add warnings relating to optimization
[unix-history] / usr / src / lib / libm / common_source / pow.c
CommitLineData
9f4a7cc1
ZAL
1/*
2 * Copyright (c) 1985 Regents of the University of California.
3 *
4 * Use and reproduction of this software are granted in accordance with
5 * the terms and conditions specified in the Berkeley Software License
6 * Agreement (in particular, this entails acknowledgement of the programs'
7 * source, and inclusion of this notice) with the additional understanding
8 * that all recipients should regard themselves as participants in an
9 * ongoing research project and hence should feel obligated to report
10 * their experiences (good or bad) with these elementary function codes,
11 * using "sendbug 4bsd-bugs@BERKELEY", to the authors.
12 */
13
14#ifndef lint
15static char sccsid[] = "@(#)pow.c 1.1 (ELEFUNT) %G%";
16#endif not lint
17
18/* POW(X,Y)
19 * RETURN X**Y
20 * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
21 * CODED IN C BY K.C. NG, 1/8/85;
22 * REVISED BY K.C. NG on 7/10/85.
23 *
24 * Required system supported functions:
25 * scalb(x,n)
26 * logb(x)
27 * copysign(x,y)
28 * finite(x)
29 * drem(x,y)
30 *
31 * Required kernel functions:
32 * exp__E(a,c) ...return exp(a+c) - 1 - a*a/2
33 * log__L(x) ...return (log(1+x) - 2s)/s, s=x/(2+x)
34 * pow_p(x,y) ...return +(anything)**(finite non zero)
35 *
36 * Method
37 * 1. Compute and return log(x) in three pieces:
38 * log(x) = n*ln2 + hi + lo,
39 * where n is an integer.
40 * 2. Perform y*log(x) by simulating muti-precision arithmetic and
41 * return the answer in three pieces:
42 * y*log(x) = m*ln2 + hi + lo,
43 * where m is an integer.
44 * 3. Return x**y = exp(y*log(x))
45 * = 2^m * ( exp(hi+lo) ).
46 *
47 * Special cases:
48 * (anything) ** 0 is 1 ;
49 * (anything) ** 1 is itself;
50 * (anything) ** NaN is NaN;
51 * NaN ** (anything except 0) is NaN;
52 * +-(anything > 1) ** +INF is +INF;
53 * +-(anything > 1) ** -INF is +0;
54 * +-(anything < 1) ** +INF is +0;
55 * +-(anything < 1) ** -INF is +INF;
56 * +-1 ** +-INF is NaN and signal INVALID;
57 * +0 ** +(anything except 0, NaN) is +0;
58 * -0 ** +(anything except 0, NaN, odd integer) is +0;
59 * +0 ** -(anything except 0, NaN) is +INF and signal DIV-BY-ZERO;
60 * -0 ** -(anything except 0, NaN, odd integer) is +INF with signal;
61 * -0 ** (odd integer) = -( +0 ** (odd integer) );
62 * +INF ** +(anything except 0,NaN) is +INF;
63 * +INF ** -(anything except 0,NaN) is +0;
64 * -INF ** (odd integer) = -( +INF ** (odd integer) );
65 * -INF ** (even integer) = ( +INF ** (even integer) );
66 * -INF ** -(anything except integer,NaN) is NaN with signal;
67 * -(x=anything) ** (k=integer) is (-1)**k * (x ** k);
68 * -(anything except 0) ** (non-integer) is NaN with signal;
69 *
70 * Accuracy:
71 * pow(x,y) returns x**y nearly rounded. In particular, on a SUN, a VAX,
72 * and a Zilog Z8000,
73 * pow(integer,integer)
74 * always returns the correct integer provided it is representable.
75 * In a test run with 100,000 random arguments with 0 < x, y < 20.0
76 * on a VAX, the maximum observed error was 1.79 ulps (units in the
77 * last place).
78 *
79 * Constants :
80 * The hexadecimal values are the intended ones for the following constants.
81 * The decimal values may be used, provided that the compiler will convert
82 * from decimal to binary accurately enough to produce the hexadecimal values
83 * shown.
84 */
85
86#ifdef VAX /* VAX D format */
87#include <errno.h>
88extern double infnan();
89
90/* double static */
91/* ln2hi = 6.9314718055829871446E-1 , Hex 2^ 0 * .B17217F7D00000 */
92/* ln2lo = 1.6465949582897081279E-12 , Hex 2^-39 * .E7BCD5E4F1D9CC */
93/* invln2 = 1.4426950408889634148E0 , Hex 2^ 1 * .B8AA3B295C17F1 */
94/* sqrt2 = 1.4142135623730950622E0 ; Hex 2^ 1 * .B504F333F9DE65 */
95static long ln2hix[] = { 0x72174031, 0x0000f7d0};
96static long ln2lox[] = { 0xbcd52ce7, 0xd9cce4f1};
97static long invln2x[] = { 0xaa3b40b8, 0x17f1295c};
98static long sqrt2x[] = { 0x04f340b5, 0xde6533f9};
99#define ln2hi (*(double*)ln2hix)
100#define ln2lo (*(double*)ln2lox)
101#define invln2 (*(double*)invln2x)
102#define sqrt2 (*(double*)sqrt2x)
103#else /* IEEE double */
104double static
105ln2hi = 6.9314718036912381649E-1 , /*Hex 2^ -1 * 1.62E42FEE00000 */
106ln2lo = 1.9082149292705877000E-10 , /*Hex 2^-33 * 1.A39EF35793C76 */
107invln2 = 1.4426950408889633870E0 , /*Hex 2^ 0 * 1.71547652B82FE */
108sqrt2 = 1.4142135623730951455E0 ; /*Hex 2^ 0 * 1.6A09E667F3BCD */
109#endif
110
111double static zero=0.0, half=1.0/2.0, one=1.0, two=2.0, negone= -1.0;
112
113double pow(x,y)
114double x,y;
115{
116 double drem(),pow_p(),copysign(),t;
117 int finite();
118
119 if (y==zero) return(one);
120 else if(y==one
121#ifndef VAX
122 ||x!=x
123#endif
124 ) return( x ); /* if x is NaN or y=1 */
125#ifndef VAX
126 else if(y!=y) return( y ); /* if y is NaN */
127#endif
128 else if(!finite(y)) /* if y is INF */
129 if((t=copysign(x,one))==one) return(zero/zero);
130 else if(t>one) return((y>zero)?y:zero);
131 else return((y<zero)?-y:zero);
132 else if(y==two) return(x*x);
133 else if(y==negone) return(one/x);
134
135 /* sign(x) = 1 */
136 else if(copysign(one,x)==one) return(pow_p(x,y));
137
138 /* sign(x)= -1 */
139 /* if y is an even integer */
140 else if ( (t=drem(y,two)) == zero) return( pow_p(-x,y) );
141
142 /* if y is an odd integer */
143 else if (copysign(t,one) == one) return( -pow_p(-x,y) );
144
145 /* Henceforth y is not an integer */
146 else if(x==zero) /* x is -0 */
147 return((y>zero)?-x:one/(-x));
148 else { /* return NaN */
149#ifdef VAX
150 return (infnan(EDOM)); /* NaN */
151#else /* IEEE double */
152 return(zero/zero);
153#endif
154 }
155}
156
157/* pow_p(x,y) return x**y for x with sign=1 and finite y */
158static double pow_p(x,y)
159double x,y;
160{
161 double logb(),scalb(),copysign(),log__L(),exp__E();
162 double c,s,t,z,tx,ty;
163 float sx,sy;
164 long k=0;
165 int n,m;
166
167 if(x==zero||!finite(x)) { /* if x is +INF or +0 */
168#ifdef VAX
169 return((y>zero)?x:infnan(ERANGE)); /* if y<zero, return +INF */
170#else
171 return((y>zero)?x:one/x);
172#endif
173 }
174 if(x==1.0) return(x); /* if x=1.0, return 1 since y is finite */
175
176 /* reduce x to z in [sqrt(1/2)-1, sqrt(2)-1] */
177 z=scalb(x,-(n=logb(x)));
178#ifndef VAX /* IEEE double */ /* subnormal number */
179 if(n <= -1022) {n += (m=logb(z)); z=scalb(z,-m);}
180#endif
181 if(z >= sqrt2 ) {n += 1; z *= half;} z -= one ;
182
183 /* log(x) = nlog2+log(1+z) ~ nlog2 + t + tx */
184 s=z/(two+z); c=z*z*half; tx=s*(c+log__L(s*s));
185 t= z-(c-tx); tx += (z-t)-c;
186
187 /* if y*log(x) is neither too big nor too small */
188 if((s=logb(y)+logb(n+t)) < 12.0)
189 if(s>-60.0) {
190
191 /* compute y*log(x) ~ mlog2 + t + c */
192 s=y*(n+invln2*t);
193 m=s+copysign(half,s); /* m := nint(y*log(x)) */
194 k=y;
195 if((double)k==y) { /* if y is an integer */
196 k = m-k*n;
197 sx=t; tx+=(t-sx); }
198 else { /* if y is not an integer */
199 k =m;
200 tx+=n*ln2lo;
201 sx=(c=n*ln2hi)+t; tx+=(c-sx)+t; }
202 /* end of checking whether k==y */
203
204 sy=y; ty=y-sy; /* y ~ sy + ty */
205 s=(double)sx*sy-k*ln2hi; /* (sy+ty)*(sx+tx)-kln2 */
206 z=(tx*ty-k*ln2lo);
207 tx=tx*sy; ty=sx*ty;
208 t=ty+z; t+=tx; t+=s;
209 c= -((((t-s)-tx)-ty)-z);
210
211 /* return exp(y*log(x)) */
212 t += exp__E(t,c); return(scalb(one+t,m));
213 }
214 /* end of if log(y*log(x)) > -60.0 */
215
216 else
217 /* exp(+- tiny) = 1 with inexact flag */
218 {ln2hi+ln2lo; return(one);}
219 else if(copysign(one,y)*(n+invln2*t) <zero)
220 /* exp(-(big#)) underflows to zero */
221 return(scalb(one,-5000));
222 else
223 /* exp(+(big#)) overflows to INF */
224 return(scalb(one, 5000));
225
226}