move Fortran references out of .3m into .3f
[unix-history] / usr / src / lib / libm / common_source / log1p.c
CommitLineData
ed7e5132
ZAL
1/*
2 * Copyright (c) 1985 Regents of the University of California.
3 *
4 * Use and reproduction of this software are granted in accordance with
5 * the terms and conditions specified in the Berkeley Software License
6 * Agreement (in particular, this entails acknowledgement of the programs'
7 * source, and inclusion of this notice) with the additional understanding
8 * that all recipients should regard themselves as participants in an
9 * ongoing research project and hence should feel obligated to report
10 * their experiences (good or bad) with these elementary function codes,
11 * using "sendbug 4bsd-bugs@BERKELEY", to the authors.
12 */
13
14#ifndef lint
a62df508 15static char sccsid[] =
62b65e15 16"@(#)log1p.c 1.3 (Berkeley) 8/21/85; 1.3 (ucb.elefunt) %G%";
ed7e5132
ZAL
17#endif not lint
18
19/* LOG1P(x)
20 * RETURN THE LOGARITHM OF 1+x
21 * DOUBLE PRECISION (VAX D FORMAT 56 bits, IEEE DOUBLE 53 BITS)
22 * CODED IN C BY K.C. NG, 1/19/85;
23 * REVISED BY K.C. NG on 2/6/85, 3/7/85, 3/24/85, 4/16/85.
24 *
25 * Required system supported functions:
26 * scalb(x,n)
27 * copysign(x,y)
28 * logb(x)
29 * finite(x)
30 *
31 * Required kernel function:
32 * log__L(z)
33 *
34 * Method :
35 * 1. Argument Reduction: find k and f such that
36 * 1+x = 2^k * (1+f),
37 * where sqrt(2)/2 < 1+f < sqrt(2) .
38 *
39 * 2. Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
40 * = 2s + 2/3 s**3 + 2/5 s**5 + .....,
41 * log(1+f) is computed by
42 *
43 * log(1+f) = 2s + s*log__L(s*s)
44 * where
45 * log__L(z) = z*(L1 + z*(L2 + z*(... (L6 + z*L7)...)))
46 *
47 * See log__L() for the values of the coefficients.
48 *
49 * 3. Finally, log(1+x) = k*ln2 + log(1+f).
50 *
51 * Remarks 1. In step 3 n*ln2 will be stored in two floating point numbers
52 * n*ln2hi + n*ln2lo, where ln2hi is chosen such that the last
53 * 20 bits (for VAX D format), or the last 21 bits ( for IEEE
54 * double) is 0. This ensures n*ln2hi is exactly representable.
55 * 2. In step 1, f may not be representable. A correction term c
56 * for f is computed. It follows that the correction term for
57 * f - t (the leading term of log(1+f) in step 2) is c-c*x. We
58 * add this correction term to n*ln2lo to attenuate the error.
59 *
60 *
61 * Special cases:
62 * log1p(x) is NaN with signal if x < -1; log1p(NaN) is NaN with no signal;
63 * log1p(INF) is +INF; log1p(-1) is -INF with signal;
64 * only log1p(0)=0 is exact for finite argument.
65 *
66 * Accuracy:
67 * log1p(x) returns the exact log(1+x) nearly rounded. In a test run
68 * with 1,536,000 random arguments on a VAX, the maximum observed
69 * error was .846 ulps (units in the last place).
70 *
71 * Constants:
72 * The hexadecimal values are the intended ones for the following constants.
73 * The decimal values may be used, provided that the compiler will convert
74 * from decimal to binary accurately enough to produce the hexadecimal values
75 * shown.
76 */
77
78#ifdef VAX /* VAX D format */
79#include <errno.h>
80
62b65e15 81/* static double */
ed7e5132
ZAL
82/* ln2hi = 6.9314718055829871446E-1 , Hex 2^ 0 * .B17217F7D00000 */
83/* ln2lo = 1.6465949582897081279E-12 , Hex 2^-39 * .E7BCD5E4F1D9CC */
84/* sqrt2 = 1.4142135623730950622E0 ; Hex 2^ 1 * .B504F333F9DE65 */
85static long ln2hix[] = { 0x72174031, 0x0000f7d0};
86static long ln2lox[] = { 0xbcd52ce7, 0xd9cce4f1};
87static long sqrt2x[] = { 0x04f340b5, 0xde6533f9};
88#define ln2hi (*(double*)ln2hix)
89#define ln2lo (*(double*)ln2lox)
90#define sqrt2 (*(double*)sqrt2x)
91#else /* IEEE double */
62b65e15 92static double
ed7e5132
ZAL
93ln2hi = 6.9314718036912381649E-1 , /*Hex 2^ -1 * 1.62E42FEE00000 */
94ln2lo = 1.9082149292705877000E-10 , /*Hex 2^-33 * 1.A39EF35793C76 */
95sqrt2 = 1.4142135623730951455E0 ; /*Hex 2^ 0 * 1.6A09E667F3BCD */
96#endif
97
98double log1p(x)
99double x;
100{
101 static double zero=0.0, negone= -1.0, one=1.0,
102 half=1.0/2.0, small=1.0E-20; /* 1+small == 1 */
103 double logb(),copysign(),scalb(),log__L(),z,s,t,c;
104 int k,finite();
105
106#ifndef VAX
107 if(x!=x) return(x); /* x is NaN */
108#endif
109
110 if(finite(x)) {
111 if( x > negone ) {
112
113 /* argument reduction */
114 if(copysign(x,one)<small) return(x);
115 k=logb(one+x); z=scalb(x,-k); t=scalb(one,-k);
116 if(z+t >= sqrt2 )
117 { k += 1 ; z *= half; t *= half; }
118 t += negone; x = z + t;
119 c = (t-x)+z ; /* correction term for x */
120
121 /* compute log(1+x) */
122 s = x/(2+x); t = x*x*half;
123 c += (k*ln2lo-c*x);
124 z = c+s*(t+log__L(s*s));
125 x += (z - t) ;
126
127 return(k*ln2hi+x);
128 }
129 /* end of if (x > negone) */
130
131 else {
132#ifdef VAX
133 extern double infnan();
134 if ( x == negone )
135 return (infnan(-ERANGE)); /* -INF */
136 else
137 return (infnan(EDOM)); /* NaN */
138#else /* IEEE double */
139 /* x = -1, return -INF with signal */
140 if ( x == negone ) return( negone/zero );
141
142 /* negative argument for log, return NaN with signal */
143 else return ( zero / zero );
144#endif
145 }
146 }
147 /* end of if (finite(x)) */
148
149 /* log(-INF) is NaN */
150 else if(x<0)
151 return(zero/zero);
152
153 /* log(+INF) is INF */
154 else return(x);
155}