This commit was generated by cvs2svn to track changes on a CVS vendor
[unix-history] / usr.bin / more / regex.c
CommitLineData
9368ffc5
AM
1/* Extended regular expression matching and search library,
2 version 0.12.
3 (Implements POSIX draft P10003.2/D11.2, except for
4 internationalization features.)
5
6 Copyright (C) 1993 Free Software Foundation, Inc.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
21
22/* AIX requires this to be the first thing in the file. */
23#if defined (_AIX) && !defined (REGEX_MALLOC)
24 #pragma alloca
25#endif
26
27#define _GNU_SOURCE
28
29/* We need this for `regex.h', and perhaps for the Emacs include files. */
30#include <sys/types.h>
31
32#ifdef HAVE_CONFIG_H
33#include "config.h"
34#endif
35
36/* The `emacs' switch turns on certain matching commands
37 that make sense only in Emacs. */
38#ifdef emacs
39
40#include "lisp.h"
41#include "buffer.h"
42#include "syntax.h"
43
44/* Emacs uses `NULL' as a predicate. */
45#undef NULL
46
47#else /* not emacs */
48
49/* We used to test for `BSTRING' here, but only GCC and Emacs define
50 `BSTRING', as far as I know, and neither of them use this code. */
51#if HAVE_STRING_H || STDC_HEADERS
52#include <string.h>
53#ifndef bcmp
54#define bcmp(s1, s2, n) memcmp ((s1), (s2), (n))
55#endif
56#ifndef bcopy
57#define bcopy(s, d, n) memcpy ((d), (s), (n))
58#endif
59#ifndef bzero
60#define bzero(s, n) memset ((s), 0, (n))
61#endif
62#else
63#include <strings.h>
64#endif
65
66#ifdef STDC_HEADERS
67#include <stdlib.h>
68#else
69char *malloc ();
70char *realloc ();
71#endif
72
73
74/* Define the syntax stuff for \<, \>, etc. */
75
76/* This must be nonzero for the wordchar and notwordchar pattern
77 commands in re_match_2. */
78#ifndef Sword
79#define Sword 1
80#endif
81
82#ifdef SYNTAX_TABLE
83
84extern char *re_syntax_table;
85
86#else /* not SYNTAX_TABLE */
87
88/* How many characters in the character set. */
89#define CHAR_SET_SIZE 256
90
91static char re_syntax_table[CHAR_SET_SIZE];
92
93static void
94init_syntax_once ()
95{
96 register int c;
97 static int done = 0;
98
99 if (done)
100 return;
101
102 bzero (re_syntax_table, sizeof re_syntax_table);
103
104 for (c = 'a'; c <= 'z'; c++)
105 re_syntax_table[c] = Sword;
106
107 for (c = 'A'; c <= 'Z'; c++)
108 re_syntax_table[c] = Sword;
109
110 for (c = '0'; c <= '9'; c++)
111 re_syntax_table[c] = Sword;
112
113 re_syntax_table['_'] = Sword;
114
115 done = 1;
116}
117
118#endif /* not SYNTAX_TABLE */
119
120#define SYNTAX(c) re_syntax_table[c]
121
122#endif /* not emacs */
123\f
124/* Get the interface, including the syntax bits. */
125#include "regex.h"
126
127/* isalpha etc. are used for the character classes. */
128#include <ctype.h>
129
130#ifndef isascii
131#define isascii(c) 1
132#endif
133
134#ifdef isblank
135#define ISBLANK(c) (isascii (c) && isblank (c))
136#else
137#define ISBLANK(c) ((c) == ' ' || (c) == '\t')
138#endif
139#ifdef isgraph
140#define ISGRAPH(c) (isascii (c) && isgraph (c))
141#else
142#define ISGRAPH(c) (isascii (c) && isprint (c) && !isspace (c))
143#endif
144
145#define ISPRINT(c) (isascii (c) && isprint (c))
146#define ISDIGIT(c) (isascii (c) && isdigit (c))
147#define ISALNUM(c) (isascii (c) && isalnum (c))
148#define ISALPHA(c) (isascii (c) && isalpha (c))
149#define ISCNTRL(c) (isascii (c) && iscntrl (c))
150#define ISLOWER(c) (isascii (c) && islower (c))
151#define ISPUNCT(c) (isascii (c) && ispunct (c))
152#define ISSPACE(c) (isascii (c) && isspace (c))
153#define ISUPPER(c) (isascii (c) && isupper (c))
154#define ISXDIGIT(c) (isascii (c) && isxdigit (c))
155
156#ifndef NULL
157#define NULL 0
158#endif
159
160/* We remove any previous definition of `SIGN_EXTEND_CHAR',
161 since ours (we hope) works properly with all combinations of
162 machines, compilers, `char' and `unsigned char' argument types.
163 (Per Bothner suggested the basic approach.) */
164#undef SIGN_EXTEND_CHAR
165#if __STDC__
166#define SIGN_EXTEND_CHAR(c) ((signed char) (c))
167#else /* not __STDC__ */
168/* As in Harbison and Steele. */
169#define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
170#endif
171\f
172/* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
173 use `alloca' instead of `malloc'. This is because using malloc in
174 re_search* or re_match* could cause memory leaks when C-g is used in
175 Emacs; also, malloc is slower and causes storage fragmentation. On
176 the other hand, malloc is more portable, and easier to debug.
177
178 Because we sometimes use alloca, some routines have to be macros,
179 not functions -- `alloca'-allocated space disappears at the end of the
180 function it is called in. */
181
182#ifdef REGEX_MALLOC
183
184#define REGEX_ALLOCATE malloc
185#define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
186
187#else /* not REGEX_MALLOC */
188
189/* Emacs already defines alloca, sometimes. */
190#ifndef alloca
191
192/* Make alloca work the best possible way. */
193#ifdef __GNUC__
194#define alloca __builtin_alloca
195#else /* not __GNUC__ */
196#if HAVE_ALLOCA_H
197#include <alloca.h>
198#else /* not __GNUC__ or HAVE_ALLOCA_H */
199#ifndef _AIX /* Already did AIX, up at the top. */
200char *alloca ();
201#endif /* not _AIX */
202#endif /* not HAVE_ALLOCA_H */
203#endif /* not __GNUC__ */
204
205#endif /* not alloca */
206
207#define REGEX_ALLOCATE alloca
208
209/* Assumes a `char *destination' variable. */
210#define REGEX_REALLOCATE(source, osize, nsize) \
211 (destination = (char *) alloca (nsize), \
212 bcopy (source, destination, osize), \
213 destination)
214
215#endif /* not REGEX_MALLOC */
216
217
218/* True if `size1' is non-NULL and PTR is pointing anywhere inside
219 `string1' or just past its end. This works if PTR is NULL, which is
220 a good thing. */
221#define FIRST_STRING_P(ptr) \
222 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
223
224/* (Re)Allocate N items of type T using malloc, or fail. */
225#define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
226#define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
227#define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
228
229#define BYTEWIDTH 8 /* In bits. */
230
231#define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
232
233#define MAX(a, b) ((a) > (b) ? (a) : (b))
234#define MIN(a, b) ((a) < (b) ? (a) : (b))
235
236typedef char boolean;
237#define false 0
238#define true 1
239\f
240/* These are the command codes that appear in compiled regular
241 expressions. Some opcodes are followed by argument bytes. A
242 command code can specify any interpretation whatsoever for its
243 arguments. Zero bytes may appear in the compiled regular expression.
244
245 The value of `exactn' is needed in search.c (search_buffer) in Emacs.
246 So regex.h defines a symbol `RE_EXACTN_VALUE' to be 1; the value of
247 `exactn' we use here must also be 1. */
248
249typedef enum
250{
251 no_op = 0,
252
253 /* Followed by one byte giving n, then by n literal bytes. */
254 exactn = 1,
255
256 /* Matches any (more or less) character. */
257 anychar,
258
259 /* Matches any one char belonging to specified set. First
260 following byte is number of bitmap bytes. Then come bytes
261 for a bitmap saying which chars are in. Bits in each byte
262 are ordered low-bit-first. A character is in the set if its
263 bit is 1. A character too large to have a bit in the map is
264 automatically not in the set. */
265 charset,
266
267 /* Same parameters as charset, but match any character that is
268 not one of those specified. */
269 charset_not,
270
271 /* Start remembering the text that is matched, for storing in a
272 register. Followed by one byte with the register number, in
273 the range 0 to one less than the pattern buffer's re_nsub
274 field. Then followed by one byte with the number of groups
275 inner to this one. (This last has to be part of the
276 start_memory only because we need it in the on_failure_jump
277 of re_match_2.) */
278 start_memory,
279
280 /* Stop remembering the text that is matched and store it in a
281 memory register. Followed by one byte with the register
282 number, in the range 0 to one less than `re_nsub' in the
283 pattern buffer, and one byte with the number of inner groups,
284 just like `start_memory'. (We need the number of inner
285 groups here because we don't have any easy way of finding the
286 corresponding start_memory when we're at a stop_memory.) */
287 stop_memory,
288
289 /* Match a duplicate of something remembered. Followed by one
290 byte containing the register number. */
291 duplicate,
292
293 /* Fail unless at beginning of line. */
294 begline,
295
296 /* Fail unless at end of line. */
297 endline,
298
299 /* Succeeds if at beginning of buffer (if emacs) or at beginning
300 of string to be matched (if not). */
301 begbuf,
302
303 /* Analogously, for end of buffer/string. */
304 endbuf,
305
306 /* Followed by two byte relative address to which to jump. */
307 jump,
308
309 /* Same as jump, but marks the end of an alternative. */
310 jump_past_alt,
311
312 /* Followed by two-byte relative address of place to resume at
313 in case of failure. */
314 on_failure_jump,
315
316 /* Like on_failure_jump, but pushes a placeholder instead of the
317 current string position when executed. */
318 on_failure_keep_string_jump,
319
320 /* Throw away latest failure point and then jump to following
321 two-byte relative address. */
322 pop_failure_jump,
323
324 /* Change to pop_failure_jump if know won't have to backtrack to
325 match; otherwise change to jump. This is used to jump
326 back to the beginning of a repeat. If what follows this jump
327 clearly won't match what the repeat does, such that we can be
328 sure that there is no use backtracking out of repetitions
329 already matched, then we change it to a pop_failure_jump.
330 Followed by two-byte address. */
331 maybe_pop_jump,
332
333 /* Jump to following two-byte address, and push a dummy failure
334 point. This failure point will be thrown away if an attempt
335 is made to use it for a failure. A `+' construct makes this
336 before the first repeat. Also used as an intermediary kind
337 of jump when compiling an alternative. */
338 dummy_failure_jump,
339
340 /* Push a dummy failure point and continue. Used at the end of
341 alternatives. */
342 push_dummy_failure,
343
344 /* Followed by two-byte relative address and two-byte number n.
345 After matching N times, jump to the address upon failure. */
346 succeed_n,
347
348 /* Followed by two-byte relative address, and two-byte number n.
349 Jump to the address N times, then fail. */
350 jump_n,
351
352 /* Set the following two-byte relative address to the
353 subsequent two-byte number. The address *includes* the two
354 bytes of number. */
355 set_number_at,
356
357 wordchar, /* Matches any word-constituent character. */
358 notwordchar, /* Matches any char that is not a word-constituent. */
359
360 wordbeg, /* Succeeds if at word beginning. */
361 wordend, /* Succeeds if at word end. */
362
363 wordbound, /* Succeeds if at a word boundary. */
364 notwordbound /* Succeeds if not at a word boundary. */
365
366#ifdef emacs
367 ,before_dot, /* Succeeds if before point. */
368 at_dot, /* Succeeds if at point. */
369 after_dot, /* Succeeds if after point. */
370
371 /* Matches any character whose syntax is specified. Followed by
372 a byte which contains a syntax code, e.g., Sword. */
373 syntaxspec,
374
375 /* Matches any character whose syntax is not that specified. */
376 notsyntaxspec
377#endif /* emacs */
378} re_opcode_t;
379\f
380/* Common operations on the compiled pattern. */
381
382/* Store NUMBER in two contiguous bytes starting at DESTINATION. */
383
384#define STORE_NUMBER(destination, number) \
385 do { \
386 (destination)[0] = (number) & 0377; \
387 (destination)[1] = (number) >> 8; \
388 } while (0)
389
390/* Same as STORE_NUMBER, except increment DESTINATION to
391 the byte after where the number is stored. Therefore, DESTINATION
392 must be an lvalue. */
393
394#define STORE_NUMBER_AND_INCR(destination, number) \
395 do { \
396 STORE_NUMBER (destination, number); \
397 (destination) += 2; \
398 } while (0)
399
400/* Put into DESTINATION a number stored in two contiguous bytes starting
401 at SOURCE. */
402
403#define EXTRACT_NUMBER(destination, source) \
404 do { \
405 (destination) = *(source) & 0377; \
406 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
407 } while (0)
408
409#ifdef DEBUG
410static void
411extract_number (dest, source)
412 int *dest;
413 unsigned char *source;
414{
415 int temp = SIGN_EXTEND_CHAR (*(source + 1));
416 *dest = *source & 0377;
417 *dest += temp << 8;
418}
419
420#ifndef EXTRACT_MACROS /* To debug the macros. */
421#undef EXTRACT_NUMBER
422#define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
423#endif /* not EXTRACT_MACROS */
424
425#endif /* DEBUG */
426
427/* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
428 SOURCE must be an lvalue. */
429
430#define EXTRACT_NUMBER_AND_INCR(destination, source) \
431 do { \
432 EXTRACT_NUMBER (destination, source); \
433 (source) += 2; \
434 } while (0)
435
436#ifdef DEBUG
437static void
438extract_number_and_incr (destination, source)
439 int *destination;
440 unsigned char **source;
441{
442 extract_number (destination, *source);
443 *source += 2;
444}
445
446#ifndef EXTRACT_MACROS
447#undef EXTRACT_NUMBER_AND_INCR
448#define EXTRACT_NUMBER_AND_INCR(dest, src) \
449 extract_number_and_incr (&dest, &src)
450#endif /* not EXTRACT_MACROS */
451
452#endif /* DEBUG */
453\f
454/* If DEBUG is defined, Regex prints many voluminous messages about what
455 it is doing (if the variable `debug' is nonzero). If linked with the
456 main program in `iregex.c', you can enter patterns and strings
457 interactively. And if linked with the main program in `main.c' and
458 the other test files, you can run the already-written tests. */
459
460#ifdef DEBUG
461
462/* We use standard I/O for debugging. */
463#include <stdio.h>
464
465/* It is useful to test things that ``must'' be true when debugging. */
466#include <assert.h>
467
468static int debug = 0;
469
470#define DEBUG_STATEMENT(e) e
471#define DEBUG_PRINT1(x) if (debug) printf (x)
472#define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
473#define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
474#define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
475#define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
476 if (debug) print_partial_compiled_pattern (s, e)
477#define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
478 if (debug) print_double_string (w, s1, sz1, s2, sz2)
479
480
481extern void printchar ();
482
483/* Print the fastmap in human-readable form. */
484
485void
486print_fastmap (fastmap)
487 char *fastmap;
488{
489 unsigned was_a_range = 0;
490 unsigned i = 0;
491
492 while (i < (1 << BYTEWIDTH))
493 {
494 if (fastmap[i++])
495 {
496 was_a_range = 0;
497 printchar (i - 1);
498 while (i < (1 << BYTEWIDTH) && fastmap[i])
499 {
500 was_a_range = 1;
501 i++;
502 }
503 if (was_a_range)
504 {
505 printf ("-");
506 printchar (i - 1);
507 }
508 }
509 }
510 putchar ('\n');
511}
512
513
514/* Print a compiled pattern string in human-readable form, starting at
515 the START pointer into it and ending just before the pointer END. */
516
517void
518print_partial_compiled_pattern (start, end)
519 unsigned char *start;
520 unsigned char *end;
521{
522 int mcnt, mcnt2;
523 unsigned char *p = start;
524 unsigned char *pend = end;
525
526 if (start == NULL)
527 {
528 printf ("(null)\n");
529 return;
530 }
531
532 /* Loop over pattern commands. */
533 while (p < pend)
534 {
535 switch ((re_opcode_t) *p++)
536 {
537 case no_op:
538 printf ("/no_op");
539 break;
540
541 case exactn:
542 mcnt = *p++;
543 printf ("/exactn/%d", mcnt);
544 do
545 {
546 putchar ('/');
547 printchar (*p++);
548 }
549 while (--mcnt);
550 break;
551
552 case start_memory:
553 mcnt = *p++;
554 printf ("/start_memory/%d/%d", mcnt, *p++);
555 break;
556
557 case stop_memory:
558 mcnt = *p++;
559 printf ("/stop_memory/%d/%d", mcnt, *p++);
560 break;
561
562 case duplicate:
563 printf ("/duplicate/%d", *p++);
564 break;
565
566 case anychar:
567 printf ("/anychar");
568 break;
569
570 case charset:
571 case charset_not:
572 {
573 register int c;
574
575 printf ("/charset%s",
576 (re_opcode_t) *(p - 1) == charset_not ? "_not" : "");
577
578 assert (p + *p < pend);
579
580 for (c = 0; c < *p; c++)
581 {
582 unsigned bit;
583 unsigned char map_byte = p[1 + c];
584
585 putchar ('/');
586
587 for (bit = 0; bit < BYTEWIDTH; bit++)
588 if (map_byte & (1 << bit))
589 printchar (c * BYTEWIDTH + bit);
590 }
591 p += 1 + *p;
592 break;
593 }
594
595 case begline:
596 printf ("/begline");
597 break;
598
599 case endline:
600 printf ("/endline");
601 break;
602
603 case on_failure_jump:
604 extract_number_and_incr (&mcnt, &p);
605 printf ("/on_failure_jump/0/%d", mcnt);
606 break;
607
608 case on_failure_keep_string_jump:
609 extract_number_and_incr (&mcnt, &p);
610 printf ("/on_failure_keep_string_jump/0/%d", mcnt);
611 break;
612
613 case dummy_failure_jump:
614 extract_number_and_incr (&mcnt, &p);
615 printf ("/dummy_failure_jump/0/%d", mcnt);
616 break;
617
618 case push_dummy_failure:
619 printf ("/push_dummy_failure");
620 break;
621
622 case maybe_pop_jump:
623 extract_number_and_incr (&mcnt, &p);
624 printf ("/maybe_pop_jump/0/%d", mcnt);
625 break;
626
627 case pop_failure_jump:
628 extract_number_and_incr (&mcnt, &p);
629 printf ("/pop_failure_jump/0/%d", mcnt);
630 break;
631
632 case jump_past_alt:
633 extract_number_and_incr (&mcnt, &p);
634 printf ("/jump_past_alt/0/%d", mcnt);
635 break;
636
637 case jump:
638 extract_number_and_incr (&mcnt, &p);
639 printf ("/jump/0/%d", mcnt);
640 break;
641
642 case succeed_n:
643 extract_number_and_incr (&mcnt, &p);
644 extract_number_and_incr (&mcnt2, &p);
645 printf ("/succeed_n/0/%d/0/%d", mcnt, mcnt2);
646 break;
647
648 case jump_n:
649 extract_number_and_incr (&mcnt, &p);
650 extract_number_and_incr (&mcnt2, &p);
651 printf ("/jump_n/0/%d/0/%d", mcnt, mcnt2);
652 break;
653
654 case set_number_at:
655 extract_number_and_incr (&mcnt, &p);
656 extract_number_and_incr (&mcnt2, &p);
657 printf ("/set_number_at/0/%d/0/%d", mcnt, mcnt2);
658 break;
659
660 case wordbound:
661 printf ("/wordbound");
662 break;
663
664 case notwordbound:
665 printf ("/notwordbound");
666 break;
667
668 case wordbeg:
669 printf ("/wordbeg");
670 break;
671
672 case wordend:
673 printf ("/wordend");
674
675#ifdef emacs
676 case before_dot:
677 printf ("/before_dot");
678 break;
679
680 case at_dot:
681 printf ("/at_dot");
682 break;
683
684 case after_dot:
685 printf ("/after_dot");
686 break;
687
688 case syntaxspec:
689 printf ("/syntaxspec");
690 mcnt = *p++;
691 printf ("/%d", mcnt);
692 break;
693
694 case notsyntaxspec:
695 printf ("/notsyntaxspec");
696 mcnt = *p++;
697 printf ("/%d", mcnt);
698 break;
699#endif /* emacs */
700
701 case wordchar:
702 printf ("/wordchar");
703 break;
704
705 case notwordchar:
706 printf ("/notwordchar");
707 break;
708
709 case begbuf:
710 printf ("/begbuf");
711 break;
712
713 case endbuf:
714 printf ("/endbuf");
715 break;
716
717 default:
718 printf ("?%d", *(p-1));
719 }
720 }
721 printf ("/\n");
722}
723
724
725void
726print_compiled_pattern (bufp)
727 struct re_pattern_buffer *bufp;
728{
729 unsigned char *buffer = bufp->buffer;
730
731 print_partial_compiled_pattern (buffer, buffer + bufp->used);
732 printf ("%d bytes used/%d bytes allocated.\n", bufp->used, bufp->allocated);
733
734 if (bufp->fastmap_accurate && bufp->fastmap)
735 {
736 printf ("fastmap: ");
737 print_fastmap (bufp->fastmap);
738 }
739
740 printf ("re_nsub: %d\t", bufp->re_nsub);
741 printf ("regs_alloc: %d\t", bufp->regs_allocated);
742 printf ("can_be_null: %d\t", bufp->can_be_null);
743 printf ("newline_anchor: %d\n", bufp->newline_anchor);
744 printf ("no_sub: %d\t", bufp->no_sub);
745 printf ("not_bol: %d\t", bufp->not_bol);
746 printf ("not_eol: %d\t", bufp->not_eol);
747 printf ("syntax: %d\n", bufp->syntax);
748 /* Perhaps we should print the translate table? */
749}
750
751
752void
753print_double_string (where, string1, size1, string2, size2)
754 const char *where;
755 const char *string1;
756 const char *string2;
757 int size1;
758 int size2;
759{
760 unsigned this_char;
761
762 if (where == NULL)
763 printf ("(null)");
764 else
765 {
766 if (FIRST_STRING_P (where))
767 {
768 for (this_char = where - string1; this_char < size1; this_char++)
769 printchar (string1[this_char]);
770
771 where = string2;
772 }
773
774 for (this_char = where - string2; this_char < size2; this_char++)
775 printchar (string2[this_char]);
776 }
777}
778
779#else /* not DEBUG */
780
781#undef assert
782#define assert(e)
783
784#define DEBUG_STATEMENT(e)
785#define DEBUG_PRINT1(x)
786#define DEBUG_PRINT2(x1, x2)
787#define DEBUG_PRINT3(x1, x2, x3)
788#define DEBUG_PRINT4(x1, x2, x3, x4)
789#define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
790#define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
791
792#endif /* not DEBUG */
793\f
794/* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
795 also be assigned to arbitrarily: each pattern buffer stores its own
796 syntax, so it can be changed between regex compilations. */
797reg_syntax_t re_syntax_options = RE_SYNTAX_EMACS;
798
799
800/* Specify the precise syntax of regexps for compilation. This provides
801 for compatibility for various utilities which historically have
802 different, incompatible syntaxes.
803
804 The argument SYNTAX is a bit mask comprised of the various bits
805 defined in regex.h. We return the old syntax. */
806
807reg_syntax_t
808re_set_syntax (syntax)
809 reg_syntax_t syntax;
810{
811 reg_syntax_t ret = re_syntax_options;
812
813 re_syntax_options = syntax;
814 return ret;
815}
816\f
817/* This table gives an error message for each of the error codes listed
818 in regex.h. Obviously the order here has to be same as there. */
819
820static const char *re_error_msg[] =
821 { NULL, /* REG_NOERROR */
822 "No match", /* REG_NOMATCH */
823 "Invalid regular expression", /* REG_BADPAT */
824 "Invalid collation character", /* REG_ECOLLATE */
825 "Invalid character class name", /* REG_ECTYPE */
826 "Trailing backslash", /* REG_EESCAPE */
827 "Invalid back reference", /* REG_ESUBREG */
828 "Unmatched [ or [^", /* REG_EBRACK */
829 "Unmatched ( or \\(", /* REG_EPAREN */
830 "Unmatched \\{", /* REG_EBRACE */
831 "Invalid content of \\{\\}", /* REG_BADBR */
832 "Invalid range end", /* REG_ERANGE */
833 "Memory exhausted", /* REG_ESPACE */
834 "Invalid preceding regular expression", /* REG_BADRPT */
835 "Premature end of regular expression", /* REG_EEND */
836 "Regular expression too big", /* REG_ESIZE */
837 "Unmatched ) or \\)", /* REG_ERPAREN */
838 };
839\f
840/* Subroutine declarations and macros for regex_compile. */
841
842static void store_op1 (), store_op2 ();
843static void insert_op1 (), insert_op2 ();
844static boolean at_begline_loc_p (), at_endline_loc_p ();
845static boolean group_in_compile_stack ();
846static reg_errcode_t compile_range ();
847
848/* Fetch the next character in the uncompiled pattern---translating it
849 if necessary. Also cast from a signed character in the constant
850 string passed to us by the user to an unsigned char that we can use
851 as an array index (in, e.g., `translate'). */
852#define PATFETCH(c) \
853 do {if (p == pend) return REG_EEND; \
854 c = (unsigned char) *p++; \
855 if (translate) c = translate[c]; \
856 } while (0)
857
858/* Fetch the next character in the uncompiled pattern, with no
859 translation. */
860#define PATFETCH_RAW(c) \
861 do {if (p == pend) return REG_EEND; \
862 c = (unsigned char) *p++; \
863 } while (0)
864
865/* Go backwards one character in the pattern. */
866#define PATUNFETCH p--
867
868
869/* If `translate' is non-null, return translate[D], else just D. We
870 cast the subscript to translate because some data is declared as
871 `char *', to avoid warnings when a string constant is passed. But
872 when we use a character as a subscript we must make it unsigned. */
873#define TRANSLATE(d) (translate ? translate[(unsigned char) (d)] : (d))
874
875
876/* Macros for outputting the compiled pattern into `buffer'. */
877
878/* If the buffer isn't allocated when it comes in, use this. */
879#define INIT_BUF_SIZE 32
880
881/* Make sure we have at least N more bytes of space in buffer. */
882#define GET_BUFFER_SPACE(n) \
883 while (b - bufp->buffer + (n) > bufp->allocated) \
884 EXTEND_BUFFER ()
885
886/* Make sure we have one more byte of buffer space and then add C to it. */
887#define BUF_PUSH(c) \
888 do { \
889 GET_BUFFER_SPACE (1); \
890 *b++ = (unsigned char) (c); \
891 } while (0)
892
893
894/* Ensure we have two more bytes of buffer space and then append C1 and C2. */
895#define BUF_PUSH_2(c1, c2) \
896 do { \
897 GET_BUFFER_SPACE (2); \
898 *b++ = (unsigned char) (c1); \
899 *b++ = (unsigned char) (c2); \
900 } while (0)
901
902
903/* As with BUF_PUSH_2, except for three bytes. */
904#define BUF_PUSH_3(c1, c2, c3) \
905 do { \
906 GET_BUFFER_SPACE (3); \
907 *b++ = (unsigned char) (c1); \
908 *b++ = (unsigned char) (c2); \
909 *b++ = (unsigned char) (c3); \
910 } while (0)
911
912
913/* Store a jump with opcode OP at LOC to location TO. We store a
914 relative address offset by the three bytes the jump itself occupies. */
915#define STORE_JUMP(op, loc, to) \
916 store_op1 (op, loc, (to) - (loc) - 3)
917
918/* Likewise, for a two-argument jump. */
919#define STORE_JUMP2(op, loc, to, arg) \
920 store_op2 (op, loc, (to) - (loc) - 3, arg)
921
922/* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
923#define INSERT_JUMP(op, loc, to) \
924 insert_op1 (op, loc, (to) - (loc) - 3, b)
925
926/* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
927#define INSERT_JUMP2(op, loc, to, arg) \
928 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
929
930
931/* This is not an arbitrary limit: the arguments which represent offsets
932 into the pattern are two bytes long. So if 2^16 bytes turns out to
933 be too small, many things would have to change. */
934#define MAX_BUF_SIZE (1L << 16)
935
936
937/* Extend the buffer by twice its current size via realloc and
938 reset the pointers that pointed into the old block to point to the
939 correct places in the new one. If extending the buffer results in it
940 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
941#define EXTEND_BUFFER() \
942 do { \
943 unsigned char *old_buffer = bufp->buffer; \
944 if (bufp->allocated == MAX_BUF_SIZE) \
945 return REG_ESIZE; \
946 bufp->allocated <<= 1; \
947 if (bufp->allocated > MAX_BUF_SIZE) \
948 bufp->allocated = MAX_BUF_SIZE; \
949 bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated);\
950 if (bufp->buffer == NULL) \
951 return REG_ESPACE; \
952 /* If the buffer moved, move all the pointers into it. */ \
953 if (old_buffer != bufp->buffer) \
954 { \
955 b = (b - old_buffer) + bufp->buffer; \
956 begalt = (begalt - old_buffer) + bufp->buffer; \
957 if (fixup_alt_jump) \
958 fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
959 if (laststart) \
960 laststart = (laststart - old_buffer) + bufp->buffer; \
961 if (pending_exact) \
962 pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
963 } \
964 } while (0)
965
966
967/* Since we have one byte reserved for the register number argument to
968 {start,stop}_memory, the maximum number of groups we can report
969 things about is what fits in that byte. */
970#define MAX_REGNUM 255
971
972/* But patterns can have more than `MAX_REGNUM' registers. We just
973 ignore the excess. */
974typedef unsigned regnum_t;
975
976
977/* Macros for the compile stack. */
978
979/* Since offsets can go either forwards or backwards, this type needs to
980 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
981typedef int pattern_offset_t;
982
983typedef struct
984{
985 pattern_offset_t begalt_offset;
986 pattern_offset_t fixup_alt_jump;
987 pattern_offset_t inner_group_offset;
988 pattern_offset_t laststart_offset;
989 regnum_t regnum;
990} compile_stack_elt_t;
991
992
993typedef struct
994{
995 compile_stack_elt_t *stack;
996 unsigned size;
997 unsigned avail; /* Offset of next open position. */
998} compile_stack_type;
999
1000
1001#define INIT_COMPILE_STACK_SIZE 32
1002
1003#define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1004#define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1005
1006/* The next available element. */
1007#define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1008
1009
1010/* Set the bit for character C in a list. */
1011#define SET_LIST_BIT(c) \
1012 (b[((unsigned char) (c)) / BYTEWIDTH] \
1013 |= 1 << (((unsigned char) c) % BYTEWIDTH))
1014
1015
1016/* Get the next unsigned number in the uncompiled pattern. */
1017#define GET_UNSIGNED_NUMBER(num) \
1018 { if (p != pend) \
1019 { \
1020 PATFETCH (c); \
1021 while (ISDIGIT (c)) \
1022 { \
1023 if (num < 0) \
1024 num = 0; \
1025 num = num * 10 + c - '0'; \
1026 if (p == pend) \
1027 break; \
1028 PATFETCH (c); \
1029 } \
1030 } \
1031 }
1032
1033#define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
1034
1035#define IS_CHAR_CLASS(string) \
1036 (STREQ (string, "alpha") || STREQ (string, "upper") \
1037 || STREQ (string, "lower") || STREQ (string, "digit") \
1038 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
1039 || STREQ (string, "space") || STREQ (string, "print") \
1040 || STREQ (string, "punct") || STREQ (string, "graph") \
1041 || STREQ (string, "cntrl") || STREQ (string, "blank"))
1042\f
1043/* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
1044 Returns one of error codes defined in `regex.h', or zero for success.
1045
1046 Assumes the `allocated' (and perhaps `buffer') and `translate'
1047 fields are set in BUFP on entry.
1048
1049 If it succeeds, results are put in BUFP (if it returns an error, the
1050 contents of BUFP are undefined):
1051 `buffer' is the compiled pattern;
1052 `syntax' is set to SYNTAX;
1053 `used' is set to the length of the compiled pattern;
1054 `fastmap_accurate' is zero;
1055 `re_nsub' is the number of subexpressions in PATTERN;
1056 `not_bol' and `not_eol' are zero;
1057
1058 The `fastmap' and `newline_anchor' fields are neither
1059 examined nor set. */
1060
1061static reg_errcode_t
1062regex_compile (pattern, size, syntax, bufp)
1063 const char *pattern;
1064 int size;
1065 reg_syntax_t syntax;
1066 struct re_pattern_buffer *bufp;
1067{
1068 /* We fetch characters from PATTERN here. Even though PATTERN is
1069 `char *' (i.e., signed), we declare these variables as unsigned, so
1070 they can be reliably used as array indices. */
1071 register unsigned char c, c1;
1072
1073 /* A random tempory spot in PATTERN. */
1074 const char *p1;
1075
1076 /* Points to the end of the buffer, where we should append. */
1077 register unsigned char *b;
1078
1079 /* Keeps track of unclosed groups. */
1080 compile_stack_type compile_stack;
1081
1082 /* Points to the current (ending) position in the pattern. */
1083 const char *p = pattern;
1084 const char *pend = pattern + size;
1085
1086 /* How to translate the characters in the pattern. */
1087 char *translate = bufp->translate;
1088
1089 /* Address of the count-byte of the most recently inserted `exactn'
1090 command. This makes it possible to tell if a new exact-match
1091 character can be added to that command or if the character requires
1092 a new `exactn' command. */
1093 unsigned char *pending_exact = 0;
1094
1095 /* Address of start of the most recently finished expression.
1096 This tells, e.g., postfix * where to find the start of its
1097 operand. Reset at the beginning of groups and alternatives. */
1098 unsigned char *laststart = 0;
1099
1100 /* Address of beginning of regexp, or inside of last group. */
1101 unsigned char *begalt;
1102
1103 /* Place in the uncompiled pattern (i.e., the {) to
1104 which to go back if the interval is invalid. */
1105 const char *beg_interval;
1106
1107 /* Address of the place where a forward jump should go to the end of
1108 the containing expression. Each alternative of an `or' -- except the
1109 last -- ends with a forward jump of this sort. */
1110 unsigned char *fixup_alt_jump = 0;
1111
1112 /* Counts open-groups as they are encountered. Remembered for the
1113 matching close-group on the compile stack, so the same register
1114 number is put in the stop_memory as the start_memory. */
1115 regnum_t regnum = 0;
1116
1117#ifdef DEBUG
1118 DEBUG_PRINT1 ("\nCompiling pattern: ");
1119 if (debug)
1120 {
1121 unsigned debug_count;
1122
1123 for (debug_count = 0; debug_count < size; debug_count++)
1124 printchar (pattern[debug_count]);
1125 putchar ('\n');
1126 }
1127#endif /* DEBUG */
1128
1129 /* Initialize the compile stack. */
1130 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
1131 if (compile_stack.stack == NULL)
1132 return REG_ESPACE;
1133
1134 compile_stack.size = INIT_COMPILE_STACK_SIZE;
1135 compile_stack.avail = 0;
1136
1137 /* Initialize the pattern buffer. */
1138 bufp->syntax = syntax;
1139 bufp->fastmap_accurate = 0;
1140 bufp->not_bol = bufp->not_eol = 0;
1141
1142 /* Set `used' to zero, so that if we return an error, the pattern
1143 printer (for debugging) will think there's no pattern. We reset it
1144 at the end. */
1145 bufp->used = 0;
1146
1147 /* Always count groups, whether or not bufp->no_sub is set. */
1148 bufp->re_nsub = 0;
1149
1150#if !defined (emacs) && !defined (SYNTAX_TABLE)
1151 /* Initialize the syntax table. */
1152 init_syntax_once ();
1153#endif
1154
1155 if (bufp->allocated == 0)
1156 {
1157 if (bufp->buffer)
1158 { /* If zero allocated, but buffer is non-null, try to realloc
1159 enough space. This loses if buffer's address is bogus, but
1160 that is the user's responsibility. */
1161 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
1162 }
1163 else
1164 { /* Caller did not allocate a buffer. Do it for them. */
1165 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
1166 }
1167 if (!bufp->buffer) return REG_ESPACE;
1168
1169 bufp->allocated = INIT_BUF_SIZE;
1170 }
1171
1172 begalt = b = bufp->buffer;
1173
1174 /* Loop through the uncompiled pattern until we're at the end. */
1175 while (p != pend)
1176 {
1177 PATFETCH (c);
1178
1179 switch (c)
1180 {
1181 case '^':
1182 {
1183 if ( /* If at start of pattern, it's an operator. */
1184 p == pattern + 1
1185 /* If context independent, it's an operator. */
1186 || syntax & RE_CONTEXT_INDEP_ANCHORS
1187 /* Otherwise, depends on what's come before. */
1188 || at_begline_loc_p (pattern, p, syntax))
1189 BUF_PUSH (begline);
1190 else
1191 goto normal_char;
1192 }
1193 break;
1194
1195
1196 case '$':
1197 {
1198 if ( /* If at end of pattern, it's an operator. */
1199 p == pend
1200 /* If context independent, it's an operator. */
1201 || syntax & RE_CONTEXT_INDEP_ANCHORS
1202 /* Otherwise, depends on what's next. */
1203 || at_endline_loc_p (p, pend, syntax))
1204 BUF_PUSH (endline);
1205 else
1206 goto normal_char;
1207 }
1208 break;
1209
1210
1211 case '+':
1212 case '?':
1213 if ((syntax & RE_BK_PLUS_QM)
1214 || (syntax & RE_LIMITED_OPS))
1215 goto normal_char;
1216 handle_plus:
1217 case '*':
1218 /* If there is no previous pattern... */
1219 if (!laststart)
1220 {
1221 if (syntax & RE_CONTEXT_INVALID_OPS)
1222 return REG_BADRPT;
1223 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
1224 goto normal_char;
1225 }
1226
1227 {
1228 /* Are we optimizing this jump? */
1229 boolean keep_string_p = false;
1230
1231 /* 1 means zero (many) matches is allowed. */
1232 char zero_times_ok = 0, many_times_ok = 0;
1233
1234 /* If there is a sequence of repetition chars, collapse it
1235 down to just one (the right one). We can't combine
1236 interval operators with these because of, e.g., `a{2}*',
1237 which should only match an even number of `a's. */
1238
1239 for (;;)
1240 {
1241 zero_times_ok |= c != '+';
1242 many_times_ok |= c != '?';
1243
1244 if (p == pend)
1245 break;
1246
1247 PATFETCH (c);
1248
1249 if (c == '*'
1250 || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
1251 ;
1252
1253 else if (syntax & RE_BK_PLUS_QM && c == '\\')
1254 {
1255 if (p == pend) return REG_EESCAPE;
1256
1257 PATFETCH (c1);
1258 if (!(c1 == '+' || c1 == '?'))
1259 {
1260 PATUNFETCH;
1261 PATUNFETCH;
1262 break;
1263 }
1264
1265 c = c1;
1266 }
1267 else
1268 {
1269 PATUNFETCH;
1270 break;
1271 }
1272
1273 /* If we get here, we found another repeat character. */
1274 }
1275
1276 /* Star, etc. applied to an empty pattern is equivalent
1277 to an empty pattern. */
1278 if (!laststart)
1279 break;
1280
1281 /* Now we know whether or not zero matches is allowed
1282 and also whether or not two or more matches is allowed. */
1283 if (many_times_ok)
1284 { /* More than one repetition is allowed, so put in at the
1285 end a backward relative jump from `b' to before the next
1286 jump we're going to put in below (which jumps from
1287 laststart to after this jump).
1288
1289 But if we are at the `*' in the exact sequence `.*\n',
1290 insert an unconditional jump backwards to the .,
1291 instead of the beginning of the loop. This way we only
1292 push a failure point once, instead of every time
1293 through the loop. */
1294 assert (p - 1 > pattern);
1295
1296 /* Allocate the space for the jump. */
1297 GET_BUFFER_SPACE (3);
1298
1299 /* We know we are not at the first character of the pattern,
1300 because laststart was nonzero. And we've already
1301 incremented `p', by the way, to be the character after
1302 the `*'. Do we have to do something analogous here
1303 for null bytes, because of RE_DOT_NOT_NULL? */
1304 if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
1305 && zero_times_ok
1306 && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
1307 && !(syntax & RE_DOT_NEWLINE))
1308 { /* We have .*\n. */
1309 STORE_JUMP (jump, b, laststart);
1310 keep_string_p = true;
1311 }
1312 else
1313 /* Anything else. */
1314 STORE_JUMP (maybe_pop_jump, b, laststart - 3);
1315
1316 /* We've added more stuff to the buffer. */
1317 b += 3;
1318 }
1319
1320 /* On failure, jump from laststart to b + 3, which will be the
1321 end of the buffer after this jump is inserted. */
1322 GET_BUFFER_SPACE (3);
1323 INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
1324 : on_failure_jump,
1325 laststart, b + 3);
1326 pending_exact = 0;
1327 b += 3;
1328
1329 if (!zero_times_ok)
1330 {
1331 /* At least one repetition is required, so insert a
1332 `dummy_failure_jump' before the initial
1333 `on_failure_jump' instruction of the loop. This
1334 effects a skip over that instruction the first time
1335 we hit that loop. */
1336 GET_BUFFER_SPACE (3);
1337 INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6);
1338 b += 3;
1339 }
1340 }
1341 break;
1342
1343
1344 case '.':
1345 laststart = b;
1346 BUF_PUSH (anychar);
1347 break;
1348
1349
1350 case '[':
1351 {
1352 boolean had_char_class = false;
1353
1354 if (p == pend) return REG_EBRACK;
1355
1356 /* Ensure that we have enough space to push a charset: the
1357 opcode, the length count, and the bitset; 34 bytes in all. */
1358 GET_BUFFER_SPACE (34);
1359
1360 laststart = b;
1361
1362 /* We test `*p == '^' twice, instead of using an if
1363 statement, so we only need one BUF_PUSH. */
1364 BUF_PUSH (*p == '^' ? charset_not : charset);
1365 if (*p == '^')
1366 p++;
1367
1368 /* Remember the first position in the bracket expression. */
1369 p1 = p;
1370
1371 /* Push the number of bytes in the bitmap. */
1372 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
1373
1374 /* Clear the whole map. */
1375 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
1376
1377 /* charset_not matches newline according to a syntax bit. */
1378 if ((re_opcode_t) b[-2] == charset_not
1379 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
1380 SET_LIST_BIT ('\n');
1381
1382 /* Read in characters and ranges, setting map bits. */
1383 for (;;)
1384 {
1385 if (p == pend) return REG_EBRACK;
1386
1387 PATFETCH (c);
1388
1389 /* \ might escape characters inside [...] and [^...]. */
1390 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
1391 {
1392 if (p == pend) return REG_EESCAPE;
1393
1394 PATFETCH (c1);
1395 SET_LIST_BIT (c1);
1396 continue;
1397 }
1398
1399 /* Could be the end of the bracket expression. If it's
1400 not (i.e., when the bracket expression is `[]' so
1401 far), the ']' character bit gets set way below. */
1402 if (c == ']' && p != p1 + 1)
1403 break;
1404
1405 /* Look ahead to see if it's a range when the last thing
1406 was a character class. */
1407 if (had_char_class && c == '-' && *p != ']')
1408 return REG_ERANGE;
1409
1410 /* Look ahead to see if it's a range when the last thing
1411 was a character: if this is a hyphen not at the
1412 beginning or the end of a list, then it's the range
1413 operator. */
1414 if (c == '-'
1415 && !(p - 2 >= pattern && p[-2] == '[')
1416 && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
1417 && *p != ']')
1418 {
1419 reg_errcode_t ret
1420 = compile_range (&p, pend, translate, syntax, b);
1421 if (ret != REG_NOERROR) return ret;
1422 }
1423
1424 else if (p[0] == '-' && p[1] != ']')
1425 { /* This handles ranges made up of characters only. */
1426 reg_errcode_t ret;
1427
1428 /* Move past the `-'. */
1429 PATFETCH (c1);
1430
1431 ret = compile_range (&p, pend, translate, syntax, b);
1432 if (ret != REG_NOERROR) return ret;
1433 }
1434
1435 /* See if we're at the beginning of a possible character
1436 class. */
1437
1438 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
1439 { /* Leave room for the null. */
1440 char str[CHAR_CLASS_MAX_LENGTH + 1];
1441
1442 PATFETCH (c);
1443 c1 = 0;
1444
1445 /* If pattern is `[[:'. */
1446 if (p == pend) return REG_EBRACK;
1447
1448 for (;;)
1449 {
1450 PATFETCH (c);
1451 if (c == ':' || c == ']' || p == pend
1452 || c1 == CHAR_CLASS_MAX_LENGTH)
1453 break;
1454 str[c1++] = c;
1455 }
1456 str[c1] = '\0';
1457
1458 /* If isn't a word bracketed by `[:' and:`]':
1459 undo the ending character, the letters, and leave
1460 the leading `:' and `[' (but set bits for them). */
1461 if (c == ':' && *p == ']')
1462 {
1463 int ch;
1464 boolean is_alnum = STREQ (str, "alnum");
1465 boolean is_alpha = STREQ (str, "alpha");
1466 boolean is_blank = STREQ (str, "blank");
1467 boolean is_cntrl = STREQ (str, "cntrl");
1468 boolean is_digit = STREQ (str, "digit");
1469 boolean is_graph = STREQ (str, "graph");
1470 boolean is_lower = STREQ (str, "lower");
1471 boolean is_print = STREQ (str, "print");
1472 boolean is_punct = STREQ (str, "punct");
1473 boolean is_space = STREQ (str, "space");
1474 boolean is_upper = STREQ (str, "upper");
1475 boolean is_xdigit = STREQ (str, "xdigit");
1476
1477 if (!IS_CHAR_CLASS (str)) return REG_ECTYPE;
1478
1479 /* Throw away the ] at the end of the character
1480 class. */
1481 PATFETCH (c);
1482
1483 if (p == pend) return REG_EBRACK;
1484
1485 for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
1486 {
1487 if ( (is_alnum && ISALNUM (ch))
1488 || (is_alpha && ISALPHA (ch))
1489 || (is_blank && ISBLANK (ch))
1490 || (is_cntrl && ISCNTRL (ch))
1491 || (is_digit && ISDIGIT (ch))
1492 || (is_graph && ISGRAPH (ch))
1493 || (is_lower && ISLOWER (ch))
1494 || (is_print && ISPRINT (ch))
1495 || (is_punct && ISPUNCT (ch))
1496 || (is_space && ISSPACE (ch))
1497 || (is_upper && ISUPPER (ch))
1498 || (is_xdigit && ISXDIGIT (ch)))
1499 SET_LIST_BIT (ch);
1500 }
1501 had_char_class = true;
1502 }
1503 else
1504 {
1505 c1++;
1506 while (c1--)
1507 PATUNFETCH;
1508 SET_LIST_BIT ('[');
1509 SET_LIST_BIT (':');
1510 had_char_class = false;
1511 }
1512 }
1513 else
1514 {
1515 had_char_class = false;
1516 SET_LIST_BIT (c);
1517 }
1518 }
1519
1520 /* Discard any (non)matching list bytes that are all 0 at the
1521 end of the map. Decrease the map-length byte too. */
1522 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
1523 b[-1]--;
1524 b += b[-1];
1525 }
1526 break;
1527
1528
1529 case '(':
1530 if (syntax & RE_NO_BK_PARENS)
1531 goto handle_open;
1532 else
1533 goto normal_char;
1534
1535
1536 case ')':
1537 if (syntax & RE_NO_BK_PARENS)
1538 goto handle_close;
1539 else
1540 goto normal_char;
1541
1542
1543 case '\n':
1544 if (syntax & RE_NEWLINE_ALT)
1545 goto handle_alt;
1546 else
1547 goto normal_char;
1548
1549
1550 case '|':
1551 if (syntax & RE_NO_BK_VBAR)
1552 goto handle_alt;
1553 else
1554 goto normal_char;
1555
1556
1557 case '{':
1558 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
1559 goto handle_interval;
1560 else
1561 goto normal_char;
1562
1563
1564 case '\\':
1565 if (p == pend) return REG_EESCAPE;
1566
1567 /* Do not translate the character after the \, so that we can
1568 distinguish, e.g., \B from \b, even if we normally would
1569 translate, e.g., B to b. */
1570 PATFETCH_RAW (c);
1571
1572 switch (c)
1573 {
1574 case '(':
1575 if (syntax & RE_NO_BK_PARENS)
1576 goto normal_backslash;
1577
1578 handle_open:
1579 bufp->re_nsub++;
1580 regnum++;
1581
1582 if (COMPILE_STACK_FULL)
1583 {
1584 RETALLOC (compile_stack.stack, compile_stack.size << 1,
1585 compile_stack_elt_t);
1586 if (compile_stack.stack == NULL) return REG_ESPACE;
1587
1588 compile_stack.size <<= 1;
1589 }
1590
1591 /* These are the values to restore when we hit end of this
1592 group. They are all relative offsets, so that if the
1593 whole pattern moves because of realloc, they will still
1594 be valid. */
1595 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
1596 COMPILE_STACK_TOP.fixup_alt_jump
1597 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
1598 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
1599 COMPILE_STACK_TOP.regnum = regnum;
1600
1601 /* We will eventually replace the 0 with the number of
1602 groups inner to this one. But do not push a
1603 start_memory for groups beyond the last one we can
1604 represent in the compiled pattern. */
1605 if (regnum <= MAX_REGNUM)
1606 {
1607 COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2;
1608 BUF_PUSH_3 (start_memory, regnum, 0);
1609 }
1610
1611 compile_stack.avail++;
1612
1613 fixup_alt_jump = 0;
1614 laststart = 0;
1615 begalt = b;
1616 /* If we've reached MAX_REGNUM groups, then this open
1617 won't actually generate any code, so we'll have to
1618 clear pending_exact explicitly. */
1619 pending_exact = 0;
1620 break;
1621
1622
1623 case ')':
1624 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
1625
1626 if (COMPILE_STACK_EMPTY)
1627 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
1628 goto normal_backslash;
1629 else
1630 return REG_ERPAREN;
1631
1632 handle_close:
1633 if (fixup_alt_jump)
1634 { /* Push a dummy failure point at the end of the
1635 alternative for a possible future
1636 `pop_failure_jump' to pop. See comments at
1637 `push_dummy_failure' in `re_match_2'. */
1638 BUF_PUSH (push_dummy_failure);
1639
1640 /* We allocated space for this jump when we assigned
1641 to `fixup_alt_jump', in the `handle_alt' case below. */
1642 STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
1643 }
1644
1645 /* See similar code for backslashed left paren above. */
1646 if (COMPILE_STACK_EMPTY)
1647 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
1648 goto normal_char;
1649 else
1650 return REG_ERPAREN;
1651
1652 /* Since we just checked for an empty stack above, this
1653 ``can't happen''. */
1654 assert (compile_stack.avail != 0);
1655 {
1656 /* We don't just want to restore into `regnum', because
1657 later groups should continue to be numbered higher,
1658 as in `(ab)c(de)' -- the second group is #2. */
1659 regnum_t this_group_regnum;
1660
1661 compile_stack.avail--;
1662 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
1663 fixup_alt_jump
1664 = COMPILE_STACK_TOP.fixup_alt_jump
1665 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
1666 : 0;
1667 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
1668 this_group_regnum = COMPILE_STACK_TOP.regnum;
1669 /* If we've reached MAX_REGNUM groups, then this open
1670 won't actually generate any code, so we'll have to
1671 clear pending_exact explicitly. */
1672 pending_exact = 0;
1673
1674 /* We're at the end of the group, so now we know how many
1675 groups were inside this one. */
1676 if (this_group_regnum <= MAX_REGNUM)
1677 {
1678 unsigned char *inner_group_loc
1679 = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
1680
1681 *inner_group_loc = regnum - this_group_regnum;
1682 BUF_PUSH_3 (stop_memory, this_group_regnum,
1683 regnum - this_group_regnum);
1684 }
1685 }
1686 break;
1687
1688
1689 case '|': /* `\|'. */
1690 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
1691 goto normal_backslash;
1692 handle_alt:
1693 if (syntax & RE_LIMITED_OPS)
1694 goto normal_char;
1695
1696 /* Insert before the previous alternative a jump which
1697 jumps to this alternative if the former fails. */
1698 GET_BUFFER_SPACE (3);
1699 INSERT_JUMP (on_failure_jump, begalt, b + 6);
1700 pending_exact = 0;
1701 b += 3;
1702
1703 /* The alternative before this one has a jump after it
1704 which gets executed if it gets matched. Adjust that
1705 jump so it will jump to this alternative's analogous
1706 jump (put in below, which in turn will jump to the next
1707 (if any) alternative's such jump, etc.). The last such
1708 jump jumps to the correct final destination. A picture:
1709 _____ _____
1710 | | | |
1711 | v | v
1712 a | b | c
1713
1714 If we are at `b', then fixup_alt_jump right now points to a
1715 three-byte space after `a'. We'll put in the jump, set
1716 fixup_alt_jump to right after `b', and leave behind three
1717 bytes which we'll fill in when we get to after `c'. */
1718
1719 if (fixup_alt_jump)
1720 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
1721
1722 /* Mark and leave space for a jump after this alternative,
1723 to be filled in later either by next alternative or
1724 when know we're at the end of a series of alternatives. */
1725 fixup_alt_jump = b;
1726 GET_BUFFER_SPACE (3);
1727 b += 3;
1728
1729 laststart = 0;
1730 begalt = b;
1731 break;
1732
1733
1734 case '{':
1735 /* If \{ is a literal. */
1736 if (!(syntax & RE_INTERVALS)
1737 /* If we're at `\{' and it's not the open-interval
1738 operator. */
1739 || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
1740 || (p - 2 == pattern && p == pend))
1741 goto normal_backslash;
1742
1743 handle_interval:
1744 {
1745 /* If got here, then the syntax allows intervals. */
1746
1747 /* At least (most) this many matches must be made. */
1748 int lower_bound = -1, upper_bound = -1;
1749
1750 beg_interval = p - 1;
1751
1752 if (p == pend)
1753 {
1754 if (syntax & RE_NO_BK_BRACES)
1755 goto unfetch_interval;
1756 else
1757 return REG_EBRACE;
1758 }
1759
1760 GET_UNSIGNED_NUMBER (lower_bound);
1761
1762 if (c == ',')
1763 {
1764 GET_UNSIGNED_NUMBER (upper_bound);
1765 if (upper_bound < 0) upper_bound = RE_DUP_MAX;
1766 }
1767 else
1768 /* Interval such as `{1}' => match exactly once. */
1769 upper_bound = lower_bound;
1770
1771 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
1772 || lower_bound > upper_bound)
1773 {
1774 if (syntax & RE_NO_BK_BRACES)
1775 goto unfetch_interval;
1776 else
1777 return REG_BADBR;
1778 }
1779
1780 if (!(syntax & RE_NO_BK_BRACES))
1781 {
1782 if (c != '\\') return REG_EBRACE;
1783
1784 PATFETCH (c);
1785 }
1786
1787 if (c != '}')
1788 {
1789 if (syntax & RE_NO_BK_BRACES)
1790 goto unfetch_interval;
1791 else
1792 return REG_BADBR;
1793 }
1794
1795 /* We just parsed a valid interval. */
1796
1797 /* If it's invalid to have no preceding re. */
1798 if (!laststart)
1799 {
1800 if (syntax & RE_CONTEXT_INVALID_OPS)
1801 return REG_BADRPT;
1802 else if (syntax & RE_CONTEXT_INDEP_OPS)
1803 laststart = b;
1804 else
1805 goto unfetch_interval;
1806 }
1807
1808 /* If the upper bound is zero, don't want to succeed at
1809 all; jump from `laststart' to `b + 3', which will be
1810 the end of the buffer after we insert the jump. */
1811 if (upper_bound == 0)
1812 {
1813 GET_BUFFER_SPACE (3);
1814 INSERT_JUMP (jump, laststart, b + 3);
1815 b += 3;
1816 }
1817
1818 /* Otherwise, we have a nontrivial interval. When
1819 we're all done, the pattern will look like:
1820 set_number_at <jump count> <upper bound>
1821 set_number_at <succeed_n count> <lower bound>
1822 succeed_n <after jump addr> <succed_n count>
1823 <body of loop>
1824 jump_n <succeed_n addr> <jump count>
1825 (The upper bound and `jump_n' are omitted if
1826 `upper_bound' is 1, though.) */
1827 else
1828 { /* If the upper bound is > 1, we need to insert
1829 more at the end of the loop. */
1830 unsigned nbytes = 10 + (upper_bound > 1) * 10;
1831
1832 GET_BUFFER_SPACE (nbytes);
1833
1834 /* Initialize lower bound of the `succeed_n', even
1835 though it will be set during matching by its
1836 attendant `set_number_at' (inserted next),
1837 because `re_compile_fastmap' needs to know.
1838 Jump to the `jump_n' we might insert below. */
1839 INSERT_JUMP2 (succeed_n, laststart,
1840 b + 5 + (upper_bound > 1) * 5,
1841 lower_bound);
1842 b += 5;
1843
1844 /* Code to initialize the lower bound. Insert
1845 before the `succeed_n'. The `5' is the last two
1846 bytes of this `set_number_at', plus 3 bytes of
1847 the following `succeed_n'. */
1848 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
1849 b += 5;
1850
1851 if (upper_bound > 1)
1852 { /* More than one repetition is allowed, so
1853 append a backward jump to the `succeed_n'
1854 that starts this interval.
1855
1856 When we've reached this during matching,
1857 we'll have matched the interval once, so
1858 jump back only `upper_bound - 1' times. */
1859 STORE_JUMP2 (jump_n, b, laststart + 5,
1860 upper_bound - 1);
1861 b += 5;
1862
1863 /* The location we want to set is the second
1864 parameter of the `jump_n'; that is `b-2' as
1865 an absolute address. `laststart' will be
1866 the `set_number_at' we're about to insert;
1867 `laststart+3' the number to set, the source
1868 for the relative address. But we are
1869 inserting into the middle of the pattern --
1870 so everything is getting moved up by 5.
1871 Conclusion: (b - 2) - (laststart + 3) + 5,
1872 i.e., b - laststart.
1873
1874 We insert this at the beginning of the loop
1875 so that if we fail during matching, we'll
1876 reinitialize the bounds. */
1877 insert_op2 (set_number_at, laststart, b - laststart,
1878 upper_bound - 1, b);
1879 b += 5;
1880 }
1881 }
1882 pending_exact = 0;
1883 beg_interval = NULL;
1884 }
1885 break;
1886
1887 unfetch_interval:
1888 /* If an invalid interval, match the characters as literals. */
1889 assert (beg_interval);
1890 p = beg_interval;
1891 beg_interval = NULL;
1892
1893 /* normal_char and normal_backslash need `c'. */
1894 PATFETCH (c);
1895
1896 if (!(syntax & RE_NO_BK_BRACES))
1897 {
1898 if (p > pattern && p[-1] == '\\')
1899 goto normal_backslash;
1900 }
1901 goto normal_char;
1902
1903#ifdef emacs
1904 /* There is no way to specify the before_dot and after_dot
1905 operators. rms says this is ok. --karl */
1906 case '=':
1907 BUF_PUSH (at_dot);
1908 break;
1909
1910 case 's':
1911 laststart = b;
1912 PATFETCH (c);
1913 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
1914 break;
1915
1916 case 'S':
1917 laststart = b;
1918 PATFETCH (c);
1919 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
1920 break;
1921#endif /* emacs */
1922
1923
1924 case 'w':
1925 laststart = b;
1926 BUF_PUSH (wordchar);
1927 break;
1928
1929
1930 case 'W':
1931 laststart = b;
1932 BUF_PUSH (notwordchar);
1933 break;
1934
1935
1936 case '<':
1937 BUF_PUSH (wordbeg);
1938 break;
1939
1940 case '>':
1941 BUF_PUSH (wordend);
1942 break;
1943
1944 case 'b':
1945 BUF_PUSH (wordbound);
1946 break;
1947
1948 case 'B':
1949 BUF_PUSH (notwordbound);
1950 break;
1951
1952 case '`':
1953 BUF_PUSH (begbuf);
1954 break;
1955
1956 case '\'':
1957 BUF_PUSH (endbuf);
1958 break;
1959
1960 case '1': case '2': case '3': case '4': case '5':
1961 case '6': case '7': case '8': case '9':
1962 if (syntax & RE_NO_BK_REFS)
1963 goto normal_char;
1964
1965 c1 = c - '0';
1966
1967 if (c1 > regnum)
1968 return REG_ESUBREG;
1969
1970 /* Can't back reference to a subexpression if inside of it. */
1971 if (group_in_compile_stack (compile_stack, c1))
1972 goto normal_char;
1973
1974 laststart = b;
1975 BUF_PUSH_2 (duplicate, c1);
1976 break;
1977
1978
1979 case '+':
1980 case '?':
1981 if (syntax & RE_BK_PLUS_QM)
1982 goto handle_plus;
1983 else
1984 goto normal_backslash;
1985
1986 default:
1987 normal_backslash:
1988 /* You might think it would be useful for \ to mean
1989 not to translate; but if we don't translate it
1990 it will never match anything. */
1991 c = TRANSLATE (c);
1992 goto normal_char;
1993 }
1994 break;
1995
1996
1997 default:
1998 /* Expects the character in `c'. */
1999 normal_char:
2000 /* If no exactn currently being built. */
2001 if (!pending_exact
2002
2003 /* If last exactn not at current position. */
2004 || pending_exact + *pending_exact + 1 != b
2005
2006 /* We have only one byte following the exactn for the count. */
2007 || *pending_exact == (1 << BYTEWIDTH) - 1
2008
2009 /* If followed by a repetition operator. */
2010 || *p == '*' || *p == '^'
2011 || ((syntax & RE_BK_PLUS_QM)
2012 ? *p == '\\' && (p[1] == '+' || p[1] == '?')
2013 : (*p == '+' || *p == '?'))
2014 || ((syntax & RE_INTERVALS)
2015 && ((syntax & RE_NO_BK_BRACES)
2016 ? *p == '{'
2017 : (p[0] == '\\' && p[1] == '{'))))
2018 {
2019 /* Start building a new exactn. */
2020
2021 laststart = b;
2022
2023 BUF_PUSH_2 (exactn, 0);
2024 pending_exact = b - 1;
2025 }
2026
2027 BUF_PUSH (c);
2028 (*pending_exact)++;
2029 break;
2030 } /* switch (c) */
2031 } /* while p != pend */
2032
2033
2034 /* Through the pattern now. */
2035
2036 if (fixup_alt_jump)
2037 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2038
2039 if (!COMPILE_STACK_EMPTY)
2040 return REG_EPAREN;
2041
2042 free (compile_stack.stack);
2043
2044 /* We have succeeded; set the length of the buffer. */
2045 bufp->used = b - bufp->buffer;
2046
2047#ifdef DEBUG
2048 if (debug)
2049 {
2050 DEBUG_PRINT1 ("\nCompiled pattern: ");
2051 print_compiled_pattern (bufp);
2052 }
2053#endif /* DEBUG */
2054
2055 return REG_NOERROR;
2056} /* regex_compile */
2057\f
2058/* Subroutines for `regex_compile'. */
2059
2060/* Store OP at LOC followed by two-byte integer parameter ARG. */
2061
2062static void
2063store_op1 (op, loc, arg)
2064 re_opcode_t op;
2065 unsigned char *loc;
2066 int arg;
2067{
2068 *loc = (unsigned char) op;
2069 STORE_NUMBER (loc + 1, arg);
2070}
2071
2072
2073/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
2074
2075static void
2076store_op2 (op, loc, arg1, arg2)
2077 re_opcode_t op;
2078 unsigned char *loc;
2079 int arg1, arg2;
2080{
2081 *loc = (unsigned char) op;
2082 STORE_NUMBER (loc + 1, arg1);
2083 STORE_NUMBER (loc + 3, arg2);
2084}
2085
2086
2087/* Copy the bytes from LOC to END to open up three bytes of space at LOC
2088 for OP followed by two-byte integer parameter ARG. */
2089
2090static void
2091insert_op1 (op, loc, arg, end)
2092 re_opcode_t op;
2093 unsigned char *loc;
2094 int arg;
2095 unsigned char *end;
2096{
2097 register unsigned char *pfrom = end;
2098 register unsigned char *pto = end + 3;
2099
2100 while (pfrom != loc)
2101 *--pto = *--pfrom;
2102
2103 store_op1 (op, loc, arg);
2104}
2105
2106
2107/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
2108
2109static void
2110insert_op2 (op, loc, arg1, arg2, end)
2111 re_opcode_t op;
2112 unsigned char *loc;
2113 int arg1, arg2;
2114 unsigned char *end;
2115{
2116 register unsigned char *pfrom = end;
2117 register unsigned char *pto = end + 5;
2118
2119 while (pfrom != loc)
2120 *--pto = *--pfrom;
2121
2122 store_op2 (op, loc, arg1, arg2);
2123}
2124
2125
2126/* P points to just after a ^ in PATTERN. Return true if that ^ comes
2127 after an alternative or a begin-subexpression. We assume there is at
2128 least one character before the ^. */
2129
2130static boolean
2131at_begline_loc_p (pattern, p, syntax)
2132 const char *pattern, *p;
2133 reg_syntax_t syntax;
2134{
2135 const char *prev = p - 2;
2136 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
2137
2138 return
2139 /* After a subexpression? */
2140 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
2141 /* After an alternative? */
2142 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
2143}
2144
2145
2146/* The dual of at_begline_loc_p. This one is for $. We assume there is
2147 at least one character after the $, i.e., `P < PEND'. */
2148
2149static boolean
2150at_endline_loc_p (p, pend, syntax)
2151 const char *p, *pend;
2152 int syntax;
2153{
2154 const char *next = p;
2155 boolean next_backslash = *next == '\\';
2156 const char *next_next = p + 1 < pend ? p + 1 : NULL;
2157
2158 return
2159 /* Before a subexpression? */
2160 (syntax & RE_NO_BK_PARENS ? *next == ')'
2161 : next_backslash && next_next && *next_next == ')')
2162 /* Before an alternative? */
2163 || (syntax & RE_NO_BK_VBAR ? *next == '|'
2164 : next_backslash && next_next && *next_next == '|');
2165}
2166
2167
2168/* Returns true if REGNUM is in one of COMPILE_STACK's elements and
2169 false if it's not. */
2170
2171static boolean
2172group_in_compile_stack (compile_stack, regnum)
2173 compile_stack_type compile_stack;
2174 regnum_t regnum;
2175{
2176 int this_element;
2177
2178 for (this_element = compile_stack.avail - 1;
2179 this_element >= 0;
2180 this_element--)
2181 if (compile_stack.stack[this_element].regnum == regnum)
2182 return true;
2183
2184 return false;
2185}
2186
2187
2188/* Read the ending character of a range (in a bracket expression) from the
2189 uncompiled pattern *P_PTR (which ends at PEND). We assume the
2190 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
2191 Then we set the translation of all bits between the starting and
2192 ending characters (inclusive) in the compiled pattern B.
2193
2194 Return an error code.
2195
2196 We use these short variable names so we can use the same macros as
2197 `regex_compile' itself. */
2198
2199static reg_errcode_t
2200compile_range (p_ptr, pend, translate, syntax, b)
2201 const char **p_ptr, *pend;
2202 char *translate;
2203 reg_syntax_t syntax;
2204 unsigned char *b;
2205{
2206 unsigned this_char;
2207
2208 const char *p = *p_ptr;
2209 int range_start, range_end;
2210
2211 if (p == pend)
2212 return REG_ERANGE;
2213
2214 /* Even though the pattern is a signed `char *', we need to fetch
2215 with unsigned char *'s; if the high bit of the pattern character
2216 is set, the range endpoints will be negative if we fetch using a
2217 signed char *.
2218
2219 We also want to fetch the endpoints without translating them; the
2220 appropriate translation is done in the bit-setting loop below. */
2221 range_start = ((unsigned char *) p)[-2];
2222 range_end = ((unsigned char *) p)[0];
2223
2224 /* Have to increment the pointer into the pattern string, so the
2225 caller isn't still at the ending character. */
2226 (*p_ptr)++;
2227
2228 /* If the start is after the end, the range is empty. */
2229 if (range_start > range_end)
2230 return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
2231
2232 /* Here we see why `this_char' has to be larger than an `unsigned
2233 char' -- the range is inclusive, so if `range_end' == 0xff
2234 (assuming 8-bit characters), we would otherwise go into an infinite
2235 loop, since all characters <= 0xff. */
2236 for (this_char = range_start; this_char <= range_end; this_char++)
2237 {
2238 SET_LIST_BIT (TRANSLATE (this_char));
2239 }
2240
2241 return REG_NOERROR;
2242}
2243\f
2244/* Failure stack declarations and macros; both re_compile_fastmap and
2245 re_match_2 use a failure stack. These have to be macros because of
2246 REGEX_ALLOCATE. */
2247
2248
2249/* Number of failure points for which to initially allocate space
2250 when matching. If this number is exceeded, we allocate more
2251 space, so it is not a hard limit. */
2252#ifndef INIT_FAILURE_ALLOC
2253#define INIT_FAILURE_ALLOC 5
2254#endif
2255
2256/* Roughly the maximum number of failure points on the stack. Would be
2257 exactly that if always used MAX_FAILURE_SPACE each time we failed.
2258 This is a variable only so users of regex can assign to it; we never
2259 change it ourselves. */
2260int re_max_failures = 2000;
2261
2262typedef const unsigned char *fail_stack_elt_t;
2263
2264typedef struct
2265{
2266 fail_stack_elt_t *stack;
2267 unsigned size;
2268 unsigned avail; /* Offset of next open position. */
2269} fail_stack_type;
2270
2271#define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
2272#define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
2273#define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
2274#define FAIL_STACK_TOP() (fail_stack.stack[fail_stack.avail])
2275
2276
2277/* Initialize `fail_stack'. Do `return -2' if the alloc fails. */
2278
2279#define INIT_FAIL_STACK() \
2280 do { \
2281 fail_stack.stack = (fail_stack_elt_t *) \
2282 REGEX_ALLOCATE (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \
2283 \
2284 if (fail_stack.stack == NULL) \
2285 return -2; \
2286 \
2287 fail_stack.size = INIT_FAILURE_ALLOC; \
2288 fail_stack.avail = 0; \
2289 } while (0)
2290
2291
2292/* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
2293
2294 Return 1 if succeeds, and 0 if either ran out of memory
2295 allocating space for it or it was already too large.
2296
2297 REGEX_REALLOCATE requires `destination' be declared. */
2298
2299#define DOUBLE_FAIL_STACK(fail_stack) \
2300 ((fail_stack).size > re_max_failures * MAX_FAILURE_ITEMS \
2301 ? 0 \
2302 : ((fail_stack).stack = (fail_stack_elt_t *) \
2303 REGEX_REALLOCATE ((fail_stack).stack, \
2304 (fail_stack).size * sizeof (fail_stack_elt_t), \
2305 ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \
2306 \
2307 (fail_stack).stack == NULL \
2308 ? 0 \
2309 : ((fail_stack).size <<= 1, \
2310 1)))
2311
2312
2313/* Push PATTERN_OP on FAIL_STACK.
2314
2315 Return 1 if was able to do so and 0 if ran out of memory allocating
2316 space to do so. */
2317#define PUSH_PATTERN_OP(pattern_op, fail_stack) \
2318 ((FAIL_STACK_FULL () \
2319 && !DOUBLE_FAIL_STACK (fail_stack)) \
2320 ? 0 \
2321 : ((fail_stack).stack[(fail_stack).avail++] = pattern_op, \
2322 1))
2323
2324/* This pushes an item onto the failure stack. Must be a four-byte
2325 value. Assumes the variable `fail_stack'. Probably should only
2326 be called from within `PUSH_FAILURE_POINT'. */
2327#define PUSH_FAILURE_ITEM(item) \
2328 fail_stack.stack[fail_stack.avail++] = (fail_stack_elt_t) item
2329
2330/* The complement operation. Assumes `fail_stack' is nonempty. */
2331#define POP_FAILURE_ITEM() fail_stack.stack[--fail_stack.avail]
2332
2333/* Used to omit pushing failure point id's when we're not debugging. */
2334#ifdef DEBUG
2335#define DEBUG_PUSH PUSH_FAILURE_ITEM
2336#define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_ITEM ()
2337#else
2338#define DEBUG_PUSH(item)
2339#define DEBUG_POP(item_addr)
2340#endif
2341
2342
2343/* Push the information about the state we will need
2344 if we ever fail back to it.
2345
2346 Requires variables fail_stack, regstart, regend, reg_info, and
2347 num_regs be declared. DOUBLE_FAIL_STACK requires `destination' be
2348 declared.
2349
2350 Does `return FAILURE_CODE' if runs out of memory. */
2351
2352#define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
2353 do { \
2354 char *destination; \
2355 /* Must be int, so when we don't save any registers, the arithmetic \
2356 of 0 + -1 isn't done as unsigned. */ \
2357 int this_reg; \
2358 \
2359 DEBUG_STATEMENT (failure_id++); \
2360 DEBUG_STATEMENT (nfailure_points_pushed++); \
2361 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
2362 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
2363 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
2364 \
2365 DEBUG_PRINT2 (" slots needed: %d\n", NUM_FAILURE_ITEMS); \
2366 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
2367 \
2368 /* Ensure we have enough space allocated for what we will push. */ \
2369 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
2370 { \
2371 if (!DOUBLE_FAIL_STACK (fail_stack)) \
2372 return failure_code; \
2373 \
2374 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
2375 (fail_stack).size); \
2376 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
2377 } \
2378 \
2379 /* Push the info, starting with the registers. */ \
2380 DEBUG_PRINT1 ("\n"); \
2381 \
2382 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
2383 this_reg++) \
2384 { \
2385 DEBUG_PRINT2 (" Pushing reg: %d\n", this_reg); \
2386 DEBUG_STATEMENT (num_regs_pushed++); \
2387 \
2388 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
2389 PUSH_FAILURE_ITEM (regstart[this_reg]); \
2390 \
2391 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
2392 PUSH_FAILURE_ITEM (regend[this_reg]); \
2393 \
2394 DEBUG_PRINT2 (" info: 0x%x\n ", reg_info[this_reg]); \
2395 DEBUG_PRINT2 (" match_null=%d", \
2396 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
2397 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
2398 DEBUG_PRINT2 (" matched_something=%d", \
2399 MATCHED_SOMETHING (reg_info[this_reg])); \
2400 DEBUG_PRINT2 (" ever_matched=%d", \
2401 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
2402 DEBUG_PRINT1 ("\n"); \
2403 PUSH_FAILURE_ITEM (reg_info[this_reg].word); \
2404 } \
2405 \
2406 DEBUG_PRINT2 (" Pushing low active reg: %d\n", lowest_active_reg);\
2407 PUSH_FAILURE_ITEM (lowest_active_reg); \
2408 \
2409 DEBUG_PRINT2 (" Pushing high active reg: %d\n", highest_active_reg);\
2410 PUSH_FAILURE_ITEM (highest_active_reg); \
2411 \
2412 DEBUG_PRINT2 (" Pushing pattern 0x%x: ", pattern_place); \
2413 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
2414 PUSH_FAILURE_ITEM (pattern_place); \
2415 \
2416 DEBUG_PRINT2 (" Pushing string 0x%x: `", string_place); \
2417 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
2418 size2); \
2419 DEBUG_PRINT1 ("'\n"); \
2420 PUSH_FAILURE_ITEM (string_place); \
2421 \
2422 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
2423 DEBUG_PUSH (failure_id); \
2424 } while (0)
2425
2426/* This is the number of items that are pushed and popped on the stack
2427 for each register. */
2428#define NUM_REG_ITEMS 3
2429
2430/* Individual items aside from the registers. */
2431#ifdef DEBUG
2432#define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
2433#else
2434#define NUM_NONREG_ITEMS 4
2435#endif
2436
2437/* We push at most this many items on the stack. */
2438#define MAX_FAILURE_ITEMS ((num_regs - 1) * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
2439
2440/* We actually push this many items. */
2441#define NUM_FAILURE_ITEMS \
2442 ((highest_active_reg - lowest_active_reg + 1) * NUM_REG_ITEMS \
2443 + NUM_NONREG_ITEMS)
2444
2445/* How many items can still be added to the stack without overflowing it. */
2446#define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
2447
2448
2449/* Pops what PUSH_FAIL_STACK pushes.
2450
2451 We restore into the parameters, all of which should be lvalues:
2452 STR -- the saved data position.
2453 PAT -- the saved pattern position.
2454 LOW_REG, HIGH_REG -- the highest and lowest active registers.
2455 REGSTART, REGEND -- arrays of string positions.
2456 REG_INFO -- array of information about each subexpression.
2457
2458 Also assumes the variables `fail_stack' and (if debugging), `bufp',
2459 `pend', `string1', `size1', `string2', and `size2'. */
2460
2461#define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
2462{ \
2463 DEBUG_STATEMENT (fail_stack_elt_t failure_id;) \
2464 int this_reg; \
2465 const unsigned char *string_temp; \
2466 \
2467 assert (!FAIL_STACK_EMPTY ()); \
2468 \
2469 /* Remove failure points and point to how many regs pushed. */ \
2470 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
2471 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
2472 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
2473 \
2474 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
2475 \
2476 DEBUG_POP (&failure_id); \
2477 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
2478 \
2479 /* If the saved string location is NULL, it came from an \
2480 on_failure_keep_string_jump opcode, and we want to throw away the \
2481 saved NULL, thus retaining our current position in the string. */ \
2482 string_temp = POP_FAILURE_ITEM (); \
2483 if (string_temp != NULL) \
2484 str = (const char *) string_temp; \
2485 \
2486 DEBUG_PRINT2 (" Popping string 0x%x: `", str); \
2487 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
2488 DEBUG_PRINT1 ("'\n"); \
2489 \
2490 pat = (unsigned char *) POP_FAILURE_ITEM (); \
2491 DEBUG_PRINT2 (" Popping pattern 0x%x: ", pat); \
2492 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
2493 \
2494 /* Restore register info. */ \
2495 high_reg = (unsigned) POP_FAILURE_ITEM (); \
2496 DEBUG_PRINT2 (" Popping high active reg: %d\n", high_reg); \
2497 \
2498 low_reg = (unsigned) POP_FAILURE_ITEM (); \
2499 DEBUG_PRINT2 (" Popping low active reg: %d\n", low_reg); \
2500 \
2501 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
2502 { \
2503 DEBUG_PRINT2 (" Popping reg: %d\n", this_reg); \
2504 \
2505 reg_info[this_reg].word = POP_FAILURE_ITEM (); \
2506 DEBUG_PRINT2 (" info: 0x%x\n", reg_info[this_reg]); \
2507 \
2508 regend[this_reg] = (const char *) POP_FAILURE_ITEM (); \
2509 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
2510 \
2511 regstart[this_reg] = (const char *) POP_FAILURE_ITEM (); \
2512 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
2513 } \
2514 \
2515 DEBUG_STATEMENT (nfailure_points_popped++); \
2516} /* POP_FAILURE_POINT */
2517\f
2518/* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
2519 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
2520 characters can start a string that matches the pattern. This fastmap
2521 is used by re_search to skip quickly over impossible starting points.
2522
2523 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
2524 area as BUFP->fastmap.
2525
2526 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
2527 the pattern buffer.
2528
2529 Returns 0 if we succeed, -2 if an internal error. */
2530
2531int
2532re_compile_fastmap (bufp)
2533 struct re_pattern_buffer *bufp;
2534{
2535 int j, k;
2536 fail_stack_type fail_stack;
2537#ifndef REGEX_MALLOC
2538 char *destination;
2539#endif
2540 /* We don't push any register information onto the failure stack. */
2541 unsigned num_regs = 0;
2542
2543 register char *fastmap = bufp->fastmap;
2544 unsigned char *pattern = bufp->buffer;
2545 unsigned long size = bufp->used;
2546 const unsigned char *p = pattern;
2547 register unsigned char *pend = pattern + size;
2548
2549 /* Assume that each path through the pattern can be null until
2550 proven otherwise. We set this false at the bottom of switch
2551 statement, to which we get only if a particular path doesn't
2552 match the empty string. */
2553 boolean path_can_be_null = true;
2554
2555 /* We aren't doing a `succeed_n' to begin with. */
2556 boolean succeed_n_p = false;
2557
2558 assert (fastmap != NULL && p != NULL);
2559
2560 INIT_FAIL_STACK ();
2561 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
2562 bufp->fastmap_accurate = 1; /* It will be when we're done. */
2563 bufp->can_be_null = 0;
2564
2565 while (p != pend || !FAIL_STACK_EMPTY ())
2566 {
2567 if (p == pend)
2568 {
2569 bufp->can_be_null |= path_can_be_null;
2570
2571 /* Reset for next path. */
2572 path_can_be_null = true;
2573
2574 p = fail_stack.stack[--fail_stack.avail];
2575 }
2576
2577 /* We should never be about to go beyond the end of the pattern. */
2578 assert (p < pend);
2579
2580#ifdef SWITCH_ENUM_BUG
2581 switch ((int) ((re_opcode_t) *p++))
2582#else
2583 switch ((re_opcode_t) *p++)
2584#endif
2585 {
2586
2587 /* I guess the idea here is to simply not bother with a fastmap
2588 if a backreference is used, since it's too hard to figure out
2589 the fastmap for the corresponding group. Setting
2590 `can_be_null' stops `re_search_2' from using the fastmap, so
2591 that is all we do. */
2592 case duplicate:
2593 bufp->can_be_null = 1;
2594 return 0;
2595
2596
2597 /* Following are the cases which match a character. These end
2598 with `break'. */
2599
2600 case exactn:
2601 fastmap[p[1]] = 1;
2602 break;
2603
2604
2605 case charset:
2606 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
2607 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
2608 fastmap[j] = 1;
2609 break;
2610
2611
2612 case charset_not:
2613 /* Chars beyond end of map must be allowed. */
2614 for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
2615 fastmap[j] = 1;
2616
2617 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
2618 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
2619 fastmap[j] = 1;
2620 break;
2621
2622
2623 case wordchar:
2624 for (j = 0; j < (1 << BYTEWIDTH); j++)
2625 if (SYNTAX (j) == Sword)
2626 fastmap[j] = 1;
2627 break;
2628
2629
2630 case notwordchar:
2631 for (j = 0; j < (1 << BYTEWIDTH); j++)
2632 if (SYNTAX (j) != Sword)
2633 fastmap[j] = 1;
2634 break;
2635
2636
2637 case anychar:
2638 /* `.' matches anything ... */
2639 for (j = 0; j < (1 << BYTEWIDTH); j++)
2640 fastmap[j] = 1;
2641
2642 /* ... except perhaps newline. */
2643 if (!(bufp->syntax & RE_DOT_NEWLINE))
2644 fastmap['\n'] = 0;
2645
2646 /* Return if we have already set `can_be_null'; if we have,
2647 then the fastmap is irrelevant. Something's wrong here. */
2648 else if (bufp->can_be_null)
2649 return 0;
2650
2651 /* Otherwise, have to check alternative paths. */
2652 break;
2653
2654
2655#ifdef emacs
2656 case syntaxspec:
2657 k = *p++;
2658 for (j = 0; j < (1 << BYTEWIDTH); j++)
2659 if (SYNTAX (j) == (enum syntaxcode) k)
2660 fastmap[j] = 1;
2661 break;
2662
2663
2664 case notsyntaxspec:
2665 k = *p++;
2666 for (j = 0; j < (1 << BYTEWIDTH); j++)
2667 if (SYNTAX (j) != (enum syntaxcode) k)
2668 fastmap[j] = 1;
2669 break;
2670
2671
2672 /* All cases after this match the empty string. These end with
2673 `continue'. */
2674
2675
2676 case before_dot:
2677 case at_dot:
2678 case after_dot:
2679 continue;
2680#endif /* not emacs */
2681
2682
2683 case no_op:
2684 case begline:
2685 case endline:
2686 case begbuf:
2687 case endbuf:
2688 case wordbound:
2689 case notwordbound:
2690 case wordbeg:
2691 case wordend:
2692 case push_dummy_failure:
2693 continue;
2694
2695
2696 case jump_n:
2697 case pop_failure_jump:
2698 case maybe_pop_jump:
2699 case jump:
2700 case jump_past_alt:
2701 case dummy_failure_jump:
2702 EXTRACT_NUMBER_AND_INCR (j, p);
2703 p += j;
2704 if (j > 0)
2705 continue;
2706
2707 /* Jump backward implies we just went through the body of a
2708 loop and matched nothing. Opcode jumped to should be
2709 `on_failure_jump' or `succeed_n'. Just treat it like an
2710 ordinary jump. For a * loop, it has pushed its failure
2711 point already; if so, discard that as redundant. */
2712 if ((re_opcode_t) *p != on_failure_jump
2713 && (re_opcode_t) *p != succeed_n)
2714 continue;
2715
2716 p++;
2717 EXTRACT_NUMBER_AND_INCR (j, p);
2718 p += j;
2719
2720 /* If what's on the stack is where we are now, pop it. */
2721 if (!FAIL_STACK_EMPTY ()
2722 && fail_stack.stack[fail_stack.avail - 1] == p)
2723 fail_stack.avail--;
2724
2725 continue;
2726
2727
2728 case on_failure_jump:
2729 case on_failure_keep_string_jump:
2730 handle_on_failure_jump:
2731 EXTRACT_NUMBER_AND_INCR (j, p);
2732
2733 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
2734 end of the pattern. We don't want to push such a point,
2735 since when we restore it above, entering the switch will
2736 increment `p' past the end of the pattern. We don't need
2737 to push such a point since we obviously won't find any more
2738 fastmap entries beyond `pend'. Such a pattern can match
2739 the null string, though. */
2740 if (p + j < pend)
2741 {
2742 if (!PUSH_PATTERN_OP (p + j, fail_stack))
2743 return -2;
2744 }
2745 else
2746 bufp->can_be_null = 1;
2747
2748 if (succeed_n_p)
2749 {
2750 EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */
2751 succeed_n_p = false;
2752 }
2753
2754 continue;
2755
2756
2757 case succeed_n:
2758 /* Get to the number of times to succeed. */
2759 p += 2;
2760
2761 /* Increment p past the n for when k != 0. */
2762 EXTRACT_NUMBER_AND_INCR (k, p);
2763 if (k == 0)
2764 {
2765 p -= 4;
2766 succeed_n_p = true; /* Spaghetti code alert. */
2767 goto handle_on_failure_jump;
2768 }
2769 continue;
2770
2771
2772 case set_number_at:
2773 p += 4;
2774 continue;
2775
2776
2777 case start_memory:
2778 case stop_memory:
2779 p += 2;
2780 continue;
2781
2782
2783 default:
2784 abort (); /* We have listed all the cases. */
2785 } /* switch *p++ */
2786
2787 /* Getting here means we have found the possible starting
2788 characters for one path of the pattern -- and that the empty
2789 string does not match. We need not follow this path further.
2790 Instead, look at the next alternative (remembered on the
2791 stack), or quit if no more. The test at the top of the loop
2792 does these things. */
2793 path_can_be_null = false;
2794 p = pend;
2795 } /* while p */
2796
2797 /* Set `can_be_null' for the last path (also the first path, if the
2798 pattern is empty). */
2799 bufp->can_be_null |= path_can_be_null;
2800 return 0;
2801} /* re_compile_fastmap */
2802\f
2803/* Set REGS to hold NUM_REGS registers, storing them in STARTS and
2804 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
2805 this memory for recording register information. STARTS and ENDS
2806 must be allocated using the malloc library routine, and must each
2807 be at least NUM_REGS * sizeof (regoff_t) bytes long.
2808
2809 If NUM_REGS == 0, then subsequent matches should allocate their own
2810 register data.
2811
2812 Unless this function is called, the first search or match using
2813 PATTERN_BUFFER will allocate its own register data, without
2814 freeing the old data. */
2815
2816void
2817re_set_registers (bufp, regs, num_regs, starts, ends)
2818 struct re_pattern_buffer *bufp;
2819 struct re_registers *regs;
2820 unsigned num_regs;
2821 regoff_t *starts, *ends;
2822{
2823 if (num_regs)
2824 {
2825 bufp->regs_allocated = REGS_REALLOCATE;
2826 regs->num_regs = num_regs;
2827 regs->start = starts;
2828 regs->end = ends;
2829 }
2830 else
2831 {
2832 bufp->regs_allocated = REGS_UNALLOCATED;
2833 regs->num_regs = 0;
2834 regs->start = regs->end = (regoff_t) 0;
2835 }
2836}
2837\f
2838/* Searching routines. */
2839
2840/* Like re_search_2, below, but only one string is specified, and
2841 doesn't let you say where to stop matching. */
2842
2843int
2844re_search (bufp, string, size, startpos, range, regs)
2845 struct re_pattern_buffer *bufp;
2846 const char *string;
2847 int size, startpos, range;
2848 struct re_registers *regs;
2849{
2850 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
2851 regs, size);
2852}
2853
2854
2855/* Using the compiled pattern in BUFP->buffer, first tries to match the
2856 virtual concatenation of STRING1 and STRING2, starting first at index
2857 STARTPOS, then at STARTPOS + 1, and so on.
2858
2859 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
2860
2861 RANGE is how far to scan while trying to match. RANGE = 0 means try
2862 only at STARTPOS; in general, the last start tried is STARTPOS +
2863 RANGE.
2864
2865 In REGS, return the indices of the virtual concatenation of STRING1
2866 and STRING2 that matched the entire BUFP->buffer and its contained
2867 subexpressions.
2868
2869 Do not consider matching one past the index STOP in the virtual
2870 concatenation of STRING1 and STRING2.
2871
2872 We return either the position in the strings at which the match was
2873 found, -1 if no match, or -2 if error (such as failure
2874 stack overflow). */
2875
2876int
2877re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop)
2878 struct re_pattern_buffer *bufp;
2879 const char *string1, *string2;
2880 int size1, size2;
2881 int startpos;
2882 int range;
2883 struct re_registers *regs;
2884 int stop;
2885{
2886 int val;
2887 register char *fastmap = bufp->fastmap;
2888 register char *translate = bufp->translate;
2889 int total_size = size1 + size2;
2890 int endpos = startpos + range;
2891
2892 /* Check for out-of-range STARTPOS. */
2893 if (startpos < 0 || startpos > total_size)
2894 return -1;
2895
2896 /* Fix up RANGE if it might eventually take us outside
2897 the virtual concatenation of STRING1 and STRING2. */
2898 if (endpos < -1)
2899 range = -1 - startpos;
2900 else if (endpos > total_size)
2901 range = total_size - startpos;
2902
2903 /* If the search isn't to be a backwards one, don't waste time in a
2904 search for a pattern that must be anchored. */
2905 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
2906 {
2907 if (startpos > 0)
2908 return -1;
2909 else
2910 range = 1;
2911 }
2912
2913 /* Update the fastmap now if not correct already. */
2914 if (fastmap && !bufp->fastmap_accurate)
2915 if (re_compile_fastmap (bufp) == -2)
2916 return -2;
2917
2918 /* Loop through the string, looking for a place to start matching. */
2919 for (;;)
2920 {
2921 /* If a fastmap is supplied, skip quickly over characters that
2922 cannot be the start of a match. If the pattern can match the
2923 null string, however, we don't need to skip characters; we want
2924 the first null string. */
2925 if (fastmap && startpos < total_size && !bufp->can_be_null)
2926 {
2927 if (range > 0) /* Searching forwards. */
2928 {
2929 register const char *d;
2930 register int lim = 0;
2931 int irange = range;
2932
2933 if (startpos < size1 && startpos + range >= size1)
2934 lim = range - (size1 - startpos);
2935
2936 d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
2937
2938 /* Written out as an if-else to avoid testing `translate'
2939 inside the loop. */
2940 if (translate)
2941 while (range > lim
2942 && !fastmap[(unsigned char)
2943 translate[(unsigned char) *d++]])
2944 range--;
2945 else
2946 while (range > lim && !fastmap[(unsigned char) *d++])
2947 range--;
2948
2949 startpos += irange - range;
2950 }
2951 else /* Searching backwards. */
2952 {
2953 register char c = (size1 == 0 || startpos >= size1
2954 ? string2[startpos - size1]
2955 : string1[startpos]);
2956
2957 if (!fastmap[(unsigned char) TRANSLATE (c)])
2958 goto advance;
2959 }
2960 }
2961
2962 /* If can't match the null string, and that's all we have left, fail. */
2963 if (range >= 0 && startpos == total_size && fastmap
2964 && !bufp->can_be_null)
2965 return -1;
2966
2967 val = re_match_2 (bufp, string1, size1, string2, size2,
2968 startpos, regs, stop);
2969 if (val >= 0)
2970 return startpos;
2971
2972 if (val == -2)
2973 return -2;
2974
2975 advance:
2976 if (!range)
2977 break;
2978 else if (range > 0)
2979 {
2980 range--;
2981 startpos++;
2982 }
2983 else
2984 {
2985 range++;
2986 startpos--;
2987 }
2988 }
2989 return -1;
2990} /* re_search_2 */
2991\f
2992/* Declarations and macros for re_match_2. */
2993
2994static int bcmp_translate ();
2995static boolean alt_match_null_string_p (),
2996 common_op_match_null_string_p (),
2997 group_match_null_string_p ();
2998
2999/* Structure for per-register (a.k.a. per-group) information.
3000 This must not be longer than one word, because we push this value
3001 onto the failure stack. Other register information, such as the
3002 starting and ending positions (which are addresses), and the list of
3003 inner groups (which is a bits list) are maintained in separate
3004 variables.
3005
3006 We are making a (strictly speaking) nonportable assumption here: that
3007 the compiler will pack our bit fields into something that fits into
3008 the type of `word', i.e., is something that fits into one item on the
3009 failure stack. */
3010typedef union
3011{
3012 fail_stack_elt_t word;
3013 struct
3014 {
3015 /* This field is one if this group can match the empty string,
3016 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
3017#define MATCH_NULL_UNSET_VALUE 3
3018 unsigned match_null_string_p : 2;
3019 unsigned is_active : 1;
3020 unsigned matched_something : 1;
3021 unsigned ever_matched_something : 1;
3022 } bits;
3023} register_info_type;
3024
3025#define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
3026#define IS_ACTIVE(R) ((R).bits.is_active)
3027#define MATCHED_SOMETHING(R) ((R).bits.matched_something)
3028#define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
3029
3030
3031/* Call this when have matched a real character; it sets `matched' flags
3032 for the subexpressions which we are currently inside. Also records
3033 that those subexprs have matched. */
3034#define SET_REGS_MATCHED() \
3035 do \
3036 { \
3037 unsigned r; \
3038 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
3039 { \
3040 MATCHED_SOMETHING (reg_info[r]) \
3041 = EVER_MATCHED_SOMETHING (reg_info[r]) \
3042 = 1; \
3043 } \
3044 } \
3045 while (0)
3046
3047
3048/* This converts PTR, a pointer into one of the search strings `string1'
3049 and `string2' into an offset from the beginning of that string. */
3050#define POINTER_TO_OFFSET(ptr) \
3051 (FIRST_STRING_P (ptr) ? (ptr) - string1 : (ptr) - string2 + size1)
3052
3053/* Registers are set to a sentinel when they haven't yet matched. */
3054#define REG_UNSET_VALUE ((char *) -1)
3055#define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
3056
3057
3058/* Macros for dealing with the split strings in re_match_2. */
3059
3060#define MATCHING_IN_FIRST_STRING (dend == end_match_1)
3061
3062/* Call before fetching a character with *d. This switches over to
3063 string2 if necessary. */
3064#define PREFETCH() \
3065 while (d == dend) \
3066 { \
3067 /* End of string2 => fail. */ \
3068 if (dend == end_match_2) \
3069 goto fail; \
3070 /* End of string1 => advance to string2. */ \
3071 d = string2; \
3072 dend = end_match_2; \
3073 }
3074
3075
3076/* Test if at very beginning or at very end of the virtual concatenation
3077 of `string1' and `string2'. If only one string, it's `string2'. */
3078#define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
3079#define AT_STRINGS_END(d) ((d) == end2)
3080
3081
3082/* Test if D points to a character which is word-constituent. We have
3083 two special cases to check for: if past the end of string1, look at
3084 the first character in string2; and if before the beginning of
3085 string2, look at the last character in string1. */
3086#define WORDCHAR_P(d) \
3087 (SYNTAX ((d) == end1 ? *string2 \
3088 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
3089 == Sword)
3090
3091/* Test if the character before D and the one at D differ with respect
3092 to being word-constituent. */
3093#define AT_WORD_BOUNDARY(d) \
3094 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
3095 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
3096
3097
3098/* Free everything we malloc. */
3099#ifdef REGEX_MALLOC
3100#define FREE_VAR(var) if (var) free (var); var = NULL
3101#define FREE_VARIABLES() \
3102 do { \
3103 FREE_VAR (fail_stack.stack); \
3104 FREE_VAR (regstart); \
3105 FREE_VAR (regend); \
3106 FREE_VAR (old_regstart); \
3107 FREE_VAR (old_regend); \
3108 FREE_VAR (best_regstart); \
3109 FREE_VAR (best_regend); \
3110 FREE_VAR (reg_info); \
3111 FREE_VAR (reg_dummy); \
3112 FREE_VAR (reg_info_dummy); \
3113 } while (0)
3114#else /* not REGEX_MALLOC */
3115/* Some MIPS systems (at least) want this to free alloca'd storage. */
3116#define FREE_VARIABLES() alloca (0)
3117#endif /* not REGEX_MALLOC */
3118
3119
3120/* These values must meet several constraints. They must not be valid
3121 register values; since we have a limit of 255 registers (because
3122 we use only one byte in the pattern for the register number), we can
3123 use numbers larger than 255. They must differ by 1, because of
3124 NUM_FAILURE_ITEMS above. And the value for the lowest register must
3125 be larger than the value for the highest register, so we do not try
3126 to actually save any registers when none are active. */
3127#define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
3128#define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
3129\f
3130/* Matching routines. */
3131
3132#ifndef emacs /* Emacs never uses this. */
3133/* re_match is like re_match_2 except it takes only a single string. */
3134
3135int
3136re_match (bufp, string, size, pos, regs)
3137 struct re_pattern_buffer *bufp;
3138 const char *string;
3139 int size, pos;
3140 struct re_registers *regs;
3141 {
3142 return re_match_2 (bufp, NULL, 0, string, size, pos, regs, size);
3143}
3144#endif /* not emacs */
3145
3146
3147/* re_match_2 matches the compiled pattern in BUFP against the
3148 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
3149 and SIZE2, respectively). We start matching at POS, and stop
3150 matching at STOP.
3151
3152 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
3153 store offsets for the substring each group matched in REGS. See the
3154 documentation for exactly how many groups we fill.
3155
3156 We return -1 if no match, -2 if an internal error (such as the
3157 failure stack overflowing). Otherwise, we return the length of the
3158 matched substring. */
3159
3160int
3161re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
3162 struct re_pattern_buffer *bufp;
3163 const char *string1, *string2;
3164 int size1, size2;
3165 int pos;
3166 struct re_registers *regs;
3167 int stop;
3168{
3169 /* General temporaries. */
3170 int mcnt;
3171 unsigned char *p1;
3172
3173 /* Just past the end of the corresponding string. */
3174 const char *end1, *end2;
3175
3176 /* Pointers into string1 and string2, just past the last characters in
3177 each to consider matching. */
3178 const char *end_match_1, *end_match_2;
3179
3180 /* Where we are in the data, and the end of the current string. */
3181 const char *d, *dend;
3182
3183 /* Where we are in the pattern, and the end of the pattern. */
3184 unsigned char *p = bufp->buffer;
3185 register unsigned char *pend = p + bufp->used;
3186
3187 /* We use this to map every character in the string. */
3188 char *translate = bufp->translate;
3189
3190 /* Failure point stack. Each place that can handle a failure further
3191 down the line pushes a failure point on this stack. It consists of
3192 restart, regend, and reg_info for all registers corresponding to
3193 the subexpressions we're currently inside, plus the number of such
3194 registers, and, finally, two char *'s. The first char * is where
3195 to resume scanning the pattern; the second one is where to resume
3196 scanning the strings. If the latter is zero, the failure point is
3197 a ``dummy''; if a failure happens and the failure point is a dummy,
3198 it gets discarded and the next next one is tried. */
3199 fail_stack_type fail_stack;
3200#ifdef DEBUG
3201 static unsigned failure_id = 0;
3202 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
3203#endif
3204
3205 /* We fill all the registers internally, independent of what we
3206 return, for use in backreferences. The number here includes
3207 an element for register zero. */
3208 unsigned num_regs = bufp->re_nsub + 1;
3209
3210 /* The currently active registers. */
3211 unsigned lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3212 unsigned highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3213
3214 /* Information on the contents of registers. These are pointers into
3215 the input strings; they record just what was matched (on this
3216 attempt) by a subexpression part of the pattern, that is, the
3217 regnum-th regstart pointer points to where in the pattern we began
3218 matching and the regnum-th regend points to right after where we
3219 stopped matching the regnum-th subexpression. (The zeroth register
3220 keeps track of what the whole pattern matches.) */
3221 const char **regstart, **regend;
3222
3223 /* If a group that's operated upon by a repetition operator fails to
3224 match anything, then the register for its start will need to be
3225 restored because it will have been set to wherever in the string we
3226 are when we last see its open-group operator. Similarly for a
3227 register's end. */
3228 const char **old_regstart, **old_regend;
3229
3230 /* The is_active field of reg_info helps us keep track of which (possibly
3231 nested) subexpressions we are currently in. The matched_something
3232 field of reg_info[reg_num] helps us tell whether or not we have
3233 matched any of the pattern so far this time through the reg_num-th
3234 subexpression. These two fields get reset each time through any
3235 loop their register is in. */
3236 register_info_type *reg_info;
3237
3238 /* The following record the register info as found in the above
3239 variables when we find a match better than any we've seen before.
3240 This happens as we backtrack through the failure points, which in
3241 turn happens only if we have not yet matched the entire string. */
3242 unsigned best_regs_set = false;
3243 const char **best_regstart, **best_regend;
3244
3245 /* Logically, this is `best_regend[0]'. But we don't want to have to
3246 allocate space for that if we're not allocating space for anything
3247 else (see below). Also, we never need info about register 0 for
3248 any of the other register vectors, and it seems rather a kludge to
3249 treat `best_regend' differently than the rest. So we keep track of
3250 the end of the best match so far in a separate variable. We
3251 initialize this to NULL so that when we backtrack the first time
3252 and need to test it, it's not garbage. */
3253 const char *match_end = NULL;
3254
3255 /* Used when we pop values we don't care about. */
3256 const char **reg_dummy;
3257 register_info_type *reg_info_dummy;
3258
3259#ifdef DEBUG
3260 /* Counts the total number of registers pushed. */
3261 unsigned num_regs_pushed = 0;
3262#endif
3263
3264 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
3265
3266 INIT_FAIL_STACK ();
3267
3268 /* Do not bother to initialize all the register variables if there are
3269 no groups in the pattern, as it takes a fair amount of time. If
3270 there are groups, we include space for register 0 (the whole
3271 pattern), even though we never use it, since it simplifies the
3272 array indexing. We should fix this. */
3273 if (bufp->re_nsub)
3274 {
3275 regstart = REGEX_TALLOC (num_regs, const char *);
3276 regend = REGEX_TALLOC (num_regs, const char *);
3277 old_regstart = REGEX_TALLOC (num_regs, const char *);
3278 old_regend = REGEX_TALLOC (num_regs, const char *);
3279 best_regstart = REGEX_TALLOC (num_regs, const char *);
3280 best_regend = REGEX_TALLOC (num_regs, const char *);
3281 reg_info = REGEX_TALLOC (num_regs, register_info_type);
3282 reg_dummy = REGEX_TALLOC (num_regs, const char *);
3283 reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type);
3284
3285 if (!(regstart && regend && old_regstart && old_regend && reg_info
3286 && best_regstart && best_regend && reg_dummy && reg_info_dummy))
3287 {
3288 FREE_VARIABLES ();
3289 return -2;
3290 }
3291 }
3292#ifdef REGEX_MALLOC
3293 else
3294 {
3295 /* We must initialize all our variables to NULL, so that
3296 `FREE_VARIABLES' doesn't try to free them. */
3297 regstart = regend = old_regstart = old_regend = best_regstart
3298 = best_regend = reg_dummy = NULL;
3299 reg_info = reg_info_dummy = (register_info_type *) NULL;
3300 }
3301#endif /* REGEX_MALLOC */
3302
3303 /* The starting position is bogus. */
3304 if (pos < 0 || pos > size1 + size2)
3305 {
3306 FREE_VARIABLES ();
3307 return -1;
3308 }
3309
3310 /* Initialize subexpression text positions to -1 to mark ones that no
3311 start_memory/stop_memory has been seen for. Also initialize the
3312 register information struct. */
3313 for (mcnt = 1; mcnt < num_regs; mcnt++)
3314 {
3315 regstart[mcnt] = regend[mcnt]
3316 = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
3317
3318 REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
3319 IS_ACTIVE (reg_info[mcnt]) = 0;
3320 MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3321 EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3322 }
3323
3324 /* We move `string1' into `string2' if the latter's empty -- but not if
3325 `string1' is null. */
3326 if (size2 == 0 && string1 != NULL)
3327 {
3328 string2 = string1;
3329 size2 = size1;
3330 string1 = 0;
3331 size1 = 0;
3332 }
3333 end1 = string1 + size1;
3334 end2 = string2 + size2;
3335
3336 /* Compute where to stop matching, within the two strings. */
3337 if (stop <= size1)
3338 {
3339 end_match_1 = string1 + stop;
3340 end_match_2 = string2;
3341 }
3342 else
3343 {
3344 end_match_1 = end1;
3345 end_match_2 = string2 + stop - size1;
3346 }
3347
3348 /* `p' scans through the pattern as `d' scans through the data.
3349 `dend' is the end of the input string that `d' points within. `d'
3350 is advanced into the following input string whenever necessary, but
3351 this happens before fetching; therefore, at the beginning of the
3352 loop, `d' can be pointing at the end of a string, but it cannot
3353 equal `string2'. */
3354 if (size1 > 0 && pos <= size1)
3355 {
3356 d = string1 + pos;
3357 dend = end_match_1;
3358 }
3359 else
3360 {
3361 d = string2 + pos - size1;
3362 dend = end_match_2;
3363 }
3364
3365 DEBUG_PRINT1 ("The compiled pattern is: ");
3366 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
3367 DEBUG_PRINT1 ("The string to match is: `");
3368 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
3369 DEBUG_PRINT1 ("'\n");
3370
3371 /* This loops over pattern commands. It exits by returning from the
3372 function if the match is complete, or it drops through if the match
3373 fails at this starting point in the input data. */
3374 for (;;)
3375 {
3376 DEBUG_PRINT2 ("\n0x%x: ", p);
3377
3378 if (p == pend)
3379 { /* End of pattern means we might have succeeded. */
3380 DEBUG_PRINT1 ("end of pattern ... ");
3381
3382 /* If we haven't matched the entire string, and we want the
3383 longest match, try backtracking. */
3384 if (d != end_match_2)
3385 {
3386 DEBUG_PRINT1 ("backtracking.\n");
3387
3388 if (!FAIL_STACK_EMPTY ())
3389 { /* More failure points to try. */
3390 boolean same_str_p = (FIRST_STRING_P (match_end)
3391 == MATCHING_IN_FIRST_STRING);
3392
3393 /* If exceeds best match so far, save it. */
3394 if (!best_regs_set
3395 || (same_str_p && d > match_end)
3396 || (!same_str_p && !MATCHING_IN_FIRST_STRING))
3397 {
3398 best_regs_set = true;
3399 match_end = d;
3400
3401 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
3402
3403 for (mcnt = 1; mcnt < num_regs; mcnt++)
3404 {
3405 best_regstart[mcnt] = regstart[mcnt];
3406 best_regend[mcnt] = regend[mcnt];
3407 }
3408 }
3409 goto fail;
3410 }
3411
3412 /* If no failure points, don't restore garbage. */
3413 else if (best_regs_set)
3414 {
3415 restore_best_regs:
3416 /* Restore best match. It may happen that `dend ==
3417 end_match_1' while the restored d is in string2.
3418 For example, the pattern `x.*y.*z' against the
3419 strings `x-' and `y-z-', if the two strings are
3420 not consecutive in memory. */
3421 DEBUG_PRINT1 ("Restoring best registers.\n");
3422
3423 d = match_end;
3424 dend = ((d >= string1 && d <= end1)
3425 ? end_match_1 : end_match_2);
3426
3427 for (mcnt = 1; mcnt < num_regs; mcnt++)
3428 {
3429 regstart[mcnt] = best_regstart[mcnt];
3430 regend[mcnt] = best_regend[mcnt];
3431 }
3432 }
3433 } /* d != end_match_2 */
3434
3435 DEBUG_PRINT1 ("Accepting match.\n");
3436
3437 /* If caller wants register contents data back, do it. */
3438 if (regs && !bufp->no_sub)
3439 {
3440 /* Have the register data arrays been allocated? */
3441 if (bufp->regs_allocated == REGS_UNALLOCATED)
3442 { /* No. So allocate them with malloc. We need one
3443 extra element beyond `num_regs' for the `-1' marker
3444 GNU code uses. */
3445 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
3446 regs->start = TALLOC (regs->num_regs, regoff_t);
3447 regs->end = TALLOC (regs->num_regs, regoff_t);
3448 if (regs->start == NULL || regs->end == NULL)
3449 return -2;
3450 bufp->regs_allocated = REGS_REALLOCATE;
3451 }
3452 else if (bufp->regs_allocated == REGS_REALLOCATE)
3453 { /* Yes. If we need more elements than were already
3454 allocated, reallocate them. If we need fewer, just
3455 leave it alone. */
3456 if (regs->num_regs < num_regs + 1)
3457 {
3458 regs->num_regs = num_regs + 1;
3459 RETALLOC (regs->start, regs->num_regs, regoff_t);
3460 RETALLOC (regs->end, regs->num_regs, regoff_t);
3461 if (regs->start == NULL || regs->end == NULL)
3462 return -2;
3463 }
3464 }
3465 else
3466 assert (bufp->regs_allocated == REGS_FIXED);
3467
3468 /* Convert the pointer data in `regstart' and `regend' to
3469 indices. Register zero has to be set differently,
3470 since we haven't kept track of any info for it. */
3471 if (regs->num_regs > 0)
3472 {
3473 regs->start[0] = pos;
3474 regs->end[0] = (MATCHING_IN_FIRST_STRING ? d - string1
3475 : d - string2 + size1);
3476 }
3477
3478 /* Go through the first `min (num_regs, regs->num_regs)'
3479 registers, since that is all we initialized. */
3480 for (mcnt = 1; mcnt < MIN (num_regs, regs->num_regs); mcnt++)
3481 {
3482 if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
3483 regs->start[mcnt] = regs->end[mcnt] = -1;
3484 else
3485 {
3486 regs->start[mcnt] = POINTER_TO_OFFSET (regstart[mcnt]);
3487 regs->end[mcnt] = POINTER_TO_OFFSET (regend[mcnt]);
3488 }
3489 }
3490
3491 /* If the regs structure we return has more elements than
3492 were in the pattern, set the extra elements to -1. If
3493 we (re)allocated the registers, this is the case,
3494 because we always allocate enough to have at least one
3495 -1 at the end. */
3496 for (mcnt = num_regs; mcnt < regs->num_regs; mcnt++)
3497 regs->start[mcnt] = regs->end[mcnt] = -1;
3498 } /* regs && !bufp->no_sub */
3499
3500 FREE_VARIABLES ();
3501 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
3502 nfailure_points_pushed, nfailure_points_popped,
3503 nfailure_points_pushed - nfailure_points_popped);
3504 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
3505
3506 mcnt = d - pos - (MATCHING_IN_FIRST_STRING
3507 ? string1
3508 : string2 - size1);
3509
3510 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
3511
3512 return mcnt;
3513 }
3514
3515 /* Otherwise match next pattern command. */
3516#ifdef SWITCH_ENUM_BUG
3517 switch ((int) ((re_opcode_t) *p++))
3518#else
3519 switch ((re_opcode_t) *p++)
3520#endif
3521 {
3522 /* Ignore these. Used to ignore the n of succeed_n's which
3523 currently have n == 0. */
3524 case no_op:
3525 DEBUG_PRINT1 ("EXECUTING no_op.\n");
3526 break;
3527
3528
3529 /* Match the next n pattern characters exactly. The following
3530 byte in the pattern defines n, and the n bytes after that
3531 are the characters to match. */
3532 case exactn:
3533 mcnt = *p++;
3534 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
3535
3536 /* This is written out as an if-else so we don't waste time
3537 testing `translate' inside the loop. */
3538 if (translate)
3539 {
3540 do
3541 {
3542 PREFETCH ();
3543 if (translate[(unsigned char) *d++] != (char) *p++)
3544 goto fail;
3545 }
3546 while (--mcnt);
3547 }
3548 else
3549 {
3550 do
3551 {
3552 PREFETCH ();
3553 if (*d++ != (char) *p++) goto fail;
3554 }
3555 while (--mcnt);
3556 }
3557 SET_REGS_MATCHED ();
3558 break;
3559
3560
3561 /* Match any character except possibly a newline or a null. */
3562 case anychar:
3563 DEBUG_PRINT1 ("EXECUTING anychar.\n");
3564
3565 PREFETCH ();
3566
3567 if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
3568 || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
3569 goto fail;
3570
3571 SET_REGS_MATCHED ();
3572 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
3573 d++;
3574 break;
3575
3576
3577 case charset:
3578 case charset_not:
3579 {
3580 register unsigned char c;
3581 boolean not = (re_opcode_t) *(p - 1) == charset_not;
3582
3583 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
3584
3585 PREFETCH ();
3586 c = TRANSLATE (*d); /* The character to match. */
3587
3588 /* Cast to `unsigned' instead of `unsigned char' in case the
3589 bit list is a full 32 bytes long. */
3590 if (c < (unsigned) (*p * BYTEWIDTH)
3591 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
3592 not = !not;
3593
3594 p += 1 + *p;
3595
3596 if (!not) goto fail;
3597
3598 SET_REGS_MATCHED ();
3599 d++;
3600 break;
3601 }
3602
3603
3604 /* The beginning of a group is represented by start_memory.
3605 The arguments are the register number in the next byte, and the
3606 number of groups inner to this one in the next. The text
3607 matched within the group is recorded (in the internal
3608 registers data structure) under the register number. */
3609 case start_memory:
3610 DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]);
3611
3612 /* Find out if this group can match the empty string. */
3613 p1 = p; /* To send to group_match_null_string_p. */
3614
3615 if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
3616 REG_MATCH_NULL_STRING_P (reg_info[*p])
3617 = group_match_null_string_p (&p1, pend, reg_info);
3618
3619 /* Save the position in the string where we were the last time
3620 we were at this open-group operator in case the group is
3621 operated upon by a repetition operator, e.g., with `(a*)*b'
3622 against `ab'; then we want to ignore where we are now in
3623 the string in case this attempt to match fails. */
3624 old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
3625 ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
3626 : regstart[*p];
3627 DEBUG_PRINT2 (" old_regstart: %d\n",
3628 POINTER_TO_OFFSET (old_regstart[*p]));
3629
3630 regstart[*p] = d;
3631 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
3632
3633 IS_ACTIVE (reg_info[*p]) = 1;
3634 MATCHED_SOMETHING (reg_info[*p]) = 0;
3635
3636 /* This is the new highest active register. */
3637 highest_active_reg = *p;
3638
3639 /* If nothing was active before, this is the new lowest active
3640 register. */
3641 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
3642 lowest_active_reg = *p;
3643
3644 /* Move past the register number and inner group count. */
3645 p += 2;
3646 break;
3647
3648
3649 /* The stop_memory opcode represents the end of a group. Its
3650 arguments are the same as start_memory's: the register
3651 number, and the number of inner groups. */
3652 case stop_memory:
3653 DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]);
3654
3655 /* We need to save the string position the last time we were at
3656 this close-group operator in case the group is operated
3657 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
3658 against `aba'; then we want to ignore where we are now in
3659 the string in case this attempt to match fails. */
3660 old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
3661 ? REG_UNSET (regend[*p]) ? d : regend[*p]
3662 : regend[*p];
3663 DEBUG_PRINT2 (" old_regend: %d\n",
3664 POINTER_TO_OFFSET (old_regend[*p]));
3665
3666 regend[*p] = d;
3667 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
3668
3669 /* This register isn't active anymore. */
3670 IS_ACTIVE (reg_info[*p]) = 0;
3671
3672 /* If this was the only register active, nothing is active
3673 anymore. */
3674 if (lowest_active_reg == highest_active_reg)
3675 {
3676 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3677 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3678 }
3679 else
3680 { /* We must scan for the new highest active register, since
3681 it isn't necessarily one less than now: consider
3682 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
3683 new highest active register is 1. */
3684 unsigned char r = *p - 1;
3685 while (r > 0 && !IS_ACTIVE (reg_info[r]))
3686 r--;
3687
3688 /* If we end up at register zero, that means that we saved
3689 the registers as the result of an `on_failure_jump', not
3690 a `start_memory', and we jumped to past the innermost
3691 `stop_memory'. For example, in ((.)*) we save
3692 registers 1 and 2 as a result of the *, but when we pop
3693 back to the second ), we are at the stop_memory 1.
3694 Thus, nothing is active. */
3695 if (r == 0)
3696 {
3697 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3698 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3699 }
3700 else
3701 highest_active_reg = r;
3702 }
3703
3704 /* If just failed to match something this time around with a
3705 group that's operated on by a repetition operator, try to
3706 force exit from the ``loop'', and restore the register
3707 information for this group that we had before trying this
3708 last match. */
3709 if ((!MATCHED_SOMETHING (reg_info[*p])
3710 || (re_opcode_t) p[-3] == start_memory)
3711 && (p + 2) < pend)
3712 {
3713 boolean is_a_jump_n = false;
3714
3715 p1 = p + 2;
3716 mcnt = 0;
3717 switch ((re_opcode_t) *p1++)
3718 {
3719 case jump_n:
3720 is_a_jump_n = true;
3721 case pop_failure_jump:
3722 case maybe_pop_jump:
3723 case jump:
3724 case dummy_failure_jump:
3725 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
3726 if (is_a_jump_n)
3727 p1 += 2;
3728 break;
3729
3730 default:
3731 /* do nothing */ ;
3732 }
3733 p1 += mcnt;
3734
3735 /* If the next operation is a jump backwards in the pattern
3736 to an on_failure_jump right before the start_memory
3737 corresponding to this stop_memory, exit from the loop
3738 by forcing a failure after pushing on the stack the
3739 on_failure_jump's jump in the pattern, and d. */
3740 if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
3741 && (re_opcode_t) p1[3] == start_memory && p1[4] == *p)
3742 {
3743 /* If this group ever matched anything, then restore
3744 what its registers were before trying this last
3745 failed match, e.g., with `(a*)*b' against `ab' for
3746 regstart[1], and, e.g., with `((a*)*(b*)*)*'
3747 against `aba' for regend[3].
3748
3749 Also restore the registers for inner groups for,
3750 e.g., `((a*)(b*))*' against `aba' (register 3 would
3751 otherwise get trashed). */
3752
3753 if (EVER_MATCHED_SOMETHING (reg_info[*p]))
3754 {
3755 unsigned r;
3756
3757 EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
3758
3759 /* Restore this and inner groups' (if any) registers. */
3760 for (r = *p; r < *p + *(p + 1); r++)
3761 {
3762 regstart[r] = old_regstart[r];
3763
3764 /* xx why this test? */
3765 if ((int) old_regend[r] >= (int) regstart[r])
3766 regend[r] = old_regend[r];
3767 }
3768 }
3769 p1++;
3770 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
3771 PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
3772
3773 goto fail;
3774 }
3775 }
3776
3777 /* Move past the register number and the inner group count. */
3778 p += 2;
3779 break;
3780
3781
3782 /* \<digit> has been turned into a `duplicate' command which is
3783 followed by the numeric value of <digit> as the register number. */
3784 case duplicate:
3785 {
3786 register const char *d2, *dend2;
3787 int regno = *p++; /* Get which register to match against. */
3788 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
3789
3790 /* Can't back reference a group which we've never matched. */
3791 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
3792 goto fail;
3793
3794 /* Where in input to try to start matching. */
3795 d2 = regstart[regno];
3796
3797 /* Where to stop matching; if both the place to start and
3798 the place to stop matching are in the same string, then
3799 set to the place to stop, otherwise, for now have to use
3800 the end of the first string. */
3801
3802 dend2 = ((FIRST_STRING_P (regstart[regno])
3803 == FIRST_STRING_P (regend[regno]))
3804 ? regend[regno] : end_match_1);
3805 for (;;)
3806 {
3807 /* If necessary, advance to next segment in register
3808 contents. */
3809 while (d2 == dend2)
3810 {
3811 if (dend2 == end_match_2) break;
3812 if (dend2 == regend[regno]) break;
3813
3814 /* End of string1 => advance to string2. */
3815 d2 = string2;
3816 dend2 = regend[regno];
3817 }
3818 /* At end of register contents => success */
3819 if (d2 == dend2) break;
3820
3821 /* If necessary, advance to next segment in data. */
3822 PREFETCH ();
3823
3824 /* How many characters left in this segment to match. */
3825 mcnt = dend - d;
3826
3827 /* Want how many consecutive characters we can match in
3828 one shot, so, if necessary, adjust the count. */
3829 if (mcnt > dend2 - d2)
3830 mcnt = dend2 - d2;
3831
3832 /* Compare that many; failure if mismatch, else move
3833 past them. */
3834 if (translate
3835 ? bcmp_translate (d, d2, mcnt, translate)
3836 : bcmp (d, d2, mcnt))
3837 goto fail;
3838 d += mcnt, d2 += mcnt;
3839 }
3840 }
3841 break;
3842
3843
3844 /* begline matches the empty string at the beginning of the string
3845 (unless `not_bol' is set in `bufp'), and, if
3846 `newline_anchor' is set, after newlines. */
3847 case begline:
3848 DEBUG_PRINT1 ("EXECUTING begline.\n");
3849
3850 if (AT_STRINGS_BEG (d))
3851 {
3852 if (!bufp->not_bol) break;
3853 }
3854 else if (d[-1] == '\n' && bufp->newline_anchor)
3855 {
3856 break;
3857 }
3858 /* In all other cases, we fail. */
3859 goto fail;
3860
3861
3862 /* endline is the dual of begline. */
3863 case endline:
3864 DEBUG_PRINT1 ("EXECUTING endline.\n");
3865
3866 if (AT_STRINGS_END (d))
3867 {
3868 if (!bufp->not_eol) break;
3869 }
3870
3871 /* We have to ``prefetch'' the next character. */
3872 else if ((d == end1 ? *string2 : *d) == '\n'
3873 && bufp->newline_anchor)
3874 {
3875 break;
3876 }
3877 goto fail;
3878
3879
3880 /* Match at the very beginning of the data. */
3881 case begbuf:
3882 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
3883 if (AT_STRINGS_BEG (d))
3884 break;
3885 goto fail;
3886
3887
3888 /* Match at the very end of the data. */
3889 case endbuf:
3890 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
3891 if (AT_STRINGS_END (d))
3892 break;
3893 goto fail;
3894
3895
3896 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
3897 pushes NULL as the value for the string on the stack. Then
3898 `pop_failure_point' will keep the current value for the
3899 string, instead of restoring it. To see why, consider
3900 matching `foo\nbar' against `.*\n'. The .* matches the foo;
3901 then the . fails against the \n. But the next thing we want
3902 to do is match the \n against the \n; if we restored the
3903 string value, we would be back at the foo.
3904
3905 Because this is used only in specific cases, we don't need to
3906 check all the things that `on_failure_jump' does, to make
3907 sure the right things get saved on the stack. Hence we don't
3908 share its code. The only reason to push anything on the
3909 stack at all is that otherwise we would have to change
3910 `anychar's code to do something besides goto fail in this
3911 case; that seems worse than this. */
3912 case on_failure_keep_string_jump:
3913 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
3914
3915 EXTRACT_NUMBER_AND_INCR (mcnt, p);
3916 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
3917
3918 PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
3919 break;
3920
3921
3922 /* Uses of on_failure_jump:
3923
3924 Each alternative starts with an on_failure_jump that points
3925 to the beginning of the next alternative. Each alternative
3926 except the last ends with a jump that in effect jumps past
3927 the rest of the alternatives. (They really jump to the
3928 ending jump of the following alternative, because tensioning
3929 these jumps is a hassle.)
3930
3931 Repeats start with an on_failure_jump that points past both
3932 the repetition text and either the following jump or
3933 pop_failure_jump back to this on_failure_jump. */
3934 case on_failure_jump:
3935 on_failure:
3936 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
3937
3938 EXTRACT_NUMBER_AND_INCR (mcnt, p);
3939 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
3940
3941 /* If this on_failure_jump comes right before a group (i.e.,
3942 the original * applied to a group), save the information
3943 for that group and all inner ones, so that if we fail back
3944 to this point, the group's information will be correct.
3945 For example, in \(a*\)*\1, we need the preceding group,
3946 and in \(\(a*\)b*\)\2, we need the inner group. */
3947
3948 /* We can't use `p' to check ahead because we push
3949 a failure point to `p + mcnt' after we do this. */
3950 p1 = p;
3951
3952 /* We need to skip no_op's before we look for the
3953 start_memory in case this on_failure_jump is happening as
3954 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
3955 against aba. */
3956 while (p1 < pend && (re_opcode_t) *p1 == no_op)
3957 p1++;
3958
3959 if (p1 < pend && (re_opcode_t) *p1 == start_memory)
3960 {
3961 /* We have a new highest active register now. This will
3962 get reset at the start_memory we are about to get to,
3963 but we will have saved all the registers relevant to
3964 this repetition op, as described above. */
3965 highest_active_reg = *(p1 + 1) + *(p1 + 2);
3966 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
3967 lowest_active_reg = *(p1 + 1);
3968 }
3969
3970 DEBUG_PRINT1 (":\n");
3971 PUSH_FAILURE_POINT (p + mcnt, d, -2);
3972 break;
3973
3974
3975 /* A smart repeat ends with `maybe_pop_jump'.
3976 We change it to either `pop_failure_jump' or `jump'. */
3977 case maybe_pop_jump:
3978 EXTRACT_NUMBER_AND_INCR (mcnt, p);
3979 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
3980 {
3981 register unsigned char *p2 = p;
3982
3983 /* Compare the beginning of the repeat with what in the
3984 pattern follows its end. If we can establish that there
3985 is nothing that they would both match, i.e., that we
3986 would have to backtrack because of (as in, e.g., `a*a')
3987 then we can change to pop_failure_jump, because we'll
3988 never have to backtrack.
3989
3990 This is not true in the case of alternatives: in
3991 `(a|ab)*' we do need to backtrack to the `ab' alternative
3992 (e.g., if the string was `ab'). But instead of trying to
3993 detect that here, the alternative has put on a dummy
3994 failure point which is what we will end up popping. */
3995
3996 /* Skip over open/close-group commands. */
3997 while (p2 + 2 < pend
3998 && ((re_opcode_t) *p2 == stop_memory
3999 || (re_opcode_t) *p2 == start_memory))
4000 p2 += 3; /* Skip over args, too. */
4001
4002 /* If we're at the end of the pattern, we can change. */
4003 if (p2 == pend)
4004 {
4005 /* Consider what happens when matching ":\(.*\)"
4006 against ":/". I don't really understand this code
4007 yet. */
4008 p[-3] = (unsigned char) pop_failure_jump;
4009 DEBUG_PRINT1
4010 (" End of pattern: change to `pop_failure_jump'.\n");
4011 }
4012
4013 else if ((re_opcode_t) *p2 == exactn
4014 || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
4015 {
4016 register unsigned char c
4017 = *p2 == (unsigned char) endline ? '\n' : p2[2];
4018 p1 = p + mcnt;
4019
4020 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
4021 to the `maybe_finalize_jump' of this case. Examine what
4022 follows. */
4023 if ((re_opcode_t) p1[3] == exactn && p1[5] != c)
4024 {
4025 p[-3] = (unsigned char) pop_failure_jump;
4026 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4027 c, p1[5]);
4028 }
4029
4030 else if ((re_opcode_t) p1[3] == charset
4031 || (re_opcode_t) p1[3] == charset_not)
4032 {
4033 int not = (re_opcode_t) p1[3] == charset_not;
4034
4035 if (c < (unsigned char) (p1[4] * BYTEWIDTH)
4036 && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4037 not = !not;
4038
4039 /* `not' is equal to 1 if c would match, which means
4040 that we can't change to pop_failure_jump. */
4041 if (!not)
4042 {
4043 p[-3] = (unsigned char) pop_failure_jump;
4044 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4045 }
4046 }
4047 }
4048 }
4049 p -= 2; /* Point at relative address again. */
4050 if ((re_opcode_t) p[-1] != pop_failure_jump)
4051 {
4052 p[-1] = (unsigned char) jump;
4053 DEBUG_PRINT1 (" Match => jump.\n");
4054 goto unconditional_jump;
4055 }
4056 /* Note fall through. */
4057
4058
4059 /* The end of a simple repeat has a pop_failure_jump back to
4060 its matching on_failure_jump, where the latter will push a
4061 failure point. The pop_failure_jump takes off failure
4062 points put on by this pop_failure_jump's matching
4063 on_failure_jump; we got through the pattern to here from the
4064 matching on_failure_jump, so didn't fail. */
4065 case pop_failure_jump:
4066 {
4067 /* We need to pass separate storage for the lowest and
4068 highest registers, even though we don't care about the
4069 actual values. Otherwise, we will restore only one
4070 register from the stack, since lowest will == highest in
4071 `pop_failure_point'. */
4072 unsigned dummy_low_reg, dummy_high_reg;
4073 unsigned char *pdummy;
4074 const char *sdummy;
4075
4076 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
4077 POP_FAILURE_POINT (sdummy, pdummy,
4078 dummy_low_reg, dummy_high_reg,
4079 reg_dummy, reg_dummy, reg_info_dummy);
4080 }
4081 /* Note fall through. */
4082
4083
4084 /* Unconditionally jump (without popping any failure points). */
4085 case jump:
4086 unconditional_jump:
4087 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
4088 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
4089 p += mcnt; /* Do the jump. */
4090 DEBUG_PRINT2 ("(to 0x%x).\n", p);
4091 break;
4092
4093
4094 /* We need this opcode so we can detect where alternatives end
4095 in `group_match_null_string_p' et al. */
4096 case jump_past_alt:
4097 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
4098 goto unconditional_jump;
4099
4100
4101 /* Normally, the on_failure_jump pushes a failure point, which
4102 then gets popped at pop_failure_jump. We will end up at
4103 pop_failure_jump, also, and with a pattern of, say, `a+', we
4104 are skipping over the on_failure_jump, so we have to push
4105 something meaningless for pop_failure_jump to pop. */
4106 case dummy_failure_jump:
4107 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
4108 /* It doesn't matter what we push for the string here. What
4109 the code at `fail' tests is the value for the pattern. */
4110 PUSH_FAILURE_POINT (0, 0, -2);
4111 goto unconditional_jump;
4112
4113
4114 /* At the end of an alternative, we need to push a dummy failure
4115 point in case we are followed by a `pop_failure_jump', because
4116 we don't want the failure point for the alternative to be
4117 popped. For example, matching `(a|ab)*' against `aab'
4118 requires that we match the `ab' alternative. */
4119 case push_dummy_failure:
4120 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
4121 /* See comments just above at `dummy_failure_jump' about the
4122 two zeroes. */
4123 PUSH_FAILURE_POINT (0, 0, -2);
4124 break;
4125
4126 /* Have to succeed matching what follows at least n times.
4127 After that, handle like `on_failure_jump'. */
4128 case succeed_n:
4129 EXTRACT_NUMBER (mcnt, p + 2);
4130 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
4131
4132 assert (mcnt >= 0);
4133 /* Originally, this is how many times we HAVE to succeed. */
4134 if (mcnt > 0)
4135 {
4136 mcnt--;
4137 p += 2;
4138 STORE_NUMBER_AND_INCR (p, mcnt);
4139 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p, mcnt);
4140 }
4141 else if (mcnt == 0)
4142 {
4143 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p+2);
4144 p[2] = (unsigned char) no_op;
4145 p[3] = (unsigned char) no_op;
4146 goto on_failure;
4147 }
4148 break;
4149
4150 case jump_n:
4151 EXTRACT_NUMBER (mcnt, p + 2);
4152 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
4153
4154 /* Originally, this is how many times we CAN jump. */
4155 if (mcnt)
4156 {
4157 mcnt--;
4158 STORE_NUMBER (p + 2, mcnt);
4159 goto unconditional_jump;
4160 }
4161 /* If don't have to jump any more, skip over the rest of command. */
4162 else
4163 p += 4;
4164 break;
4165
4166 case set_number_at:
4167 {
4168 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
4169
4170 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4171 p1 = p + mcnt;
4172 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4173 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1, mcnt);
4174 STORE_NUMBER (p1, mcnt);
4175 break;
4176 }
4177
4178 case wordbound:
4179 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
4180 if (AT_WORD_BOUNDARY (d))
4181 break;
4182 goto fail;
4183
4184 case notwordbound:
4185 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
4186 if (AT_WORD_BOUNDARY (d))
4187 goto fail;
4188 break;
4189
4190 case wordbeg:
4191 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
4192 if (WORDCHAR_P (d) && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
4193 break;
4194 goto fail;
4195
4196 case wordend:
4197 DEBUG_PRINT1 ("EXECUTING wordend.\n");
4198 if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
4199 && (!WORDCHAR_P (d) || AT_STRINGS_END (d)))
4200 break;
4201 goto fail;
4202
4203#ifdef emacs
4204#ifdef emacs19
4205 case before_dot:
4206 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
4207 if (PTR_CHAR_POS ((unsigned char *) d) >= point)
4208 goto fail;
4209 break;
4210
4211 case at_dot:
4212 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
4213 if (PTR_CHAR_POS ((unsigned char *) d) != point)
4214 goto fail;
4215 break;
4216
4217 case after_dot:
4218 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
4219 if (PTR_CHAR_POS ((unsigned char *) d) <= point)
4220 goto fail;
4221 break;
4222#else /* not emacs19 */
4223 case at_dot:
4224 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
4225 if (PTR_CHAR_POS ((unsigned char *) d) + 1 != point)
4226 goto fail;
4227 break;
4228#endif /* not emacs19 */
4229
4230 case syntaxspec:
4231 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
4232 mcnt = *p++;
4233 goto matchsyntax;
4234
4235 case wordchar:
4236 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
4237 mcnt = (int) Sword;
4238 matchsyntax:
4239 PREFETCH ();
4240 if (SYNTAX (*d++) != (enum syntaxcode) mcnt)
4241 goto fail;
4242 SET_REGS_MATCHED ();
4243 break;
4244
4245 case notsyntaxspec:
4246 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
4247 mcnt = *p++;
4248 goto matchnotsyntax;
4249
4250 case notwordchar:
4251 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
4252 mcnt = (int) Sword;
4253 matchnotsyntax:
4254 PREFETCH ();
4255 if (SYNTAX (*d++) == (enum syntaxcode) mcnt)
4256 goto fail;
4257 SET_REGS_MATCHED ();
4258 break;
4259
4260#else /* not emacs */
4261 case wordchar:
4262 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
4263 PREFETCH ();
4264 if (!WORDCHAR_P (d))
4265 goto fail;
4266 SET_REGS_MATCHED ();
4267 d++;
4268 break;
4269
4270 case notwordchar:
4271 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
4272 PREFETCH ();
4273 if (WORDCHAR_P (d))
4274 goto fail;
4275 SET_REGS_MATCHED ();
4276 d++;
4277 break;
4278#endif /* not emacs */
4279
4280 default:
4281 abort ();
4282 }
4283 continue; /* Successfully executed one pattern command; keep going. */
4284
4285
4286 /* We goto here if a matching operation fails. */
4287 fail:
4288 if (!FAIL_STACK_EMPTY ())
4289 { /* A restart point is known. Restore to that state. */
4290 DEBUG_PRINT1 ("\nFAIL:\n");
4291 POP_FAILURE_POINT (d, p,
4292 lowest_active_reg, highest_active_reg,
4293 regstart, regend, reg_info);
4294
4295 /* If this failure point is a dummy, try the next one. */
4296 if (!p)
4297 goto fail;
4298
4299 /* If we failed to the end of the pattern, don't examine *p. */
4300 assert (p <= pend);
4301 if (p < pend)
4302 {
4303 boolean is_a_jump_n = false;
4304
4305 /* If failed to a backwards jump that's part of a repetition
4306 loop, need to pop this failure point and use the next one. */
4307 switch ((re_opcode_t) *p)
4308 {
4309 case jump_n:
4310 is_a_jump_n = true;
4311 case maybe_pop_jump:
4312 case pop_failure_jump:
4313 case jump:
4314 p1 = p + 1;
4315 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4316 p1 += mcnt;
4317
4318 if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
4319 || (!is_a_jump_n
4320 && (re_opcode_t) *p1 == on_failure_jump))
4321 goto fail;
4322 break;
4323 default:
4324 /* do nothing */ ;
4325 }
4326 }
4327
4328 if (d >= string1 && d <= end1)
4329 dend = end_match_1;
4330 }
4331 else
4332 break; /* Matching at this starting point really fails. */
4333 } /* for (;;) */
4334
4335 if (best_regs_set)
4336 goto restore_best_regs;
4337
4338 FREE_VARIABLES ();
4339
4340 return -1; /* Failure to match. */
4341} /* re_match_2 */
4342\f
4343/* Subroutine definitions for re_match_2. */
4344
4345
4346/* We are passed P pointing to a register number after a start_memory.
4347
4348 Return true if the pattern up to the corresponding stop_memory can
4349 match the empty string, and false otherwise.
4350
4351 If we find the matching stop_memory, sets P to point to one past its number.
4352 Otherwise, sets P to an undefined byte less than or equal to END.
4353
4354 We don't handle duplicates properly (yet). */
4355
4356static boolean
4357group_match_null_string_p (p, end, reg_info)
4358 unsigned char **p, *end;
4359 register_info_type *reg_info;
4360{
4361 int mcnt;
4362 /* Point to after the args to the start_memory. */
4363 unsigned char *p1 = *p + 2;
4364
4365 while (p1 < end)
4366 {
4367 /* Skip over opcodes that can match nothing, and return true or
4368 false, as appropriate, when we get to one that can't, or to the
4369 matching stop_memory. */
4370
4371 switch ((re_opcode_t) *p1)
4372 {
4373 /* Could be either a loop or a series of alternatives. */
4374 case on_failure_jump:
4375 p1++;
4376 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4377
4378 /* If the next operation is not a jump backwards in the
4379 pattern. */
4380
4381 if (mcnt >= 0)
4382 {
4383 /* Go through the on_failure_jumps of the alternatives,
4384 seeing if any of the alternatives cannot match nothing.
4385 The last alternative starts with only a jump,
4386 whereas the rest start with on_failure_jump and end
4387 with a jump, e.g., here is the pattern for `a|b|c':
4388
4389 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
4390 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
4391 /exactn/1/c
4392
4393 So, we have to first go through the first (n-1)
4394 alternatives and then deal with the last one separately. */
4395
4396
4397 /* Deal with the first (n-1) alternatives, which start
4398 with an on_failure_jump (see above) that jumps to right
4399 past a jump_past_alt. */
4400
4401 while ((re_opcode_t) p1[mcnt-3] == jump_past_alt)
4402 {
4403 /* `mcnt' holds how many bytes long the alternative
4404 is, including the ending `jump_past_alt' and
4405 its number. */
4406
4407 if (!alt_match_null_string_p (p1, p1 + mcnt - 3,
4408 reg_info))
4409 return false;
4410
4411 /* Move to right after this alternative, including the
4412 jump_past_alt. */
4413 p1 += mcnt;
4414
4415 /* Break if it's the beginning of an n-th alternative
4416 that doesn't begin with an on_failure_jump. */
4417 if ((re_opcode_t) *p1 != on_failure_jump)
4418 break;
4419
4420 /* Still have to check that it's not an n-th
4421 alternative that starts with an on_failure_jump. */
4422 p1++;
4423 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4424 if ((re_opcode_t) p1[mcnt-3] != jump_past_alt)
4425 {
4426 /* Get to the beginning of the n-th alternative. */
4427 p1 -= 3;
4428 break;
4429 }
4430 }
4431
4432 /* Deal with the last alternative: go back and get number
4433 of the `jump_past_alt' just before it. `mcnt' contains
4434 the length of the alternative. */
4435 EXTRACT_NUMBER (mcnt, p1 - 2);
4436
4437 if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
4438 return false;
4439
4440 p1 += mcnt; /* Get past the n-th alternative. */
4441 } /* if mcnt > 0 */
4442 break;
4443
4444
4445 case stop_memory:
4446 assert (p1[1] == **p);
4447 *p = p1 + 2;
4448 return true;
4449
4450
4451 default:
4452 if (!common_op_match_null_string_p (&p1, end, reg_info))
4453 return false;
4454 }
4455 } /* while p1 < end */
4456
4457 return false;
4458} /* group_match_null_string_p */
4459
4460
4461/* Similar to group_match_null_string_p, but doesn't deal with alternatives:
4462 It expects P to be the first byte of a single alternative and END one
4463 byte past the last. The alternative can contain groups. */
4464
4465static boolean
4466alt_match_null_string_p (p, end, reg_info)
4467 unsigned char *p, *end;
4468 register_info_type *reg_info;
4469{
4470 int mcnt;
4471 unsigned char *p1 = p;
4472
4473 while (p1 < end)
4474 {
4475 /* Skip over opcodes that can match nothing, and break when we get
4476 to one that can't. */
4477
4478 switch ((re_opcode_t) *p1)
4479 {
4480 /* It's a loop. */
4481 case on_failure_jump:
4482 p1++;
4483 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4484 p1 += mcnt;
4485 break;
4486
4487 default:
4488 if (!common_op_match_null_string_p (&p1, end, reg_info))
4489 return false;
4490 }
4491 } /* while p1 < end */
4492
4493 return true;
4494} /* alt_match_null_string_p */
4495
4496
4497/* Deals with the ops common to group_match_null_string_p and
4498 alt_match_null_string_p.
4499
4500 Sets P to one after the op and its arguments, if any. */
4501
4502static boolean
4503common_op_match_null_string_p (p, end, reg_info)
4504 unsigned char **p, *end;
4505 register_info_type *reg_info;
4506{
4507 int mcnt;
4508 boolean ret;
4509 int reg_no;
4510 unsigned char *p1 = *p;
4511
4512 switch ((re_opcode_t) *p1++)
4513 {
4514 case no_op:
4515 case begline:
4516 case endline:
4517 case begbuf:
4518 case endbuf:
4519 case wordbeg:
4520 case wordend:
4521 case wordbound:
4522 case notwordbound:
4523#ifdef emacs
4524 case before_dot:
4525 case at_dot:
4526 case after_dot:
4527#endif
4528 break;
4529
4530 case start_memory:
4531 reg_no = *p1;
4532 assert (reg_no > 0 && reg_no <= MAX_REGNUM);
4533 ret = group_match_null_string_p (&p1, end, reg_info);
4534
4535 /* Have to set this here in case we're checking a group which
4536 contains a group and a back reference to it. */
4537
4538 if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
4539 REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
4540
4541 if (!ret)
4542 return false;
4543 break;
4544
4545 /* If this is an optimized succeed_n for zero times, make the jump. */
4546 case jump:
4547 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4548 if (mcnt >= 0)
4549 p1 += mcnt;
4550 else
4551 return false;
4552 break;
4553
4554 case succeed_n:
4555 /* Get to the number of times to succeed. */
4556 p1 += 2;
4557 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4558
4559 if (mcnt == 0)
4560 {
4561 p1 -= 4;
4562 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4563 p1 += mcnt;
4564 }
4565 else
4566 return false;
4567 break;
4568
4569 case duplicate:
4570 if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
4571 return false;
4572 break;
4573
4574 case set_number_at:
4575 p1 += 4;
4576
4577 default:
4578 /* All other opcodes mean we cannot match the empty string. */
4579 return false;
4580 }
4581
4582 *p = p1;
4583 return true;
4584} /* common_op_match_null_string_p */
4585
4586
4587/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
4588 bytes; nonzero otherwise. */
4589
4590static int
4591bcmp_translate (s1, s2, len, translate)
4592 unsigned char *s1, *s2;
4593 register int len;
4594 char *translate;
4595{
4596 register unsigned char *p1 = s1, *p2 = s2;
4597 while (len)
4598 {
4599 if (translate[*p1++] != translate[*p2++]) return 1;
4600 len--;
4601 }
4602 return 0;
4603}
4604\f
4605/* Entry points for GNU code. */
4606
4607/* re_compile_pattern is the GNU regular expression compiler: it
4608 compiles PATTERN (of length SIZE) and puts the result in BUFP.
4609 Returns 0 if the pattern was valid, otherwise an error string.
4610
4611 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
4612 are set in BUFP on entry.
4613
4614 We call regex_compile to do the actual compilation. */
4615
4616const char *
4617re_compile_pattern (pattern, length, bufp)
4618 const char *pattern;
4619 int length;
4620 struct re_pattern_buffer *bufp;
4621{
4622 reg_errcode_t ret;
4623
4624 /* GNU code is written to assume at least RE_NREGS registers will be set
4625 (and at least one extra will be -1). */
4626 bufp->regs_allocated = REGS_UNALLOCATED;
4627
4628 /* And GNU code determines whether or not to get register information
4629 by passing null for the REGS argument to re_match, etc., not by
4630 setting no_sub. */
4631 bufp->no_sub = 0;
4632
4633 /* Match anchors at newline. */
4634 bufp->newline_anchor = 1;
4635
4636 ret = regex_compile (pattern, length, re_syntax_options, bufp);
4637
4638 return re_error_msg[(int) ret];
4639}
4640\f
4641/* Entry points compatible with 4.2 BSD regex library. We don't define
4642 them if this is an Emacs or POSIX compilation. */
4643
4644#if !defined (emacs) && !defined (_POSIX_SOURCE)
4645
4646/* BSD has one and only one pattern buffer. */
4647static struct re_pattern_buffer re_comp_buf;
4648
4649char *
4650re_comp (s)
4651 const char *s;
4652{
4653 reg_errcode_t ret;
4654
4655 if (!s)
4656 {
4657 if (!re_comp_buf.buffer)
4658 return "No previous regular expression";
4659 return 0;
4660 }
4661
4662 if (!re_comp_buf.buffer)
4663 {
4664 re_comp_buf.buffer = (unsigned char *) malloc (200);
4665 if (re_comp_buf.buffer == NULL)
4666 return "Memory exhausted";
4667 re_comp_buf.allocated = 200;
4668
4669 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
4670 if (re_comp_buf.fastmap == NULL)
4671 return "Memory exhausted";
4672 }
4673
4674 /* Since `re_exec' always passes NULL for the `regs' argument, we
4675 don't need to initialize the pattern buffer fields which affect it. */
4676
4677 /* Match anchors at newlines. */
4678 re_comp_buf.newline_anchor = 1;
4679
4680 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
4681
4682 /* Yes, we're discarding `const' here. */
4683 return (char *) re_error_msg[(int) ret];
4684}
4685
4686
4687int
4688re_exec (s)
4689 const char *s;
4690{
4691 const int len = strlen (s);
4692 return
4693 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
4694}
4695#endif /* not emacs and not _POSIX_SOURCE */
4696\f
4697/* POSIX.2 functions. Don't define these for Emacs. */
4698
4699#ifndef emacs
4700
4701/* regcomp takes a regular expression as a string and compiles it.
4702
4703 PREG is a regex_t *. We do not expect any fields to be initialized,
4704 since POSIX says we shouldn't. Thus, we set
4705
4706 `buffer' to the compiled pattern;
4707 `used' to the length of the compiled pattern;
4708 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
4709 REG_EXTENDED bit in CFLAGS is set; otherwise, to
4710 RE_SYNTAX_POSIX_BASIC;
4711 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
4712 `fastmap' and `fastmap_accurate' to zero;
4713 `re_nsub' to the number of subexpressions in PATTERN.
4714
4715 PATTERN is the address of the pattern string.
4716
4717 CFLAGS is a series of bits which affect compilation.
4718
4719 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
4720 use POSIX basic syntax.
4721
4722 If REG_NEWLINE is set, then . and [^...] don't match newline.
4723 Also, regexec will try a match beginning after every newline.
4724
4725 If REG_ICASE is set, then we considers upper- and lowercase
4726 versions of letters to be equivalent when matching.
4727
4728 If REG_NOSUB is set, then when PREG is passed to regexec, that
4729 routine will report only success or failure, and nothing about the
4730 registers.
4731
4732 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
4733 the return codes and their meanings.) */
4734
4735int
4736regcomp (preg, pattern, cflags)
4737 regex_t *preg;
4738 const char *pattern;
4739 int cflags;
4740{
4741 reg_errcode_t ret;
4742 unsigned syntax
4743 = (cflags & REG_EXTENDED) ?
4744 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
4745
4746 /* regex_compile will allocate the space for the compiled pattern. */
4747 preg->buffer = 0;
4748 preg->allocated = 0;
4749
4750 /* Don't bother to use a fastmap when searching. This simplifies the
4751 REG_NEWLINE case: if we used a fastmap, we'd have to put all the
4752 characters after newlines into the fastmap. This way, we just try
4753 every character. */
4754 preg->fastmap = 0;
4755
4756 if (cflags & REG_ICASE)
4757 {
4758 unsigned i;
4759
4760 preg->translate = (char *) malloc (CHAR_SET_SIZE);
4761 if (preg->translate == NULL)
4762 return (int) REG_ESPACE;
4763
4764 /* Map uppercase characters to corresponding lowercase ones. */
4765 for (i = 0; i < CHAR_SET_SIZE; i++)
4766 preg->translate[i] = ISUPPER (i) ? tolower (i) : i;
4767 }
4768 else
4769 preg->translate = NULL;
4770
4771 /* If REG_NEWLINE is set, newlines are treated differently. */
4772 if (cflags & REG_NEWLINE)
4773 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
4774 syntax &= ~RE_DOT_NEWLINE;
4775 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
4776 /* It also changes the matching behavior. */
4777 preg->newline_anchor = 1;
4778 }
4779 else
4780 preg->newline_anchor = 0;
4781
4782 preg->no_sub = !!(cflags & REG_NOSUB);
4783
4784 /* POSIX says a null character in the pattern terminates it, so we
4785 can use strlen here in compiling the pattern. */
4786 ret = regex_compile (pattern, strlen (pattern), syntax, preg);
4787
4788 /* POSIX doesn't distinguish between an unmatched open-group and an
4789 unmatched close-group: both are REG_EPAREN. */
4790 if (ret == REG_ERPAREN) ret = REG_EPAREN;
4791
4792 return (int) ret;
4793}
4794
4795
4796/* regexec searches for a given pattern, specified by PREG, in the
4797 string STRING.
4798
4799 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
4800 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
4801 least NMATCH elements, and we set them to the offsets of the
4802 corresponding matched substrings.
4803
4804 EFLAGS specifies `execution flags' which affect matching: if
4805 REG_NOTBOL is set, then ^ does not match at the beginning of the
4806 string; if REG_NOTEOL is set, then $ does not match at the end.
4807
4808 We return 0 if we find a match and REG_NOMATCH if not. */
4809
4810int
4811regexec (preg, string, nmatch, pmatch, eflags)
4812 const regex_t *preg;
4813 const char *string;
4814 size_t nmatch;
4815 regmatch_t pmatch[];
4816 int eflags;
4817{
4818 int ret;
4819 struct re_registers regs;
4820 regex_t private_preg;
4821 int len = strlen (string);
4822 boolean want_reg_info = !preg->no_sub && nmatch > 0;
4823
4824 private_preg = *preg;
4825
4826 private_preg.not_bol = !!(eflags & REG_NOTBOL);
4827 private_preg.not_eol = !!(eflags & REG_NOTEOL);
4828
4829 /* The user has told us exactly how many registers to return
4830 information about, via `nmatch'. We have to pass that on to the
4831 matching routines. */
4832 private_preg.regs_allocated = REGS_FIXED;
4833
4834 if (want_reg_info)
4835 {
4836 regs.num_regs = nmatch;
4837 regs.start = TALLOC (nmatch, regoff_t);
4838 regs.end = TALLOC (nmatch, regoff_t);
4839 if (regs.start == NULL || regs.end == NULL)
4840 return (int) REG_NOMATCH;
4841 }
4842
4843 /* Perform the searching operation. */
4844 ret = re_search (&private_preg, string, len,
4845 /* start: */ 0, /* range: */ len,
4846 want_reg_info ? &regs : (struct re_registers *) 0);
4847
4848 /* Copy the register information to the POSIX structure. */
4849 if (want_reg_info)
4850 {
4851 if (ret >= 0)
4852 {
4853 unsigned r;
4854
4855 for (r = 0; r < nmatch; r++)
4856 {
4857 pmatch[r].rm_so = regs.start[r];
4858 pmatch[r].rm_eo = regs.end[r];
4859 }
4860 }
4861
4862 /* If we needed the temporary register info, free the space now. */
4863 free (regs.start);
4864 free (regs.end);
4865 }
4866
4867 /* We want zero return to mean success, unlike `re_search'. */
4868 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
4869}
4870
4871
4872/* Returns a message corresponding to an error code, ERRCODE, returned
4873 from either regcomp or regexec. We don't use PREG here. */
4874
4875size_t
4876regerror (errcode, preg, errbuf, errbuf_size)
4877 int errcode;
4878 const regex_t *preg;
4879 char *errbuf;
4880 size_t errbuf_size;
4881{
4882 const char *msg;
4883 size_t msg_size;
4884
4885 if (errcode < 0
4886 || errcode >= (sizeof (re_error_msg) / sizeof (re_error_msg[0])))
4887 /* Only error codes returned by the rest of the code should be passed
4888 to this routine. If we are given anything else, or if other regex
4889 code generates an invalid error code, then the program has a bug.
4890 Dump core so we can fix it. */
4891 abort ();
4892
4893 msg = re_error_msg[errcode];
4894
4895 /* POSIX doesn't require that we do anything in this case, but why
4896 not be nice. */
4897 if (! msg)
4898 msg = "Success";
4899
4900 msg_size = strlen (msg) + 1; /* Includes the null. */
4901
4902 if (errbuf_size != 0)
4903 {
4904 if (msg_size > errbuf_size)
4905 {
4906 strncpy (errbuf, msg, errbuf_size - 1);
4907 errbuf[errbuf_size - 1] = 0;
4908 }
4909 else
4910 strcpy (errbuf, msg);
4911 }
4912
4913 return msg_size;
4914}
4915
4916
4917/* Free dynamically allocated space used by PREG. */
4918
4919void
4920regfree (preg)
4921 regex_t *preg;
4922{
4923 if (preg->buffer != NULL)
4924 free (preg->buffer);
4925 preg->buffer = NULL;
4926
4927 preg->allocated = 0;
4928 preg->used = 0;
4929
4930 if (preg->fastmap != NULL)
4931 free (preg->fastmap);
4932 preg->fastmap = NULL;
4933 preg->fastmap_accurate = 0;
4934
4935 if (preg->translate != NULL)
4936 free (preg->translate);
4937 preg->translate = NULL;
4938}
4939
4940#endif /* not emacs */
4941\f
4942/*
4943Local variables:
4944make-backup-files: t
4945version-control: t
4946trim-versions-without-asking: nil
4947End:
4948*/