8328 307
80cc8328 308/*
2c9afb08
KM
309 * Give cylinder group number for a file system block.
310 * Give cylinder group block number for a file system block.
80cc8328 311 */
6994bf5d
KM
312#define dtog(fs, d) ((d) / (fs)->fs_fpg)
313#define dtogd(fs, d) ((d) % (fs)->fs_fpg)
80cc8328 314
aca50d72 315/*
2c9afb08
KM
316 * Extract the bits for a block from a map.
317 * Compute the cylinder and rotational position of a cyl block addr.
aca50d72 318 */
2c9afb08
KM
319#define blkmap(fs, map, loc) \
320 (((map)[loc / NBBY] >> (loc % NBBY)) & (0xff >> (NBBY - (fs)->fs_frag)))
aca50d72
KM
321#define cbtocylno(fs, bno) \
322 ((bno) * NSPF(fs) / (fs)->fs_spc)
323#define cbtorpos(fs, bno) \
324 ((bno) * NSPF(fs) % (fs)->fs_nsect * NRPOS / (fs)->fs_nsect)
325
c1ab275c
KM
326/*
327 * The following macros optimize certain frequently calculated
328 * quantities by using shifts and masks in place of divisions
329 * modulos and multiplications.
330 */
331#define blkoff(fs, loc) /* calculates (loc % fs->fs_bsize) */ \
332 ((loc) & ~(fs)->fs_bmask)
333#define fragoff(fs, loc) /* calculates (loc % fs->fs_fsize) */ \
334 ((loc) & ~(fs)->fs_fmask)
335#define lblkno(fs, loc) /* calculates (loc / fs->fs_bsize) */ \
336 ((loc) >> (fs)->fs_bshift)
337#define numfrags(fs, loc) /* calculates (loc / fs->fs_fsize) */ \
338 ((loc) >> (fs)->fs_fshift)
339#define blkroundup(fs, size) /* calculates roundup(size, fs->fs_bsize) */ \
340 (((size) + (fs)->fs_bsize - 1) & (fs)->fs_bmask)
341#define fragroundup(fs, size) /* calculates roundup(size, fs->fs_fsize) */ \
342 (((size) + (fs)->fs_fsize - 1) & (fs)->fs_fmask)
343
80cc8328 344/*
2c9afb08 345 * Determining the size of a file block in the file system.
80cc8328
KM
346 */
347#define blksize(fs, ip, lbn) \
348 (((lbn) >= NDADDR || (ip)->i_size >= ((lbn) + 1) * (fs)->fs_bsize) \
c1ab275c
KM
349 ? (fs)->fs_bsize \
350 : (fragroundup(fs, blkoff(fs, (ip)->i_size))))
80cc8328
KM
351#define dblksize(fs, dip, lbn) \
352 (((lbn) >= NDADDR || (dip)->di_size >= ((lbn) + 1) * (fs)->fs_bsize) \
c1ab275c
KM
353 ? (fs)->fs_bsize \
354 : (fragroundup(fs, blkoff(fs, (dip)->di_size))))
80cc8328
KM
355
356/*
2c9afb08 357 * Number of disk sectors per block; assumes DEV_BSIZE byte sector size.
80cc8328
KM
358 */
359#define NSPB(fs) ((fs)->fs_bsize / DEV_BSIZE)
360#define NSPF(fs) ((fs)->fs_fsize / DEV_BSIZE)
361
362/*
2c9afb08 363 * INOPB is the number of inodes in a secondary storage block.
80cc8328
KM
364 */
365#define INOPB(fs) ((fs)->fs_bsize / sizeof (struct dinode))
366#define INOPF(fs) ((fs)->fs_fsize / sizeof (struct dinode))
367
368/*
2c9afb08 369 * NINDIR is the number of indirects in a file system block.
80cc8328
KM
370 */
371#define NINDIR(fs) ((fs)->fs_bsize / sizeof (daddr_t))
1ef63481
KM
372
373#ifdef KERNEL
374struct fs *getfs();
1bbbd864 375struct fs *mountfs();
1ef63481 376#endif