common version for ffs and lfs
[unix-history] / usr / src / sys / kern / kern_synch.c
CommitLineData
f406ae69 1/*-
c34daa85
KB
2 * Copyright (c) 1982, 1986, 1990, 1991, 1993
3 * The Regents of the University of California. All rights reserved.
f406ae69
KB
4 * All rights reserved.
5 *
6 * %sccs.include.redist.c%
da7c5cc6 7 *
c34daa85 8 * @(#)kern_synch.c 8.1 (Berkeley) %G%
da7c5cc6 9 */
961945a8 10
38a01dbe
KB
11#include <sys/param.h>
12#include <sys/systm.h>
13#include <sys/proc.h>
14#include <sys/kernel.h>
15#include <sys/buf.h>
16#include <sys/signalvar.h>
17#include <sys/resourcevar.h>
18#include <sys/vmmeter.h>
9fe02b59 19#ifdef KTRACE
38a01dbe 20#include <sys/ktrace.h>
9fe02b59 21#endif
1edb1cf8 22
38a01dbe 23#include <machine/cpu.h>
9db58063 24
70ca6a82 25u_char curpri; /* usrpri of curproc */
cca8a63d 26int lbolt; /* once a second sleep address */
70ca6a82 27
1edb1cf8
BJ
28/*
29 * Force switch among equal priority processes every 100ms.
30 */
80ecfe6e
CT
31/* ARGSUSED */
32void
33roundrobin(arg)
34 void *arg;
1edb1cf8
BJ
35{
36
132d8a6d 37 need_resched();
80ecfe6e 38 timeout(roundrobin, (void *)0, hz / 10);
1edb1cf8
BJ
39}
40
d048c9b6
KM
41/*
42 * constants for digital decay and forget
43 * 90% of (p_cpu) usage in 5*loadav time
44 * 95% of (p_pctcpu) usage in 60 seconds (load insensitive)
45 * Note that, as ps(1) mentions, this can let percentages
46 * total over 100% (I've seen 137.9% for 3 processes).
47 *
48 * Note that hardclock updates p_cpu and p_cpticks independently.
49 *
50 * We wish to decay away 90% of p_cpu in (5 * loadavg) seconds.
51 * That is, the system wants to compute a value of decay such
52 * that the following for loop:
53 * for (i = 0; i < (5 * loadavg); i++)
54 * p_cpu *= decay;
55 * will compute
56 * p_cpu *= 0.1;
57 * for all values of loadavg:
58 *
59 * Mathematically this loop can be expressed by saying:
60 * decay ** (5 * loadavg) ~= .1
61 *
62 * The system computes decay as:
63 * decay = (2 * loadavg) / (2 * loadavg + 1)
64 *
65 * We wish to prove that the system's computation of decay
66 * will always fulfill the equation:
67 * decay ** (5 * loadavg) ~= .1
68 *
69 * If we compute b as:
70 * b = 2 * loadavg
71 * then
72 * decay = b / (b + 1)
73 *
74 * We now need to prove two things:
75 * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
76 * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
77 *
78 * Facts:
79 * For x close to zero, exp(x) =~ 1 + x, since
80 * exp(x) = 0! + x**1/1! + x**2/2! + ... .
81 * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
82 * For x close to zero, ln(1+x) =~ x, since
83 * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
84 * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
85 * ln(.1) =~ -2.30
86 *
87 * Proof of (1):
88 * Solve (factor)**(power) =~ .1 given power (5*loadav):
89 * solving for factor,
90 * ln(factor) =~ (-2.30/5*loadav), or
132d8a6d 91 * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
d048c9b6
KM
92 * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
93 *
94 * Proof of (2):
95 * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
96 * solving for power,
97 * power*ln(b/(b+1)) =~ -2.30, or
98 * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
99 *
100 * Actual power values for the implemented algorithm are as follows:
101 * loadav: 1 2 3 4
102 * power: 5.68 10.32 14.94 19.55
103 */
1e35e051 104
80b6b780 105/* calculations for digital decay to forget 90% of usage in 5*loadav sec */
132d8a6d
MK
106#define loadfactor(loadav) (2 * (loadav))
107#define decay_cpu(loadfac, cpu) (((loadfac) * (cpu)) / ((loadfac) + FSCALE))
80b6b780
KM
108
109/* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
110fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
111
112/*
113 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
114 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
115 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
116 *
117 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
118 * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
119 *
120 * If you dont want to bother with the faster/more-accurate formula, you
121 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
122 * (more general) method of calculating the %age of CPU used by a process.
123 */
124#define CCPU_SHIFT 11
1edb1cf8 125
1edb1cf8
BJ
126/*
127 * Recompute process priorities, once a second
128 */
80ecfe6e
CT
129/* ARGSUSED */
130void
131schedcpu(arg)
132 void *arg;
1edb1cf8 133{
ea853f5f 134 register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
1edb1cf8 135 register struct proc *p;
132d8a6d
MK
136 register int s;
137 register unsigned int newcpu;
1edb1cf8 138
1edb1cf8 139 wakeup((caddr_t)&lbolt);
80ecfe6e 140 for (p = (struct proc *)allproc; p != NULL; p = p->p_nxt) {
132d8a6d
MK
141 /*
142 * Increment time in/out of memory and sleep time
143 * (if sleeping). We ignore overflow; with 16-bit int's
144 * (remember them?) overflow takes 45 days.
145 */
146 p->p_time++;
147 if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
148 p->p_slptime++;
80b6b780 149 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
1e35e051
MK
150 /*
151 * If the process has slept the entire second,
152 * stop recalculating its priority until it wakes up.
153 */
80b6b780 154 if (p->p_slptime > 1)
1e35e051 155 continue;
471efe78 156 s = splstatclock(); /* prevent state changes */
1e35e051
MK
157 /*
158 * p_pctcpu is only for ps.
159 */
80b6b780
KM
160#if (FSHIFT >= CCPU_SHIFT)
161 p->p_pctcpu += (hz == 100)?
162 ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
163 100 * (((fixpt_t) p->p_cpticks)
164 << (FSHIFT - CCPU_SHIFT)) / hz;
165#else
166 p->p_pctcpu += ((FSCALE - ccpu) *
167 (p->p_cpticks * FSCALE / hz)) >> FSHIFT;
168#endif
1edb1cf8 169 p->p_cpticks = 0;
132d8a6d
MK
170 newcpu = (u_int) decay_cpu(loadfac, p->p_cpu) + p->p_nice;
171 p->p_cpu = min(newcpu, UCHAR_MAX);
172 setpri(p);
1edb1cf8 173 if (p->p_pri >= PUSER) {
132d8a6d 174#define PPQ (128 / NQS) /* priorities per queue */
c081e302 175 if ((p != curproc) &&
1edb1cf8
BJ
176 p->p_stat == SRUN &&
177 (p->p_flag & SLOAD) &&
fab25db3 178 (p->p_pri / PPQ) != (p->p_usrpri / PPQ)) {
1edb1cf8
BJ
179 remrq(p);
180 p->p_pri = p->p_usrpri;
181 setrq(p);
182 } else
183 p->p_pri = p->p_usrpri;
184 }
185 splx(s);
186 }
187 vmmeter();
1edb1cf8 188 if (bclnlist != NULL)
132d8a6d 189 wakeup((caddr_t)pageproc);
80ecfe6e 190 timeout(schedcpu, (void *)0, hz);
1edb1cf8 191}
a379cce8 192
1e35e051
MK
193/*
194 * Recalculate the priority of a process after it has slept for a while.
132d8a6d
MK
195 * For all load averages >= 1 and max p_cpu of 255, sleeping for at least
196 * six times the loadfactor will decay p_cpu to zero.
1e35e051 197 */
80ecfe6e 198void
1e35e051
MK
199updatepri(p)
200 register struct proc *p;
201{
132d8a6d 202 register unsigned int newcpu = p->p_cpu;
ea853f5f 203 register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
132d8a6d
MK
204
205 if (p->p_slptime > 5 * loadfac)
206 p->p_cpu = 0;
207 else {
208 p->p_slptime--; /* the first time was done in schedcpu */
209 while (newcpu && --p->p_slptime)
210 newcpu = (int) decay_cpu(loadfac, newcpu);
211 p->p_cpu = min(newcpu, UCHAR_MAX);
212 }
213 setpri(p);
1e35e051
MK
214}
215
a379cce8
BJ
216#define SQSIZE 0100 /* Must be power of 2 */
217#define HASH(x) (( (int) x >> 5) & (SQSIZE-1))
3abb418a
KM
218struct slpque {
219 struct proc *sq_head;
220 struct proc **sq_tailp;
221} slpque[SQSIZE];
a379cce8 222
ffa9c89a
MK
223/*
224 * During autoconfiguration or after a panic, a sleep will simply
225 * lower the priority briefly to allow interrupts, then return.
226 * The priority to be used (safepri) is machine-dependent, thus this
227 * value is initialized and maintained in the machine-dependent layers.
228 * This priority will typically be 0, or the lowest priority
229 * that is safe for use on the interrupt stack; it can be made
230 * higher to block network software interrupts after panics.
231 */
232int safepri;
233
a379cce8 234/*
25667a4a
MK
235 * General sleep call.
236 * Suspends current process until a wakeup is made on chan.
237 * The process will then be made runnable with priority pri.
238 * Sleeps at most timo/hz seconds (0 means no timeout).
239 * If pri includes PCATCH flag, signals are checked
240 * before and after sleeping, else signals are not checked.
241 * Returns 0 if awakened, EWOULDBLOCK if the timeout expires.
242 * If PCATCH is set and a signal needs to be delivered,
243 * ERESTART is returned if the current system call should be restarted
244 * if possible, and EINTR is returned if the system call should
245 * be interrupted by the signal (return EINTR).
a379cce8 246 */
80ecfe6e 247int
25667a4a 248tsleep(chan, pri, wmesg, timo)
968e7138 249 void *chan;
67e9a600
MT
250 int pri;
251 char *wmesg;
252 int timo;
253{
c081e302 254 register struct proc *p = curproc;
67e9a600
MT
255 register struct slpque *qp;
256 register s;
25667a4a 257 int sig, catch = pri & PCATCH;
67e9a600 258 extern int cold;
80ecfe6e 259 void endtsleep __P((void *));
67e9a600 260
9fe02b59
MT
261#ifdef KTRACE
262 if (KTRPOINT(p, KTR_CSW))
263 ktrcsw(p->p_tracep, 1, 0);
264#endif
67e9a600
MT
265 s = splhigh();
266 if (cold || panicstr) {
267 /*
268 * After a panic, or during autoconfiguration,
269 * just give interrupts a chance, then just return;
270 * don't run any other procs or panic below,
271 * in case this is the idle process and already asleep.
67e9a600 272 */
ffa9c89a 273 splx(safepri);
67e9a600
MT
274 splx(s);
275 return (0);
276 }
277#ifdef DIAGNOSTIC
968e7138 278 if (chan == NULL || p->p_stat != SRUN || p->p_rlink)
25667a4a 279 panic("tsleep");
67e9a600 280#endif
132d8a6d
MK
281 p->p_wchan = chan;
282 p->p_wmesg = wmesg;
283 p->p_slptime = 0;
284 p->p_pri = pri & PRIMASK;
67e9a600
MT
285 qp = &slpque[HASH(chan)];
286 if (qp->sq_head == 0)
132d8a6d 287 qp->sq_head = p;
67e9a600 288 else
132d8a6d
MK
289 *qp->sq_tailp = p;
290 *(qp->sq_tailp = &p->p_link) = 0;
ffa9c89a 291 if (timo)
80ecfe6e 292 timeout(endtsleep, (void *)p, timo);
67e9a600 293 /*
132d8a6d
MK
294 * We put ourselves on the sleep queue and start our timeout
295 * before calling CURSIG, as we could stop there, and a wakeup
296 * or a SIGCONT (or both) could occur while we were stopped.
ffa9c89a
MK
297 * A SIGCONT would cause us to be marked as SSLEEP
298 * without resuming us, thus we must be ready for sleep
299 * when CURSIG is called. If the wakeup happens while we're
132d8a6d 300 * stopped, p->p_wchan will be 0 upon return from CURSIG.
67e9a600 301 */
25667a4a 302 if (catch) {
132d8a6d
MK
303 p->p_flag |= SSINTR;
304 if (sig = CURSIG(p)) {
305 if (p->p_wchan)
306 unsleep(p);
307 p->p_stat = SRUN;
ffa9c89a 308 goto resume;
25667a4a 309 }
132d8a6d 310 if (p->p_wchan == 0) {
ffa9c89a
MK
311 catch = 0;
312 goto resume;
25667a4a 313 }
d4018dda
CT
314 } else
315 sig = 0;
132d8a6d 316 p->p_stat = SSLEEP;
132d8a6d 317 p->p_stats->p_ru.ru_nvcsw++;
67e9a600 318 swtch();
ffa9c89a 319resume:
132d8a6d 320 curpri = p->p_usrpri;
67e9a600 321 splx(s);
132d8a6d
MK
322 p->p_flag &= ~SSINTR;
323 if (p->p_flag & STIMO) {
324 p->p_flag &= ~STIMO;
d4018dda 325 if (sig == 0) {
9fe02b59
MT
326#ifdef KTRACE
327 if (KTRPOINT(p, KTR_CSW))
328 ktrcsw(p->p_tracep, 0, 0);
329#endif
ffa9c89a 330 return (EWOULDBLOCK);
9fe02b59 331 }
ffa9c89a 332 } else if (timo)
80ecfe6e 333 untimeout(endtsleep, (void *)p);
132d8a6d 334 if (catch && (sig != 0 || (sig = CURSIG(p)))) {
9fe02b59
MT
335#ifdef KTRACE
336 if (KTRPOINT(p, KTR_CSW))
337 ktrcsw(p->p_tracep, 0, 0);
338#endif
132d8a6d 339 if (p->p_sigacts->ps_sigintr & sigmask(sig))
25667a4a
MK
340 return (EINTR);
341 return (ERESTART);
342 }
9fe02b59
MT
343#ifdef KTRACE
344 if (KTRPOINT(p, KTR_CSW))
345 ktrcsw(p->p_tracep, 0, 0);
346#endif
67e9a600
MT
347 return (0);
348}
349
350/*
351 * Implement timeout for tsleep.
352 * If process hasn't been awakened (wchan non-zero),
353 * set timeout flag and undo the sleep. If proc
354 * is stopped, just unsleep so it will remain stopped.
355 */
80ecfe6e
CT
356void
357endtsleep(arg)
358 void *arg;
67e9a600 359{
80ecfe6e
CT
360 register struct proc *p;
361 int s;
67e9a600 362
80ecfe6e
CT
363 p = (struct proc *)arg;
364 s = splhigh();
67e9a600
MT
365 if (p->p_wchan) {
366 if (p->p_stat == SSLEEP)
367 setrun(p);
368 else
369 unsleep(p);
370 p->p_flag |= STIMO;
371 }
372 splx(s);
373}
374
25667a4a
MK
375/*
376 * Short-term, non-interruptable sleep.
377 */
80ecfe6e 378void
a379cce8 379sleep(chan, pri)
968e7138 380 void *chan;
bd76c595 381 int pri;
a379cce8 382{
c081e302 383 register struct proc *p = curproc;
3abb418a 384 register struct slpque *qp;
6fdc0335 385 register s;
79a4402e 386 extern int cold;
a379cce8 387
25667a4a
MK
388#ifdef DIAGNOSTIC
389 if (pri > PZERO) {
390 printf("sleep called with pri %d > PZERO, wchan: %x\n",
968e7138 391 pri, chan);
25667a4a
MK
392 panic("old sleep");
393 }
394#endif
1e35e051 395 s = splhigh();
79a4402e 396 if (cold || panicstr) {
76acd871 397 /*
79a4402e
MK
398 * After a panic, or during autoconfiguration,
399 * just give interrupts a chance, then just return;
400 * don't run any other procs or panic below,
401 * in case this is the idle process and already asleep.
76acd871 402 */
ffa9c89a 403 splx(safepri);
76acd871
MK
404 splx(s);
405 return;
406 }
67e9a600 407#ifdef DIAGNOSTIC
968e7138 408 if (chan == NULL || p->p_stat != SRUN || p->p_rlink)
a379cce8 409 panic("sleep");
67e9a600 410#endif
132d8a6d
MK
411 p->p_wchan = chan;
412 p->p_wmesg = NULL;
413 p->p_slptime = 0;
414 p->p_pri = pri;
3abb418a
KM
415 qp = &slpque[HASH(chan)];
416 if (qp->sq_head == 0)
132d8a6d 417 qp->sq_head = p;
3abb418a 418 else
132d8a6d
MK
419 *qp->sq_tailp = p;
420 *(qp->sq_tailp = &p->p_link) = 0;
421 p->p_stat = SSLEEP;
132d8a6d 422 p->p_stats->p_ru.ru_nvcsw++;
9fe02b59
MT
423#ifdef KTRACE
424 if (KTRPOINT(p, KTR_CSW))
425 ktrcsw(p->p_tracep, 1, 0);
426#endif
25667a4a 427 swtch();
9fe02b59
MT
428#ifdef KTRACE
429 if (KTRPOINT(p, KTR_CSW))
430 ktrcsw(p->p_tracep, 0, 0);
431#endif
132d8a6d 432 curpri = p->p_usrpri;
a379cce8 433 splx(s);
a379cce8
BJ
434}
435
87d0f32e
BJ
436/*
437 * Remove a process from its wait queue
438 */
80ecfe6e 439void
87d0f32e 440unsleep(p)
18a4549b 441 register struct proc *p;
87d0f32e 442{
3abb418a 443 register struct slpque *qp;
87d0f32e 444 register struct proc **hp;
3abb418a 445 int s;
87d0f32e 446
1e35e051 447 s = splhigh();
87d0f32e 448 if (p->p_wchan) {
3abb418a 449 hp = &(qp = &slpque[HASH(p->p_wchan)])->sq_head;
87d0f32e
BJ
450 while (*hp != p)
451 hp = &(*hp)->p_link;
452 *hp = p->p_link;
3abb418a
KM
453 if (qp->sq_tailp == &p->p_link)
454 qp->sq_tailp = hp;
87d0f32e
BJ
455 p->p_wchan = 0;
456 }
457 splx(s);
458}
459
a379cce8 460/*
132d8a6d
MK
461 * Wakeup on "chan"; set all processes
462 * sleeping on chan to run state.
a379cce8 463 */
80ecfe6e 464void
a379cce8 465wakeup(chan)
968e7138 466 register void *chan;
a379cce8 467{
3abb418a
KM
468 register struct slpque *qp;
469 register struct proc *p, **q;
a379cce8
BJ
470 int s;
471
1e35e051 472 s = splhigh();
3abb418a 473 qp = &slpque[HASH(chan)];
a379cce8 474restart:
3abb418a 475 for (q = &qp->sq_head; p = *q; ) {
67e9a600 476#ifdef DIAGNOSTIC
87d0f32e 477 if (p->p_rlink || p->p_stat != SSLEEP && p->p_stat != SSTOP)
a379cce8 478 panic("wakeup");
67e9a600 479#endif
132d8a6d 480 if (p->p_wchan == chan) {
a379cce8 481 p->p_wchan = 0;
e5df4be8 482 *q = p->p_link;
3abb418a
KM
483 if (qp->sq_tailp == &p->p_link)
484 qp->sq_tailp = q;
87d0f32e
BJ
485 if (p->p_stat == SSLEEP) {
486 /* OPTIMIZED INLINE EXPANSION OF setrun(p) */
6f414c22
MK
487 if (p->p_slptime > 1)
488 updatepri(p);
132d8a6d 489 p->p_slptime = 0;
87d0f32e 490 p->p_stat = SRUN;
c74c8a79 491 if (p->p_flag & SLOAD)
87d0f32e 492 setrq(p);
fab25db3
MK
493 /*
494 * Since curpri is a usrpri,
495 * p->p_pri is always better than curpri.
496 */
132d8a6d
MK
497 if ((p->p_flag&SLOAD) == 0)
498 wakeup((caddr_t)&proc0);
499 else
500 need_resched();
87d0f32e 501 /* END INLINE EXPANSION */
e5df4be8 502 goto restart;
a379cce8 503 }
e5df4be8
BJ
504 } else
505 q = &p->p_link;
a379cce8
BJ
506 }
507 splx(s);
508}
509
80ecfe6e
CT
510/*
511 * The machine independent parts of swtch().
512 * Must be called at splstatclock() or higher.
513 */
514void
515swtch()
516{
517 register struct proc *p = curproc; /* XXX */
518 register struct rlimit *rlim;
519 register long s, u;
520 struct timeval tv;
521
522 /*
523 * Compute the amount of time during which the current
524 * process was running, and add that to its total so far.
525 */
526 microtime(&tv);
527 u = p->p_rtime.tv_usec + (tv.tv_usec - runtime.tv_usec);
528 s = p->p_rtime.tv_sec + (tv.tv_sec - runtime.tv_sec);
529 if (u < 0) {
530 u += 1000000;
531 s--;
532 } else if (u >= 1000000) {
533 u -= 1000000;
534 s++;
535 }
536 p->p_rtime.tv_usec = u;
537 p->p_rtime.tv_sec = s;
538
539 /*
540 * Check if the process exceeds its cpu resource allocation.
541 * If over max, kill it. In any case, if it has run for more
542 * than 10 minutes, reduce priority to give others a chance.
543 */
544 rlim = &p->p_rlimit[RLIMIT_CPU];
545 if (s >= rlim->rlim_cur) {
546 if (s >= rlim->rlim_max)
547 psignal(p, SIGKILL);
548 else {
549 psignal(p, SIGXCPU);
550 if (rlim->rlim_cur < rlim->rlim_max)
551 rlim->rlim_cur += 5;
552 }
553 }
554 if (s > 10 * 60 && p->p_ucred->cr_uid && p->p_nice == NZERO) {
555 p->p_nice = NZERO + 4;
556 setpri(p);
557 }
558
559 /*
560 * Pick a new current process and record its start time.
561 */
562 cnt.v_swtch++;
563 cpu_swtch(p);
564 microtime(&runtime);
565}
566
a379cce8
BJ
567/*
568 * Initialize the (doubly-linked) run queues
569 * to be empty.
570 */
571rqinit()
572{
573 register int i;
574
575 for (i = 0; i < NQS; i++)
576 qs[i].ph_link = qs[i].ph_rlink = (struct proc *)&qs[i];
577}
a379cce8
BJ
578
579/*
132d8a6d
MK
580 * Change process state to be runnable,
581 * placing it on the run queue if it is in memory,
582 * and awakening the swapper if it isn't in memory.
a379cce8 583 */
80ecfe6e 584void
a379cce8 585setrun(p)
18a4549b 586 register struct proc *p;
a379cce8 587{
18a4549b 588 register int s;
a379cce8 589
1e35e051 590 s = splhigh();
a379cce8
BJ
591 switch (p->p_stat) {
592
593 case 0:
594 case SWAIT:
595 case SRUN:
596 case SZOMB:
597 default:
598 panic("setrun");
599
6fdc0335 600 case SSTOP:
a379cce8 601 case SSLEEP:
87d0f32e 602 unsleep(p); /* e.g. when sending signals */
a379cce8
BJ
603 break;
604
605 case SIDL:
a379cce8
BJ
606 break;
607 }
608 p->p_stat = SRUN;
609 if (p->p_flag & SLOAD)
610 setrq(p);
611 splx(s);
27bc21f7
MK
612 if (p->p_slptime > 1)
613 updatepri(p);
132d8a6d
MK
614 p->p_slptime = 0;
615 if ((p->p_flag&SLOAD) == 0)
616 wakeup((caddr_t)&proc0);
617 else if (p->p_pri < curpri)
618 need_resched();
a379cce8
BJ
619}
620
621/*
132d8a6d
MK
622 * Compute priority of process when running in user mode.
623 * Arrange to reschedule if the resulting priority
624 * is better than that of the current process.
a379cce8 625 */
80ecfe6e 626void
132d8a6d
MK
627setpri(p)
628 register struct proc *p;
a379cce8 629{
132d8a6d
MK
630 register unsigned int newpri;
631
632 newpri = PUSER + p->p_cpu / 4 + 2 * p->p_nice;
633 newpri = min(newpri, MAXPRI);
634 p->p_usrpri = newpri;
635 if (newpri < curpri)
636 need_resched();
a379cce8 637}