BSD 4_4_Lite2 development
[unix-history] / usr / src / contrib / gcc-2.3.3 / genrecog.c
CommitLineData
e3beab3c
C
1/* Generate code from machine description to recognize rtl as insns.
2 Copyright (C) 1987, 1988, 1992 Free Software Foundation, Inc.
3
4This file is part of GNU CC.
5
6GNU CC is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 2, or (at your option)
9any later version.
10
11GNU CC is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with GNU CC; see the file COPYING. If not, write to
18the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20
21/* This program is used to produce insn-recog.c, which contains
22 a function called `recog' plus its subroutines.
23 These functions contain a decision tree
24 that recognizes whether an rtx, the argument given to recog,
25 is a valid instruction.
26
27 recog returns -1 if the rtx is not valid.
28 If the rtx is valid, recog returns a nonnegative number
29 which is the insn code number for the pattern that matched.
30 This is the same as the order in the machine description of the
31 entry that matched. This number can be used as an index into various
32 insn_* tables, such as insn_template, insn_outfun, and insn_n_operands
33 (found in insn-output.c).
34
35 The third argument to recog is an optional pointer to an int.
36 If present, recog will accept a pattern if it matches except for
37 missing CLOBBER expressions at the end. In that case, the value
38 pointed to by the optional pointer will be set to the number of
39 CLOBBERs that need to be added (it should be initialized to zero by
40 the caller). If it is set nonzero, the caller should allocate a
41 PARALLEL of the appropriate size, copy the initial entries, and call
42 add_clobbers (found in insn-emit.c) to fill in the CLOBBERs.
43
44 This program also generates the function `split_insns',
45 which returns 0 if the rtl could not be split, or
46 it returns the split rtl in a SEQUENCE. */
47
48#include <stdio.h>
49#include "hconfig.h"
50#include "rtl.h"
51#include "obstack.h"
52
53static struct obstack obstack;
54struct obstack *rtl_obstack = &obstack;
55
56#define obstack_chunk_alloc xmalloc
57#define obstack_chunk_free free
58
59extern void free ();
60extern rtx read_rtx ();
61
62/* Data structure for a listhead of decision trees. The alternatives
63 to a node are kept in a doublely-linked list so we can easily add nodes
64 to the proper place when merging. */
65
66struct decision_head { struct decision *first, *last; };
67
68/* Data structure for decision tree for recognizing
69 legitimate instructions. */
70
71struct decision
72{
73 int number; /* Node number, used for labels */
74 char *position; /* String denoting position in pattern */
75 RTX_CODE code; /* Code to test for or UNKNOWN to suppress */
76 char ignore_code; /* If non-zero, need not test code */
77 char ignore_mode; /* If non-zero, need not test mode */
78 int veclen; /* Length of vector, if nonzero */
79 enum machine_mode mode; /* Machine mode of node */
80 char enforce_mode; /* If non-zero, test `mode' */
81 char retest_code, retest_mode; /* See write_tree_1 */
82 int test_elt_zero_int; /* Nonzero if should test XINT (rtl, 0) */
83 int elt_zero_int; /* Required value for XINT (rtl, 0) */
84 int test_elt_one_int; /* Nonzero if should test XINT (rtl, 1) */
85 int elt_one_int; /* Required value for XINT (rtl, 1) */
86 int test_elt_zero_wide; /* Nonzero if should test XWINT (rtl, 0) */
87 HOST_WIDE_INT elt_zero_wide; /* Required value for XWINT (rtl, 0) */
88 char *tests; /* If nonzero predicate to call */
89 int pred; /* `preds' index of predicate or -1 */
90 char *c_test; /* Additional test to perform */
91 struct decision_head success; /* Nodes to test on success */
92 int insn_code_number; /* Insn number matched, if success */
93 int num_clobbers_to_add; /* Number of CLOBBERs to be added to pattern */
94 struct decision *next; /* Node to test on failure */
95 struct decision *prev; /* Node whose failure tests us */
96 struct decision *afterward; /* Node to test on success, but failure of
97 successor nodes */
98 int opno; /* Operand number, if >= 0 */
99 int dupno; /* Number of operand to compare against */
100 int label_needed; /* Nonzero if label needed when writing tree */
101 int subroutine_number; /* Number of subroutine this node starts */
102};
103
104#define SUBROUTINE_THRESHOLD 50
105
106static int next_subroutine_number;
107
108/* We can write two types of subroutines: One for insn recognition and
109 one to split insns. This defines which type is being written. */
110
111enum routine_type {RECOG, SPLIT};
112
113/* Next available node number for tree nodes. */
114
115static int next_number;
116
117/* Next number to use as an insn_code. */
118
119static int next_insn_code;
120
121/* Similar, but counts all expressions in the MD file; used for
122 error messages. */
123
124static int next_index;
125
126/* Record the highest depth we ever have so we know how many variables to
127 allocate in each subroutine we make. */
128
129static int max_depth;
130\f
131/* This table contains a list of the rtl codes that can possibly match a
132 predicate defined in recog.c. The function `not_both_true' uses it to
133 deduce that there are no expressions that can be matches by certain pairs
134 of tree nodes. Also, if a predicate can match only one code, we can
135 hardwire that code into the node testing the predicate. */
136
137static struct pred_table
138{
139 char *name;
140 RTX_CODE codes[NUM_RTX_CODE];
141} preds[]
142 = {{"general_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
143 LABEL_REF, SUBREG, REG, MEM}},
144#ifdef PREDICATE_CODES
145 PREDICATE_CODES
146#endif
147 {"address_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
148 LABEL_REF, SUBREG, REG, MEM, PLUS, MINUS, MULT}},
149 {"register_operand", {SUBREG, REG}},
150 {"scratch_operand", {SCRATCH, REG}},
151 {"immediate_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
152 LABEL_REF}},
153 {"const_int_operand", {CONST_INT}},
154 {"const_double_operand", {CONST_INT, CONST_DOUBLE}},
155 {"nonimmediate_operand", {SUBREG, REG, MEM}},
156 {"nonmemory_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
157 LABEL_REF, SUBREG, REG}},
158 {"push_operand", {MEM}},
159 {"memory_operand", {SUBREG, MEM}},
160 {"indirect_operand", {SUBREG, MEM}},
161 {"comparison_operation", {EQ, NE, LE, LT, GE, LT, LEU, LTU, GEU, GTU}},
162 {"mode_independent_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
163 LABEL_REF, SUBREG, REG, MEM}}};
164
165#define NUM_KNOWN_PREDS (sizeof preds / sizeof preds[0])
166
167static int try_merge_1 ();
168static int no_same_mode ();
169static int same_codes ();
170static int same_modes ();
171char *xmalloc ();
172static struct decision *add_to_sequence ();
173static struct decision_head merge_trees ();
174static struct decision *try_merge_2 ();
175static void write_subroutine ();
176static void print_code ();
177static void clear_codes ();
178static void clear_modes ();
179static void change_state ();
180static void write_tree ();
181static char *copystr ();
182static char *concat ();
183static void fatal ();
184void fancy_abort ();
185static void mybzero ();
186static void mybcopy ();
187\f
188/* Construct and return a sequence of decisions
189 that will recognize INSN.
190
191 TYPE says what type of routine we are recognizing (RECOG or SPLIT). */
192
193static struct decision_head
194make_insn_sequence (insn, type)
195 rtx insn;
196 enum routine_type type;
197{
198 rtx x;
199 char *c_test = XSTR (insn, type == RECOG ? 2 : 1);
200 struct decision *last;
201 struct decision_head head;
202
203 if (XVECLEN (insn, type == RECOG) == 1)
204 x = XVECEXP (insn, type == RECOG, 0);
205 else
206 {
207 x = rtx_alloc (PARALLEL);
208 XVEC (x, 0) = XVEC (insn, type == RECOG);
209 PUT_MODE (x, VOIDmode);
210 }
211
212 last = add_to_sequence (x, &head, "");
213
214 if (c_test[0])
215 last->c_test = c_test;
216 last->insn_code_number = next_insn_code;
217 last->num_clobbers_to_add = 0;
218
219 /* If this is not a DEFINE_SPLIT and X is a PARALLEL, see if it ends with a
220 group of CLOBBERs of (hard) registers or MATCH_SCRATCHes. If so, set up
221 to recognize the pattern without these CLOBBERs. */
222
223 if (type == RECOG && GET_CODE (x) == PARALLEL)
224 {
225 int i;
226
227 for (i = XVECLEN (x, 0); i > 0; i--)
228 if (GET_CODE (XVECEXP (x, 0, i - 1)) != CLOBBER
229 || (GET_CODE (XEXP (XVECEXP (x, 0, i - 1), 0)) != REG
230 && GET_CODE (XEXP (XVECEXP (x, 0, i - 1), 0)) != MATCH_SCRATCH))
231 break;
232
233 if (i != XVECLEN (x, 0))
234 {
235 rtx new;
236 struct decision_head clobber_head;
237
238 if (i == 1)
239 new = XVECEXP (x, 0, 0);
240 else
241 {
242 int j;
243
244 new = rtx_alloc (PARALLEL);
245 XVEC (new, 0) = rtvec_alloc (i);
246 for (j = i - 1; j >= 0; j--)
247 XVECEXP (new, 0, j) = XVECEXP (x, 0, j);
248 }
249
250 last = add_to_sequence (new, &clobber_head, "");
251
252 if (c_test[0])
253 last->c_test = c_test;
254 last->insn_code_number = next_insn_code;
255 last->num_clobbers_to_add = XVECLEN (x, 0) - i;
256
257 head = merge_trees (head, clobber_head);
258 }
259 }
260
261 next_insn_code++;
262
263 if (type == SPLIT)
264 /* Define the subroutine we will call below and emit in genemit. */
265 printf ("extern rtx gen_split_%d ();\n", last->insn_code_number);
266
267 return head;
268}
269\f
270/* Create a chain of nodes to verify that an rtl expression matches
271 PATTERN.
272
273 LAST is a pointer to the listhead in the previous node in the chain (or
274 in the calling function, for the first node).
275
276 POSITION is the string representing the current position in the insn.
277
278 A pointer to the final node in the chain is returned. */
279
280static struct decision *
281add_to_sequence (pattern, last, position)
282 rtx pattern;
283 struct decision_head *last;
284 char *position;
285{
286 register RTX_CODE code;
287 register struct decision *new
288 = (struct decision *) xmalloc (sizeof (struct decision));
289 struct decision *this;
290 char *newpos;
291 register char *fmt;
292 register int i;
293 int depth = strlen (position);
294 int len;
295
296 if (depth > max_depth)
297 max_depth = depth;
298
299 new->number = next_number++;
300 new->position = copystr (position);
301 new->ignore_code = 0;
302 new->ignore_mode = 0;
303 new->enforce_mode = 1;
304 new->retest_code = new->retest_mode = 0;
305 new->veclen = 0;
306 new->test_elt_zero_int = 0;
307 new->test_elt_one_int = 0;
308 new->test_elt_zero_wide = 0;
309 new->elt_zero_int = 0;
310 new->elt_one_int = 0;
311 new->elt_zero_wide = 0;
312 new->tests = 0;
313 new->pred = -1;
314 new->c_test = 0;
315 new->success.first = new->success.last = 0;
316 new->insn_code_number = -1;
317 new->num_clobbers_to_add = 0;
318 new->next = 0;
319 new->prev = 0;
320 new->afterward = 0;
321 new->opno = -1;
322 new->dupno = -1;
323 new->label_needed = 0;
324 new->subroutine_number = 0;
325
326 this = new;
327
328 last->first = last->last = new;
329
330 newpos = (char *) alloca (depth + 2);
331 strcpy (newpos, position);
332 newpos[depth + 1] = 0;
333
334 restart:
335
336 new->mode = GET_MODE (pattern);
337 new->code = code = GET_CODE (pattern);
338
339 switch (code)
340 {
341 case MATCH_OPERAND:
342 case MATCH_SCRATCH:
343 case MATCH_OPERATOR:
344 case MATCH_PARALLEL:
345 new->opno = XINT (pattern, 0);
346 new->code = (code == MATCH_PARALLEL ? PARALLEL : UNKNOWN);
347 new->enforce_mode = 0;
348
349 if (code == MATCH_SCRATCH)
350 new->tests = "scratch_operand";
351 else
352 new->tests = XSTR (pattern, 1);
353
354 if (*new->tests == 0)
355 new->tests = 0;
356
357 /* See if we know about this predicate and save its number. If we do,
358 and it only accepts one code, note that fact. The predicate
359 `const_int_operand' only tests for a CONST_INT, so if we do so we
360 can avoid calling it at all.
361
362 Finally, if we know that the predicate does not allow CONST_INT, we
363 know that the only way the predicate can match is if the modes match
364 (here we use the kluge of relying on the fact that "address_operand"
365 accepts CONST_INT; otherwise, it would have to be a special case),
366 so we can test the mode (but we need not). This fact should
367 considerably simplify the generated code. */
368
369 if (new->tests)
370 for (i = 0; i < NUM_KNOWN_PREDS; i++)
371 if (! strcmp (preds[i].name, new->tests))
372 {
373 int j;
374 int allows_const_int = 0;
375
376 new->pred = i;
377
378 if (preds[i].codes[1] == 0 && new->code == UNKNOWN)
379 {
380 new->code = preds[i].codes[0];
381 if (! strcmp ("const_int_operand", new->tests))
382 new->tests = 0, new->pred = -1;
383 }
384
385 for (j = 0; j < NUM_RTX_CODE && preds[i].codes[j] != 0; j++)
386 if (preds[i].codes[j] == CONST_INT)
387 allows_const_int = 1;
388
389 if (! allows_const_int)
390 new->enforce_mode = new->ignore_mode= 1;
391
392 break;
393 }
394
395 if (code == MATCH_OPERATOR || code == MATCH_PARALLEL)
396 {
397 for (i = 0; i < XVECLEN (pattern, 2); i++)
398 {
399 newpos[depth] = i + (code == MATCH_OPERATOR ? '0': 'a');
400 new = add_to_sequence (XVECEXP (pattern, 2, i),
401 &new->success, newpos);
402 }
403 }
404
405 return new;
406
407 case MATCH_OP_DUP:
408 new->opno = XINT (pattern, 0);
409 new->dupno = XINT (pattern, 0);
410 new->code = UNKNOWN;
411 new->tests = 0;
412 for (i = 0; i < XVECLEN (pattern, 1); i++)
413 {
414 newpos[depth] = i + '0';
415 new = add_to_sequence (XVECEXP (pattern, 1, i),
416 &new->success, newpos);
417 }
418 return new;
419
420 case MATCH_DUP:
421 case MATCH_PAR_DUP:
422 new->dupno = XINT (pattern, 0);
423 new->code = UNKNOWN;
424 new->enforce_mode = 0;
425 return new;
426
427 case ADDRESS:
428 pattern = XEXP (pattern, 0);
429 goto restart;
430
431 case SET:
432 newpos[depth] = '0';
433 new = add_to_sequence (SET_DEST (pattern), &new->success, newpos);
434 this->success.first->enforce_mode = 1;
435 newpos[depth] = '1';
436 new = add_to_sequence (SET_SRC (pattern), &new->success, newpos);
437
438 /* If set are setting CC0 from anything other than a COMPARE, we
439 must enforce the mode so that we do not produce ambiguous insns. */
440 if (GET_CODE (SET_DEST (pattern)) == CC0
441 && GET_CODE (SET_SRC (pattern)) != COMPARE)
442 this->success.first->enforce_mode = 1;
443 return new;
444
445 case SIGN_EXTEND:
446 case ZERO_EXTEND:
447 case STRICT_LOW_PART:
448 newpos[depth] = '0';
449 new = add_to_sequence (XEXP (pattern, 0), &new->success, newpos);
450 this->success.first->enforce_mode = 1;
451 return new;
452
453 case SUBREG:
454 this->test_elt_one_int = 1;
455 this->elt_one_int = XINT (pattern, 1);
456 newpos[depth] = '0';
457 new = add_to_sequence (XEXP (pattern, 0), &new->success, newpos);
458 this->success.first->enforce_mode = 1;
459 return new;
460
461 case ZERO_EXTRACT:
462 case SIGN_EXTRACT:
463 newpos[depth] = '0';
464 new = add_to_sequence (XEXP (pattern, 0), &new->success, newpos);
465 this->success.first->enforce_mode = 1;
466 newpos[depth] = '1';
467 new = add_to_sequence (XEXP (pattern, 1), &new->success, newpos);
468 newpos[depth] = '2';
469 new = add_to_sequence (XEXP (pattern, 2), &new->success, newpos);
470 return new;
471
472 case EQ: case NE: case LE: case LT: case GE: case GT:
473 case LEU: case LTU: case GEU: case GTU:
474 /* If the first operand is (cc0), we don't have to do anything
475 special. */
476 if (GET_CODE (XEXP (pattern, 0)) == CC0)
477 break;
478
479 /* ... fall through ... */
480
481 case COMPARE:
482 /* Enforce the mode on the first operand to avoid ambiguous insns. */
483 newpos[depth] = '0';
484 new = add_to_sequence (XEXP (pattern, 0), &new->success, newpos);
485 this->success.first->enforce_mode = 1;
486 newpos[depth] = '1';
487 new = add_to_sequence (XEXP (pattern, 1), &new->success, newpos);
488 return new;
489 }
490
491 fmt = GET_RTX_FORMAT (code);
492 len = GET_RTX_LENGTH (code);
493 for (i = 0; i < len; i++)
494 {
495 newpos[depth] = '0' + i;
496 if (fmt[i] == 'e' || fmt[i] == 'u')
497 new = add_to_sequence (XEXP (pattern, i), &new->success, newpos);
498 else if (fmt[i] == 'i' && i == 0)
499 {
500 this->test_elt_zero_int = 1;
501 this->elt_zero_int = XINT (pattern, i);
502 }
503 else if (fmt[i] == 'i' && i == 1)
504 {
505 this->test_elt_one_int = 1;
506 this->elt_one_int = XINT (pattern, i);
507 }
508 else if (fmt[i] == 'w' && i == 0)
509 {
510 this->test_elt_zero_wide = 1;
511 this->elt_zero_wide = XWINT (pattern, i);
512 }
513 else if (fmt[i] == 'E')
514 {
515 register int j;
516 /* We do not handle a vector appearing as other than
517 the first item, just because nothing uses them
518 and by handling only the special case
519 we can use one element in newpos for either
520 the item number of a subexpression
521 or the element number in a vector. */
522 if (i != 0)
523 abort ();
524 this->veclen = XVECLEN (pattern, i);
525 for (j = 0; j < XVECLEN (pattern, i); j++)
526 {
527 newpos[depth] = 'a' + j;
528 new = add_to_sequence (XVECEXP (pattern, i, j),
529 &new->success, newpos);
530 }
531 }
532 else if (fmt[i] != '0')
533 abort ();
534 }
535 return new;
536}
537\f
538/* Return 1 if we can prove that there is no RTL that can match both
539 D1 and D2. Otherwise, return 0 (it may be that there is an RTL that
540 can match both or just that we couldn't prove there wasn't such an RTL).
541
542 TOPLEVEL is non-zero if we are to only look at the top level and not
543 recursively descend. */
544
545static int
546not_both_true (d1, d2, toplevel)
547 struct decision *d1, *d2;
548 int toplevel;
549{
550 struct decision *p1, *p2;
551
552 /* If they are both to test modes and the modes are different, they aren't
553 both true. Similarly for codes, integer elements, and vector lengths. */
554
555 if ((d1->enforce_mode && d2->enforce_mode
556 && d1->mode != VOIDmode && d2->mode != VOIDmode && d1->mode != d2->mode)
557 || (d1->code != UNKNOWN && d2->code != UNKNOWN && d1->code != d2->code)
558 || (d1->test_elt_zero_int && d2->test_elt_zero_int
559 && d1->elt_zero_int != d2->elt_zero_int)
560 || (d1->test_elt_one_int && d2->test_elt_one_int
561 && d1->elt_one_int != d2->elt_one_int)
562 || (d1->test_elt_zero_wide && d2->test_elt_zero_wide
563 && d1->elt_zero_wide != d2->elt_zero_wide)
564 || (d1->veclen && d2->veclen && d1->veclen != d2->veclen))
565 return 1;
566
567 /* If either is a wild-card MATCH_OPERAND without a predicate, it can match
568 absolutely anything, so we can't say that no intersection is possible.
569 This case is detected by having a zero TESTS field with a code of
570 UNKNOWN. */
571
572 if ((d1->tests == 0 && d1->code == UNKNOWN)
573 || (d2->tests == 0 && d2->code == UNKNOWN))
574 return 0;
575
576 /* If either has a predicate that we know something about, set things up so
577 that D1 is the one that always has a known predicate. Then see if they
578 have any codes in common. */
579
580 if (d1->pred >= 0 || d2->pred >= 0)
581 {
582 int i, j;
583
584 if (d2->pred >= 0)
585 p1 = d1, d1 = d2, d2 = p1;
586
587 /* If D2 tests an explicit code, see if it is in the list of valid codes
588 for D1's predicate. */
589 if (d2->code != UNKNOWN)
590 {
591 for (i = 0; i < NUM_RTX_CODE && preds[d1->pred].codes[i] != 0; i++)
592 if (preds[d1->pred].codes[i] == d2->code)
593 break;
594
595 if (preds[d1->pred].codes[i] == 0)
596 return 1;
597 }
598
599 /* Otherwise see if the predicates have any codes in common. */
600
601 else if (d2->pred >= 0)
602 {
603 for (i = 0; i < NUM_RTX_CODE && preds[d1->pred].codes[i] != 0; i++)
604 {
605 for (j = 0; j < NUM_RTX_CODE; j++)
606 if (preds[d2->pred].codes[j] == 0
607 || preds[d2->pred].codes[j] == preds[d1->pred].codes[i])
608 break;
609
610 if (preds[d2->pred].codes[j] != 0)
611 break;
612 }
613
614 if (preds[d1->pred].codes[i] == 0)
615 return 1;
616 }
617 }
618
619 /* If we got here, we can't prove that D1 and D2 cannot both be true.
620 If we are only to check the top level, return 0. Otherwise, see if
621 we can prove that all choices in both successors are mutually
622 exclusive. If either does not have any successors, we can't prove
623 they can't both be true. */
624
625 if (toplevel || d1->success.first == 0 || d2->success.first == 0)
626 return 0;
627
628 for (p1 = d1->success.first; p1; p1 = p1->next)
629 for (p2 = d2->success.first; p2; p2 = p2->next)
630 if (! not_both_true (p1, p2, 0))
631 return 0;
632
633 return 1;
634}
635\f
636/* Assuming that we can reorder all the alternatives at a specific point in
637 the tree (see discussion in merge_trees), we would prefer an ordering of
638 nodes where groups of consecutive nodes test the same mode and, within each
639 mode, groups of nodes test the same code. With this order, we can
640 construct nested switch statements, the inner one to test the code and
641 the outer one to test the mode.
642
643 We would like to list nodes testing for specific codes before those
644 that test predicates to avoid unnecessary function calls. Similarly,
645 tests for specific modes should precede nodes that allow any mode.
646
647 This function returns the merit (with 0 being the best) of inserting
648 a test involving the specified MODE and CODE after node P. If P is
649 zero, we are to determine the merit of inserting the test at the front
650 of the list. */
651
652static int
653position_merit (p, mode, code)
654 struct decision *p;
655 enum machine_mode mode;
656 RTX_CODE code;
657{
658 enum machine_mode p_mode;
659
660 /* The only time the front of the list is anything other than the worst
661 position is if we are testing a mode that isn't VOIDmode. */
662 if (p == 0)
663 return mode == VOIDmode ? 3 : 2;
664
665 p_mode = p->enforce_mode ? p->mode : VOIDmode;
666
667 /* The best case is if the codes and modes both match. */
668 if (p_mode == mode && p->code== code)
669 return 0;
670
671 /* If the codes don't match, the next best case is if the modes match.
672 In that case, the best position for this node depends on whether
673 we are testing for a specific code or not. If we are, the best place
674 is after some other test for an explicit code and our mode or after
675 the last test in the previous mode if every test in our mode is for
676 an unknown code.
677
678 If we are testing for UNKNOWN, then the next best case is at the end of
679 our mode. */
680
681 if ((code != UNKNOWN
682 && ((p_mode == mode && p->code != UNKNOWN)
683 || (p_mode != mode && p->next
684 && (p->next->enforce_mode ? p->next->mode : VOIDmode) == mode
685 && (p->next->code == UNKNOWN))))
686 || (code == UNKNOWN && p_mode == mode
687 && (p->next == 0
688 || (p->next->enforce_mode ? p->next->mode : VOIDmode) != mode)))
689 return 1;
690
691 /* The third best case occurs when nothing is testing MODE. If MODE
692 is not VOIDmode, then the third best case is after something of any
693 mode that is not VOIDmode. If we are testing VOIDmode, the third best
694 place is the end of the list. */
695
696 if (p_mode != mode
697 && ((mode != VOIDmode && p_mode != VOIDmode)
698 || (mode == VOIDmode && p->next == 0)))
699 return 2;
700
701 /* Otherwise, we have the worst case. */
702 return 3;
703}
704\f
705/* Merge two decision tree listheads OLDH and ADDH,
706 modifying OLDH destructively, and return the merged tree. */
707
708static struct decision_head
709merge_trees (oldh, addh)
710 register struct decision_head oldh, addh;
711{
712 struct decision *add, *next;
713
714 if (oldh.first == 0)
715 return addh;
716
717 if (addh.first == 0)
718 return oldh;
719
720 /* If we are adding things at different positions, something is wrong. */
721 if (strcmp (oldh.first->position, addh.first->position))
722 abort ();
723
724 for (add = addh.first; add; add = next)
725 {
726 enum machine_mode add_mode = add->enforce_mode ? add->mode : VOIDmode;
727 struct decision *best_position = 0;
728 int best_merit = 4;
729 struct decision *old;
730
731 next = add->next;
732
733 /* The semantics of pattern matching state that the tests are done in
734 the order given in the MD file so that if an insn matches two
735 patterns, the first one will be used. However, in practice, most,
736 if not all, patterns are unambiguous so that their order is
737 independent. In that case, we can merge identical tests and
738 group all similar modes and codes together.
739
740 Scan starting from the end of OLDH until we reach a point
741 where we reach the head of the list or where we pass a pattern
742 that could also be true if NEW is true. If we find an identical
743 pattern, we can merge them. Also, record the last node that tests
744 the same code and mode and the last one that tests just the same mode.
745
746 If we have no match, place NEW after the closest match we found. */
747
748 for (old = oldh.last; old; old = old->prev)
749 {
750 int our_merit;
751
752 /* If we don't have anything to test except an additional test,
753 do not consider the two nodes equal. If we did, the test below
754 would cause an infinite recursion. */
755 if (old->tests == 0 && old->test_elt_zero_int == 0
756 && old->test_elt_one_int == 0 && old->veclen == 0
757 && old->test_elt_zero_wide == 0
758 && old->dupno == -1 && old->mode == VOIDmode
759 && old->code == UNKNOWN
760 && (old->c_test != 0 || add->c_test != 0))
761 ;
762
763 else if ((old->tests == add->tests
764 || (old->pred >= 0 && old->pred == add->pred)
765 || (old->tests && add->tests
766 && !strcmp (old->tests, add->tests)))
767 && old->test_elt_zero_int == add->test_elt_zero_int
768 && old->elt_zero_int == add->elt_zero_int
769 && old->test_elt_one_int == add->test_elt_one_int
770 && old->elt_one_int == add->elt_one_int
771 && old->test_elt_zero_wide == add->test_elt_zero_wide
772 && old->elt_zero_wide == add->elt_zero_wide
773 && old->veclen == add->veclen
774 && old->dupno == add->dupno
775 && old->opno == add->opno
776 && old->code == add->code
777 && old->enforce_mode == add->enforce_mode
778 && old->mode == add->mode)
779 {
780 /* If the additional test is not the same, split both nodes
781 into nodes that just contain all things tested before the
782 additional test and nodes that contain the additional test
783 and actions when it is true. This optimization is important
784 because of the case where we have almost identical patterns
785 with different tests on target flags. */
786
787 if (old->c_test != add->c_test
788 && ! (old->c_test && add->c_test
789 && !strcmp (old->c_test, add->c_test)))
790 {
791 if (old->insn_code_number >= 0 || old->opno >= 0)
792 {
793 struct decision *split
794 = (struct decision *) xmalloc (sizeof (struct decision));
795
796 mybcopy (old, split, sizeof (struct decision));
797
798 old->success.first = old->success.last = split;
799 old->c_test = 0;
800 old->opno = -1;
801 old->insn_code_number = -1;
802 old->num_clobbers_to_add = 0;
803
804 split->number = next_number++;
805 split->next = split->prev = 0;
806 split->mode = VOIDmode;
807 split->code = UNKNOWN;
808 split->veclen = 0;
809 split->test_elt_zero_int = 0;
810 split->test_elt_one_int = 0;
811 split->test_elt_zero_wide = 0;
812 split->tests = 0;
813 split->pred = -1;
814 split->dupno = -1;
815 }
816
817 if (add->insn_code_number >= 0 || add->opno >= 0)
818 {
819 struct decision *split
820 = (struct decision *) xmalloc (sizeof (struct decision));
821
822 mybcopy (add, split, sizeof (struct decision));
823
824 add->success.first = add->success.last = split;
825 add->c_test = 0;
826 add->opno = -1;
827 add->insn_code_number = -1;
828 add->num_clobbers_to_add = 0;
829
830 split->number = next_number++;
831 split->next = split->prev = 0;
832 split->mode = VOIDmode;
833 split->code = UNKNOWN;
834 split->veclen = 0;
835 split->test_elt_zero_int = 0;
836 split->test_elt_one_int = 0;
837 split->test_elt_zero_wide = 0;
838 split->tests = 0;
839 split->pred = -1;
840 split->dupno = -1;
841 }
842 }
843
844 if (old->insn_code_number >= 0 && add->insn_code_number >= 0)
845 {
846 /* If one node is for a normal insn and the second is
847 for the base insn with clobbers stripped off, the
848 second node should be ignored. */
849
850 if (old->num_clobbers_to_add == 0
851 && add->num_clobbers_to_add > 0)
852 /* Nothing to do here. */
853 ;
854 else if (old->num_clobbers_to_add > 0
855 && add->num_clobbers_to_add == 0)
856 {
857 /* In this case, replace OLD with ADD. */
858 old->insn_code_number = add->insn_code_number;
859 old->num_clobbers_to_add = 0;
860 }
861 else
862 fatal ("Two actions at one point in tree");
863 }
864
865 if (old->insn_code_number == -1)
866 old->insn_code_number = add->insn_code_number;
867 old->success = merge_trees (old->success, add->success);
868 add = 0;
869 break;
870 }
871
872 /* Unless we have already found the best possible insert point,
873 see if this position is better. If so, record it. */
874
875 if (best_merit != 0
876 && ((our_merit = position_merit (old, add_mode, add->code))
877 < best_merit))
878 best_merit = our_merit, best_position = old;
879
880 if (! not_both_true (old, add, 0))
881 break;
882 }
883
884 /* If ADD was duplicate, we are done. */
885 if (add == 0)
886 continue;
887
888 /* Otherwise, find the best place to insert ADD. Normally this is
889 BEST_POSITION. However, if we went all the way to the top of
890 the list, it might be better to insert at the top. */
891
892 if (best_position == 0)
893 abort ();
894
895 if (old == 0
896 && position_merit (NULL_PTR, add_mode, add->code) < best_merit)
897 {
898 add->prev = 0;
899 add->next = oldh.first;
900 oldh.first->prev = add;
901 oldh.first = add;
902 }
903
904 else
905 {
906 add->prev = best_position;
907 add->next = best_position->next;
908 best_position->next = add;
909 if (best_position == oldh.last)
910 oldh.last = add;
911 else
912 add->next->prev = add;
913 }
914 }
915
916 return oldh;
917}
918\f
919/* Count the number of subnodes of HEAD. If the number is high enough,
920 make the first node in HEAD start a separate subroutine in the C code
921 that is generated.
922
923 TYPE gives the type of routine we are writing.
924
925 INITIAL is non-zero if this is the highest-level node. We never write
926 it out here. */
927
928static int
929break_out_subroutines (head, type, initial)
930 struct decision_head head;
931 enum routine_type type;
932 int initial;
933{
934 int size = 0;
935 struct decision *node, *sub;
936
937 for (sub = head.first; sub; sub = sub->next)
938 size += 1 + break_out_subroutines (sub->success, type, 0);
939
940 if (size > SUBROUTINE_THRESHOLD && ! initial)
941 {
942 head.first->subroutine_number = ++next_subroutine_number;
943 write_subroutine (head.first, type);
944 size = 1;
945 }
946 return size;
947}
948\f
949/* Write out a subroutine of type TYPE to do comparisons starting at node
950 TREE. */
951
952static void
953write_subroutine (tree, type)
954 struct decision *tree;
955 enum routine_type type;
956{
957 int i;
958
959 if (type == SPLIT)
960 printf ("rtx\nsplit");
961 else
962 printf ("int\nrecog");
963
964 if (tree != 0 && tree->subroutine_number > 0)
965 printf ("_%d", tree->subroutine_number);
966 else if (type == SPLIT)
967 printf ("_insns");
968
969 printf (" (x0, insn");
970 if (type == RECOG)
971 printf (", pnum_clobbers");
972
973 printf (")\n");
974 printf (" register rtx x0;\n rtx insn;\n");
975 if (type == RECOG)
976 printf (" int *pnum_clobbers;\n");
977
978 printf ("{\n");
979 printf (" register rtx *ro = &recog_operand[0];\n");
980
981 printf (" register rtx ");
982 for (i = 1; i < max_depth; i++)
983 printf ("x%d, ", i);
984
985 printf ("x%d;\n", max_depth);
986 printf (" %s tem;\n", type == SPLIT ? "rtx" : "int");
987 write_tree (tree, "", NULL_PTR, 1, type);
988 printf (" ret0: return %d;\n}\n\n", type == SPLIT ? 0 : -1);
989}
990\f
991/* This table is used to indent the recog_* functions when we are inside
992 conditions or switch statements. We only support small indentations
993 and always indent at least two spaces. */
994
995static char *indents[]
996 = {" ", " ", " ", " ", " ", " ", " ", " ",
997 "\t", "\t ", "\t ", "\t ", "\t ", "\t ", "\t ",
998 "\t\t", "\t\t ", "\t\t ", "\t\t ", "\t\t ", "\t\t "};
999
1000/* Write out C code to perform the decisions in TREE for a subroutine of
1001 type TYPE. If all of the choices fail, branch to node AFTERWARD, if
1002 non-zero, otherwise return. PREVPOS is the position of the node that
1003 branched to this test.
1004
1005 When we merged all alternatives, we tried to set up a convenient order.
1006 Specifically, tests involving the same mode are all grouped together,
1007 followed by a group that does not contain a mode test. Within each group
1008 of the same mode, we also group tests with the same code, followed by a
1009 group that does not test a code.
1010
1011 Occasionally, we cannot arbitrarily reorder the tests so that multiple
1012 sequence of groups as described above are present.
1013
1014 We generate two nested switch statements, the outer statement for
1015 testing modes, and the inner switch for testing RTX codes. It is
1016 not worth optimizing cases when only a small number of modes or
1017 codes is tested, since the compiler can do that when compiling the
1018 resulting function. We do check for when every test is the same mode
1019 or code. */
1020
1021void
1022write_tree_1 (tree, prevpos, afterward, type)
1023 struct decision *tree;
1024 char *prevpos;
1025 struct decision *afterward;
1026 enum routine_type type;
1027{
1028 register struct decision *p, *p1;
1029 register int depth = tree ? strlen (tree->position) : 0;
1030 enum machine_mode switch_mode = VOIDmode;
1031 RTX_CODE switch_code = UNKNOWN;
1032 int uncond = 0;
1033 char modemap[NUM_MACHINE_MODES];
1034 char codemap[NUM_RTX_CODE];
1035 int indent = 2;
1036 int i;
1037
1038 /* One tricky area is what is the exact state when we branch to a
1039 node's label. There are two cases where we branch: when looking at
1040 successors to a node, or when a set of tests fails.
1041
1042 In the former case, we are always branching to the first node in a
1043 decision list and we want all required tests to be performed. We
1044 put the labels for such nodes in front of any switch or test statements.
1045 These branches are done without updating the position to that of the
1046 target node.
1047
1048 In the latter case, we are branching to a node that is not the first
1049 node in a decision list. We have already checked that it is possible
1050 for both the node we originally tested at this level and the node we
1051 are branching to to be both match some pattern. That means that they
1052 usually will be testing the same mode and code. So it is normally safe
1053 for such labels to be inside switch statements, since the tests done
1054 by virtue of arriving at that label will usually already have been
1055 done. The exception is a branch from a node that does not test a
1056 mode or code to one that does. In such cases, we set the `retest_mode'
1057 or `retest_code' flags. That will ensure that we start a new switch
1058 at that position and put the label before the switch.
1059
1060 The branches in the latter case must set the position to that of the
1061 target node. */
1062
1063
1064 printf ("\n");
1065 if (tree && tree->subroutine_number == 0)
1066 {
1067 printf (" L%d:\n", tree->number);
1068 tree->label_needed = 0;
1069 }
1070
1071 if (tree)
1072 {
1073 change_state (prevpos, tree->position, 2);
1074 prevpos = tree->position;
1075 }
1076
1077 for (p = tree; p; p = p->next)
1078 {
1079 enum machine_mode mode = p->enforce_mode ? p->mode : VOIDmode;
1080 int need_bracket;
1081 int wrote_bracket = 0;
1082 int inner_indent;
1083
1084 if (p->success.first == 0 && p->insn_code_number < 0)
1085 abort ();
1086
1087 /* Find the next alternative to p that might be true when p is true.
1088 Test that one next if p's successors fail. */
1089
1090 for (p1 = p->next; p1 && not_both_true (p, p1, 1); p1 = p1->next)
1091 ;
1092 p->afterward = p1;
1093
1094 if (p1)
1095 {
1096 if (mode == VOIDmode && p1->enforce_mode && p1->mode != VOIDmode)
1097 p1->retest_mode = 1;
1098 if (p->code == UNKNOWN && p1->code != UNKNOWN)
1099 p1->retest_code = 1;
1100 p1->label_needed = 1;
1101 }
1102
1103 /* If we have a different code or mode than the last node and
1104 are in a switch on codes, we must either end the switch or
1105 go to another case. We must also end the switch if this
1106 node needs a label and to retest either the mode or code. */
1107
1108 if (switch_code != UNKNOWN
1109 && (switch_code != p->code || switch_mode != mode
1110 || (p->label_needed && (p->retest_mode || p->retest_code))))
1111 {
1112 enum rtx_code code = p->code;
1113
1114 /* If P is testing a predicate that we know about and we haven't
1115 seen any of the codes that are valid for the predicate, we
1116 can write a series of "case" statement, one for each possible
1117 code. Since we are already in a switch, these redundant tests
1118 are very cheap and will reduce the number of predicate called. */
1119
1120 if (p->pred >= 0)
1121 {
1122 for (i = 0; i < NUM_RTX_CODE && preds[p->pred].codes[i] != 0; i++)
1123 if (codemap[(int) preds[p->pred].codes[i]])
1124 break;
1125
1126 if (preds[p->pred].codes[i] == 0)
1127 code = MATCH_OPERAND;
1128 }
1129
1130 if (code == UNKNOWN || codemap[(int) code]
1131 || switch_mode != mode
1132 || (p->label_needed && (p->retest_mode || p->retest_code)))
1133 {
1134 printf ("%s}\n", indents[indent - 2]);
1135 switch_code = UNKNOWN;
1136 indent -= 4;
1137 }
1138 else
1139 {
1140 if (! uncond)
1141 printf ("%sbreak;\n", indents[indent]);
1142
1143 if (code == MATCH_OPERAND)
1144 {
1145 for (i = 0; i < NUM_RTX_CODE && preds[p->pred].codes[i] != 0; i++)
1146 {
1147 printf ("%scase ", indents[indent - 2]);
1148 print_code (preds[p->pred].codes[i]);
1149 printf (":\n");
1150 codemap[(int) preds[p->pred].codes[i]] = 1;
1151 }
1152 }
1153 else
1154 {
1155 printf ("%scase ", indents[indent - 2]);
1156 print_code (code);
1157 printf (":\n");
1158 codemap[(int) p->code] = 1;
1159 }
1160
1161 switch_code = code;
1162 }
1163
1164 uncond = 0;
1165 }
1166
1167 /* If we were previously in a switch on modes and now have a different
1168 mode, end at least the case, and maybe end the switch if we are
1169 not testing a mode or testing a mode whose case we already saw. */
1170
1171 if (switch_mode != VOIDmode
1172 && (switch_mode != mode || (p->label_needed && p->retest_mode)))
1173 {
1174 if (mode == VOIDmode || modemap[(int) mode]
1175 || (p->label_needed && p->retest_mode))
1176 {
1177 printf ("%s}\n", indents[indent - 2]);
1178 switch_mode = VOIDmode;
1179 indent -= 4;
1180 }
1181 else
1182 {
1183 if (! uncond)
1184 printf (" break;\n");
1185 printf (" case %smode:\n", GET_MODE_NAME (mode));
1186 switch_mode = mode;
1187 modemap[(int) mode] = 1;
1188 }
1189
1190 uncond = 0;
1191 }
1192
1193 /* If we are about to write dead code, something went wrong. */
1194 if (! p->label_needed && uncond)
1195 abort ();
1196
1197 /* If we need a label and we will want to retest the mode or code at
1198 that label, write the label now. We have already ensured that
1199 things will be valid for the test. */
1200
1201 if (p->label_needed && (p->retest_mode || p->retest_code))
1202 {
1203 printf ("%sL%d:\n", indents[indent - 2], p->number);
1204 p->label_needed = 0;
1205 }
1206
1207 uncond = 0;
1208
1209 /* If we are not in any switches, see if we can shortcut things
1210 by checking for identical modes and codes. */
1211
1212 if (switch_mode == VOIDmode && switch_code == UNKNOWN)
1213 {
1214 /* If p and its alternatives all want the same mode,
1215 reject all others at once, first, then ignore the mode. */
1216
1217 if (mode != VOIDmode && p->next && same_modes (p, mode))
1218 {
1219 printf (" if (GET_MODE (x%d) != %smode)\n",
1220 depth, GET_MODE_NAME (p->mode));
1221 if (afterward)
1222 {
1223 printf (" {\n");
1224 change_state (p->position, afterward->position, 6);
1225 printf (" goto L%d;\n }\n", afterward->number);
1226 }
1227 else
1228 printf (" goto ret0;\n");
1229 clear_modes (p);
1230 mode = VOIDmode;
1231 }
1232
1233 /* If p and its alternatives all want the same code,
1234 reject all others at once, first, then ignore the code. */
1235
1236 if (p->code != UNKNOWN && p->next && same_codes (p, p->code))
1237 {
1238 printf (" if (GET_CODE (x%d) != ", depth);
1239 print_code (p->code);
1240 printf (")\n");
1241 if (afterward)
1242 {
1243 printf (" {\n");
1244 change_state (p->position, afterward->position, indent + 4);
1245 printf (" goto L%d;\n }\n", afterward->number);
1246 }
1247 else
1248 printf (" goto ret0;\n");
1249 clear_codes (p);
1250 }
1251 }
1252
1253 /* If we are not in a mode switch and we are testing for a specific
1254 mode, start a mode switch unless we have just one node or the next
1255 node is not testing a mode (we have already tested for the case of
1256 more than one mode, but all of the same mode). */
1257
1258 if (switch_mode == VOIDmode && mode != VOIDmode && p->next != 0
1259 && p->next->enforce_mode && p->next->mode != VOIDmode)
1260 {
1261 mybzero (modemap, sizeof modemap);
1262 printf ("%sswitch (GET_MODE (x%d))\n", indents[indent], depth);
1263 printf ("%s{\n", indents[indent + 2]);
1264 indent += 4;
1265 printf ("%scase %smode:\n", indents[indent - 2],
1266 GET_MODE_NAME (mode));
1267 modemap[(int) mode] = 1;
1268 switch_mode = mode;
1269 }
1270
1271 /* Similarly for testing codes. */
1272
1273 if (switch_code == UNKNOWN && p->code != UNKNOWN && ! p->ignore_code
1274 && p->next != 0 && p->next->code != UNKNOWN)
1275 {
1276 mybzero (codemap, sizeof codemap);
1277 printf ("%sswitch (GET_CODE (x%d))\n", indents[indent], depth);
1278 printf ("%s{\n", indents[indent + 2]);
1279 indent += 4;
1280 printf ("%scase ", indents[indent - 2]);
1281 print_code (p->code);
1282 printf (":\n");
1283 codemap[(int) p->code] = 1;
1284 switch_code = p->code;
1285 }
1286
1287 /* Now that most mode and code tests have been done, we can write out
1288 a label for an inner node, if we haven't already. */
1289 if (p->label_needed)
1290 printf ("%sL%d:\n", indents[indent - 2], p->number);
1291
1292 inner_indent = indent;
1293
1294 /* The only way we can have to do a mode or code test here is if
1295 this node needs such a test but is the only node to be tested.
1296 In that case, we won't have started a switch. Note that this is
1297 the only way the switch and test modes can disagree. */
1298
1299 if ((mode != switch_mode && ! p->ignore_mode)
1300 || (p->code != switch_code && p->code != UNKNOWN && ! p->ignore_code)
1301 || p->test_elt_zero_int || p->test_elt_one_int
1302 || p->test_elt_zero_wide || p->veclen
1303 || p->dupno >= 0 || p->tests || p->num_clobbers_to_add)
1304 {
1305 printf ("%sif (", indents[indent]);
1306
1307 if (mode != switch_mode && ! p->ignore_mode)
1308 printf ("GET_MODE (x%d) == %smode && ",
1309 depth, GET_MODE_NAME (mode));
1310 if (p->code != switch_code && p->code != UNKNOWN && ! p->ignore_code)
1311 {
1312 printf ("GET_CODE (x%d) == ", depth);
1313 print_code (p->code);
1314 printf (" && ");
1315 }
1316
1317 if (p->test_elt_zero_int)
1318 printf ("XINT (x%d, 0) == %d && ", depth, p->elt_zero_int);
1319 if (p->test_elt_one_int)
1320 printf ("XINT (x%d, 1) == %d && ", depth, p->elt_one_int);
1321 if (p->test_elt_zero_wide)
1322 printf (
1323#if HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_INT
1324 "XWINT (x%d, 0) == %d && ",
1325#else
1326 "XWINT (x%d, 0) == %ld && ",
1327#endif
1328 depth, p->elt_zero_wide);
1329 if (p->veclen)
1330 printf ("XVECLEN (x%d, 0) == %d && ", depth, p->veclen);
1331 if (p->dupno >= 0)
1332 printf ("rtx_equal_p (x%d, ro[%d]) && ", depth, p->dupno);
1333 if (p->num_clobbers_to_add)
1334 printf ("pnum_clobbers != 0 && ");
1335 if (p->tests)
1336 printf ("%s (x%d, %smode)", p->tests, depth,
1337 GET_MODE_NAME (p->mode));
1338 else
1339 printf ("1");
1340
1341 printf (")\n");
1342 inner_indent += 2;
1343 }
1344 else
1345 uncond = 1;
1346
1347 need_bracket = ! uncond;
1348
1349 if (p->opno >= 0)
1350 {
1351 if (need_bracket)
1352 {
1353 printf ("%s{\n", indents[inner_indent]);
1354 inner_indent += 2;
1355 wrote_bracket = 1;
1356 need_bracket = 0;
1357 }
1358
1359 printf ("%sro[%d] = x%d;\n", indents[inner_indent], p->opno, depth);
1360 }
1361
1362 if (p->c_test)
1363 {
1364 printf ("%sif (%s)\n", indents[inner_indent], p->c_test);
1365 inner_indent += 2;
1366 uncond = 0;
1367 need_bracket = 1;
1368 }
1369
1370 if (p->insn_code_number >= 0)
1371 {
1372 if (type == SPLIT)
1373 printf ("%sreturn gen_split_%d (operands);\n",
1374 indents[inner_indent], p->insn_code_number);
1375 else
1376 {
1377 if (p->num_clobbers_to_add)
1378 {
1379 if (need_bracket)
1380 {
1381 printf ("%s{\n", indents[inner_indent]);
1382 inner_indent += 2;
1383 }
1384
1385 printf ("%s*pnum_clobbers = %d;\n",
1386 indents[inner_indent], p->num_clobbers_to_add);
1387 printf ("%sreturn %d;\n",
1388 indents[inner_indent], p->insn_code_number);
1389
1390 if (need_bracket)
1391 {
1392 inner_indent -= 2;
1393 printf ("%s}\n", indents[inner_indent]);
1394 }
1395 }
1396 else
1397 printf ("%sreturn %d;\n",
1398 indents[inner_indent], p->insn_code_number);
1399 }
1400 }
1401 else
1402 printf ("%sgoto L%d;\n", indents[inner_indent],
1403 p->success.first->number);
1404
1405 if (wrote_bracket)
1406 printf ("%s}\n", indents[inner_indent - 2]);
1407 }
1408
1409 /* We have now tested all alternatives. End any switches we have open
1410 and branch to the alternative node unless we know that we can't fall
1411 through to the branch. */
1412
1413 if (switch_code != UNKNOWN)
1414 {
1415 printf ("%s}\n", indents[indent - 2]);
1416 indent -= 4;
1417 uncond = 0;
1418 }
1419
1420 if (switch_mode != VOIDmode)
1421 {
1422 printf ("%s}\n", indents[indent - 2]);
1423 indent -= 4;
1424 uncond = 0;
1425 }
1426
1427 if (indent != 2)
1428 abort ();
1429
1430 if (uncond)
1431 return;
1432
1433 if (afterward)
1434 {
1435 change_state (prevpos, afterward->position, 2);
1436 printf (" goto L%d;\n", afterward->number);
1437 }
1438 else
1439 printf (" goto ret0;\n");
1440}
1441
1442static void
1443print_code (code)
1444 RTX_CODE code;
1445{
1446 register char *p1;
1447 for (p1 = GET_RTX_NAME (code); *p1; p1++)
1448 {
1449 if (*p1 >= 'a' && *p1 <= 'z')
1450 putchar (*p1 + 'A' - 'a');
1451 else
1452 putchar (*p1);
1453 }
1454}
1455
1456static int
1457same_codes (p, code)
1458 register struct decision *p;
1459 register RTX_CODE code;
1460{
1461 for (; p; p = p->next)
1462 if (p->code != code)
1463 return 0;
1464
1465 return 1;
1466}
1467
1468static void
1469clear_codes (p)
1470 register struct decision *p;
1471{
1472 for (; p; p = p->next)
1473 p->ignore_code = 1;
1474}
1475
1476static int
1477same_modes (p, mode)
1478 register struct decision *p;
1479 register enum machine_mode mode;
1480{
1481 for (; p; p = p->next)
1482 if ((p->enforce_mode ? p->mode : VOIDmode) != mode)
1483 return 0;
1484
1485 return 1;
1486}
1487
1488static void
1489clear_modes (p)
1490 register struct decision *p;
1491{
1492 for (; p; p = p->next)
1493 p->enforce_mode = 0;
1494}
1495\f
1496/* Write out the decision tree starting at TREE for a subroutine of type TYPE.
1497
1498 PREVPOS is the position at the node that branched to this node.
1499
1500 INITIAL is nonzero if this is the first node we are writing in a subroutine.
1501
1502 If all nodes are false, branch to the node AFTERWARD. */
1503
1504static void
1505write_tree (tree, prevpos, afterward, initial, type)
1506 struct decision *tree;
1507 char *prevpos;
1508 struct decision *afterward;
1509 int initial;
1510 enum routine_type type;
1511{
1512 register struct decision *p;
1513 char *name_prefix = (type == SPLIT ? "split" : "recog");
1514 char *call_suffix = (type == SPLIT ? "" : ", pnum_clobbers");
1515
1516 if (! initial && tree->subroutine_number > 0)
1517 {
1518 printf (" L%d:\n", tree->number);
1519
1520 if (afterward)
1521 {
1522 printf (" tem = %s_%d (x0, insn%s);\n",
1523 name_prefix, tree->subroutine_number, call_suffix);
1524 if (type == SPLIT)
1525 printf (" if (tem != 0) return tem;\n");
1526 else
1527 printf (" if (tem >= 0) return tem;\n");
1528 change_state (tree->position, afterward->position, 2);
1529 printf (" goto L%d;\n", afterward->number);
1530 }
1531 else
1532 printf (" return %s_%d (x0, insn%s);\n",
1533 name_prefix, tree->subroutine_number, call_suffix);
1534 return;
1535 }
1536
1537 write_tree_1 (tree, prevpos, afterward, type);
1538
1539 for (p = tree; p; p = p->next)
1540 if (p->success.first)
1541 write_tree (p->success.first, p->position,
1542 p->afterward ? p->afterward : afterward, 0, type);
1543}
1544
1545\f
1546/* Assuming that the state of argument is denoted by OLDPOS, take whatever
1547 actions are necessary to move to NEWPOS.
1548
1549 INDENT says how many blanks to place at the front of lines. */
1550
1551static void
1552change_state (oldpos, newpos, indent)
1553 char *oldpos;
1554 char *newpos;
1555 int indent;
1556{
1557 int odepth = strlen (oldpos);
1558 int depth = odepth;
1559 int ndepth = strlen (newpos);
1560
1561 /* Pop up as many levels as necessary. */
1562
1563 while (strncmp (oldpos, newpos, depth))
1564 --depth;
1565
1566 /* Go down to desired level. */
1567
1568 while (depth < ndepth)
1569 {
1570 if (newpos[depth] >= 'a' && newpos[depth] <= 'z')
1571 printf ("%sx%d = XVECEXP (x%d, 0, %d);\n",
1572 indents[indent], depth + 1, depth, newpos[depth] - 'a');
1573 else
1574 printf ("%sx%d = XEXP (x%d, %c);\n",
1575 indents[indent], depth + 1, depth, newpos[depth]);
1576 ++depth;
1577 }
1578}
1579\f
1580static char *
1581copystr (s1)
1582 char *s1;
1583{
1584 register char *tem;
1585
1586 if (s1 == 0)
1587 return 0;
1588
1589 tem = (char *) xmalloc (strlen (s1) + 1);
1590 strcpy (tem, s1);
1591
1592 return tem;
1593}
1594
1595static void
1596mybzero (b, length)
1597 register char *b;
1598 register unsigned length;
1599{
1600 while (length-- > 0)
1601 *b++ = 0;
1602}
1603
1604static void
1605mybcopy (in, out, length)
1606 register char *in, *out;
1607 register unsigned length;
1608{
1609 while (length-- > 0)
1610 *out++ = *in++;
1611}
1612
1613static char *
1614concat (s1, s2)
1615 char *s1, *s2;
1616{
1617 register char *tem;
1618
1619 if (s1 == 0)
1620 return s2;
1621 if (s2 == 0)
1622 return s1;
1623
1624 tem = (char *) xmalloc (strlen (s1) + strlen (s2) + 2);
1625 strcpy (tem, s1);
1626 strcat (tem, " ");
1627 strcat (tem, s2);
1628
1629 return tem;
1630}
1631
1632char *
1633xrealloc (ptr, size)
1634 char *ptr;
1635 unsigned size;
1636{
1637 char *result = (char *) realloc (ptr, size);
1638 if (!result)
1639 fatal ("virtual memory exhausted");
1640 return result;
1641}
1642
1643char *
1644xmalloc (size)
1645 unsigned size;
1646{
1647 register char *val = (char *) malloc (size);
1648
1649 if (val == 0)
1650 fatal ("virtual memory exhausted");
1651 return val;
1652}
1653
1654static void
1655fatal (s, a1, a2)
1656 char *s;
1657{
1658 fprintf (stderr, "genrecog: ");
1659 fprintf (stderr, s, a1, a2);
1660 fprintf (stderr, "\n");
1661 fprintf (stderr, "after %d definitions\n", next_index);
1662 exit (FATAL_EXIT_CODE);
1663}
1664
1665/* More 'friendly' abort that prints the line and file.
1666 config.h can #define abort fancy_abort if you like that sort of thing. */
1667
1668void
1669fancy_abort ()
1670{
1671 fatal ("Internal gcc abort.");
1672}
1673\f
1674int
1675main (argc, argv)
1676 int argc;
1677 char **argv;
1678{
1679 rtx desc;
1680 struct decision_head recog_tree;
1681 struct decision_head split_tree;
1682 FILE *infile;
1683 register int c;
1684
1685 obstack_init (rtl_obstack);
1686 recog_tree.first = recog_tree.last = split_tree.first = split_tree.last = 0;
1687
1688 if (argc <= 1)
1689 fatal ("No input file name.");
1690
1691 infile = fopen (argv[1], "r");
1692 if (infile == 0)
1693 {
1694 perror (argv[1]);
1695 exit (FATAL_EXIT_CODE);
1696 }
1697
1698 init_rtl ();
1699 next_insn_code = 0;
1700 next_index = 0;
1701
1702 printf ("/* Generated automatically by the program `genrecog'\n\
1703from the machine description file `md'. */\n\n");
1704
1705 printf ("#include \"config.h\"\n");
1706 printf ("#include \"rtl.h\"\n");
1707 printf ("#include \"insn-config.h\"\n");
1708 printf ("#include \"recog.h\"\n");
1709 printf ("#include \"real.h\"\n");
1710 printf ("#include \"output.h\"\n");
1711 printf ("#include \"flags.h\"\n");
1712 printf ("\n");
1713
1714 /* Read the machine description. */
1715
1716 while (1)
1717 {
1718 c = read_skip_spaces (infile);
1719 if (c == EOF)
1720 break;
1721 ungetc (c, infile);
1722
1723 desc = read_rtx (infile);
1724 if (GET_CODE (desc) == DEFINE_INSN)
1725 recog_tree = merge_trees (recog_tree,
1726 make_insn_sequence (desc, RECOG));
1727 else if (GET_CODE (desc) == DEFINE_SPLIT)
1728 split_tree = merge_trees (split_tree,
1729 make_insn_sequence (desc, SPLIT));
1730 if (GET_CODE (desc) == DEFINE_PEEPHOLE
1731 || GET_CODE (desc) == DEFINE_EXPAND)
1732 next_insn_code++;
1733 next_index++;
1734 }
1735
1736 printf ("\n\
1737/* `recog' contains a decision tree\n\
1738 that recognizes whether the rtx X0 is a valid instruction.\n\
1739\n\
1740 recog returns -1 if the rtx is not valid.\n\
1741 If the rtx is valid, recog returns a nonnegative number\n\
1742 which is the insn code number for the pattern that matched.\n");
1743 printf (" This is the same as the order in the machine description of\n\
1744 the entry that matched. This number can be used as an index into\n\
1745 entry that matched. This number can be used as an index into various\n\
1746 insn_* tables, such as insn_templates, insn_outfun, and insn_n_operands\n\
1747 (found in insn-output.c).\n\n");
1748 printf (" The third argument to recog is an optional pointer to an int.\n\
1749 If present, recog will accept a pattern if it matches except for\n\
1750 missing CLOBBER expressions at the end. In that case, the value\n\
1751 pointed to by the optional pointer will be set to the number of\n\
1752 CLOBBERs that need to be added (it should be initialized to zero by\n\
1753 the caller). If it is set nonzero, the caller should allocate a\n\
1754 PARALLEL of the appropriate size, copy the initial entries, and call\n\
1755 add_clobbers (found in insn-emit.c) to fill in the CLOBBERs.");
1756
1757 if (split_tree.first)
1758 printf ("\n\n The function split_insns returns 0 if the rtl could not\n\
1759 be split or the split rtl in a SEQUENCE if it can be.");
1760
1761 printf ("*/\n\n");
1762
1763 printf ("rtx recog_operand[MAX_RECOG_OPERANDS];\n\n");
1764 printf ("rtx *recog_operand_loc[MAX_RECOG_OPERANDS];\n\n");
1765 printf ("rtx *recog_dup_loc[MAX_DUP_OPERANDS];\n\n");
1766 printf ("char recog_dup_num[MAX_DUP_OPERANDS];\n\n");
1767 printf ("#define operands recog_operand\n\n");
1768
1769 next_subroutine_number = 0;
1770 break_out_subroutines (recog_tree, RECOG, 1);
1771 write_subroutine (recog_tree.first, RECOG);
1772
1773 next_subroutine_number = 0;
1774 break_out_subroutines (split_tree, SPLIT, 1);
1775 write_subroutine (split_tree.first, SPLIT);
1776
1777 fflush (stdout);
1778 exit (ferror (stdout) != 0 ? FATAL_EXIT_CODE : SUCCESS_EXIT_CODE);
1779 /* NOTREACHED */
1780 return 0;
1781}