This commit was generated by cvs2svn to track changes on a CVS vendor
[unix-history] / lib / libc / stdlib / strtod.c
CommitLineData
0dd922c1
NW
1#if defined(LIBC_SCCS) && !defined(lint)
2static char sccsid[] = "@(#)strtod.c 5.1 (Berkeley) 11/13/92";
3#endif /* LIBC_SCCS and not lint */
4
5/****************************************************************
6 *
7 * The author of this software is David M. Gay.
8 *
9 * Copyright (c) 1991 by AT&T.
10 *
11 * Permission to use, copy, modify, and distribute this software for any
12 * purpose without fee is hereby granted, provided that this entire notice
13 * is included in all copies of any software which is or includes a copy
14 * or modification of this software and in all copies of the supporting
15 * documentation for such software.
16 *
17 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
18 * WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR AT&T MAKES ANY
19 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
20 * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
21 *
22 ***************************************************************/
23
24/* Please send bug reports to
25 David M. Gay
26 AT&T Bell Laboratories, Room 2C-463
27 600 Mountain Avenue
28 Murray Hill, NJ 07974-2070
29 U.S.A.
30 dmg@research.att.com or research!dmg
31 */
32
33/* strtod for IEEE-, VAX-, and IBM-arithmetic machines.
34 *
35 * This strtod returns a nearest machine number to the input decimal
36 * string (or sets errno to ERANGE). With IEEE arithmetic, ties are
37 * broken by the IEEE round-even rule. Otherwise ties are broken by
38 * biased rounding (add half and chop).
39 *
40 * Inspired loosely by William D. Clinger's paper "How to Read Floating
41 * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101].
42 *
43 * Modifications:
44 *
45 * 1. We only require IEEE, IBM, or VAX double-precision
46 * arithmetic (not IEEE double-extended).
47 * 2. We get by with floating-point arithmetic in a case that
48 * Clinger missed -- when we're computing d * 10^n
49 * for a small integer d and the integer n is not too
50 * much larger than 22 (the maximum integer k for which
51 * we can represent 10^k exactly), we may be able to
52 * compute (d*10^k) * 10^(e-k) with just one roundoff.
53 * 3. Rather than a bit-at-a-time adjustment of the binary
54 * result in the hard case, we use floating-point
55 * arithmetic to determine the adjustment to within
56 * one bit; only in really hard cases do we need to
57 * compute a second residual.
58 * 4. Because of 3., we don't need a large table of powers of 10
59 * for ten-to-e (just some small tables, e.g. of 10^k
60 * for 0 <= k <= 22).
61 */
62
63/*
64 * #define IEEE_8087 for IEEE-arithmetic machines where the least
65 * significant byte has the lowest address.
66 * #define IEEE_MC68k for IEEE-arithmetic machines where the most
67 * significant byte has the lowest address.
68 * #define Sudden_Underflow for IEEE-format machines without gradual
69 * underflow (i.e., that flush to zero on underflow).
70 * #define IBM for IBM mainframe-style floating-point arithmetic.
71 * #define VAX for VAX-style floating-point arithmetic.
72 * #define Unsigned_Shifts if >> does treats its left operand as unsigned.
73 * #define No_leftright to omit left-right logic in fast floating-point
74 * computation of dtoa.
75 * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3.
76 * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines
77 * that use extended-precision instructions to compute rounded
78 * products and quotients) with IBM.
79 * #define ROUND_BIASED for IEEE-format with biased rounding.
80 * #define Inaccurate_Divide for IEEE-format with correctly rounded
81 * products but inaccurate quotients, e.g., for Intel i860.
82 * #define Just_16 to store 16 bits per 32-bit long when doing high-precision
83 * integer arithmetic. Whether this speeds things up or slows things
84 * down depends on the machine and the number being converted.
85 * #define KR_headers for old-style C function headers.
86 * #define Bad_float_h if your system lacks a float.h or if it does not
87 * define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP,
88 * FLT_RADIX, FLT_ROUNDS, and DBL_MAX.
89 */
90
91#define IEEE_8087
92
93#ifdef DEBUG
94#include "stdio.h"
95#define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);}
96#endif
97
98#ifdef __cplusplus
99#include "malloc.h"
100#include "memory.h"
101#else
102#ifndef KR_headers
103#include "stdlib.h"
104#include "string.h"
105#else
106#include "malloc.h"
107#include "memory.h"
108#endif
109#endif
110
111#include "errno.h"
112#ifdef Bad_float_h
113#undef __STDC__
114#ifdef IEEE_MC68k
115#define IEEE_ARITHMETIC
116#endif
117#ifdef IEEE_8087
118#define IEEE_ARITHMETIC
119#endif
120#ifdef IEEE_ARITHMETIC
121#define DBL_DIG 15
122#define DBL_MAX_10_EXP 308
123#define DBL_MAX_EXP 1024
124#define FLT_RADIX 2
125#define FLT_ROUNDS 1
126#define DBL_MAX 1.7976931348623157e+308
127#endif
128
129#ifdef IBM
130#define DBL_DIG 16
131#define DBL_MAX_10_EXP 75
132#define DBL_MAX_EXP 63
133#define FLT_RADIX 16
134#define FLT_ROUNDS 0
135#define DBL_MAX 7.2370055773322621e+75
136#endif
137
138#ifdef VAX
139#define DBL_DIG 16
140#define DBL_MAX_10_EXP 38
141#define DBL_MAX_EXP 127
142#define FLT_RADIX 2
143#define FLT_ROUNDS 1
144#define DBL_MAX 1.7014118346046923e+38
145#endif
146
147#ifndef LONG_MAX
148#define LONG_MAX 2147483647
149#endif
150#else
151#include "float.h"
152#endif
153#ifndef __MATH_H__
154#include "math.h"
155#endif
156
157#ifdef __cplusplus
158extern "C" {
159#endif
160
161#ifndef CONST
162#ifdef KR_headers
163#define CONST /* blank */
164#else
165#define CONST const
166#endif
167#endif
168
169#ifdef Unsigned_Shifts
170#define Sign_Extend(a,b) if (b < 0) a |= 0xffff0000;
171#else
172#define Sign_Extend(a,b) /*no-op*/
173#endif
174
175#if defined(IEEE_8087) + defined(IEEE_MC68k) + defined(VAX) + defined(IBM) != 1
176Exactly one of IEEE_8087, IEEE_MC68k, VAX, or IBM should be defined.
177#endif
178
179#ifdef IEEE_8087
180#define word0(x) ((unsigned long *)&x)[1]
181#define word1(x) ((unsigned long *)&x)[0]
182#else
183#define word0(x) ((unsigned long *)&x)[0]
184#define word1(x) ((unsigned long *)&x)[1]
185#endif
186
187/* The following definition of Storeinc is appropriate for MIPS processors.
188 * An alternative that might be better on some machines is
189 * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)
190 */
191#if defined(IEEE_8087) + defined(VAX)
192#define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \
193((unsigned short *)a)[0] = (unsigned short)c, a++)
194#else
195#define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \
196((unsigned short *)a)[1] = (unsigned short)c, a++)
197#endif
198
199/* #define P DBL_MANT_DIG */
200/* Ten_pmax = floor(P*log(2)/log(5)) */
201/* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
202/* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
203/* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
204
205#if defined(IEEE_8087) + defined(IEEE_MC68k)
206#define Exp_shift 20
207#define Exp_shift1 20
208#define Exp_msk1 0x100000
209#define Exp_msk11 0x100000
210#define Exp_mask 0x7ff00000
211#define P 53
212#define Bias 1023
213#define IEEE_Arith
214#define Emin (-1022)
215#define Exp_1 0x3ff00000
216#define Exp_11 0x3ff00000
217#define Ebits 11
218#define Frac_mask 0xfffff
219#define Frac_mask1 0xfffff
220#define Ten_pmax 22
221#define Bletch 0x10
222#define Bndry_mask 0xfffff
223#define Bndry_mask1 0xfffff
224#define LSB 1
225#define Sign_bit 0x80000000
226#define Log2P 1
227#define Tiny0 0
228#define Tiny1 1
229#define Quick_max 14
230#define Int_max 14
231#define Infinite(x) (word0(x) == 0x7ff00000) /* sufficient test for here */
232#else
233#undef Sudden_Underflow
234#define Sudden_Underflow
235#ifdef IBM
236#define Exp_shift 24
237#define Exp_shift1 24
238#define Exp_msk1 0x1000000
239#define Exp_msk11 0x1000000
240#define Exp_mask 0x7f000000
241#define P 14
242#define Bias 65
243#define Exp_1 0x41000000
244#define Exp_11 0x41000000
245#define Ebits 8 /* exponent has 7 bits, but 8 is the right value in b2d */
246#define Frac_mask 0xffffff
247#define Frac_mask1 0xffffff
248#define Bletch 4
249#define Ten_pmax 22
250#define Bndry_mask 0xefffff
251#define Bndry_mask1 0xffffff
252#define LSB 1
253#define Sign_bit 0x80000000
254#define Log2P 4
255#define Tiny0 0x100000
256#define Tiny1 0
257#define Quick_max 14
258#define Int_max 15
259#else /* VAX */
260#define Exp_shift 23
261#define Exp_shift1 7
262#define Exp_msk1 0x80
263#define Exp_msk11 0x800000
264#define Exp_mask 0x7f80
265#define P 56
266#define Bias 129
267#define Exp_1 0x40800000
268#define Exp_11 0x4080
269#define Ebits 8
270#define Frac_mask 0x7fffff
271#define Frac_mask1 0xffff007f
272#define Ten_pmax 24
273#define Bletch 2
274#define Bndry_mask 0xffff007f
275#define Bndry_mask1 0xffff007f
276#define LSB 0x10000
277#define Sign_bit 0x8000
278#define Log2P 1
279#define Tiny0 0x80
280#define Tiny1 0
281#define Quick_max 15
282#define Int_max 15
283#endif
284#endif
285
286#ifndef IEEE_Arith
287#define ROUND_BIASED
288#endif
289
290#ifdef RND_PRODQUOT
291#define rounded_product(a,b) a = rnd_prod(a, b)
292#define rounded_quotient(a,b) a = rnd_quot(a, b)
293#ifdef KR_headers
294extern double rnd_prod(), rnd_quot();
295#else
296extern double rnd_prod(double, double), rnd_quot(double, double);
297#endif
298#else
299#define rounded_product(a,b) a *= b
300#define rounded_quotient(a,b) a /= b
301#endif
302
303#define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
304#define Big1 0xffffffff
305
306#ifndef Just_16
307/* When Pack_32 is not defined, we store 16 bits per 32-bit long.
308 * This makes some inner loops simpler and sometimes saves work
309 * during multiplications, but it often seems to make things slightly
310 * slower. Hence the default is now to store 32 bits per long.
311 */
312#ifndef Pack_32
313#define Pack_32
314#endif
315#endif
316
317#define Kmax 15
318
319#ifdef __cplusplus
320extern "C" double strtod(const char *s00, char **se);
321extern "C" char *dtoa(double d, int mode, int ndigits,
322 int *decpt, int *sign, char **rve);
323#endif
324
325 struct
326Bigint {
327 struct Bigint *next;
328 int k, maxwds, sign, wds;
329 unsigned long x[1];
330};
331
332 typedef struct Bigint Bigint;
333
334 static Bigint *freelist[Kmax+1];
335
336 static Bigint *
337Balloc
338#ifdef KR_headers
339 (k) int k;
340#else
341 (int k)
342#endif
343{
344 int x;
345 Bigint *rv;
346
347 if (rv = freelist[k]) {
348 freelist[k] = rv->next;
349 } else {
350 x = 1 << k;
351 rv = (Bigint *)malloc(sizeof(Bigint) + (x-1)*sizeof(long));
352 rv->k = k;
353 rv->maxwds = x;
354 }
355 rv->sign = rv->wds = 0;
356 return rv;
357}
358
359 static void
360Bfree
361#ifdef KR_headers
362 (v) Bigint *v;
363#else
364 (Bigint *v)
365#endif
366{
367 if (v) {
368 v->next = freelist[v->k];
369 freelist[v->k] = v;
370 }
371}
372
373#define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign, \
374y->wds*sizeof(long) + 2*sizeof(int))
375
376 static Bigint *
377multadd
378#ifdef KR_headers
379 (b, m, a) Bigint *b; int m, a;
380#else
381 (Bigint *b, int m, int a) /* multiply by m and add a */
382#endif
383{
384 int i, wds;
385 unsigned long *x, y;
386#ifdef Pack_32
387 unsigned long xi, z;
388#endif
389 Bigint *b1;
390
391 wds = b->wds;
392 x = b->x;
393 i = 0;
394 do {
395#ifdef Pack_32
396 xi = *x;
397 y = (xi & 0xffff) * m + a;
398 z = (xi >> 16) * m + (y >> 16);
399 a = (int)(z >> 16);
400 *x++ = (z << 16) + (y & 0xffff);
401#else
402 y = *x * m + a;
403 a = (int)(y >> 16);
404 *x++ = y & 0xffff;
405#endif
406 } while (++i < wds);
407 if (a) {
408 if (wds >= b->maxwds) {
409 b1 = Balloc(b->k+1);
410 Bcopy(b1, b);
411 Bfree(b);
412 b = b1;
413 }
414 b->x[wds++] = a;
415 b->wds = wds;
416 }
417 return b;
418}
419
420 static Bigint *
421s2b
422#ifdef KR_headers
423 (s, nd0, nd, y9) CONST char *s; int nd0, nd; unsigned long y9;
424#else
425 (CONST char *s, int nd0, int nd, unsigned long y9)
426#endif
427{
428 Bigint *b;
429 int i, k;
430 long x, y;
431
432 x = (nd + 8) / 9;
433 for (k = 0, y = 1; x > y; y <<= 1, k++) ;
434#ifdef Pack_32
435 b = Balloc(k);
436 b->x[0] = y9;
437 b->wds = 1;
438#else
439 b = Balloc(k+1);
440 b->x[0] = y9 & 0xffff;
441 b->wds = (b->x[1] = y9 >> 16) ? 2 : 1;
442#endif
443
444 i = 9;
445 if (9 < nd0) {
446 s += 9;
447 do
448 b = multadd(b, 10, *s++ - '0');
449 while (++i < nd0);
450 s++;
451 } else
452 s += 10;
453 for (; i < nd; i++)
454 b = multadd(b, 10, *s++ - '0');
455 return b;
456}
457
458 static int
459hi0bits
460#ifdef KR_headers
461 (x) register unsigned long x;
462#else
463 (register unsigned long x)
464#endif
465{
466 register int k = 0;
467
468 if (!(x & 0xffff0000)) {
469 k = 16;
470 x <<= 16;
471 }
472 if (!(x & 0xff000000)) {
473 k += 8;
474 x <<= 8;
475 }
476 if (!(x & 0xf0000000)) {
477 k += 4;
478 x <<= 4;
479 }
480 if (!(x & 0xc0000000)) {
481 k += 2;
482 x <<= 2;
483 }
484 if (!(x & 0x80000000)) {
485 k++;
486 if (!(x & 0x40000000))
487 return 32;
488 }
489 return k;
490}
491
492 static int
493lo0bits
494#ifdef KR_headers
495 (y) unsigned long *y;
496#else
497 (unsigned long *y)
498#endif
499{
500 register int k;
501 register unsigned long x = *y;
502
503 if (x & 7) {
504 if (x & 1)
505 return 0;
506 if (x & 2) {
507 *y = x >> 1;
508 return 1;
509 }
510 *y = x >> 2;
511 return 2;
512 }
513 k = 0;
514 if (!(x & 0xffff)) {
515 k = 16;
516 x >>= 16;
517 }
518 if (!(x & 0xff)) {
519 k += 8;
520 x >>= 8;
521 }
522 if (!(x & 0xf)) {
523 k += 4;
524 x >>= 4;
525 }
526 if (!(x & 0x3)) {
527 k += 2;
528 x >>= 2;
529 }
530 if (!(x & 1)) {
531 k++;
532 x >>= 1;
533 if (!x & 1)
534 return 32;
535 }
536 *y = x;
537 return k;
538}
539
540 static Bigint *
541i2b
542#ifdef KR_headers
543 (i) int i;
544#else
545 (int i)
546#endif
547{
548 Bigint *b;
549
550 b = Balloc(1);
551 b->x[0] = i;
552 b->wds = 1;
553 return b;
554 }
555
556 static Bigint *
557mult
558#ifdef KR_headers
559 (a, b) Bigint *a, *b;
560#else
561 (Bigint *a, Bigint *b)
562#endif
563{
564 Bigint *c;
565 int k, wa, wb, wc;
566 unsigned long carry, y, z;
567 unsigned long *x, *xa, *xae, *xb, *xbe, *xc, *xc0;
568#ifdef Pack_32
569 unsigned long z2;
570#endif
571
572 if (a->wds < b->wds) {
573 c = a;
574 a = b;
575 b = c;
576 }
577 k = a->k;
578 wa = a->wds;
579 wb = b->wds;
580 wc = wa + wb;
581 if (wc > a->maxwds)
582 k++;
583 c = Balloc(k);
584 for (x = c->x, xa = x + wc; x < xa; x++)
585 *x = 0;
586 xa = a->x;
587 xae = xa + wa;
588 xb = b->x;
589 xbe = xb + wb;
590 xc0 = c->x;
591#ifdef Pack_32
592 for (; xb < xbe; xb++, xc0++) {
593 if (y = *xb & 0xffff) {
594 x = xa;
595 xc = xc0;
596 carry = 0;
597 do {
598 z = (*x & 0xffff) * y + (*xc & 0xffff) + carry;
599 carry = z >> 16;
600 z2 = (*x++ >> 16) * y + (*xc >> 16) + carry;
601 carry = z2 >> 16;
602 Storeinc(xc, z2, z);
603 } while (x < xae);
604 *xc = carry;
605 }
606 if (y = *xb >> 16) {
607 x = xa;
608 xc = xc0;
609 carry = 0;
610 z2 = *xc;
611 do {
612 z = (*x & 0xffff) * y + (*xc >> 16) + carry;
613 carry = z >> 16;
614 Storeinc(xc, z, z2);
615 z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry;
616 carry = z2 >> 16;
617 } while (x < xae);
618 *xc = z2;
619 }
620 }
621#else
622 for (; xb < xbe; xc0++) {
623 if (y = *xb++) {
624 x = xa;
625 xc = xc0;
626 carry = 0;
627 do {
628 z = *x++ * y + *xc + carry;
629 carry = z >> 16;
630 *xc++ = z & 0xffff;
631 } while (x < xae);
632 *xc = carry;
633 }
634 }
635#endif
636 for (xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ;
637 c->wds = wc;
638 return c;
639}
640
641 static Bigint *p5s;
642
643 static Bigint *
644pow5mult
645#ifdef KR_headers
646 (b, k) Bigint *b; int k;
647#else
648 (Bigint *b, int k)
649#endif
650{
651 Bigint *b1, *p5, *p51;
652 int i;
653 static int p05[3] = { 5, 25, 125 };
654
655 if (i = k & 3)
656 b = multadd(b, p05[i-1], 0);
657
658 if (!(k >>= 2))
659 return b;
660 if (!(p5 = p5s)) {
661 /* first time */
662 p5 = p5s = i2b(625);
663 p5->next = 0;
664 }
665 for (;;) {
666 if (k & 1) {
667 b1 = mult(b, p5);
668 Bfree(b);
669 b = b1;
670 }
671 if (!(k >>= 1))
672 break;
673 if (!(p51 = p5->next)) {
674 p51 = p5->next = mult(p5,p5);
675 p51->next = 0;
676 }
677 p5 = p51;
678 }
679 return b;
680}
681
682 static Bigint *
683lshift
684#ifdef KR_headers
685 (b, k) Bigint *b; int k;
686#else
687 (Bigint *b, int k)
688#endif
689{
690 int i, k1, n, n1;
691 Bigint *b1;
692 unsigned long *x, *x1, *xe, z;
693
694#ifdef Pack_32
695 n = k >> 5;
696#else
697 n = k >> 4;
698#endif
699 k1 = b->k;
700 n1 = n + b->wds + 1;
701 for (i = b->maxwds; n1 > i; i <<= 1)
702 k1++;
703 b1 = Balloc(k1);
704 x1 = b1->x;
705 for (i = 0; i < n; i++)
706 *x1++ = 0;
707 x = b->x;
708 xe = x + b->wds;
709#ifdef Pack_32
710 if (k &= 0x1f) {
711 k1 = 32 - k;
712 z = 0;
713 do {
714 *x1++ = *x << k | z;
715 z = *x++ >> k1;
716 } while (x < xe);
717 if (*x1 = z)
718 ++n1;
719 }
720#else
721 if (k &= 0xf) {
722 k1 = 16 - k;
723 z = 0;
724 do {
725 *x1++ = *x << k & 0xffff | z;
726 z = *x++ >> k1;
727 } while (x < xe);
728 if (*x1 = z)
729 ++n1;
730 }
731#endif
732 else
733 do
734 *x1++ = *x++;
735 while (x < xe);
736 b1->wds = n1 - 1;
737 Bfree(b);
738 return b1;
739}
740
741 static int
742cmp
743#ifdef KR_headers
744 (a, b) Bigint *a, *b;
745#else
746 (Bigint *a, Bigint *b)
747#endif
748{
749 unsigned long *xa, *xa0, *xb, *xb0;
750 int i, j;
751
752 i = a->wds;
753 j = b->wds;
754#ifdef DEBUG
755 if (i > 1 && !a->x[i-1])
756 Bug("cmp called with a->x[a->wds-1] == 0");
757 if (j > 1 && !b->x[j-1])
758 Bug("cmp called with b->x[b->wds-1] == 0");
759#endif
760 if (i -= j)
761 return i;
762 xa0 = a->x;
763 xa = xa0 + j;
764 xb0 = b->x;
765 xb = xb0 + j;
766 for (;;) {
767 if (*--xa != *--xb)
768 return *xa < *xb ? -1 : 1;
769 if (xa <= xa0)
770 break;
771 }
772 return 0;
773}
774
775 static Bigint *
776diff
777#ifdef KR_headers
778 (a, b) Bigint *a, *b;
779#else
780 (Bigint *a, Bigint *b)
781#endif
782{
783 Bigint *c;
784 int i, wa, wb;
785 long borrow, y; /* We need signed shifts here. */
786 unsigned long *xa, *xae, *xb, *xbe, *xc;
787#ifdef Pack_32
788 long z;
789#endif
790
791 i = cmp(a,b);
792 if (!i) {
793 c = Balloc(0);
794 c->wds = 1;
795 c->x[0] = 0;
796 return c;
797 }
798 if (i < 0) {
799 c = a;
800 a = b;
801 b = c;
802 i = 1;
803 } else
804 i = 0;
805 c = Balloc(a->k);
806 c->sign = i;
807 wa = a->wds;
808 xa = a->x;
809 xae = xa + wa;
810 wb = b->wds;
811 xb = b->x;
812 xbe = xb + wb;
813 xc = c->x;
814 borrow = 0;
815#ifdef Pack_32
816 do {
817 y = (*xa & 0xffff) - (*xb & 0xffff) + borrow;
818 borrow = y >> 16;
819 Sign_Extend(borrow, y);
820 z = (*xa++ >> 16) - (*xb++ >> 16) + borrow;
821 borrow = z >> 16;
822 Sign_Extend(borrow, z);
823 Storeinc(xc, z, y);
824 } while (xb < xbe);
825 while (xa < xae) {
826 y = (*xa & 0xffff) + borrow;
827 borrow = y >> 16;
828 Sign_Extend(borrow, y);
829 z = (*xa++ >> 16) + borrow;
830 borrow = z >> 16;
831 Sign_Extend(borrow, z);
832 Storeinc(xc, z, y);
833 }
834#else
835 do {
836 y = *xa++ - *xb++ + borrow;
837 borrow = y >> 16;
838 Sign_Extend(borrow, y);
839 *xc++ = y & 0xffff;
840 } while (xb < xbe);
841 while (xa < xae) {
842 y = *xa++ + borrow;
843 borrow = y >> 16;
844 Sign_Extend(borrow, y);
845 *xc++ = y & 0xffff;
846 }
847#endif
848 while (!*--xc)
849 wa--;
850 c->wds = wa;
851 return c;
852}
853
854 static double
855ulp
856#ifdef KR_headers
857 (x) double x;
858#else
859 (double x)
860#endif
861{
862 register long L;
863 double a;
864
865 L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1;
866#ifndef Sudden_Underflow
867 if (L > 0) {
868#endif
869#ifdef IBM
870 L |= Exp_msk1 >> 4;
871#endif
872 word0(a) = L;
873 word1(a) = 0;
874#ifndef Sudden_Underflow
875 } else {
876 L = -L >> Exp_shift;
877 if (L < Exp_shift) {
878 word0(a) = 0x80000 >> L;
879 word1(a) = 0;
880 } else {
881 word0(a) = 0;
882 L -= Exp_shift;
883 word1(a) = L >= 31 ? 1 : 1 << 31 - L;
884 }
885 }
886#endif
887 return a;
888}
889
890 static double
891b2d
892#ifdef KR_headers
893 (a, e) Bigint *a; int *e;
894#else
895 (Bigint *a, int *e)
896#endif
897{
898 unsigned long *xa, *xa0, w, y, z;
899 int k;
900 double d;
901#ifdef VAX
902 unsigned long d0, d1;
903#else
904#define d0 word0(d)
905#define d1 word1(d)
906#endif
907
908 xa0 = a->x;
909 xa = xa0 + a->wds;
910 y = *--xa;
911#ifdef DEBUG
912 if (!y) Bug("zero y in b2d");
913#endif
914 k = hi0bits(y);
915 *e = 32 - k;
916#ifdef Pack_32
917 if (k < Ebits) {
918 d0 = Exp_1 | y >> Ebits - k;
919 w = xa > xa0 ? *--xa : 0;
920 d1 = y << (32-Ebits) + k | w >> Ebits - k;
921 goto ret_d;
922 }
923 z = xa > xa0 ? *--xa : 0;
924 if (k -= Ebits) {
925 d0 = Exp_1 | y << k | z >> 32 - k;
926 y = xa > xa0 ? *--xa : 0;
927 d1 = z << k | y >> 32 - k;
928 } else {
929 d0 = Exp_1 | y;
930 d1 = z;
931 }
932#else
933 if (k < Ebits + 16) {
934 z = xa > xa0 ? *--xa : 0;
935 d0 = Exp_1 | y << k - Ebits | z >> Ebits + 16 - k;
936 w = xa > xa0 ? *--xa : 0;
937 y = xa > xa0 ? *--xa : 0;
938 d1 = z << k + 16 - Ebits | w << k - Ebits | y >> 16 + Ebits - k;
939 goto ret_d;
940 }
941 z = xa > xa0 ? *--xa : 0;
942 w = xa > xa0 ? *--xa : 0;
943 k -= Ebits + 16;
944 d0 = Exp_1 | y << k + 16 | z << k | w >> 16 - k;
945 y = xa > xa0 ? *--xa : 0;
946 d1 = w << k + 16 | y << k;
947#endif
948 ret_d:
949#ifdef VAX
950 word0(d) = d0 >> 16 | d0 << 16;
951 word1(d) = d1 >> 16 | d1 << 16;
952#else
953#undef d0
954#undef d1
955#endif
956 return d;
957}
958
959 static Bigint *
960d2b
961#ifdef KR_headers
962 (d, e, bits) double d; int *e, *bits;
963#else
964 (double d, int *e, int *bits)
965#endif
966{
967 Bigint *b;
968 int de, i, k;
969 unsigned long *x, y, z;
970#ifdef VAX
971 unsigned long d0, d1;
972 d0 = word0(d) >> 16 | word0(d) << 16;
973 d1 = word1(d) >> 16 | word1(d) << 16;
974#else
975#define d0 word0(d)
976#define d1 word1(d)
977#endif
978
979#ifdef Pack_32
980 b = Balloc(1);
981#else
982 b = Balloc(2);
983#endif
984 x = b->x;
985
986 z = d0 & Frac_mask;
987 d0 &= 0x7fffffff; /* clear sign bit, which we ignore */
988#ifdef Sudden_Underflow
989 de = (int)(d0 >> Exp_shift);
990#ifndef IBM
991 z |= Exp_msk11;
992#endif
993#else
994 if (de = (int)(d0 >> Exp_shift))
995 z |= Exp_msk1;
996#endif
997#ifdef Pack_32
998 if (y = d1) {
999 if (k = lo0bits(&y)) {
1000 x[0] = y | z << 32 - k;
1001 z >>= k;
1002 }
1003 else
1004 x[0] = y;
1005 i = b->wds = (x[1] = z) ? 2 : 1;
1006 } else {
1007#ifdef DEBUG
1008 if (!z)
1009 Bug("Zero passed to d2b");
1010#endif
1011 k = lo0bits(&z);
1012 x[0] = z;
1013 i = b->wds = 1;
1014 k += 32;
1015 }
1016#else
1017 if (y = d1) {
1018 if (k = lo0bits(&y))
1019 if (k >= 16) {
1020 x[0] = y | z << 32 - k & 0xffff;
1021 x[1] = z >> k - 16 & 0xffff;
1022 x[2] = z >> k;
1023 i = 2;
1024 } else {
1025 x[0] = y & 0xffff;
1026 x[1] = y >> 16 | z << 16 - k & 0xffff;
1027 x[2] = z >> k & 0xffff;
1028 x[3] = z >> k+16;
1029 i = 3;
1030 }
1031 else {
1032 x[0] = y & 0xffff;
1033 x[1] = y >> 16;
1034 x[2] = z & 0xffff;
1035 x[3] = z >> 16;
1036 i = 3;
1037 }
1038 } else {
1039#ifdef DEBUG
1040 if (!z)
1041 Bug("Zero passed to d2b");
1042#endif
1043 k = lo0bits(&z);
1044 if (k >= 16) {
1045 x[0] = z;
1046 i = 0;
1047 } else {
1048 x[0] = z & 0xffff;
1049 x[1] = z >> 16;
1050 i = 1;
1051 }
1052 k += 32;
1053 }
1054 while (!x[i])
1055 --i;
1056 b->wds = i + 1;
1057#endif
1058#ifndef Sudden_Underflow
1059 if (de) {
1060#endif
1061#ifdef IBM
1062 *e = (de - Bias - (P-1) << 2) + k;
1063 *bits = 4*P + 8 - k - hi0bits(word0(d) & Frac_mask);
1064#else
1065 *e = de - Bias - (P-1) + k;
1066 *bits = P - k;
1067#endif
1068#ifndef Sudden_Underflow
1069 } else {
1070 *e = de - Bias - (P-1) + 1 + k;
1071#ifdef Pack_32
1072 *bits = 32*i - hi0bits(x[i-1]);
1073#else
1074 *bits = (i+2)*16 - hi0bits(x[i]);
1075#endif
1076 }
1077#endif
1078 return b;
1079}
1080#undef d0
1081#undef d1
1082
1083 static double
1084ratio
1085#ifdef KR_headers
1086 (a, b) Bigint *a, *b;
1087#else
1088 (Bigint *a, Bigint *b)
1089#endif
1090{
1091 double da, db;
1092 int k, ka, kb;
1093
1094 da = b2d(a, &ka);
1095 db = b2d(b, &kb);
1096#ifdef Pack_32
1097 k = ka - kb + 32*(a->wds - b->wds);
1098#else
1099 k = ka - kb + 16*(a->wds - b->wds);
1100#endif
1101#ifdef IBM
1102 if (k > 0) {
1103 word0(da) += (k >> 2)*Exp_msk1;
1104 if (k &= 3)
1105 da *= 1 << k;
1106 } else {
1107 k = -k;
1108 word0(db) += (k >> 2)*Exp_msk1;
1109 if (k &= 3)
1110 db *= 1 << k;
1111 }
1112#else
1113 if (k > 0)
1114 word0(da) += k*Exp_msk1;
1115 else {
1116 k = -k;
1117 word0(db) += k*Exp_msk1;
1118 }
1119#endif
1120 return da / db;
1121}
1122
1123 static double
1124tens[] = {
1125 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
1126 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
1127 1e20, 1e21, 1e22
1128#ifdef VAX
1129 , 1e23, 1e24
1130#endif
1131 };
1132
1133 static double
1134#ifdef IEEE_Arith
1135bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 };
1136static double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128, 1e-256 };
1137#define n_bigtens 5
1138#else
1139#ifdef IBM
1140bigtens[] = { 1e16, 1e32, 1e64 };
1141static double tinytens[] = { 1e-16, 1e-32, 1e-64 };
1142#define n_bigtens 3
1143#else
1144bigtens[] = { 1e16, 1e32 };
1145static double tinytens[] = { 1e-16, 1e-32 };
1146#define n_bigtens 2
1147#endif
1148#endif
1149
1150 double
1151strtod
1152#ifdef KR_headers
1153 (s00, se) CONST char *s00; char **se;
1154#else
1155 (CONST char *s00, char **se)
1156#endif
1157{
1158 int bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, dsign,
1159 e, e1, esign, i, j, k, nd, nd0, nf, nz, nz0, sign;
1160 CONST char *s, *s0, *s1;
1161 double aadj, aadj1, adj, rv, rv0;
1162 long L;
1163 unsigned long y, z;
1164 Bigint *bb, *bb1, *bd, *bd0, *bs, *delta;
1165 sign = nz0 = nz = 0;
1166 rv = 0.;
1167 for (s = s00;;s++) switch(*s) {
1168 case '-':
1169 sign = 1;
1170 /* no break */
1171 case '+':
1172 if (*++s)
1173 goto break2;
1174 /* no break */
1175 case 0:
1176 s = s00;
1177 goto ret;
1178 case '\t':
1179 case '\n':
1180 case '\v':
1181 case '\f':
1182 case '\r':
1183 case ' ':
1184 continue;
1185 default:
1186 goto break2;
1187 }
1188 break2:
1189 if (*s == '0') {
1190 nz0 = 1;
1191 while (*++s == '0') ;
1192 if (!*s)
1193 goto ret;
1194 }
1195 s0 = s;
1196 y = z = 0;
1197 for (nd = nf = 0; (c = *s) >= '0' && c <= '9'; nd++, s++)
1198 if (nd < 9)
1199 y = 10*y + c - '0';
1200 else if (nd < 16)
1201 z = 10*z + c - '0';
1202 nd0 = nd;
1203 if (c == '.') {
1204 c = *++s;
1205 if (!nd) {
1206 for (; c == '0'; c = *++s)
1207 nz++;
1208 if (c > '0' && c <= '9') {
1209 s0 = s;
1210 nf += nz;
1211 nz = 0;
1212 goto have_dig;
1213 }
1214 goto dig_done;
1215 }
1216 for (; c >= '0' && c <= '9'; c = *++s) {
1217 have_dig:
1218 nz++;
1219 if (c -= '0') {
1220 nf += nz;
1221 for (i = 1; i < nz; i++)
1222 if (nd++ < 9)
1223 y *= 10;
1224 else if (nd <= DBL_DIG + 1)
1225 z *= 10;
1226 if (nd++ < 9)
1227 y = 10*y + c;
1228 else if (nd <= DBL_DIG + 1)
1229 z = 10*z + c;
1230 nz = 0;
1231 }
1232 }
1233 }
1234 dig_done:
1235 e = 0;
1236 if (c == 'e' || c == 'E') {
1237 if (!nd && !nz && !nz0) {
1238 s = s00;
1239 goto ret;
1240 }
1241 s00 = s;
1242 esign = 0;
1243 switch(c = *++s) {
1244 case '-':
1245 esign = 1;
1246 case '+':
1247 c = *++s;
1248 }
1249 if (c >= '0' && c <= '9') {
1250 while (c == '0')
1251 c = *++s;
1252 if (c > '0' && c <= '9') {
1253 L = c - '0';
1254 s1 = s;
1255 while ((c = *++s) >= '0' && c <= '9')
1256 L = 10*L + c - '0';
1257 if (s - s1 > 8 || L > 19999)
1258 /* Avoid confusion from exponents
1259 * so large that e might overflow.
1260 */
1261 e = 19999; /* safe for 16 bit ints */
1262 else
1263 e = (int)L;
1264 if (esign)
1265 e = -e;
1266 } else
1267 e = 0;
1268 } else
1269 s = s00;
1270 }
1271 if (!nd) {
1272 if (!nz && !nz0)
1273 s = s00;
1274 goto ret;
1275 }
1276 e1 = e -= nf;
1277
1278 /* Now we have nd0 digits, starting at s0, followed by a
1279 * decimal point, followed by nd-nd0 digits. The number we're
1280 * after is the integer represented by those digits times
1281 * 10**e */
1282
1283 if (!nd0)
1284 nd0 = nd;
1285 k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1;
1286 rv = y;
1287 if (k > 9)
1288 rv = tens[k - 9] * rv + z;
1289 if (nd <= DBL_DIG
1290#ifndef RND_PRODQUOT
1291 && FLT_ROUNDS == 1
1292#endif
1293 ) {
1294 if (!e)
1295 goto ret;
1296 if (e > 0) {
1297 if (e <= Ten_pmax) {
1298#ifdef VAX
1299 goto vax_ovfl_check;
1300#else
1301 /* rv = */ rounded_product(rv, tens[e]);
1302 goto ret;
1303#endif
1304 }
1305 i = DBL_DIG - nd;
1306 if (e <= Ten_pmax + i) {
1307 /* A fancier test would sometimes let us do
1308 * this for larger i values.
1309 */
1310 e -= i;
1311 rv *= tens[i];
1312#ifdef VAX
1313 /* VAX exponent range is so narrow we must
1314 * worry about overflow here...
1315 */
1316 vax_ovfl_check:
1317 word0(rv) -= P*Exp_msk1;
1318 /* rv = */ rounded_product(rv, tens[e]);
1319 if ((word0(rv) & Exp_mask)
1320 > Exp_msk1*(DBL_MAX_EXP+Bias-1-P))
1321 goto ovfl;
1322 word0(rv) += P*Exp_msk1;
1323#else
1324 /* rv = */ rounded_product(rv, tens[e]);
1325#endif
1326 goto ret;
1327 }
1328 }
1329#ifndef Inaccurate_Divide
1330 else if (e >= -Ten_pmax) {
1331 /* rv = */ rounded_quotient(rv, tens[-e]);
1332 goto ret;
1333 }
1334#endif
1335 }
1336 e1 += nd - k;
1337
1338 /* Get starting approximation = rv * 10**e1 */
1339
1340 if (e1 > 0) {
1341 if (i = e1 & 15)
1342 rv *= tens[i];
1343 if (e1 &= ~15) {
1344 if (e1 > DBL_MAX_10_EXP) {
1345 ovfl:
1346 errno = ERANGE;
1347#ifdef __STDC__
1348 rv = HUGE_VAL;
1349#else
1350 /* Can't trust HUGE_VAL */
1351#ifdef IEEE_Arith
1352 word0(rv) = Exp_mask;
1353 word1(rv) = 0;
1354#else
1355 word0(rv) = Big0;
1356 word1(rv) = Big1;
1357#endif
1358#endif
1359 goto ret;
1360 }
1361 if (e1 >>= 4) {
1362 for (j = 0; e1 > 1; j++, e1 >>= 1)
1363 if (e1 & 1)
1364 rv *= bigtens[j];
1365 /* The last multiplication could overflow. */
1366 word0(rv) -= P*Exp_msk1;
1367 rv *= bigtens[j];
1368 if ((z = word0(rv) & Exp_mask)
1369 > Exp_msk1*(DBL_MAX_EXP+Bias-P))
1370 goto ovfl;
1371 if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) {
1372 /* set to largest number */
1373 /* (Can't trust DBL_MAX) */
1374 word0(rv) = Big0;
1375 word1(rv) = Big1;
1376 }
1377 else
1378 word0(rv) += P*Exp_msk1;
1379 }
1380 }
1381 } else if (e1 < 0) {
1382 e1 = -e1;
1383 if (i = e1 & 15)
1384 rv /= tens[i];
1385 if (e1 &= ~15) {
1386 e1 >>= 4;
1387 for (j = 0; e1 > 1; j++, e1 >>= 1)
1388 if (e1 & 1)
1389 rv *= tinytens[j];
1390 /* The last multiplication could underflow. */
1391 rv0 = rv;
1392 rv *= tinytens[j];
1393 if (!rv) {
1394 rv = 2.*rv0;
1395 rv *= tinytens[j];
1396 if (!rv) {
1397 undfl:
1398 rv = 0.;
1399 errno = ERANGE;
1400 goto ret;
1401 }
1402 word0(rv) = Tiny0;
1403 word1(rv) = Tiny1;
1404 /* The refinement below will clean
1405 * this approximation up.
1406 */
1407 }
1408 }
1409 }
1410
1411 /* Now the hard part -- adjusting rv to the correct value.*/
1412
1413 /* Put digits into bd: true value = bd * 10^e */
1414
1415 bd0 = s2b(s0, nd0, nd, y);
1416
1417 for (;;) {
1418 bd = Balloc(bd0->k);
1419 Bcopy(bd, bd0);
1420 bb = d2b(rv, &bbe, &bbbits); /* rv = bb * 2^bbe */
1421 bs = i2b(1);
1422
1423 if (e >= 0) {
1424 bb2 = bb5 = 0;
1425 bd2 = bd5 = e;
1426 } else {
1427 bb2 = bb5 = -e;
1428 bd2 = bd5 = 0;
1429 }
1430 if (bbe >= 0)
1431 bb2 += bbe;
1432 else
1433 bd2 -= bbe;
1434 bs2 = bb2;
1435#ifdef Sudden_Underflow
1436#ifdef IBM
1437 j = 1 + 4*P - 3 - bbbits + ((bbe + bbbits - 1) & 3);
1438#else
1439 j = P + 1 - bbbits;
1440#endif
1441#else
1442 i = bbe + bbbits - 1; /* logb(rv) */
1443 if (i < Emin) /* denormal */
1444 j = bbe + (P-Emin);
1445 else
1446 j = P + 1 - bbbits;
1447#endif
1448 bb2 += j;
1449 bd2 += j;
1450 i = bb2 < bd2 ? bb2 : bd2;
1451 if (i > bs2)
1452 i = bs2;
1453 if (i > 0) {
1454 bb2 -= i;
1455 bd2 -= i;
1456 bs2 -= i;
1457 }
1458 if (bb5 > 0) {
1459 bs = pow5mult(bs, bb5);
1460 bb1 = mult(bs, bb);
1461 Bfree(bb);
1462 bb = bb1;
1463 }
1464 if (bb2 > 0)
1465 bb = lshift(bb, bb2);
1466 if (bd5 > 0)
1467 bd = pow5mult(bd, bd5);
1468 if (bd2 > 0)
1469 bd = lshift(bd, bd2);
1470 if (bs2 > 0)
1471 bs = lshift(bs, bs2);
1472 delta = diff(bb, bd);
1473 dsign = delta->sign;
1474 delta->sign = 0;
1475 i = cmp(delta, bs);
1476 if (i < 0) {
1477 /* Error is less than half an ulp -- check for
1478 * special case of mantissa a power of two.
1479 */
1480 if (dsign || word1(rv) || word0(rv) & Bndry_mask)
1481 break;
1482 delta = lshift(delta,Log2P);
1483 if (cmp(delta, bs) > 0)
1484 goto drop_down;
1485 break;
1486 }
1487 if (i == 0) {
1488 /* exactly half-way between */
1489 if (dsign) {
1490 if ((word0(rv) & Bndry_mask1) == Bndry_mask1
1491 && word1(rv) == 0xffffffff) {
1492 /*boundary case -- increment exponent*/
1493 word0(rv) = (word0(rv) & Exp_mask)
1494 + Exp_msk1
1495#ifdef IBM
1496 | Exp_msk1 >> 4
1497#endif
1498 ;
1499 word1(rv) = 0;
1500 break;
1501 }
1502 } else if (!(word0(rv) & Bndry_mask) && !word1(rv)) {
1503 drop_down:
1504 /* boundary case -- decrement exponent */
1505#ifdef Sudden_Underflow
1506 L = word0(rv) & Exp_mask;
1507#ifdef IBM
1508 if (L < Exp_msk1)
1509#else
1510 if (L <= Exp_msk1)
1511#endif
1512 goto undfl;
1513 L -= Exp_msk1;
1514#else
1515 L = (word0(rv) & Exp_mask) - Exp_msk1;
1516#endif
1517 word0(rv) = L | Bndry_mask1;
1518 word1(rv) = 0xffffffff;
1519#ifdef IBM
1520 goto cont;
1521#else
1522 break;
1523#endif
1524 }
1525#ifndef ROUND_BIASED
1526 if (!(word1(rv) & LSB))
1527 break;
1528#endif
1529 if (dsign)
1530 rv += ulp(rv);
1531#ifndef ROUND_BIASED
1532 else {
1533 rv -= ulp(rv);
1534#ifndef Sudden_Underflow
1535 if (!rv)
1536 goto undfl;
1537#endif
1538 }
1539#endif
1540 break;
1541 }
1542 if ((aadj = ratio(delta, bs)) <= 2.) {
1543 if (dsign)
1544 aadj = aadj1 = 1.;
1545 else if (word1(rv) || word0(rv) & Bndry_mask) {
1546#ifndef Sudden_Underflow
1547 if (word1(rv) == Tiny1 && !word0(rv))
1548 goto undfl;
1549#endif
1550 aadj = 1.;
1551 aadj1 = -1.;
1552 } else {
1553 /* special case -- power of FLT_RADIX to be */
1554 /* rounded down... */
1555
1556 if (aadj < 2./FLT_RADIX)
1557 aadj = 1./FLT_RADIX;
1558 else
1559 aadj *= 0.5;
1560 aadj1 = -aadj;
1561 }
1562 } else {
1563 aadj *= 0.5;
1564 aadj1 = dsign ? aadj : -aadj;
1565#ifdef Check_FLT_ROUNDS
1566 switch(FLT_ROUNDS) {
1567 case 2: /* towards +infinity */
1568 aadj1 -= 0.5;
1569 break;
1570 case 0: /* towards 0 */
1571 case 3: /* towards -infinity */
1572 aadj1 += 0.5;
1573 }
1574#else
1575 if (FLT_ROUNDS == 0)
1576 aadj1 += 0.5;
1577#endif
1578 }
1579 y = word0(rv) & Exp_mask;
1580
1581 /* Check for overflow */
1582
1583 if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) {
1584 rv0 = rv;
1585 word0(rv) -= P*Exp_msk1;
1586 adj = aadj1 * ulp(rv);
1587 rv += adj;
1588 if ((word0(rv) & Exp_mask) >=
1589 Exp_msk1*(DBL_MAX_EXP+Bias-P)) {
1590 if (word0(rv0) == Big0 && word1(rv0) == Big1)
1591 goto ovfl;
1592 word0(rv) = Big0;
1593 word1(rv) = Big1;
1594 goto cont;
1595 } else
1596 word0(rv) += P*Exp_msk1;
1597 } else {
1598#ifdef Sudden_Underflow
1599 if ((word0(rv) & Exp_mask) <= P*Exp_msk1) {
1600 rv0 = rv;
1601 word0(rv) += P*Exp_msk1;
1602 adj = aadj1 * ulp(rv);
1603 rv += adj;
1604#ifdef IBM
1605 if ((word0(rv) & Exp_mask) < P*Exp_msk1)
1606#else
1607 if ((word0(rv) & Exp_mask) <= P*Exp_msk1)
1608#endif
1609 {
1610 if (word0(rv0) == Tiny0
1611 && word1(rv0) == Tiny1)
1612 goto undfl;
1613 word0(rv) = Tiny0;
1614 word1(rv) = Tiny1;
1615 goto cont;
1616 } else
1617 word0(rv) -= P*Exp_msk1;
1618 } else {
1619 adj = aadj1 * ulp(rv);
1620 rv += adj;
1621 }
1622#else
1623 /* Compute adj so that the IEEE rounding rules will
1624 * correctly round rv + adj in some half-way cases.
1625 * If rv * ulp(rv) is denormalized (i.e.,
1626 * y <= (P-1)*Exp_msk1), we must adjust aadj to avoid
1627 * trouble from bits lost to denormalization;
1628 * example: 1.2e-307 .
1629 */
1630 if (y <= (P-1)*Exp_msk1 && aadj >= 1.) {
1631 aadj1 = (double)(int)(aadj + 0.5);
1632 if (!dsign)
1633 aadj1 = -aadj1;
1634 }
1635 adj = aadj1 * ulp(rv);
1636 rv += adj;
1637#endif
1638 }
1639 z = word0(rv) & Exp_mask;
1640 if (y == z) {
1641 /* Can we stop now? */
1642 L = aadj;
1643 aadj -= L;
1644 /* The tolerances below are conservative. */
1645 if (dsign || word1(rv) || word0(rv) & Bndry_mask) {
1646 if (aadj < .4999999 || aadj > .5000001)
1647 break;
1648 } else if (aadj < .4999999/FLT_RADIX)
1649 break;
1650 }
1651 cont:
1652 Bfree(bb);
1653 Bfree(bd);
1654 Bfree(bs);
1655 Bfree(delta);
1656 }
1657 Bfree(bb);
1658 Bfree(bd);
1659 Bfree(bs);
1660 Bfree(bd0);
1661 Bfree(delta);
1662 ret:
1663 if (se)
1664 *se = (char *)s;
1665 return sign ? -rv : rv;
1666}
1667
1668 static int
1669quorem
1670#ifdef KR_headers
1671 (b, S) Bigint *b, *S;
1672#else
1673 (Bigint *b, Bigint *S)
1674#endif
1675{
1676 int n;
1677 long borrow, y;
1678 unsigned long carry, q, ys;
1679 unsigned long *bx, *bxe, *sx, *sxe;
1680#ifdef Pack_32
1681 long z;
1682 unsigned long si, zs;
1683#endif
1684
1685 n = S->wds;
1686#ifdef DEBUG
1687 /*debug*/ if (b->wds > n)
1688 /*debug*/ Bug("oversize b in quorem");
1689#endif
1690 if (b->wds < n)
1691 return 0;
1692 sx = S->x;
1693 sxe = sx + --n;
1694 bx = b->x;
1695 bxe = bx + n;
1696 q = *bxe / (*sxe + 1); /* ensure q <= true quotient */
1697#ifdef DEBUG
1698 /*debug*/ if (q > 9)
1699 /*debug*/ Bug("oversized quotient in quorem");
1700#endif
1701 if (q) {
1702 borrow = 0;
1703 carry = 0;
1704 do {
1705#ifdef Pack_32
1706 si = *sx++;
1707 ys = (si & 0xffff) * q + carry;
1708 zs = (si >> 16) * q + (ys >> 16);
1709 carry = zs >> 16;
1710 y = (*bx & 0xffff) - (ys & 0xffff) + borrow;
1711 borrow = y >> 16;
1712 Sign_Extend(borrow, y);
1713 z = (*bx >> 16) - (zs & 0xffff) + borrow;
1714 borrow = z >> 16;
1715 Sign_Extend(borrow, z);
1716 Storeinc(bx, z, y);
1717#else
1718 ys = *sx++ * q + carry;
1719 carry = ys >> 16;
1720 y = *bx - (ys & 0xffff) + borrow;
1721 borrow = y >> 16;
1722 Sign_Extend(borrow, y);
1723 *bx++ = y & 0xffff;
1724#endif
1725 } while (sx <= sxe);
1726 if (!*bxe) {
1727 bx = b->x;
1728 while (--bxe > bx && !*bxe)
1729 --n;
1730 b->wds = n;
1731 }
1732 }
1733 if (cmp(b, S) >= 0) {
1734 q++;
1735 borrow = 0;
1736 carry = 0;
1737 bx = b->x;
1738 sx = S->x;
1739 do {
1740#ifdef Pack_32
1741 si = *sx++;
1742 ys = (si & 0xffff) + carry;
1743 zs = (si >> 16) + (ys >> 16);
1744 carry = zs >> 16;
1745 y = (*bx & 0xffff) - (ys & 0xffff) + borrow;
1746 borrow = y >> 16;
1747 Sign_Extend(borrow, y);
1748 z = (*bx >> 16) - (zs & 0xffff) + borrow;
1749 borrow = z >> 16;
1750 Sign_Extend(borrow, z);
1751 Storeinc(bx, z, y);
1752#else
1753 ys = *sx++ + carry;
1754 carry = ys >> 16;
1755 y = *bx - (ys & 0xffff) + borrow;
1756 borrow = y >> 16;
1757 Sign_Extend(borrow, y);
1758 *bx++ = y & 0xffff;
1759#endif
1760 } while (sx <= sxe);
1761 bx = b->x;
1762 bxe = bx + n;
1763 if (!*bxe) {
1764 while (--bxe > bx && !*bxe)
1765 --n;
1766 b->wds = n;
1767 }
1768 }
1769 return q;
1770}
1771
1772/* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
1773 *
1774 * Inspired by "How to Print Floating-Point Numbers Accurately" by
1775 * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 92-101].
1776 *
1777 * Modifications:
1778 * 1. Rather than iterating, we use a simple numeric overestimate
1779 * to determine k = floor(log10(d)). We scale relevant
1780 * quantities using O(log2(k)) rather than O(k) multiplications.
1781 * 2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
1782 * try to generate digits strictly left to right. Instead, we
1783 * compute with fewer bits and propagate the carry if necessary
1784 * when rounding the final digit up. This is often faster.
1785 * 3. Under the assumption that input will be rounded nearest,
1786 * mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
1787 * That is, we allow equality in stopping tests when the
1788 * round-nearest rule will give the same floating-point value
1789 * as would satisfaction of the stopping test with strict
1790 * inequality.
1791 * 4. We remove common factors of powers of 2 from relevant
1792 * quantities.
1793 * 5. When converting floating-point integers less than 1e16,
1794 * we use floating-point arithmetic rather than resorting
1795 * to multiple-precision integers.
1796 * 6. When asked to produce fewer than 15 digits, we first try
1797 * to get by with floating-point arithmetic; we resort to
1798 * multiple-precision integer arithmetic only if we cannot
1799 * guarantee that the floating-point calculation has given
1800 * the correctly rounded result. For k requested digits and
1801 * "uniformly" distributed input, the probability is
1802 * something like 10^(k-15) that we must resort to the long
1803 * calculation.
1804 */
1805
1806char *
1807__dtoa
1808#ifdef KR_headers
1809 (d, mode, ndigits, decpt, sign, rve)
1810 double d; int mode, ndigits, *decpt, *sign; char **rve;
1811#else
1812 (double d, int mode, int ndigits, int *decpt, int *sign, char **rve)
1813#endif
1814{
1815 /* Arguments ndigits, decpt, sign are similar to those
1816 of ecvt and fcvt; trailing zeros are suppressed from
1817 the returned string. If not null, *rve is set to point
1818 to the end of the return value. If d is +-Infinity or NaN,
1819 then *decpt is set to 9999.
1820
1821 mode:
1822 0 ==> shortest string that yields d when read in
1823 and rounded to nearest.
1824 1 ==> like 0, but with Steele & White stopping rule;
1825 e.g. with IEEE P754 arithmetic , mode 0 gives
1826 1e23 whereas mode 1 gives 9.999999999999999e22.
1827 2 ==> max(1,ndigits) significant digits. This gives a
1828 return value similar to that of ecvt, except
1829 that trailing zeros are suppressed.
1830 3 ==> through ndigits past the decimal point. This
1831 gives a return value similar to that from fcvt,
1832 except that trailing zeros are suppressed, and
1833 ndigits can be negative.
1834 4-9 should give the same return values as 2-3, i.e.,
1835 4 <= mode <= 9 ==> same return as mode
1836 2 + (mode & 1). These modes are mainly for
1837 debugging; often they run slower but sometimes
1838 faster than modes 2-3.
1839 4,5,8,9 ==> left-to-right digit generation.
1840 6-9 ==> don't try fast floating-point estimate
1841 (if applicable).
1842
1843 Values of mode other than 0-9 are treated as mode 0.
1844
1845 Sufficient space is allocated to the return value
1846 to hold the suppressed trailing zeros.
1847 */
1848
1849 int bbits, b2, b5, be, dig, i, ieps, ilim, ilim0, ilim1,
1850 j, j1, k, k0, k_check, leftright, m2, m5, s2, s5,
1851 spec_case, try_quick;
1852 long L;
1853#ifndef Sudden_Underflow
1854 int denorm;
1855 unsigned long x;
1856#endif
1857 Bigint *b, *b1, *delta, *mlo, *mhi, *S;
1858 double d2, ds, eps;
1859 char *s, *s0;
1860 static Bigint *result;
1861 static int result_k;
1862
1863 if (result) {
1864 result->k = result_k;
1865 result->maxwds = 1 << result_k;
1866 Bfree(result);
1867 result = 0;
1868 }
1869
1870 if (word0(d) & Sign_bit) {
1871 /* set sign for everything, including 0's and NaNs */
1872 *sign = 1;
1873 word0(d) &= ~Sign_bit; /* clear sign bit */
1874 }
1875 else
1876 *sign = 0;
1877
1878#if defined(IEEE_Arith) + defined(VAX)
1879#ifdef IEEE_Arith
1880 if ((word0(d) & Exp_mask) == Exp_mask)
1881#else
1882 if (word0(d) == 0x8000)
1883#endif
1884 {
1885 /* Infinity or NaN */
1886 *decpt = 9999;
1887 s =
1888#ifdef IEEE_Arith
1889 !word1(d) && !(word0(d) & 0xfffff) ? "Infinity" :
1890#endif
1891 "NaN";
1892 if (rve)
1893 *rve =
1894#ifdef IEEE_Arith
1895 s[3] ? s + 8 :
1896#endif
1897 s + 3;
1898 return s;
1899 }
1900#endif
1901#ifdef IBM
1902 d += 0; /* normalize */
1903#endif
1904 if (!d) {
1905 *decpt = 1;
1906 s = "0";
1907 if (rve)
1908 *rve = s + 1;
1909 return s;
1910 }
1911
1912 b = d2b(d, &be, &bbits);
1913#ifdef Sudden_Underflow
1914 i = (int)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1));
1915#else
1916 if (i = (int)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1))) {
1917#endif
1918 d2 = d;
1919 word0(d2) &= Frac_mask1;
1920 word0(d2) |= Exp_11;
1921#ifdef IBM
1922 if (j = 11 - hi0bits(word0(d2) & Frac_mask))
1923 d2 /= 1 << j;
1924#endif
1925
1926 /* log(x) ~=~ log(1.5) + (x-1.5)/1.5
1927 * log10(x) = log(x) / log(10)
1928 * ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
1929 * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
1930 *
1931 * This suggests computing an approximation k to log10(d) by
1932 *
1933 * k = (i - Bias)*0.301029995663981
1934 * + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
1935 *
1936 * We want k to be too large rather than too small.
1937 * The error in the first-order Taylor series approximation
1938 * is in our favor, so we just round up the constant enough
1939 * to compensate for any error in the multiplication of
1940 * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
1941 * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
1942 * adding 1e-13 to the constant term more than suffices.
1943 * Hence we adjust the constant term to 0.1760912590558.
1944 * (We could get a more accurate k by invoking log10,
1945 * but this is probably not worthwhile.)
1946 */
1947
1948 i -= Bias;
1949#ifdef IBM
1950 i <<= 2;
1951 i += j;
1952#endif
1953#ifndef Sudden_Underflow
1954 denorm = 0;
1955 } else {
1956 /* d is denormalized */
1957
1958 i = bbits + be + (Bias + (P-1) - 1);
1959 x = i > 32 ? word0(d) << 64 - i | word1(d) >> i - 32
1960 : word1(d) << 32 - i;
1961 d2 = x;
1962 word0(d2) -= 31*Exp_msk1; /* adjust exponent */
1963 i -= (Bias + (P-1) - 1) + 1;
1964 denorm = 1;
1965 }
1966#endif
1967 ds = (d2-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981;
1968 k = (int)ds;
1969 if (ds < 0. && ds != k)
1970 k--; /* want k = floor(ds) */
1971 k_check = 1;
1972 if (k >= 0 && k <= Ten_pmax) {
1973 if (d < tens[k])
1974 k--;
1975 k_check = 0;
1976 }
1977 j = bbits - i - 1;
1978 if (j >= 0) {
1979 b2 = 0;
1980 s2 = j;
1981 } else {
1982 b2 = -j;
1983 s2 = 0;
1984 }
1985 if (k >= 0) {
1986 b5 = 0;
1987 s5 = k;
1988 s2 += k;
1989 } else {
1990 b2 -= k;
1991 b5 = -k;
1992 s5 = 0;
1993 }
1994 if (mode < 0 || mode > 9)
1995 mode = 0;
1996 try_quick = 1;
1997 if (mode > 5) {
1998 mode -= 4;
1999 try_quick = 0;
2000 }
2001 leftright = 1;
2002 switch(mode) {
2003 case 0:
2004 case 1:
2005 ilim = ilim1 = -1;
2006 i = 18;
2007 ndigits = 0;
2008 break;
2009 case 2:
2010 leftright = 0;
2011 /* no break */
2012 case 4:
2013 if (ndigits <= 0)
2014 ndigits = 1;
2015 ilim = ilim1 = i = ndigits;
2016 break;
2017 case 3:
2018 leftright = 0;
2019 /* no break */
2020 case 5:
2021 i = ndigits + k + 1;
2022 ilim = i;
2023 ilim1 = i - 1;
2024 if (i <= 0)
2025 i = 1;
2026 }
2027 j = sizeof(unsigned long);
2028 for (result_k = 0; sizeof(Bigint) - sizeof(unsigned long) + j < i;
2029 j <<= 1) result_k++;
2030 result = Balloc(result_k);
2031 s = s0 = (char *)result;
2032
2033 if (ilim >= 0 && ilim <= Quick_max && try_quick) {
2034
2035 /* Try to get by with floating-point arithmetic. */
2036
2037 i = 0;
2038 d2 = d;
2039 k0 = k;
2040 ilim0 = ilim;
2041 ieps = 2; /* conservative */
2042 if (k > 0) {
2043 ds = tens[k&0xf];
2044 j = k >> 4;
2045 if (j & Bletch) {
2046 /* prevent overflows */
2047 j &= Bletch - 1;
2048 d /= bigtens[n_bigtens-1];
2049 ieps++;
2050 }
2051 for (; j; j >>= 1, i++)
2052 if (j & 1) {
2053 ieps++;
2054 ds *= bigtens[i];
2055 }
2056 d /= ds;
2057 } else if (j1 = -k) {
2058 d *= tens[j1 & 0xf];
2059 for (j = j1 >> 4; j; j >>= 1, i++)
2060 if (j & 1) {
2061 ieps++;
2062 d *= bigtens[i];
2063 }
2064 }
2065 if (k_check && d < 1. && ilim > 0) {
2066 if (ilim1 <= 0)
2067 goto fast_failed;
2068 ilim = ilim1;
2069 k--;
2070 d *= 10.;
2071 ieps++;
2072 }
2073 eps = ieps*d + 7.;
2074 word0(eps) -= (P-1)*Exp_msk1;
2075 if (ilim == 0) {
2076 S = mhi = 0;
2077 d -= 5.;
2078 if (d > eps)
2079 goto one_digit;
2080 if (d < -eps)
2081 goto no_digits;
2082 goto fast_failed;
2083 }
2084#ifndef No_leftright
2085 if (leftright) {
2086 /* Use Steele & White method of only
2087 * generating digits needed.
2088 */
2089 eps = 0.5/tens[ilim-1] - eps;
2090 for (i = 0;;) {
2091 L = d;
2092 d -= L;
2093 *s++ = '0' + (int)L;
2094 if (d < eps)
2095 goto ret1;
2096 if (1. - d < eps)
2097 goto bump_up;
2098 if (++i >= ilim)
2099 break;
2100 eps *= 10.;
2101 d *= 10.;
2102 }
2103 } else {
2104#endif
2105 /* Generate ilim digits, then fix them up. */
2106 eps *= tens[ilim-1];
2107 for (i = 1;; i++, d *= 10.) {
2108 L = d;
2109 d -= L;
2110 *s++ = '0' + (int)L;
2111 if (i == ilim) {
2112 if (d > 0.5 + eps)
2113 goto bump_up;
2114 else if (d < 0.5 - eps) {
2115 while (*--s == '0');
2116 s++;
2117 goto ret1;
2118 }
2119 break;
2120 }
2121 }
2122#ifndef No_leftright
2123 }
2124#endif
2125 fast_failed:
2126 s = s0;
2127 d = d2;
2128 k = k0;
2129 ilim = ilim0;
2130 }
2131
2132 /* Do we have a "small" integer? */
2133
2134 if (be >= 0 && k <= Int_max) {
2135 /* Yes. */
2136 ds = tens[k];
2137 if (ndigits < 0 && ilim <= 0) {
2138 S = mhi = 0;
2139 if (ilim < 0 || d <= 5*ds)
2140 goto no_digits;
2141 goto one_digit;
2142 }
2143 for (i = 1;; i++) {
2144 L = d / ds;
2145 d -= L*ds;
2146#ifdef Check_FLT_ROUNDS
2147 /* If FLT_ROUNDS == 2, L will usually be high by 1 */
2148 if (d < 0) {
2149 L--;
2150 d += ds;
2151 }
2152#endif
2153 *s++ = '0' + (int)L;
2154 if (i == ilim) {
2155 d += d;
2156 if (d > ds || d == ds && L & 1) {
2157 bump_up:
2158 while (*--s == '9')
2159 if (s == s0) {
2160 k++;
2161 *s = '0';
2162 break;
2163 }
2164 ++*s++;
2165 }
2166 break;
2167 }
2168 if (!(d *= 10.))
2169 break;
2170 }
2171 goto ret1;
2172 }
2173
2174 m2 = b2;
2175 m5 = b5;
2176 mhi = mlo = 0;
2177 if (leftright) {
2178 if (mode < 2) {
2179 i =
2180#ifndef Sudden_Underflow
2181 denorm ? be + (Bias + (P-1) - 1 + 1) :
2182#endif
2183#ifdef IBM
2184 1 + 4*P - 3 - bbits + ((bbits + be - 1) & 3);
2185#else
2186 1 + P - bbits;
2187#endif
2188 } else {
2189 j = ilim - 1;
2190 if (m5 >= j)
2191 m5 -= j;
2192 else {
2193 s5 += j -= m5;
2194 b5 += j;
2195 m5 = 0;
2196 }
2197 if ((i = ilim) < 0) {
2198 m2 -= i;
2199 i = 0;
2200 }
2201 }
2202 b2 += i;
2203 s2 += i;
2204 mhi = i2b(1);
2205 }
2206 if (m2 > 0 && s2 > 0) {
2207 i = m2 < s2 ? m2 : s2;
2208 b2 -= i;
2209 m2 -= i;
2210 s2 -= i;
2211 }
2212 if (b5 > 0) {
2213 if (leftright) {
2214 if (m5 > 0) {
2215 mhi = pow5mult(mhi, m5);
2216 b1 = mult(mhi, b);
2217 Bfree(b);
2218 b = b1;
2219 }
2220 if (j = b5 - m5)
2221 b = pow5mult(b, j);
2222 } else
2223 b = pow5mult(b, b5);
2224 }
2225 S = i2b(1);
2226 if (s5 > 0)
2227 S = pow5mult(S, s5);
2228
2229 /* Check for special case that d is a normalized power of 2. */
2230
2231 if (mode < 2) {
2232 if (!word1(d) && !(word0(d) & Bndry_mask)
2233#ifndef Sudden_Underflow
2234 && word0(d) & Exp_mask
2235#endif
2236 ) {
2237 /* The special case */
2238 b2 += Log2P;
2239 s2 += Log2P;
2240 spec_case = 1;
2241 } else
2242 spec_case = 0;
2243 }
2244
2245 /* Arrange for convenient computation of quotients:
2246 * shift left if necessary so divisor has 4 leading 0 bits.
2247 *
2248 * Perhaps we should just compute leading 28 bits of S once
2249 * and for all and pass them and a shift to quorem, so it
2250 * can do shifts and ors to compute the numerator for q.
2251 */
2252#ifdef Pack_32
2253 if (i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0x1f)
2254 i = 32 - i;
2255#else
2256 if (i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0xf)
2257 i = 16 - i;
2258#endif
2259 if (i > 4) {
2260 i -= 4;
2261 b2 += i;
2262 m2 += i;
2263 s2 += i;
2264 } else if (i < 4) {
2265 i += 28;
2266 b2 += i;
2267 m2 += i;
2268 s2 += i;
2269 }
2270 if (b2 > 0)
2271 b = lshift(b, b2);
2272 if (s2 > 0)
2273 S = lshift(S, s2);
2274 if (k_check) {
2275 if (cmp(b,S) < 0) {
2276 k--;
2277 b = multadd(b, 10, 0); /* we botched the k estimate */
2278 if (leftright)
2279 mhi = multadd(mhi, 10, 0);
2280 ilim = ilim1;
2281 }
2282 }
2283 if (ilim <= 0 && mode > 2) {
2284 if (ilim < 0 || cmp(b,S = multadd(S,5,0)) <= 0) {
2285 /* no digits, fcvt style */
2286 no_digits:
2287 k = -1 - ndigits;
2288 goto ret;
2289 }
2290 one_digit:
2291 *s++ = '1';
2292 k++;
2293 goto ret;
2294 }
2295 if (leftright) {
2296 if (m2 > 0)
2297 mhi = lshift(mhi, m2);
2298
2299 /* Compute mlo -- check for special case
2300 * that d is a normalized power of 2.
2301 */
2302
2303 mlo = mhi;
2304 if (spec_case) {
2305 mhi = Balloc(mhi->k);
2306 Bcopy(mhi, mlo);
2307 mhi = lshift(mhi, Log2P);
2308 }
2309
2310 for (i = 1;;i++) {
2311 dig = quorem(b,S) + '0';
2312 /* Do we yet have the shortest decimal string
2313 * that will round to d?
2314 */
2315 j = cmp(b, mlo);
2316 delta = diff(S, mhi);
2317 j1 = delta->sign ? 1 : cmp(b, delta);
2318 Bfree(delta);
2319#ifndef ROUND_BIASED
2320 if (j1 == 0 && !mode && !(word1(d) & 1)) {
2321 if (dig == '9')
2322 goto round_9_up;
2323 if (j > 0)
2324 dig++;
2325 *s++ = dig;
2326 goto ret;
2327 }
2328#endif
2329 if (j < 0 || j == 0 && !mode
2330#ifndef ROUND_BIASED
2331 && !(word1(d) & 1)
2332#endif
2333 ) {
2334 if (j1 > 0) {
2335 b = lshift(b, 1);
2336 j1 = cmp(b, S);
2337 if ((j1 > 0 || j1 == 0 && dig & 1)
2338 && dig++ == '9')
2339 goto round_9_up;
2340 }
2341 *s++ = dig;
2342 goto ret;
2343 }
2344 if (j1 > 0) {
2345 if (dig == '9') { /* possible if i == 1 */
2346 round_9_up:
2347 *s++ = '9';
2348 goto roundoff;
2349 }
2350 *s++ = dig + 1;
2351 goto ret;
2352 }
2353 *s++ = dig;
2354 if (i == ilim)
2355 break;
2356 b = multadd(b, 10, 0);
2357 if (mlo == mhi)
2358 mlo = mhi = multadd(mhi, 10, 0);
2359 else {
2360 mlo = multadd(mlo, 10, 0);
2361 mhi = multadd(mhi, 10, 0);
2362 }
2363 }
2364 } else
2365 for (i = 1;; i++) {
2366 *s++ = dig = quorem(b,S) + '0';
2367 if (i >= ilim)
2368 break;
2369 b = multadd(b, 10, 0);
2370 }
2371
2372 /* Round off last digit */
2373
2374 b = lshift(b, 1);
2375 j = cmp(b, S);
2376 if (j > 0 || j == 0 && dig & 1) {
2377 roundoff:
2378 while (*--s == '9')
2379 if (s == s0) {
2380 k++;
2381 *s++ = '1';
2382 goto ret;
2383 }
2384 ++*s++;
2385 } else {
2386 while (*--s == '0');
2387 s++;
2388 }
2389 ret:
2390 Bfree(S);
2391 if (mhi) {
2392 if (mlo && mlo != mhi)
2393 Bfree(mlo);
2394 Bfree(mhi);
2395 }
2396 ret1:
2397 Bfree(b);
2398 if (s == s0) { /* don't return empty string */
2399 *s++ = '0';
2400 k = 0;
2401 }
2402 *s = 0;
2403 *decpt = k + 1;
2404 if (rve)
2405 *rve = s;
2406 return s0;
2407 }
2408#ifdef __cplusplus
2409}
2410#endif