4.3BSD version dated 09/12/85.
[unix-history] / usr / src / lib / libm / common_source / exp.c
CommitLineData
f28ff572
ZAL
1/*
2 * Copyright (c) 1985 Regents of the University of California.
3 *
4 * Use and reproduction of this software are granted in accordance with
5 * the terms and conditions specified in the Berkeley Software License
6 * Agreement (in particular, this entails acknowledgement of the programs'
7 * source, and inclusion of this notice) with the additional understanding
8 * that all recipients should regard themselves as participants in an
9 * ongoing research project and hence should feel obligated to report
10 * their experiences (good or bad) with these elementary function codes,
11 * using "sendbug 4bsd-bugs@BERKELEY", to the authors.
12 */
13
14#ifndef lint
a62df508
GK
15static char sccsid[] =
16"@(#)exp.c 4.3 (Berkeley) 8/21/85; 1.2 (ucb.elefunt) %G%";
f28ff572
ZAL
17#endif not lint
18
19/* EXP(X)
20 * RETURN THE EXPONENTIAL OF X
21 * DOUBLE PRECISION (IEEE 53 bits, VAX D FORMAT 56 BITS)
22 * CODED IN C BY K.C. NG, 1/19/85;
23 * REVISED BY K.C. NG on 2/6/85, 2/15/85, 3/7/85, 3/24/85, 4/16/85.
24 *
25 * Required system supported functions:
26 * scalb(x,n)
27 * copysign(x,y)
28 * finite(x)
29 *
30 * Kernel function:
31 * exp__E(x,c)
32 *
33 * Method:
34 * 1. Argument Reduction: given the input x, find r and integer k such
35 * that
36 * x = k*ln2 + r, |r| <= 0.5*ln2 .
37 * r will be represented as r := z+c for better accuracy.
38 *
39 * 2. Compute expm1(r)=exp(r)-1 by
40 *
41 * expm1(r=z+c) := z + exp__E(z,r)
42 *
43 * 3. exp(x) = 2^k * ( expm1(r) + 1 ).
44 *
45 * Special cases:
46 * exp(INF) is INF, exp(NaN) is NaN;
47 * exp(-INF)= 0;
48 * for finite argument, only exp(0)=1 is exact.
49 *
50 * Accuracy:
51 * exp(x) returns the exponential of x nearly rounded. In a test run
52 * with 1,156,000 random arguments on a VAX, the maximum observed
53 * error was .768 ulps (units in the last place).
54 *
55 * Constants:
56 * The hexadecimal values are the intended ones for the following constants.
57 * The decimal values may be used, provided that the compiler will convert
58 * from decimal to binary accurately enough to produce the hexadecimal values
59 * shown.
60 */
61
62#ifdef VAX /* VAX D format */
63/* double static */
64/* ln2hi = 6.9314718055829871446E-1 , Hex 2^ 0 * .B17217F7D00000 */
65/* ln2lo = 1.6465949582897081279E-12 , Hex 2^-39 * .E7BCD5E4F1D9CC */
66/* lnhuge = 9.4961163736712506989E1 , Hex 2^ 7 * .BDEC1DA73E9010 */
67/* lntiny = -9.5654310917272452386E1 , Hex 2^ 7 * -.BF4F01D72E33AF */
68/* invln2 = 1.4426950408889634148E0 ; Hex 2^ 1 * .B8AA3B295C17F1 */
69static long ln2hix[] = { 0x72174031, 0x0000f7d0};
70static long ln2lox[] = { 0xbcd52ce7, 0xd9cce4f1};
71static long lnhugex[] = { 0xec1d43bd, 0x9010a73e};
72static long lntinyx[] = { 0x4f01c3bf, 0x33afd72e};
73static long invln2x[] = { 0xaa3b40b8, 0x17f1295c};
74#define ln2hi (*(double*)ln2hix)
75#define ln2lo (*(double*)ln2lox)
76#define lnhuge (*(double*)lnhugex)
77#define lntiny (*(double*)lntinyx)
78#define invln2 (*(double*)invln2x)
79#else /* IEEE double */
80double static
81ln2hi = 6.9314718036912381649E-1 , /*Hex 2^ -1 * 1.62E42FEE00000 */
82ln2lo = 1.9082149292705877000E-10 , /*Hex 2^-33 * 1.A39EF35793C76 */
83lnhuge = 7.1602103751842355450E2 , /*Hex 2^ 9 * 1.6602B15B7ECF2 */
84lntiny = -7.5137154372698068983E2 , /*Hex 2^ 9 * -1.77AF8EBEAE354 */
85invln2 = 1.4426950408889633870E0 ; /*Hex 2^ 0 * 1.71547652B82FE */
86#endif
87
88double exp(x)
89double x;
90{
91 double scalb(), copysign(), exp__E(), z,hi,lo,c;
92 int k,finite();
93
94#ifndef VAX
95 if(x!=x) return(x); /* x is NaN */
96#endif
97 if( x <= lnhuge ) {
98 if( x >= lntiny ) {
99
100 /* argument reduction : x --> x - k*ln2 */
101
102 k=invln2*x+copysign(0.5,x); /* k=NINT(x/ln2) */
103
104 /* express x-k*ln2 as z+c */
105 hi=x-k*ln2hi;
106 z=hi-(lo=k*ln2lo);
107 c=(hi-z)-lo;
108
109 /* return 2^k*[expm1(x) + 1] */
110 z += exp__E(z,c);
111 return (scalb(z+1.0,k));
112 }
113 /* end of x > lntiny */
114
115 else
116 /* exp(-big#) underflows to zero */
117 if(finite(x)) return(scalb(1.0,-5000));
118
119 /* exp(-INF) is zero */
120 else return(0.0);
121 }
122 /* end of x < lnhuge */
123
124 else
125 /* exp(INF) is INF, exp(+big#) overflows to INF */
126 return( finite(x) ? scalb(1.0,5000) : x);
127}