MCLALLOC must be called at splimp
[unix-history] / usr / src / sys / ufs / ffs / ffs_alloc.c
CommitLineData
da7c5cc6 1/*
0880b18e 2 * Copyright (c) 1982, 1986 Regents of the University of California.
da7c5cc6
KM
3 * All rights reserved. The Berkeley software License Agreement
4 * specifies the terms and conditions for redistribution.
5 *
0880b18e 6 * @(#)ffs_alloc.c 7.1 (Berkeley) %G%
da7c5cc6 7 */
e3fe2d69 8
94368568
JB
9#include "param.h"
10#include "systm.h"
11#include "mount.h"
12#include "fs.h"
94368568
JB
13#include "buf.h"
14#include "inode.h"
15#include "dir.h"
16#include "user.h"
17#include "quota.h"
18#include "kernel.h"
7580177b 19#include "syslog.h"
aec7dd3b 20#include "cmap.h"
e3fe2d69 21
daaf7bee 22extern u_long hashalloc();
4f083fd7
SL
23extern ino_t ialloccg();
24extern daddr_t alloccg();
743f1ef7
KM
25extern daddr_t alloccgblk();
26extern daddr_t fragextend();
27extern daddr_t blkpref();
28extern daddr_t mapsearch();
1d7a08c5 29extern int inside[], around[];
b6407c9d 30extern unsigned char *fragtbl[];
e3fe2d69 31
502770a3
KM
32/*
33 * Allocate a block in the file system.
34 *
35 * The size of the requested block is given, which must be some
36 * multiple of fs_fsize and <= fs_bsize.
37 * A preference may be optionally specified. If a preference is given
38 * the following hierarchy is used to allocate a block:
39 * 1) allocate the requested block.
40 * 2) allocate a rotationally optimal block in the same cylinder.
41 * 3) allocate a block in the same cylinder group.
42 * 4) quadradically rehash into other cylinder groups, until an
43 * available block is located.
44 * If no block preference is given the following heirarchy is used
45 * to allocate a block:
46 * 1) allocate a block in the cylinder group that contains the
47 * inode for the file.
48 * 2) quadradically rehash into other cylinder groups, until an
49 * available block is located.
50 */
e3fe2d69 51struct buf *
f7287e4b 52alloc(ip, bpref, size)
f3c028b7 53 register struct inode *ip;
e3fe2d69
KM
54 daddr_t bpref;
55 int size;
56{
57 daddr_t bno;
58 register struct fs *fs;
f3c028b7 59 register struct buf *bp;
e3fe2d69
KM
60 int cg;
61
f7287e4b 62 fs = ip->i_fs;
ffd90e52
KM
63 if ((unsigned)size > fs->fs_bsize || fragoff(fs, size) != 0) {
64 printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
65 ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
b6407c9d 66 panic("alloc: bad size");
ffd90e52 67 }
b6407c9d 68 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
0947395d 69 goto nospace;
240a4664 70 if (u.u_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
e3fe2d69 71 goto nospace;
b4567e9c 72#ifdef QUOTA
2523b389
SL
73 u.u_error = chkdq(ip, (long)btodb(size), 0);
74 if (u.u_error)
75 return (NULL);
ca90a6bf 76#endif
260e5e3c
KM
77 if (bpref >= fs->fs_size)
78 bpref = 0;
e3fe2d69 79 if (bpref == 0)
6994bf5d 80 cg = itog(fs, ip->i_number);
e3fe2d69 81 else
6994bf5d 82 cg = dtog(fs, bpref);
4f083fd7
SL
83 bno = (daddr_t)hashalloc(ip, cg, (long)bpref, size,
84 (u_long (*)())alloccg);
6459ebe0 85 if (bno <= 0)
e3fe2d69 86 goto nospace;
2523b389
SL
87 ip->i_blocks += btodb(size);
88 ip->i_flag |= IUPD|ICHG;
f7287e4b 89 bp = getblk(ip->i_dev, fsbtodb(fs, bno), size);
e3fe2d69
KM
90 clrbuf(bp);
91 return (bp);
92nospace:
93 fserr(fs, "file system full");
94 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
95 u.u_error = ENOSPC;
96 return (NULL);
97}
98
502770a3
KM
99/*
100 * Reallocate a fragment to a bigger size
101 *
102 * The number and size of the old block is given, and a preference
103 * and new size is also specified. The allocator attempts to extend
104 * the original block. Failing that, the regular block allocator is
105 * invoked to get an appropriate block.
106 */
07670f7d 107struct buf *
f7287e4b
KM
108realloccg(ip, bprev, bpref, osize, nsize)
109 register struct inode *ip;
743f1ef7 110 daddr_t bprev, bpref;
07670f7d
KM
111 int osize, nsize;
112{
07670f7d 113 register struct fs *fs;
f3c028b7 114 register struct buf *bp, *obp;
f7fa0c54 115 int cg, request;
5d934daa
KM
116 daddr_t bno, bn;
117 int i, count, s;
118 extern struct cmap *mfind();
07670f7d 119
f7287e4b 120 fs = ip->i_fs;
d995d89d 121 if ((unsigned)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
ffd90e52
KM
122 (unsigned)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
123 printf("dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
124 ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
b6407c9d 125 panic("realloccg: bad size");
ffd90e52 126 }
240a4664 127 if (u.u_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
0947395d 128 goto nospace;
ffd90e52
KM
129 if (bprev == 0) {
130 printf("dev = 0x%x, bsize = %d, bprev = %d, fs = %s\n",
131 ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
502770a3 132 panic("realloccg: bad bprev");
ffd90e52 133 }
b4567e9c 134#ifdef QUOTA
2523b389
SL
135 u.u_error = chkdq(ip, (long)btodb(nsize - osize), 0);
136 if (u.u_error)
137 return (NULL);
ca90a6bf 138#endif
ae851115 139 cg = dtog(fs, bprev);
f7287e4b 140 bno = fragextend(ip, cg, (long)bprev, osize, nsize);
f3c028b7 141 if (bno != 0) {
9d6d37ce
BJ
142 do {
143 bp = bread(ip->i_dev, fsbtodb(fs, bno), osize);
144 if (bp->b_flags & B_ERROR) {
145 brelse(bp);
146 return (NULL);
147 }
148 } while (brealloc(bp, nsize) == 0);
149 bp->b_flags |= B_DONE;
4f083fd7 150 bzero(bp->b_un.b_addr + osize, (unsigned)nsize - osize);
2523b389
SL
151 ip->i_blocks += btodb(nsize - osize);
152 ip->i_flag |= IUPD|ICHG;
f3c028b7
KM
153 return (bp);
154 }
260e5e3c
KM
155 if (bpref >= fs->fs_size)
156 bpref = 0;
aec7dd3b 157 switch ((int)fs->fs_optim) {
f8484b5f
KM
158 case FS_OPTSPACE:
159 /*
160 * Allocate an exact sized fragment. Although this makes
161 * best use of space, we will waste time relocating it if
162 * the file continues to grow. If the fragmentation is
163 * less than half of the minimum free reserve, we choose
164 * to begin optimizing for time.
165 */
f7fa0c54 166 request = nsize;
f8484b5f
KM
167 if (fs->fs_minfree < 5 ||
168 fs->fs_cstotal.cs_nffree >
169 fs->fs_dsize * fs->fs_minfree / (2 * 100))
170 break;
171 log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
172 fs->fs_fsmnt);
173 fs->fs_optim = FS_OPTTIME;
174 break;
175 case FS_OPTTIME:
176 /*
177 * At this point we have discovered a file that is trying
178 * to grow a small fragment to a larger fragment. To save
179 * time, we allocate a full sized block, then free the
180 * unused portion. If the file continues to grow, the
181 * `fragextend' call above will be able to grow it in place
182 * without further copying. If aberrant programs cause
183 * disk fragmentation to grow within 2% of the free reserve,
184 * we choose to begin optimizing for space.
185 */
f7fa0c54 186 request = fs->fs_bsize;
f8484b5f
KM
187 if (fs->fs_cstotal.cs_nffree <
188 fs->fs_dsize * (fs->fs_minfree - 2) / 100)
189 break;
190 log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
191 fs->fs_fsmnt);
192 fs->fs_optim = FS_OPTSPACE;
193 break;
194 default:
195 printf("dev = 0x%x, optim = %d, fs = %s\n",
196 ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
197 panic("realloccg: bad optim");
198 /* NOTREACHED */
199 }
f7fa0c54 200 bno = (daddr_t)hashalloc(ip, cg, (long)bpref, request,
4f083fd7 201 (u_long (*)())alloccg);
6459ebe0 202 if (bno > 0) {
f7287e4b 203 obp = bread(ip->i_dev, fsbtodb(fs, bprev), osize);
d995d89d
KM
204 if (obp->b_flags & B_ERROR) {
205 brelse(obp);
ae851115 206 return (NULL);
d995d89d 207 }
5d934daa
KM
208 bn = fsbtodb(fs, bno);
209 bp = getblk(ip->i_dev, bn, nsize);
260ede8e 210 bcopy(obp->b_un.b_addr, bp->b_un.b_addr, (u_int)osize);
5d934daa
KM
211 count = howmany(osize, DEV_BSIZE);
212 s = splimp();
213 for (i = 0; i < count; i += CLBYTES / DEV_BSIZE)
214 if (mfind(ip->i_dev, bn + i))
215 munhash(ip->i_dev, bn + i);
216 splx(s);
260ede8e
KM
217 bzero(bp->b_un.b_addr + osize, (unsigned)nsize - osize);
218 if (obp->b_flags & B_DELWRI) {
219 obp->b_flags &= ~B_DELWRI;
220 u.u_ru.ru_oublock--; /* delete charge */
221 }
f3c028b7 222 brelse(obp);
4f083fd7 223 free(ip, bprev, (off_t)osize);
f7fa0c54 224 if (nsize < request)
e8727f9b 225 free(ip, bno + numfrags(fs, nsize),
f7fa0c54 226 (off_t)(request - nsize));
2523b389
SL
227 ip->i_blocks += btodb(nsize - osize);
228 ip->i_flag |= IUPD|ICHG;
ae851115 229 return (bp);
f3c028b7 230 }
0947395d 231nospace:
f3c028b7
KM
232 /*
233 * no space available
234 */
07670f7d
KM
235 fserr(fs, "file system full");
236 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
237 u.u_error = ENOSPC;
238 return (NULL);
239}
240
502770a3
KM
241/*
242 * Allocate an inode in the file system.
243 *
244 * A preference may be optionally specified. If a preference is given
245 * the following hierarchy is used to allocate an inode:
246 * 1) allocate the requested inode.
247 * 2) allocate an inode in the same cylinder group.
248 * 3) quadradically rehash into other cylinder groups, until an
249 * available inode is located.
250 * If no inode preference is given the following heirarchy is used
251 * to allocate an inode:
252 * 1) allocate an inode in cylinder group 0.
253 * 2) quadradically rehash into other cylinder groups, until an
254 * available inode is located.
255 */
e3fe2d69 256struct inode *
f7287e4b
KM
257ialloc(pip, ipref, mode)
258 register struct inode *pip;
e3fe2d69
KM
259 ino_t ipref;
260 int mode;
261{
daaf7bee 262 ino_t ino;
e3fe2d69
KM
263 register struct fs *fs;
264 register struct inode *ip;
265 int cg;
266
f7287e4b 267 fs = pip->i_fs;
0947395d 268 if (fs->fs_cstotal.cs_nifree == 0)
e3fe2d69 269 goto noinodes;
b4567e9c 270#ifdef QUOTA
2523b389
SL
271 u.u_error = chkiq(pip->i_dev, (struct inode *)NULL, u.u_uid, 0);
272 if (u.u_error)
273 return (NULL);
ca90a6bf 274#endif
260e5e3c
KM
275 if (ipref >= fs->fs_ncg * fs->fs_ipg)
276 ipref = 0;
6994bf5d 277 cg = itog(fs, ipref);
f7287e4b 278 ino = (ino_t)hashalloc(pip, cg, (long)ipref, mode, ialloccg);
e3fe2d69
KM
279 if (ino == 0)
280 goto noinodes;
f7287e4b 281 ip = iget(pip->i_dev, pip->i_fs, ino);
e3fe2d69 282 if (ip == NULL) {
bcd8515e 283 ifree(pip, ino, 0);
e3fe2d69
KM
284 return (NULL);
285 }
ffd90e52
KM
286 if (ip->i_mode) {
287 printf("mode = 0%o, inum = %d, fs = %s\n",
288 ip->i_mode, ip->i_number, fs->fs_fsmnt);
e3fe2d69 289 panic("ialloc: dup alloc");
ffd90e52 290 }
2523b389
SL
291 if (ip->i_blocks) { /* XXX */
292 printf("free inode %s/%d had %d blocks\n",
293 fs->fs_fsmnt, ino, ip->i_blocks);
294 ip->i_blocks = 0;
295 }
e3fe2d69
KM
296 return (ip);
297noinodes:
298 fserr(fs, "out of inodes");
ae851115 299 uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
e3fe2d69
KM
300 u.u_error = ENOSPC;
301 return (NULL);
302}
303
743f1ef7 304/*
502770a3
KM
305 * Find a cylinder to place a directory.
306 *
307 * The policy implemented by this algorithm is to select from
308 * among those cylinder groups with above the average number of
309 * free inodes, the one with the smallest number of directories.
743f1ef7 310 */
4f083fd7 311ino_t
f7287e4b 312dirpref(fs)
e3fe2d69 313 register struct fs *fs;
f7287e4b 314{
743f1ef7 315 int cg, minndir, mincg, avgifree;
e3fe2d69 316
0947395d 317 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
743f1ef7 318 minndir = fs->fs_ipg;
e3fe2d69 319 mincg = 0;
743f1ef7 320 for (cg = 0; cg < fs->fs_ncg; cg++)
b6407c9d
KM
321 if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
322 fs->fs_cs(fs, cg).cs_nifree >= avgifree) {
e3fe2d69 323 mincg = cg;
b6407c9d 324 minndir = fs->fs_cs(fs, cg).cs_ndir;
e3fe2d69 325 }
4f083fd7 326 return ((ino_t)(fs->fs_ipg * mincg));
e3fe2d69
KM
327}
328
743f1ef7 329/*
4f083fd7
SL
330 * Select the desired position for the next block in a file. The file is
331 * logically divided into sections. The first section is composed of the
332 * direct blocks. Each additional section contains fs_maxbpg blocks.
333 *
334 * If no blocks have been allocated in the first section, the policy is to
335 * request a block in the same cylinder group as the inode that describes
336 * the file. If no blocks have been allocated in any other section, the
337 * policy is to place the section in a cylinder group with a greater than
338 * average number of free blocks. An appropriate cylinder group is found
16e7863f
KM
339 * by using a rotor that sweeps the cylinder groups. When a new group of
340 * blocks is needed, the sweep begins in the cylinder group following the
341 * cylinder group from which the previous allocation was made. The sweep
342 * continues until a cylinder group with greater than the average number
343 * of free blocks is found. If the allocation is for the first block in an
344 * indirect block, the information on the previous allocation is unavailable;
345 * here a best guess is made based upon the logical block number being
346 * allocated.
4f083fd7
SL
347 *
348 * If a section is already partially allocated, the policy is to
349 * contiguously allocate fs_maxcontig blocks. The end of one of these
350 * contiguous blocks and the beginning of the next is physically separated
351 * so that the disk head will be in transit between them for at least
352 * fs_rotdelay milliseconds. This is to allow time for the processor to
353 * schedule another I/O transfer.
743f1ef7 354 */
daaf7bee 355daddr_t
4f083fd7
SL
356blkpref(ip, lbn, indx, bap)
357 struct inode *ip;
358 daddr_t lbn;
359 int indx;
360 daddr_t *bap;
f7287e4b 361{
4f083fd7 362 register struct fs *fs;
16e7863f
KM
363 register int cg;
364 int avgbfree, startcg;
4f083fd7 365 daddr_t nextblk;
743f1ef7 366
4f083fd7
SL
367 fs = ip->i_fs;
368 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
369 if (lbn < NDADDR) {
370 cg = itog(fs, ip->i_number);
b6407c9d 371 return (fs->fs_fpg * cg + fs->fs_frag);
743f1ef7 372 }
4f083fd7
SL
373 /*
374 * Find a cylinder with greater than average number of
375 * unused data blocks.
376 */
16e7863f
KM
377 if (indx == 0 || bap[indx - 1] == 0)
378 startcg = itog(fs, ip->i_number) + lbn / fs->fs_maxbpg;
379 else
380 startcg = dtog(fs, bap[indx - 1]) + 1;
381 startcg %= fs->fs_ncg;
4f083fd7 382 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
16e7863f 383 for (cg = startcg; cg < fs->fs_ncg; cg++)
4f083fd7
SL
384 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
385 fs->fs_cgrotor = cg;
386 return (fs->fs_fpg * cg + fs->fs_frag);
387 }
16e7863f 388 for (cg = 0; cg <= startcg; cg++)
4f083fd7
SL
389 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
390 fs->fs_cgrotor = cg;
391 return (fs->fs_fpg * cg + fs->fs_frag);
392 }
393 return (NULL);
394 }
395 /*
396 * One or more previous blocks have been laid out. If less
397 * than fs_maxcontig previous blocks are contiguous, the
398 * next block is requested contiguously, otherwise it is
399 * requested rotationally delayed by fs_rotdelay milliseconds.
400 */
401 nextblk = bap[indx - 1] + fs->fs_frag;
402 if (indx > fs->fs_maxcontig &&
240a4664 403 bap[indx - fs->fs_maxcontig] + blkstofrags(fs, fs->fs_maxcontig)
4f083fd7
SL
404 != nextblk)
405 return (nextblk);
406 if (fs->fs_rotdelay != 0)
407 /*
408 * Here we convert ms of delay to frags as:
409 * (frags) = (ms) * (rev/sec) * (sect/rev) /
410 * ((sect/frag) * (ms/sec))
411 * then round up to the next block.
412 */
413 nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
414 (NSPF(fs) * 1000), fs->fs_frag);
415 return (nextblk);
743f1ef7
KM
416}
417
502770a3
KM
418/*
419 * Implement the cylinder overflow algorithm.
420 *
421 * The policy implemented by this algorithm is:
422 * 1) allocate the block in its requested cylinder group.
423 * 2) quadradically rehash on the cylinder group number.
424 * 3) brute force search for a free block.
425 */
daaf7bee
KM
426/*VARARGS5*/
427u_long
f7287e4b
KM
428hashalloc(ip, cg, pref, size, allocator)
429 struct inode *ip;
e3fe2d69
KM
430 int cg;
431 long pref;
432 int size; /* size for data blocks, mode for inodes */
daaf7bee 433 u_long (*allocator)();
e3fe2d69 434{
f7287e4b 435 register struct fs *fs;
e3fe2d69
KM
436 long result;
437 int i, icg = cg;
438
f7287e4b 439 fs = ip->i_fs;
e3fe2d69
KM
440 /*
441 * 1: preferred cylinder group
442 */
f7287e4b 443 result = (*allocator)(ip, cg, pref, size);
e3fe2d69
KM
444 if (result)
445 return (result);
446 /*
447 * 2: quadratic rehash
448 */
449 for (i = 1; i < fs->fs_ncg; i *= 2) {
450 cg += i;
451 if (cg >= fs->fs_ncg)
452 cg -= fs->fs_ncg;
f7287e4b 453 result = (*allocator)(ip, cg, 0, size);
e3fe2d69
KM
454 if (result)
455 return (result);
456 }
457 /*
458 * 3: brute force search
620b3290
SL
459 * Note that we start at i == 2, since 0 was checked initially,
460 * and 1 is always checked in the quadratic rehash.
e3fe2d69 461 */
2136305e 462 cg = (icg + 2) % fs->fs_ncg;
620b3290 463 for (i = 2; i < fs->fs_ncg; i++) {
f7287e4b 464 result = (*allocator)(ip, cg, 0, size);
e3fe2d69
KM
465 if (result)
466 return (result);
467 cg++;
468 if (cg == fs->fs_ncg)
469 cg = 0;
470 }
ae851115 471 return (NULL);
e3fe2d69
KM
472}
473
502770a3
KM
474/*
475 * Determine whether a fragment can be extended.
476 *
477 * Check to see if the necessary fragments are available, and
478 * if they are, allocate them.
479 */
07670f7d 480daddr_t
f7287e4b
KM
481fragextend(ip, cg, bprev, osize, nsize)
482 struct inode *ip;
07670f7d 483 int cg;
f3c028b7 484 long bprev;
07670f7d
KM
485 int osize, nsize;
486{
f7287e4b 487 register struct fs *fs;
f3c028b7
KM
488 register struct buf *bp;
489 register struct cg *cgp;
490 long bno;
491 int frags, bbase;
07670f7d
KM
492 int i;
493
f7287e4b 494 fs = ip->i_fs;
a8580723 495 if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
e5476900 496 return (NULL);
d995d89d 497 frags = numfrags(fs, nsize);
a8580723
KM
498 bbase = fragnum(fs, bprev);
499 if (bbase > fragnum(fs, (bprev + frags - 1))) {
f3c028b7 500 /* cannot extend across a block boundry */
ae851115 501 return (NULL);
f3c028b7 502 }
d65bd829 503 bp = bread(ip->i_dev, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize);
e5476900
KM
504 cgp = bp->b_un.b_cg;
505 if (bp->b_flags & B_ERROR || cgp->cg_magic != CG_MAGIC) {
d995d89d 506 brelse(bp);
ae851115 507 return (NULL);
d995d89d 508 }
95d0807c 509 cgp->cg_time = time.tv_sec;
6994bf5d 510 bno = dtogd(fs, bprev);
d995d89d 511 for (i = numfrags(fs, osize); i < frags; i++)
aca50d72
KM
512 if (isclr(cgp->cg_free, bno + i)) {
513 brelse(bp);
ae851115 514 return (NULL);
aca50d72
KM
515 }
516 /*
517 * the current fragment can be extended
518 * deduct the count on fragment being extended into
519 * increase the count on the remaining fragment (if any)
520 * allocate the extended piece
521 */
522 for (i = frags; i < fs->fs_frag - bbase; i++)
f3c028b7
KM
523 if (isclr(cgp->cg_free, bno + i))
524 break;
d995d89d 525 cgp->cg_frsum[i - numfrags(fs, osize)]--;
aca50d72
KM
526 if (i != frags)
527 cgp->cg_frsum[i - frags]++;
d995d89d 528 for (i = numfrags(fs, osize); i < frags; i++) {
aca50d72
KM
529 clrbit(cgp->cg_free, bno + i);
530 cgp->cg_cs.cs_nffree--;
531 fs->fs_cstotal.cs_nffree--;
532 fs->fs_cs(fs, cg).cs_nffree--;
f3c028b7 533 }
aca50d72
KM
534 fs->fs_fmod++;
535 bdwrite(bp);
536 return (bprev);
07670f7d
KM
537}
538
502770a3
KM
539/*
540 * Determine whether a block can be allocated.
541 *
542 * Check to see if a block of the apprpriate size is available,
543 * and if it is, allocate it.
544 */
4f083fd7 545daddr_t
f7287e4b
KM
546alloccg(ip, cg, bpref, size)
547 struct inode *ip;
e3fe2d69
KM
548 int cg;
549 daddr_t bpref;
550 int size;
551{
f7287e4b 552 register struct fs *fs;
f3c028b7
KM
553 register struct buf *bp;
554 register struct cg *cgp;
555 int bno, frags;
556 int allocsiz;
f3c028b7 557 register int i;
e3fe2d69 558
f7287e4b 559 fs = ip->i_fs;
b6407c9d 560 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
ae851115 561 return (NULL);
d65bd829 562 bp = bread(ip->i_dev, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize);
e5476900 563 cgp = bp->b_un.b_cg;
0f538882
KM
564 if (bp->b_flags & B_ERROR || cgp->cg_magic != CG_MAGIC ||
565 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
d995d89d 566 brelse(bp);
ae851115 567 return (NULL);
d995d89d 568 }
95d0807c 569 cgp->cg_time = time.tv_sec;
b6407c9d 570 if (size == fs->fs_bsize) {
daaf7bee 571 bno = alloccgblk(fs, cgp, bpref);
f3c028b7
KM
572 bdwrite(bp);
573 return (bno);
574 }
575 /*
576 * check to see if any fragments are already available
577 * allocsiz is the size which will be allocated, hacking
578 * it down to a smaller size if necessary
579 */
d995d89d 580 frags = numfrags(fs, size);
b6407c9d 581 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
f3c028b7
KM
582 if (cgp->cg_frsum[allocsiz] != 0)
583 break;
b6407c9d 584 if (allocsiz == fs->fs_frag) {
f3c028b7
KM
585 /*
586 * no fragments were available, so a block will be
587 * allocated, and hacked up
588 */
0947395d 589 if (cgp->cg_cs.cs_nbfree == 0) {
f3c028b7 590 brelse(bp);
ae851115 591 return (NULL);
f3c028b7 592 }
daaf7bee 593 bno = alloccgblk(fs, cgp, bpref);
6994bf5d 594 bpref = dtogd(fs, bno);
b6407c9d 595 for (i = frags; i < fs->fs_frag; i++)
f3c028b7 596 setbit(cgp->cg_free, bpref + i);
b6407c9d 597 i = fs->fs_frag - frags;
0947395d
KM
598 cgp->cg_cs.cs_nffree += i;
599 fs->fs_cstotal.cs_nffree += i;
b6407c9d 600 fs->fs_cs(fs, cg).cs_nffree += i;
961945a8 601 fs->fs_fmod++;
f3c028b7
KM
602 cgp->cg_frsum[i]++;
603 bdwrite(bp);
604 return (bno);
605 }
743f1ef7 606 bno = mapsearch(fs, cgp, bpref, allocsiz);
0f538882
KM
607 if (bno < 0) {
608 brelse(bp);
ae851115 609 return (NULL);
0f538882 610 }
f3c028b7
KM
611 for (i = 0; i < frags; i++)
612 clrbit(cgp->cg_free, bno + i);
0947395d
KM
613 cgp->cg_cs.cs_nffree -= frags;
614 fs->fs_cstotal.cs_nffree -= frags;
b6407c9d 615 fs->fs_cs(fs, cg).cs_nffree -= frags;
961945a8 616 fs->fs_fmod++;
f3c028b7
KM
617 cgp->cg_frsum[allocsiz]--;
618 if (frags != allocsiz)
619 cgp->cg_frsum[allocsiz - frags]++;
620 bdwrite(bp);
621 return (cg * fs->fs_fpg + bno);
622}
623
502770a3
KM
624/*
625 * Allocate a block in a cylinder group.
626 *
627 * This algorithm implements the following policy:
628 * 1) allocate the requested block.
629 * 2) allocate a rotationally optimal block in the same cylinder.
630 * 3) allocate the next available block on the block rotor for the
631 * specified cylinder group.
632 * Note that this routine only allocates fs_bsize blocks; these
633 * blocks may be fragmented by the routine that allocates them.
634 */
f3c028b7 635daddr_t
daaf7bee 636alloccgblk(fs, cgp, bpref)
f7287e4b 637 register struct fs *fs;
f3c028b7
KM
638 register struct cg *cgp;
639 daddr_t bpref;
640{
743f1ef7 641 daddr_t bno;
ae851115 642 int cylno, pos, delta;
743f1ef7 643 short *cylbp;
aca50d72 644 register int i;
f3c028b7 645
743f1ef7
KM
646 if (bpref == 0) {
647 bpref = cgp->cg_rotor;
aca50d72
KM
648 goto norot;
649 }
a8580723 650 bpref = blknum(fs, bpref);
6994bf5d 651 bpref = dtogd(fs, bpref);
aca50d72
KM
652 /*
653 * if the requested block is available, use it
654 */
240a4664 655 if (isblock(fs, cgp->cg_free, fragstoblks(fs, bpref))) {
aca50d72
KM
656 bno = bpref;
657 goto gotit;
658 }
aca50d72
KM
659 /*
660 * check for a block available on the same cylinder
aca50d72
KM
661 */
662 cylno = cbtocylno(fs, bpref);
502770a3
KM
663 if (cgp->cg_btot[cylno] == 0)
664 goto norot;
665 if (fs->fs_cpc == 0) {
666 /*
667 * block layout info is not available, so just have
668 * to take any block in this cylinder.
669 */
670 bpref = howmany(fs->fs_spc * cylno, NSPF(fs));
671 goto norot;
672 }
aca50d72
KM
673 /*
674 * check the summary information to see if a block is
675 * available in the requested cylinder starting at the
4f083fd7 676 * requested rotational position and proceeding around.
aca50d72 677 */
4f083fd7
SL
678 cylbp = cgp->cg_b[cylno];
679 pos = cbtorpos(fs, bpref);
aca50d72
KM
680 for (i = pos; i < NRPOS; i++)
681 if (cylbp[i] > 0)
682 break;
683 if (i == NRPOS)
684 for (i = 0; i < pos; i++)
743f1ef7
KM
685 if (cylbp[i] > 0)
686 break;
aca50d72
KM
687 if (cylbp[i] > 0) {
688 /*
689 * found a rotational position, now find the actual
690 * block. A panic if none is actually there.
691 */
692 pos = cylno % fs->fs_cpc;
693 bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
ffd90e52
KM
694 if (fs->fs_postbl[pos][i] == -1) {
695 printf("pos = %d, i = %d, fs = %s\n",
696 pos, i, fs->fs_fsmnt);
aca50d72 697 panic("alloccgblk: cyl groups corrupted");
ffd90e52 698 }
ae851115 699 for (i = fs->fs_postbl[pos][i];; ) {
aca50d72 700 if (isblock(fs, cgp->cg_free, bno + i)) {
240a4664 701 bno = blkstofrags(fs, (bno + i));
aca50d72 702 goto gotit;
743f1ef7 703 }
ae851115
KM
704 delta = fs->fs_rotbl[i];
705 if (delta <= 0 || delta > MAXBPC - i)
aca50d72 706 break;
ae851115 707 i += delta;
743f1ef7 708 }
ffd90e52 709 printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt);
aca50d72 710 panic("alloccgblk: can't find blk in cyl");
e3fe2d69 711 }
aca50d72
KM
712norot:
713 /*
714 * no blocks in the requested cylinder, so take next
715 * available one in this cylinder group.
716 */
b32450f4 717 bno = mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
6459ebe0 718 if (bno < 0)
ae851115 719 return (NULL);
743f1ef7 720 cgp->cg_rotor = bno;
e3fe2d69 721gotit:
240a4664 722 clrblock(fs, cgp->cg_free, (long)fragstoblks(fs, bno));
0947395d
KM
723 cgp->cg_cs.cs_nbfree--;
724 fs->fs_cstotal.cs_nbfree--;
b6407c9d 725 fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--;
502770a3
KM
726 cylno = cbtocylno(fs, bno);
727 cgp->cg_b[cylno][cbtorpos(fs, bno)]--;
728 cgp->cg_btot[cylno]--;
e3fe2d69 729 fs->fs_fmod++;
743f1ef7 730 return (cgp->cg_cgx * fs->fs_fpg + bno);
e3fe2d69
KM
731}
732
502770a3
KM
733/*
734 * Determine whether an inode can be allocated.
735 *
736 * Check to see if an inode is available, and if it is,
737 * allocate it using the following policy:
738 * 1) allocate the requested inode.
739 * 2) allocate the next available inode after the requested
740 * inode in the specified cylinder group.
741 */
4f083fd7 742ino_t
f7287e4b
KM
743ialloccg(ip, cg, ipref, mode)
744 struct inode *ip;
e3fe2d69
KM
745 int cg;
746 daddr_t ipref;
747 int mode;
748{
f7287e4b 749 register struct fs *fs;
f3c028b7 750 register struct cg *cgp;
4e0c7b8a
KM
751 struct buf *bp;
752 int start, len, loc, map, i;
e3fe2d69 753
f7287e4b 754 fs = ip->i_fs;
b6407c9d 755 if (fs->fs_cs(fs, cg).cs_nifree == 0)
ae851115 756 return (NULL);
d65bd829 757 bp = bread(ip->i_dev, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize);
e5476900 758 cgp = bp->b_un.b_cg;
0f538882
KM
759 if (bp->b_flags & B_ERROR || cgp->cg_magic != CG_MAGIC ||
760 cgp->cg_cs.cs_nifree == 0) {
d995d89d 761 brelse(bp);
ae851115 762 return (NULL);
d995d89d 763 }
95d0807c 764 cgp->cg_time = time.tv_sec;
e3fe2d69
KM
765 if (ipref) {
766 ipref %= fs->fs_ipg;
767 if (isclr(cgp->cg_iused, ipref))
768 goto gotit;
4e0c7b8a
KM
769 }
770 start = cgp->cg_irotor / NBBY;
771 len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY);
772 loc = skpc(0xff, len, &cgp->cg_iused[start]);
773 if (loc == 0) {
e5889092
KM
774 len = start + 1;
775 start = 0;
776 loc = skpc(0xff, len, &cgp->cg_iused[0]);
777 if (loc == 0) {
778 printf("cg = %s, irotor = %d, fs = %s\n",
779 cg, cgp->cg_irotor, fs->fs_fsmnt);
780 panic("ialloccg: map corrupted");
781 /* NOTREACHED */
782 }
4e0c7b8a
KM
783 }
784 i = start + len - loc;
785 map = cgp->cg_iused[i];
786 ipref = i * NBBY;
787 for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
788 if ((map & i) == 0) {
e3fe2d69
KM
789 cgp->cg_irotor = ipref;
790 goto gotit;
791 }
792 }
4e0c7b8a
KM
793 printf("fs = %s\n", fs->fs_fsmnt);
794 panic("ialloccg: block not in map");
795 /* NOTREACHED */
e3fe2d69
KM
796gotit:
797 setbit(cgp->cg_iused, ipref);
0947395d
KM
798 cgp->cg_cs.cs_nifree--;
799 fs->fs_cstotal.cs_nifree--;
b6407c9d 800 fs->fs_cs(fs, cg).cs_nifree--;
e3fe2d69
KM
801 fs->fs_fmod++;
802 if ((mode & IFMT) == IFDIR) {
0947395d
KM
803 cgp->cg_cs.cs_ndir++;
804 fs->fs_cstotal.cs_ndir++;
b6407c9d 805 fs->fs_cs(fs, cg).cs_ndir++;
e3fe2d69
KM
806 }
807 bdwrite(bp);
808 return (cg * fs->fs_ipg + ipref);
809}
810
502770a3
KM
811/*
812 * Free a block or fragment.
813 *
814 * The specified block or fragment is placed back in the
815 * free map. If a fragment is deallocated, a possible
816 * block reassembly is checked.
817 */
4f083fd7 818free(ip, bno, size)
f7287e4b 819 register struct inode *ip;
e3fe2d69 820 daddr_t bno;
daaf7bee 821 off_t size;
e3fe2d69
KM
822{
823 register struct fs *fs;
824 register struct cg *cgp;
825 register struct buf *bp;
f3c028b7
KM
826 int cg, blk, frags, bbase;
827 register int i;
e3fe2d69 828
f7287e4b 829 fs = ip->i_fs;
ffd90e52
KM
830 if ((unsigned)size > fs->fs_bsize || fragoff(fs, size) != 0) {
831 printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
832 ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
b6407c9d 833 panic("free: bad size");
ffd90e52 834 }
6994bf5d 835 cg = dtog(fs, bno);
6459ebe0
KM
836 if (badblock(fs, bno)) {
837 printf("bad block %d, ino %d\n", bno, ip->i_number);
e3fe2d69 838 return;
6459ebe0 839 }
d65bd829 840 bp = bread(ip->i_dev, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize);
e5476900
KM
841 cgp = bp->b_un.b_cg;
842 if (bp->b_flags & B_ERROR || cgp->cg_magic != CG_MAGIC) {
d995d89d 843 brelse(bp);
e3fe2d69 844 return;
d995d89d 845 }
95d0807c 846 cgp->cg_time = time.tv_sec;
6994bf5d 847 bno = dtogd(fs, bno);
b6407c9d 848 if (size == fs->fs_bsize) {
240a4664 849 if (isblock(fs, cgp->cg_free, fragstoblks(fs, bno))) {
ffd90e52
KM
850 printf("dev = 0x%x, block = %d, fs = %s\n",
851 ip->i_dev, bno, fs->fs_fsmnt);
07670f7d 852 panic("free: freeing free block");
6459ebe0 853 }
240a4664 854 setblock(fs, cgp->cg_free, fragstoblks(fs, bno));
0947395d
KM
855 cgp->cg_cs.cs_nbfree++;
856 fs->fs_cstotal.cs_nbfree++;
b6407c9d 857 fs->fs_cs(fs, cg).cs_nbfree++;
502770a3
KM
858 i = cbtocylno(fs, bno);
859 cgp->cg_b[i][cbtorpos(fs, bno)]++;
860 cgp->cg_btot[i]++;
07670f7d 861 } else {
a8580723 862 bbase = bno - fragnum(fs, bno);
f3c028b7
KM
863 /*
864 * decrement the counts associated with the old frags
865 */
ae851115 866 blk = blkmap(fs, cgp->cg_free, bbase);
b6407c9d 867 fragacct(fs, blk, cgp->cg_frsum, -1);
f3c028b7
KM
868 /*
869 * deallocate the fragment
870 */
d995d89d 871 frags = numfrags(fs, size);
f3c028b7 872 for (i = 0; i < frags; i++) {
ffd90e52
KM
873 if (isset(cgp->cg_free, bno + i)) {
874 printf("dev = 0x%x, block = %d, fs = %s\n",
875 ip->i_dev, bno + i, fs->fs_fsmnt);
07670f7d 876 panic("free: freeing free frag");
ffd90e52 877 }
07670f7d 878 setbit(cgp->cg_free, bno + i);
07670f7d 879 }
ae851115
KM
880 cgp->cg_cs.cs_nffree += i;
881 fs->fs_cstotal.cs_nffree += i;
882 fs->fs_cs(fs, cg).cs_nffree += i;
f3c028b7
KM
883 /*
884 * add back in counts associated with the new frags
885 */
ae851115 886 blk = blkmap(fs, cgp->cg_free, bbase);
b6407c9d 887 fragacct(fs, blk, cgp->cg_frsum, 1);
f3c028b7
KM
888 /*
889 * if a complete block has been reassembled, account for it
890 */
240a4664 891 if (isblock(fs, cgp->cg_free, fragstoblks(fs, bbase))) {
b6407c9d
KM
892 cgp->cg_cs.cs_nffree -= fs->fs_frag;
893 fs->fs_cstotal.cs_nffree -= fs->fs_frag;
894 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
0947395d
KM
895 cgp->cg_cs.cs_nbfree++;
896 fs->fs_cstotal.cs_nbfree++;
b6407c9d 897 fs->fs_cs(fs, cg).cs_nbfree++;
502770a3
KM
898 i = cbtocylno(fs, bbase);
899 cgp->cg_b[i][cbtorpos(fs, bbase)]++;
900 cgp->cg_btot[i]++;
07670f7d
KM
901 }
902 }
e3fe2d69 903 fs->fs_fmod++;
e3fe2d69
KM
904 bdwrite(bp);
905}
906
502770a3
KM
907/*
908 * Free an inode.
909 *
910 * The specified inode is placed back in the free map.
911 */
f7287e4b
KM
912ifree(ip, ino, mode)
913 struct inode *ip;
e3fe2d69
KM
914 ino_t ino;
915 int mode;
916{
917 register struct fs *fs;
918 register struct cg *cgp;
919 register struct buf *bp;
e3fe2d69
KM
920 int cg;
921
f7287e4b 922 fs = ip->i_fs;
ffd90e52
KM
923 if ((unsigned)ino >= fs->fs_ipg*fs->fs_ncg) {
924 printf("dev = 0x%x, ino = %d, fs = %s\n",
925 ip->i_dev, ino, fs->fs_fsmnt);
e3fe2d69 926 panic("ifree: range");
ffd90e52 927 }
6994bf5d 928 cg = itog(fs, ino);
d65bd829 929 bp = bread(ip->i_dev, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize);
e5476900
KM
930 cgp = bp->b_un.b_cg;
931 if (bp->b_flags & B_ERROR || cgp->cg_magic != CG_MAGIC) {
d995d89d 932 brelse(bp);
e3fe2d69 933 return;
d995d89d 934 }
95d0807c 935 cgp->cg_time = time.tv_sec;
e3fe2d69 936 ino %= fs->fs_ipg;
ffd90e52
KM
937 if (isclr(cgp->cg_iused, ino)) {
938 printf("dev = 0x%x, ino = %d, fs = %s\n",
939 ip->i_dev, ino, fs->fs_fsmnt);
e3fe2d69 940 panic("ifree: freeing free inode");
ffd90e52 941 }
e3fe2d69 942 clrbit(cgp->cg_iused, ino);
4e0c7b8a
KM
943 if (ino < cgp->cg_irotor)
944 cgp->cg_irotor = ino;
0947395d
KM
945 cgp->cg_cs.cs_nifree++;
946 fs->fs_cstotal.cs_nifree++;
b6407c9d 947 fs->fs_cs(fs, cg).cs_nifree++;
e3fe2d69 948 if ((mode & IFMT) == IFDIR) {
0947395d
KM
949 cgp->cg_cs.cs_ndir--;
950 fs->fs_cstotal.cs_ndir--;
b6407c9d 951 fs->fs_cs(fs, cg).cs_ndir--;
e3fe2d69
KM
952 }
953 fs->fs_fmod++;
954 bdwrite(bp);
955}
956
743f1ef7 957/*
502770a3
KM
958 * Find a block of the specified size in the specified cylinder group.
959 *
743f1ef7
KM
960 * It is a panic if a request is made to find a block if none are
961 * available.
962 */
963daddr_t
964mapsearch(fs, cgp, bpref, allocsiz)
965 register struct fs *fs;
966 register struct cg *cgp;
967 daddr_t bpref;
968 int allocsiz;
969{
970 daddr_t bno;
971 int start, len, loc, i;
972 int blk, field, subfield, pos;
973
974 /*
975 * find the fragment by searching through the free block
976 * map for an appropriate bit pattern
977 */
978 if (bpref)
6994bf5d 979 start = dtogd(fs, bpref) / NBBY;
743f1ef7
KM
980 else
981 start = cgp->cg_frotor / NBBY;
942bd18b 982 len = howmany(fs->fs_fpg, NBBY) - start;
88a7a62a
SL
983 loc = scanc((unsigned)len, (caddr_t)&cgp->cg_free[start],
984 (caddr_t)fragtbl[fs->fs_frag],
985 (int)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
743f1ef7 986 if (loc == 0) {
e5476900
KM
987 len = start + 1;
988 start = 0;
e5889092 989 loc = scanc((unsigned)len, (caddr_t)&cgp->cg_free[0],
88a7a62a
SL
990 (caddr_t)fragtbl[fs->fs_frag],
991 (int)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
4e0c7b8a
KM
992 if (loc == 0) {
993 printf("start = %d, len = %d, fs = %s\n",
994 start, len, fs->fs_fsmnt);
995 panic("alloccg: map corrupted");
e5889092 996 /* NOTREACHED */
4e0c7b8a 997 }
743f1ef7
KM
998 }
999 bno = (start + len - loc) * NBBY;
1000 cgp->cg_frotor = bno;
1001 /*
1002 * found the byte in the map
1003 * sift through the bits to find the selected frag
1004 */
ae851115
KM
1005 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
1006 blk = blkmap(fs, cgp->cg_free, bno);
743f1ef7
KM
1007 blk <<= 1;
1008 field = around[allocsiz];
1009 subfield = inside[allocsiz];
b6407c9d 1010 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
ae851115
KM
1011 if ((blk & field) == subfield)
1012 return (bno + pos);
743f1ef7
KM
1013 field <<= 1;
1014 subfield <<= 1;
1015 }
1016 }
ffd90e52 1017 printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
743f1ef7 1018 panic("alloccg: block not in map");
e5476900 1019 return (-1);
743f1ef7
KM
1020}
1021
e3fe2d69 1022/*
502770a3
KM
1023 * Fserr prints the name of a file system with an error diagnostic.
1024 *
1025 * The form of the error message is:
e3fe2d69
KM
1026 * fs: error message
1027 */
1028fserr(fs, cp)
1029 struct fs *fs;
1030 char *cp;
1031{
1032
283ffc90 1033 log(LOG_ERR, "%s: %s\n", fs->fs_fsmnt, cp);
e3fe2d69 1034}