Major rewrite of npx code (npx-0.5 + 2 patches to it)
[unix-history] / usr / src / sys.386bsd / i386 / i386 / vm_machdep.c
CommitLineData
184c1f40
WJ
1/*-
2 * Copyright (c) 1982, 1986 The Regents of the University of California.
3 * Copyright (c) 1989, 1990 William Jolitz
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * the Systems Programming Group of the University of Utah Computer
8 * Science Department, and William Jolitz.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 * @(#)vm_machdep.c 7.3 (Berkeley) 5/13/91
42d41470
BE
39 *
40 * PATCHES MAGIC LEVEL PATCH THAT GOT US HERE
41 * -------------------- ----- ----------------------
42 * CURRENT PATCH LEVEL: 1 00154
43 * -------------------- ----- ----------------------
44 *
45 * 20 Apr 93 Bruce Evans New npx-0.5 code
46 *
184c1f40
WJ
47 */
48
49/*
50 * Utah $Hdr: vm_machdep.c 1.16.1.1 89/06/23$
51 */
52static char rcsid[] = "$Header: /usr/bill/working/sys/i386/i386/RCS/vm_machdep.c,v 1.2 92/01/21 14:22:17 william Exp $";
53
54#include "param.h"
55#include "systm.h"
56#include "proc.h"
57#include "malloc.h"
58#include "buf.h"
59#include "user.h"
60
61#include "../include/cpu.h"
62
63#include "vm/vm.h"
64#include "vm/vm_kern.h"
65
66/*
67 * Finish a fork operation, with process p2 nearly set up.
68 * Copy and update the kernel stack and pcb, making the child
69 * ready to run, and marking it so that it can return differently
70 * than the parent. Returns 1 in the child process, 0 in the parent.
71 * We currently double-map the user area so that the stack is at the same
72 * address in each process; in the future we will probably relocate
73 * the frame pointers on the stack after copying.
74 */
75cpu_fork(p1, p2)
76 register struct proc *p1, *p2;
77{
78 register struct user *up = p2->p_addr;
79 int foo, offset, addr, i;
80 extern char kstack[];
81 extern int mvesp();
82
83 /*
84 * Copy pcb and stack from proc p1 to p2.
85 * We do this as cheaply as possible, copying only the active
86 * part of the stack. The stack and pcb need to agree;
87 * this is tricky, as the final pcb is constructed by savectx,
88 * but its frame isn't yet on the stack when the stack is copied.
89 * swtch compensates for this when the child eventually runs.
90 * This should be done differently, with a single call
91 * that copies and updates the pcb+stack,
92 * replacing the bcopy and savectx.
93 */
94 p2->p_addr->u_pcb = p1->p_addr->u_pcb;
95 offset = mvesp() - (int)kstack;
96 bcopy((caddr_t)kstack + offset, (caddr_t)p2->p_addr + offset,
97 (unsigned) ctob(UPAGES) - offset);
98 p2->p_regs = p1->p_regs;
99
100 /*
101 * Wire top of address space of child to it's kstack.
102 * First, fault in a page of pte's to map it.
103 */
104 addr = trunc_page((u_int)vtopte(kstack));
105 vm_map_pageable(&p2->p_vmspace->vm_map, addr, addr+NBPG, FALSE);
106 for (i=0; i < UPAGES; i++)
107 pmap_enter(&p2->p_vmspace->vm_pmap, kstack+i*NBPG,
108 pmap_extract(kernel_pmap, ((int)p2->p_addr)+i*NBPG), VM_PROT_READ, 1);
109
110 pmap_activate(&p2->p_vmspace->vm_pmap, &up->u_pcb);
111
112 /*
113 *
114 * Arrange for a non-local goto when the new process
115 * is started, to resume here, returning nonzero from setjmp.
116 */
117 if (savectx(up, 1)) {
118 /*
119 * Return 1 in child.
120 */
121 return (1);
122 }
123 return (0);
124}
125
184c1f40
WJ
126#ifdef notyet
127/*
128 * cpu_exit is called as the last action during exit.
129 *
130 * We change to an inactive address space and a "safe" stack,
131 * passing thru an argument to the new stack. Now, safely isolated
132 * from the resources we're shedding, we release the address space
133 * and any remaining machine-dependent resources, including the
134 * memory for the user structure and kernel stack.
135 *
136 * Next, we assign a dummy context to be written over by swtch,
137 * calling it to send this process off to oblivion.
138 * [The nullpcb allows us to minimize cost in swtch() by not having
139 * a special case].
140 */
141struct proc *swtch_to_inactive();
142cpu_exit(p)
143 register struct proc *p;
144{
145 static struct pcb nullpcb; /* pcb to overwrite on last swtch */
146
42d41470
BE
147#ifdef NPX
148 npxexit(p);
149#endif
184c1f40
WJ
150
151 /* move to inactive space and stack, passing arg accross */
152 p = swtch_to_inactive(p);
153
154 /* drop per-process resources */
155 vmspace_free(p->p_vmspace);
156 kmem_free(kernel_map, (vm_offset_t)p->p_addr, ctob(UPAGES));
157
158 p->p_addr = (struct user *) &nullpcb;
159 splclock();
160 swtch();
161 /* NOTREACHED */
162}
163#else
164cpu_exit(p)
165 register struct proc *p;
166{
167
42d41470
BE
168#ifdef NPX
169 npxexit(p);
170#endif
184c1f40
WJ
171 splclock();
172 swtch();
173}
174
175cpu_wait(p) struct proc *p; {
176
177 /* drop per-process resources */
178 vmspace_free(p->p_vmspace);
179 kmem_free(kernel_map, (vm_offset_t)p->p_addr, ctob(UPAGES));
180}
181#endif
182
183/*
184 * Set a red zone in the kernel stack after the u. area.
185 */
186setredzone(pte, vaddr)
187 u_short *pte;
188 caddr_t vaddr;
189{
190/* eventually do this by setting up an expand-down stack segment
191 for ss0: selector, allowing stack access down to top of u.
192 this means though that protection violations need to be handled
193 thru a double fault exception that must do an integral task
194 switch to a known good context, within which a dump can be
195 taken. a sensible scheme might be to save the initial context
196 used by sched (that has physical memory mapped 1:1 at bottom)
197 and take the dump while still in mapped mode */
198}
199
200/*
201 * Move pages from one kernel virtual address to another.
202 * Both addresses are assumed to reside in the Sysmap,
203 * and size must be a multiple of CLSIZE.
204 */
205pagemove(from, to, size)
206 register caddr_t from, to;
207 int size;
208{
209 register struct pte *fpte, *tpte;
210
211 if (size % CLBYTES)
212 panic("pagemove");
213 fpte = kvtopte(from);
214 tpte = kvtopte(to);
215 while (size > 0) {
216 *tpte++ = *fpte;
217 *(int *)fpte++ = 0;
218 from += NBPG;
219 to += NBPG;
220 size -= NBPG;
221 }
222 tlbflush();
223}
224
225/*
226 * Convert kernel VA to physical address
227 */
228kvtop(addr)
229 register caddr_t addr;
230{
231 vm_offset_t va;
232
233 va = pmap_extract(kernel_pmap, (vm_offset_t)addr);
234 if (va == 0)
235 panic("kvtop: zero page frame");
236 return((int)va);
237}
238
239#ifdef notdef
240/*
241 * The probe[rw] routines should probably be redone in assembler
242 * for efficiency.
243 */
244prober(addr)
245 register u_int addr;
246{
247 register int page;
248 register struct proc *p;
249
250 if (addr >= USRSTACK)
251 return(0);
252 p = u.u_procp;
253 page = btop(addr);
254 if (page < dptov(p, p->p_dsize) || page > sptov(p, p->p_ssize))
255 return(1);
256 return(0);
257}
258
259probew(addr)
260 register u_int addr;
261{
262 register int page;
263 register struct proc *p;
264
265 if (addr >= USRSTACK)
266 return(0);
267 p = u.u_procp;
268 page = btop(addr);
269 if (page < dptov(p, p->p_dsize) || page > sptov(p, p->p_ssize))
270 return((*(int *)vtopte(p, page) & PG_PROT) == PG_UW);
271 return(0);
272}
273
274/*
275 * NB: assumes a physically contiguous kernel page table
276 * (makes life a LOT simpler).
277 */
278kernacc(addr, count, rw)
279 register u_int addr;
280 int count, rw;
281{
282 register struct pde *pde;
283 register struct pte *pte;
284 register int ix, cnt;
285 extern long Syssize;
286
287 if (count <= 0)
288 return(0);
289 pde = (struct pde *)((u_int)u.u_procp->p_p0br + u.u_procp->p_szpt * NBPG);
290 ix = (addr & PD_MASK) >> PD_SHIFT;
291 cnt = ((addr + count + (1 << PD_SHIFT) - 1) & PD_MASK) >> PD_SHIFT;
292 cnt -= ix;
293 for (pde += ix; cnt; cnt--, pde++)
294 if (pde->pd_v == 0)
295 return(0);
296 ix = btop(addr-0xfe000000);
297 cnt = btop(addr-0xfe000000+count+NBPG-1);
298 if (cnt > (int)&Syssize)
299 return(0);
300 cnt -= ix;
301 for (pte = &Sysmap[ix]; cnt; cnt--, pte++)
302 if (pte->pg_v == 0 /*|| (rw == B_WRITE && pte->pg_prot == 1)*/)
303 return(0);
304 return(1);
305}
306
307useracc(addr, count, rw)
308 register u_int addr;
309 int count, rw;
310{
311 register int (*func)();
312 register u_int addr2;
313 extern int prober(), probew();
314
315 if (count <= 0)
316 return(0);
317 addr2 = addr;
318 addr += count;
319 func = (rw == B_READ) ? prober : probew;
320 do {
321 if ((*func)(addr2) == 0)
322 return(0);
323 addr2 = (addr2 + NBPG) & ~PGOFSET;
324 } while (addr2 < addr);
325 return(1);
326}
327#endif
328
329extern vm_map_t phys_map;
330
331/*
332 * Map an IO request into kernel virtual address space. Requests fall into
333 * one of five catagories:
334 *
335 * B_PHYS|B_UAREA: User u-area swap.
336 * Address is relative to start of u-area (p_addr).
337 * B_PHYS|B_PAGET: User page table swap.
338 * Address is a kernel VA in usrpt (Usrptmap).
339 * B_PHYS|B_DIRTY: Dirty page push.
340 * Address is a VA in proc2's address space.
341 * B_PHYS|B_PGIN: Kernel pagein of user pages.
342 * Address is VA in user's address space.
343 * B_PHYS: User "raw" IO request.
344 * Address is VA in user's address space.
345 *
346 * All requests are (re)mapped into kernel VA space via the useriomap
347 * (a name with only slightly more meaning than "kernelmap")
348 */
349vmapbuf(bp)
350 register struct buf *bp;
351{
352 register int npf;
353 register caddr_t addr;
354 register long flags = bp->b_flags;
355 struct proc *p;
356 int off;
357 vm_offset_t kva;
358 register vm_offset_t pa;
359
360 if ((flags & B_PHYS) == 0)
361 panic("vmapbuf");
362 addr = bp->b_saveaddr = bp->b_un.b_addr;
363 off = (int)addr & PGOFSET;
364 p = bp->b_proc;
365 npf = btoc(round_page(bp->b_bcount + off));
366 kva = kmem_alloc_wait(phys_map, ctob(npf));
367 bp->b_un.b_addr = (caddr_t) (kva + off);
368 while (npf--) {
369 pa = pmap_extract(&p->p_vmspace->vm_pmap, (vm_offset_t)addr);
370 if (pa == 0)
371 panic("vmapbuf: null page frame");
372 pmap_enter(vm_map_pmap(phys_map), kva, trunc_page(pa),
373 VM_PROT_READ|VM_PROT_WRITE, TRUE);
374 addr += PAGE_SIZE;
375 kva += PAGE_SIZE;
376 }
377}
378
379/*
380 * Free the io map PTEs associated with this IO operation.
381 * We also invalidate the TLB entries and restore the original b_addr.
382 */
383vunmapbuf(bp)
384 register struct buf *bp;
385{
386 register int npf;
387 register caddr_t addr = bp->b_un.b_addr;
388 vm_offset_t kva;
389
390 if ((bp->b_flags & B_PHYS) == 0)
391 panic("vunmapbuf");
392 npf = btoc(round_page(bp->b_bcount + ((int)addr & PGOFSET)));
393 kva = (vm_offset_t)((int)addr & ~PGOFSET);
394 kmem_free_wakeup(phys_map, kva, ctob(npf));
395 bp->b_un.b_addr = bp->b_saveaddr;
396 bp->b_saveaddr = NULL;
397}
398
399/*
400 * Force reset the processor by invalidating the entire address space!
401 */
402cpu_reset() {
403
404 /* force a shutdown by unmapping entire address space ! */
405 bzero((caddr_t) PTD, NBPG);
406
407 /* "good night, sweet prince .... <THUNK!>" */
408 tlbflush();
409 /* NOTREACHED */
410}