make ANSI C compatible
[unix-history] / usr / src / sys / vax / uba / uda.c
CommitLineData
da7c5cc6 1/*
23a28927
KB
2 * Copyright (c) 1987 Regents of the University of California.
3 * All rights reserved. The Berkeley software License Agreement
4 * specifies the terms and conditions for redistribution.
5 *
73870029 6 * @(#)uda.c 7.10 (Berkeley) %G%
23a28927 7 *
da7c5cc6
KM
8 */
9
23a28927
KB
10/*
11 * UDA50/MSCP device driver
12 */
13
14#define POLLSTATS
15
16/*
17 * TODO
18 * write bad block forwarding code
2f961121 19 */
db738443
BJ
20
21#include "ra.h"
23a28927 22
e4b02d7d 23#if NUDA > 0
23a28927 24
db738443 25/*
23a28927
KB
26 * CONFIGURATION OPTIONS. The next three defines are tunable -- tune away!
27 *
28 * COMPAT_42 enables 4.2/4.3 compatibility (label mapping)
db738443 29 *
23a28927
KB
30 * NRSPL2 and NCMDL2 control the number of response and command
31 * packets respectively. They may be any value from 0 to 7, though
32 * setting them higher than 5 is unlikely to be of any value.
33 * If you get warnings about your command ring being too small,
34 * try increasing the values by one.
35 *
36 * MAXUNIT controls the maximum unit number (number of drives per
37 * controller) we are prepared to handle.
38 *
39 * DEFAULT_BURST must be at least 1.
db738443 40 */
23a28927
KB
41#define COMPAT_42
42
43#define NRSPL2 5 /* log2 number of response packets */
44#define NCMDL2 5 /* log2 number of command packets */
45#define MAXUNIT 8 /* maximum allowed unit number */
46#define DEFAULT_BURST 4 /* default DMA burst size */
47
961945a8 48#include "../machine/pte.h"
db738443 49
2f961121
MK
50#include "param.h"
51#include "systm.h"
52#include "buf.h"
53#include "conf.h"
54#include "dir.h"
a4a97100
MK
55#include "file.h"
56#include "ioctl.h"
2f961121
MK
57#include "user.h"
58#include "map.h"
59#include "vm.h"
a4a97100 60#include "dkstat.h"
2f961121 61#include "cmap.h"
a4a97100
MK
62#include "disklabel.h"
63#include "syslog.h"
41a38591 64#include "stat.h"
db738443 65
896962b1 66#include "../vax/cpu.h"
2f961121
MK
67#include "ubareg.h"
68#include "ubavar.h"
bc3a8383 69
23a28927
KB
70#define NRSP (1 << NRSPL2)
71#define NCMD (1 << NCMDL2)
bc3a8383 72
23a28927 73#include "udareg.h"
896962b1 74#include "../vax/mscp.h"
23a28927
KB
75#include "../vax/mscpvar.h"
76#include "../vax/mtpr.h"
db738443 77
23a28927
KB
78/*
79 * Backwards compatibility: Reuse the old names. Should fix someday.
80 */
81#define udaprobe udprobe
82#define udaslave udslave
83#define udaattach udattach
84#define udaopen udopen
85#define udaclose udclose
86#define udastrategy udstrategy
87#define udaread udread
88#define udawrite udwrite
89#define udaioctl udioctl
90#define udareset udreset
91#define udaintr udintr
92#define udadump uddump
93#define udasize udsize
2f961121 94
23a28927
KB
95/*
96 * UDA communications area and MSCP packet pools, per controller.
97 */
98struct uda {
99 struct udaca uda_ca; /* communications area */
100 struct mscp uda_rsp[NRSP]; /* response packets */
101 struct mscp uda_cmd[NCMD]; /* command packets */
db738443
BJ
102} uda[NUDA];
103
23a28927
KB
104/*
105 * Software status, per controller.
106 */
107struct uda_softc {
108 struct uda *sc_uda; /* Unibus address of uda struct */
109 short sc_state; /* UDA50 state; see below */
110 short sc_flags; /* flags; see below */
111 int sc_micro; /* microcode revision */
112 int sc_ivec; /* interrupt vector address */
113 struct mscp_info sc_mi;/* MSCP info (per mscpvar.h) */
114#ifndef POLLSTATS
115 int sc_wticks; /* watchdog timer ticks */
116#else
117 short sc_wticks;
118 short sc_ncmd;
119#endif
120} uda_softc[NUDA];
2f961121 121
23a28927
KB
122#ifdef POLLSTATS
123struct udastats {
124 int ncmd;
125 int cmd[NCMD + 1];
126} udastats = { NCMD + 1 };
127#endif
db738443 128
23a28927
KB
129/*
130 * Controller states
131 */
132#define ST_IDLE 0 /* uninitialised */
133#define ST_STEP1 1 /* in `STEP 1' */
134#define ST_STEP2 2 /* in `STEP 2' */
135#define ST_STEP3 3 /* in `STEP 3' */
136#define ST_SETCHAR 4 /* in `Set Controller Characteristics' */
137#define ST_RUN 5 /* up and running */
a8e727a7 138
23a28927
KB
139/*
140 * Flags
141 */
142#define SC_MAPPED 0x01 /* mapped in Unibus I/O space */
143#define SC_INSTART 0x02 /* inside udastart() */
144#define SC_GRIPED 0x04 /* griped about cmd ring too small */
145#define SC_INSLAVE 0x08 /* inside udaslave() */
146#define SC_DOWAKE 0x10 /* wakeup when ctlr init done */
147#define SC_STARTPOLL 0x20 /* need to initiate polling */
db738443 148
23a28927
KB
149/*
150 * Device to unit number and partition and back
151 */
152#define UNITSHIFT 3
153#define UNITMASK 7
154#define udaunit(dev) (minor(dev) >> UNITSHIFT)
155#define udapart(dev) (minor(dev) & UNITMASK)
156#define udaminor(u, p) (((u) << UNITSHIFT) | (p))
db738443 157
2f961121 158/*
23a28927 159 * Drive status, per drive
2f961121 160 */
23a28927
KB
161struct ra_info {
162 daddr_t ra_dsize; /* size in sectors */
163 u_long ra_type; /* drive type */
164 u_long ra_mediaid; /* media id */
165 int ra_state; /* open/closed state */
166 struct ra_geom { /* geometry information */
167 u_short rg_nsectors; /* sectors/track */
168 u_short rg_ngroups; /* track groups */
169 u_short rg_ngpc; /* groups/cylinder */
170 u_short rg_ntracks; /* ngroups*ngpc */
171 u_short rg_ncyl; /* ra_dsize/ntracks/nsectors */
172#ifdef notyet
173 u_short rg_rctsize; /* size of rct */
174 u_short rg_rbns; /* replacement blocks per track */
175 u_short rg_nrct; /* number of rct copies */
176#endif
177 } ra_geom;
178 u_long ra_openpart; /* partitions open */
179 u_long ra_bopenpart; /* block partitions open */
180 u_long ra_copenpart; /* character partitions open */
181} ra_info[NRA];
2f961121 182
a4a97100
MK
183/*
184 * Software state, per drive
185 */
186#define CLOSED 0
187#define WANTOPEN 1
188#define RDLABEL 2
189#define OPEN 3
190#define OPENRAW 4
2f961121 191
23a28927
KB
192/*
193 * Definition of the driver for autoconf.
194 */
195int udaprobe(), udaslave(), udaattach(), udadgo(), udaintr();
196struct uba_ctlr *udaminfo[NUDA];
197struct uba_device *udadinfo[NRA];
198struct disklabel udalabel[NRA];
199
200u_short udastd[] = { 0772150, 0772550, 0777550, 0 };
201struct uba_driver udadriver =
202 { udaprobe, udaslave, udaattach, udadgo, udastd, "ra", udadinfo, "uda",
203 udaminfo };
204
205/*
206 * More driver definitions, for generic MSCP code.
207 */
208int udadgram(), udactlrdone(), udaunconf(), udaiodone();
209int udaonline(), udagotstatus(), udaioerror(), udareplace(), udabb();
210
211struct buf udautab[NRA]; /* per drive transfer queue */
212
213struct mscp_driver udamscpdriver =
214 { MAXUNIT, NRA, UNITSHIFT, udautab, udadinfo,
215 udadgram, udactlrdone, udaunconf, udaiodone,
216 udaonline, udagotstatus, udareplace, udaioerror, udabb,
217 "uda", "ra" };
218
219/*
220 * Miscellaneous private variables.
221 */
222char udasr_bits[] = UDASR_BITS;
223
224struct uba_device *udaip[NUDA][MAXUNIT];
225 /* inverting pointers: ctlr & unit => Unibus
226 device pointer */
227
228int udaburst[NUDA] = { 0 }; /* burst size, per UDA50, zero => default;
229 in data space so patchable via adb */
2f961121 230
23a28927
KB
231struct mscp udaslavereply; /* get unit status response packet, set
232 for udaslave by udaunconf, via udaintr */
2f961121 233
23a28927
KB
234static struct uba_ctlr *probeum;/* this is a hack---autoconf should pass ctlr
235 info to slave routine; instead, we remember
236 the last ctlr argument to probe */
db738443 237
23a28927 238int udawstart, udawatch(); /* watchdog timer */
db738443 239
23a28927
KB
240/*
241 * Externals
242 */
243int wakeup();
244int hz;
245
246/*
247 * Poke at a supposed UDA50 to see if it is there.
248 * This routine duplicates some of the code in udainit() only
249 * because autoconf has not set up the right information yet.
250 * We have to do everything `by hand'.
251 */
252udaprobe(reg, ctlr, um)
db738443
BJ
253 caddr_t reg;
254 int ctlr;
23a28927 255 struct uba_ctlr *um;
db738443
BJ
256{
257 register int br, cvec;
23a28927
KB
258 register struct uda_softc *sc;
259 register struct udadevice *udaddr;
260 register struct mscp_info *mi;
261 int timeout, tries;
2f961121 262
23a28927
KB
263#ifdef VAX750
264 /*
265 * The UDA50 wants to share BDPs on 750s, but not on 780s or
266 * 8600s. (730s have no BDPs anyway.) Toward this end, we
267 * here set the `keep bdp' flag in the per-driver information
268 * if this is a 750. (We just need to do it once, but it is
269 * easiest to do it now, for each UDA50.)
270 */
271 if (cpu == VAX_750)
272 udadriver.ud_keepbdp = 1;
273#endif
db738443 274
23a28927 275 probeum = um; /* remember for udaslave() */
db738443 276#ifdef lint
23a28927 277 br = 0; cvec = br; br = cvec; udaintr(0);
db738443 278#endif
23a28927
KB
279 /*
280 * Set up the controller-specific generic MSCP driver info.
281 * Note that this should really be done in the (nonexistent)
282 * controller attach routine.
283 */
284 sc = &uda_softc[ctlr];
285 mi = &sc->sc_mi;
286 mi->mi_md = &udamscpdriver;
287 mi->mi_ctlr = um->um_ctlr;
288 mi->mi_tab = &um->um_tab;
289 mi->mi_ip = udaip[ctlr];
290 mi->mi_cmd.mri_size = NCMD;
291 mi->mi_cmd.mri_desc = uda[ctlr].uda_ca.ca_cmddsc;
292 mi->mi_cmd.mri_ring = uda[ctlr].uda_cmd;
293 mi->mi_rsp.mri_size = NRSP;
294 mi->mi_rsp.mri_desc = uda[ctlr].uda_ca.ca_rspdsc;
295 mi->mi_rsp.mri_ring = uda[ctlr].uda_rsp;
296 mi->mi_wtab.av_forw = mi->mi_wtab.av_back = &mi->mi_wtab;
2f961121 297
23a28927
KB
298 /*
299 * More controller specific variables. Again, this should
300 * be in the controller attach routine.
301 */
302 if (udaburst[ctlr] == 0)
303 udaburst[ctlr] = DEFAULT_BURST;
304
305 /*
306 * Get an interrupt vector. Note that even if the controller
307 * does not respond, we keep the vector. This is not a serious
308 * problem; but it would be easily fixed if we had a controller
309 * attach routine. Sigh.
310 */
2f961121 311 sc->sc_ivec = (uba_hd[numuba].uh_lastiv -= 4);
23a28927 312 udaddr = (struct udadevice *) reg;
2f961121 313
23a28927
KB
314 /*
315 * Initialise the controller (partially). The UDA50 programmer's
316 * manual states that if initialisation fails, it should be retried
317 * at least once, but after a second failure the port should be
318 * considered `down'; it also mentions that the controller should
319 * initialise within ten seconds. Or so I hear; I have not seen
320 * this manual myself.
321 */
322 tries = 0;
323again:
324 udaddr->udaip = 0; /* start initialisation */
325 timeout = todr() + 1000; /* timeout in 10 seconds */
326 while ((udaddr->udasa & UDA_STEP1) == 0)
327 if (todr() > timeout)
328 goto bad;
329 udaddr->udasa = UDA_ERR | (NCMDL2 << 11) | (NRSPL2 << 8) | UDA_IE |
330 (sc->sc_ivec >> 2);
331 while ((udaddr->udasa & UDA_STEP2) == 0)
332 if (todr() > timeout)
333 goto bad;
334
335 /* should have interrupted by now */
336#ifdef VAX630
337 if (cpu == VAX_630)
338 br = 0x15; /* screwy interrupt structure */
339#endif
340 return (sizeof (struct udadevice));
341bad:
342 if (++tries < 2)
343 goto again;
344 return (0);
db738443
BJ
345}
346
23a28927
KB
347/*
348 * Find a slave. We allow wildcard slave numbers (something autoconf
349 * is not really prepared to deal with); and we need to know the
350 * controller number to talk to the UDA. For the latter, we keep
351 * track of the last controller probed, since a controller probe
352 * immediately precedes all slave probes for that controller. For the
353 * former, we simply put the unit number into ui->ui_slave after we
354 * have found one.
355 *
356 * Note that by the time udaslave is called, the interrupt vector
357 * for the UDA50 has been set up (so that udaunconf() will be called).
358 */
359udaslave(ui, reg)
360 register struct uba_device *ui;
db738443
BJ
361 caddr_t reg;
362{
23a28927
KB
363 register struct uba_ctlr *um = probeum;
364 register struct mscp *mp;
365 register struct uda_softc *sc;
366 register struct ra_info *ra;
367 int next = 0, type, timeout, tries, i;
368
369#ifdef lint
370 i = 0; i = i;
371#endif
372 /*
373 * Make sure the controller is fully initialised, by waiting
374 * for it if necessary.
375 */
376 sc = &uda_softc[um->um_ctlr];
377 if (sc->sc_state == ST_RUN)
378 goto findunit;
379 tries = 0;
380again:
381 if (udainit(ui->ui_ctlr))
382 return (0);
383 timeout = todr() + 1000; /* 10 seconds */
384 while (todr() < timeout)
385 if (sc->sc_state == ST_RUN) /* made it */
386 goto findunit;
387 if (++tries < 2)
388 goto again;
389 printf("uda%d: controller hung\n", um->um_ctlr);
390 return (0);
391
392 /*
393 * The controller is all set; go find the unit. Grab an
394 * MSCP packet and send out a Get Unit Status command, with
395 * the `next unit' modifier if we are looking for a generic
396 * unit. We set the `in slave' flag so that udaunconf()
397 * knows to copy the response to `udaslavereply'.
398 */
399findunit:
400 udaslavereply.mscp_opcode = 0;
401 sc->sc_flags |= SC_INSLAVE;
402 if ((mp = mscp_getcp(&sc->sc_mi, MSCP_DONTWAIT)) == NULL)
403 panic("udaslave"); /* `cannot happen' */
404 mp->mscp_opcode = M_OP_GETUNITST;
405 if (ui->ui_slave == '?') {
406 mp->mscp_unit = next;
407 mp->mscp_modifier = M_GUM_NEXTUNIT;
408 } else {
409 mp->mscp_unit = ui->ui_slave;
410 mp->mscp_modifier = 0;
411 }
412 *mp->mscp_addr |= MSCP_OWN | MSCP_INT;
413 i = ((struct udadevice *) reg)->udaip; /* initiate polling */
414 mp = &udaslavereply;
415 timeout = todr() + 1000;
416 while (todr() < timeout)
417 if (mp->mscp_opcode)
418 goto gotit;
419 printf("uda%d: no response to Get Unit Status request\n",
420 um->um_ctlr);
421 sc->sc_flags &= ~SC_INSLAVE;
422 return (0);
423
424gotit:
425 sc->sc_flags &= ~SC_INSLAVE;
426
427 /*
428 * Got a slave response. If the unit is there, use it.
429 */
430 switch (mp->mscp_status & M_ST_MASK) {
431
432 case M_ST_SUCCESS: /* worked */
433 case M_ST_AVAILABLE: /* found another drive */
434 break; /* use it */
435
436 case M_ST_OFFLINE:
437 /*
438 * Figure out why it is off line. It may be because
439 * it is nonexistent, or because it is spun down, or
440 * for some other reason.
441 */
442 switch (mp->mscp_status & ~M_ST_MASK) {
443
444 case M_OFFLINE_UNKNOWN:
445 /*
446 * No such drive, and there are none with
447 * higher unit numbers either, if we are
448 * using M_GUM_NEXTUNIT.
449 */
450 return (0);
451
452 case M_OFFLINE_UNMOUNTED:
453 /*
454 * The drive is not spun up. Use it anyway.
455 *
456 * N.B.: this seems to be a common occurrance
457 * after a power failure. The first attempt
458 * to bring it on line seems to spin it up
459 * (and thus takes several minutes). Perhaps
460 * we should note here that the on-line may
461 * take longer than usual.
462 */
463 break;
464
465 default:
466 /*
467 * In service, or something else equally unusable.
468 */
469 printf("uda%d: unit %d off line: ", um->um_ctlr,
470 mp->mscp_unit);
471 mscp_printevent(mp);
472 goto try_another;
473 }
474 break;
2f961121 475
23a28927
KB
476 default:
477 printf("uda%d: unable to get unit status: ", um->um_ctlr);
478 mscp_printevent(mp);
479 return (0);
480 }
2f961121 481
23a28927
KB
482 /*
483 * Does this ever happen? What (if anything) does it mean?
484 */
485 if (mp->mscp_unit < next) {
486 printf("uda%d: unit %d, next %d\n",
487 um->um_ctlr, mp->mscp_unit, next);
488 return (0);
2f961121 489 }
23a28927
KB
490
491 if (mp->mscp_unit >= MAXUNIT) {
492 printf("uda%d: cannot handle unit number %d (max is %d)\n",
493 um->um_ctlr, mp->mscp_unit, MAXUNIT - 1);
494 return (0);
2f961121 495 }
23a28927
KB
496
497 /*
498 * See if we already handle this drive.
499 * (Only likely if ui->ui_slave=='?'.)
500 */
501 if (udaip[um->um_ctlr][mp->mscp_unit] != NULL) {
502try_another:
503 if (ui->ui_slave != '?')
504 return (0);
505 next = mp->mscp_unit + 1;
506 goto findunit;
2f961121 507 }
23a28927
KB
508
509 /*
510 * Voila!
511 */
512 uda_rasave(ui->ui_unit, mp, 0);
513 ui->ui_flags = 0; /* not on line, nor anything else */
514 ui->ui_slave = mp->mscp_unit;
515 return (1);
db738443
BJ
516}
517
23a28927
KB
518/*
519 * Attach a found slave. Make sure the watchdog timer is running.
520 * If this disk is being profiled, fill in the `mspw' value (used by
521 * what?). Set up the inverting pointer, and attempt to bring the
522 * drive on line and read its label.
523 */
524udaattach(ui)
db738443
BJ
525 register struct uba_device *ui;
526{
23a28927
KB
527 register int unit = ui->ui_unit;
528
529 if (udawstart == 0) {
530 timeout(udawatch, (caddr_t) 0, hz);
531 udawstart++;
2f961121 532 }
23a28927
KB
533 if (ui->ui_dk >= 0)
534 dk_mspw[ui->ui_dk] = 1.0 / (60 * 31 * 256); /* approx */
535 udaip[ui->ui_ctlr][ui->ui_slave] = ui;
536 if (uda_rainit(ui, 0))
7e9892e0 537 printf("ra%d: offline\n", unit);
23a28927
KB
538 else {
539 printf("ra%d: %s\n", unit, udalabel[unit].d_typename);
540#ifdef notyet
541 addswap(makedev(UDADEVNUM, udaminor(unit, 0)), &udalabel[unit]);
9418508d 542#endif
a4a97100 543 }
23a28927
KB
544}
545
546/*
547 * Initialise a UDA50. Return true iff something goes wrong.
548 */
549udainit(ctlr)
550 int ctlr;
551{
552 register struct uda_softc *sc;
553 register struct udadevice *udaddr;
554 struct uba_ctlr *um;
555 int timo, ubinfo;
556
557 sc = &uda_softc[ctlr];
558 um = udaminfo[ctlr];
559 if ((sc->sc_flags & SC_MAPPED) == 0) {
560 /*
561 * Map the communication area and command and
562 * response packets into Unibus space.
563 */
564 ubinfo = uballoc(um->um_ubanum, (caddr_t) &uda[ctlr],
565 sizeof (struct uda), UBA_CANTWAIT);
566 if (ubinfo == 0) {
567 printf("uda%d: uballoc map failed\n", ctlr);
568 return (-1);
569 }
570 sc->sc_uda = (struct uda *) (ubinfo & 0x3ffff);
571 sc->sc_flags |= SC_MAPPED;
572 }
573
a4a97100 574 /*
23a28927
KB
575 * While we are thinking about it, reset the next command
576 * and response indicies.
a4a97100 577 */
23a28927
KB
578 sc->sc_mi.mi_cmd.mri_next = 0;
579 sc->sc_mi.mi_rsp.mri_next = 0;
580
581 /*
582 * Start up the hardware initialisation sequence.
583 */
584#define STEP0MASK (UDA_ERR | UDA_STEP4 | UDA_STEP3 | UDA_STEP2 | \
585 UDA_STEP1 | UDA_NV)
586
587 sc->sc_state = ST_IDLE; /* in case init fails */
588 udaddr = (struct udadevice *) um->um_addr;
589 udaddr->udaip = 0;
590 timo = todr() + 1000;
591 while ((udaddr->udasa & STEP0MASK) == 0) {
592 if (todr() > timo) {
593 printf("uda%d: timeout during init\n", ctlr);
594 return (-1);
595 }
596 }
597 if ((udaddr->udasa & STEP0MASK) != UDA_STEP1) {
598 printf("uda%d: init failed, sa=%b\n", ctlr,
599 udaddr->udasa, udasr_bits);
600 return (-1);
601 }
602
603 /*
604 * Success! Record new state, and start step 1 initialisation.
605 * The rest is done in the interrupt handler.
606 */
607 sc->sc_state = ST_STEP1;
608 udaddr->udasa = UDA_ERR | (NCMDL2 << 11) | (NRSPL2 << 8) | UDA_IE |
609 (sc->sc_ivec >> 2);
610 return (0);
db738443
BJ
611}
612
613/*
23a28927 614 * Open a drive.
db738443 615 */
23a28927
KB
616/*ARGSUSED*/
617udaopen(dev, flag, fmt)
db738443 618 dev_t dev;
41a38591 619 int flag, fmt;
db738443 620{
23a28927 621 register int unit;
db738443
BJ
622 register struct uba_device *ui;
623 register struct uda_softc *sc;
a4a97100
MK
624 register struct disklabel *lp;
625 register struct partition *pp;
bdc2b08d 626 register struct ra_info *ra;
23a28927 627 int s, i, part, mask, error = 0;
a4a97100
MK
628 daddr_t start, end;
629
23a28927
KB
630 /*
631 * Make sure this is a reasonable open request.
632 */
633 unit = udaunit(dev);
634 if (unit >= NRA || (ui = udadinfo[unit]) == 0 || ui->ui_alive == 0)
7da157da 635 return (ENXIO);
23a28927
KB
636
637 /*
638 * Make sure the controller is running, by (re)initialising it if
639 * necessary.
640 */
db738443 641 sc = &uda_softc[ui->ui_ctlr];
530d0032 642 s = spl5();
23a28927
KB
643 if (sc->sc_state != ST_RUN) {
644 if (sc->sc_state == ST_IDLE && udainit(ui->ui_ctlr)) {
645 splx(s);
646 return (EIO);
647 }
648 /*
649 * In case it does not come up, make sure we will be
650 * restarted in 10 seconds. This corresponds to the
651 * 10 second timeouts in udaprobe() and udaslave().
652 */
653 sc->sc_flags |= SC_DOWAKE;
654 timeout(wakeup, (caddr_t) sc, 10 * hz);
655 sleep((caddr_t) sc, PRIBIO);
656 if (sc->sc_state != ST_RUN) {
657 splx(s);
658 printf("uda%d: controller hung\n", ui->ui_ctlr);
7da157da 659 return (EIO);
2f961121 660 }
23a28927 661 untimeout(wakeup, (caddr_t) sc);
2f961121 662 }
23a28927
KB
663
664 /*
665 * Wait for the state to settle
666 */
667 ra = &ra_info[unit];
668 while (ra->ra_state != OPEN && ra->ra_state != OPENRAW &&
669 ra->ra_state != CLOSED)
670 sleep((caddr_t)ra, PZERO + 1);
671
672 /*
673 * If not on line, or we are not sure of the label, reinitialise
674 * the drive.
675 */
676 if ((ui->ui_flags & UNIT_ONLINE) == 0 ||
677 (ra->ra_state != OPEN && ra->ra_state != OPENRAW))
678 error = uda_rainit(ui, flag);
bdc2b08d 679 splx(s);
23a28927
KB
680 if (error)
681 return (error);
a4a97100 682
23a28927
KB
683 part = udapart(dev);
684 lp = &udalabel[unit];
a4a97100
MK
685 if (part >= lp->d_npartitions)
686 return (ENXIO);
687 /*
23a28927
KB
688 * Warn if a partition is opened that overlaps another
689 * already open, unless either is the `raw' partition
690 * (whole disk).
a4a97100 691 */
23a28927
KB
692#define RAWPART 2 /* 'c' partition */ /* XXX */
693 mask = 1 << part;
694 if ((ra->ra_openpart & mask) == 0 && part != RAWPART) {
a4a97100
MK
695 pp = &lp->d_partitions[part];
696 start = pp->p_offset;
697 end = pp->p_offset + pp->p_size;
23a28927
KB
698 for (pp = lp->d_partitions, i = 0;
699 i < lp->d_npartitions; pp++, i++) {
a4a97100 700 if (pp->p_offset + pp->p_size <= start ||
23a28927 701 pp->p_offset >= end || i == RAWPART)
a4a97100 702 continue;
23a28927 703 if (ra->ra_openpart & (1 << i))
a4a97100
MK
704 log(LOG_WARNING,
705 "ra%d%c: overlaps open partition (%c)\n",
23a28927 706 unit, part + 'a', i + 'a');
a4a97100 707 }
db738443 708 }
41a38591
MK
709 switch (fmt) {
710 case S_IFCHR:
23a28927 711 ra->ra_copenpart |= mask;
41a38591
MK
712 break;
713 case S_IFBLK:
23a28927 714 ra->ra_bopenpart |= mask;
41a38591
MK
715 break;
716 }
23a28927 717 ra->ra_openpart |= mask;
7da157da 718 return (0);
db738443
BJ
719}
720
23a28927 721udaclose(dev, flags, fmt)
a4a97100 722 dev_t dev;
41a38591 723 int flags, fmt;
a4a97100 724{
23a28927 725 register int unit = udaunit(dev);
41a38591 726 register struct ra_info *ra = &ra_info[unit];
23a28927 727 int s, mask = (1 << udapart(dev));
a4a97100 728
41a38591
MK
729 switch (fmt) {
730 case S_IFCHR:
23a28927 731 ra->ra_copenpart &= ~mask;
41a38591
MK
732 break;
733 case S_IFBLK:
23a28927 734 ra->ra_bopenpart &= ~mask;
41a38591
MK
735 break;
736 }
23a28927
KB
737 ra->ra_openpart = ra->ra_copenpart | ra->ra_bopenpart;
738
a4a97100 739 /*
23a28927
KB
740 * Should wait for I/O to complete on this partition even if
741 * others are open, but wait for work on blkflush().
a4a97100 742 */
23a28927 743 if (ra->ra_openpart == 0) {
a4a97100 744 s = spl5();
23a28927
KB
745 while (udautab[unit].b_actf)
746 sleep((caddr_t)&udautab[unit], PZERO - 1);
a4a97100 747 splx(s);
23a28927 748 ra->ra_state = CLOSED;
a4a97100 749 }
41a38591 750 return (0);
a4a97100
MK
751}
752
db738443 753/*
23a28927
KB
754 * Initialise a drive. If it is not already, bring it on line,
755 * and set a timeout on it in case it fails to respond.
756 * When on line, read in the pack label.
db738443 757 */
23a28927
KB
758uda_rainit(ui, flags)
759 register struct uba_device *ui;
760 int flags;
db738443 761{
23a28927
KB
762 register struct uda_softc *sc = &uda_softc[ui->ui_ctlr];
763 register struct disklabel *lp;
764 register struct mscp *mp;
765 register int unit = ui->ui_unit;
766 register struct ra_info *ra;
767 char *msg, *readdisklabel();
768 int s, i, udastrategy();
769 extern int cold;
db738443 770
23a28927
KB
771 ra = &ra_info[unit];
772 if ((ui->ui_flags & UNIT_ONLINE) == 0) {
773 mp = mscp_getcp(&sc->sc_mi, MSCP_WAIT);
774 mp->mscp_opcode = M_OP_ONLINE;
775 mp->mscp_unit = ui->ui_slave;
776 mp->mscp_cmdref = (long)&ui->ui_flags;
777 *mp->mscp_addr |= MSCP_OWN | MSCP_INT;
778 ra->ra_state = WANTOPEN;
779 if (!cold)
780 s = spl5();
781 i = ((struct udadevice *)ui->ui_addr)->udaip;
782
783 if (cold) {
784 i = todr() + 1000;
785 while ((ui->ui_flags & UNIT_ONLINE) == 0)
786 if (todr() > i)
787 break;
788 } else {
789 timeout(wakeup, (caddr_t)&ui->ui_flags, 10 * hz);
790 sleep((caddr_t)&ui->ui_flags, PSWP + 1);
791 splx(s);
792 untimeout(wakeup, (caddr_t)&ui->ui_flags);
793 }
794 if (ra->ra_state != OPENRAW) {
795 ra->ra_state = CLOSED;
796 wakeup((caddr_t)ra);
797 return (EIO);
798 }
db738443
BJ
799 }
800
23a28927
KB
801 lp = &udalabel[unit];
802 lp->d_secsize = DEV_BSIZE;
803 lp->d_secperunit = ra->ra_dsize;
804
805 if (flags & O_NDELAY)
806 return (0);
807 ra->ra_state = RDLABEL;
db738443 808 /*
23a28927
KB
809 * Set up default sizes until we have the label, or longer
810 * if there is none. Set secpercyl, as readdisklabel wants
811 * to compute b_cylin (although we do not need it).
db738443 812 */
23a28927
KB
813 lp->d_secpercyl = 1;
814 lp->d_npartitions = 1;
815 lp->d_partitions[0].p_size = lp->d_secperunit;
816 lp->d_partitions[0].p_offset = 0;
2f961121 817
db738443 818 /*
23a28927 819 * Read pack label.
db738443 820 */
23a28927 821 if ((msg = readdisklabel(udaminor(unit, 0), udastrategy, lp)) != NULL) {
bdc2b08d 822 log(LOG_ERR, "ra%d: %s\n", unit, msg);
a4a97100 823#ifdef COMPAT_42
23a28927
KB
824 if (udamaptype(unit, lp))
825 ra->ra_state = OPEN;
a4a97100 826 else
23a28927 827 ra->ra_state = OPENRAW;
9aa87560 828#else
23a28927
KB
829 ra->ra_state = OPENRAW;
830 /* uda_makefakelabel(ra, lp); */
9aa87560 831#endif
41a38591 832 } else
23a28927 833 ra->ra_state = OPEN;
bdc2b08d
MK
834 wakeup((caddr_t)ra);
835 return (0);
a4a97100
MK
836}
837
23a28927
KB
838/*
839 * Copy the geometry information for the given ra from a
840 * GET UNIT STATUS response. If check, see if it changed.
841 */
842uda_rasave(unit, mp, check)
843 int unit;
844 register struct mscp *mp;
845 int check;
846{
847 register struct ra_info *ra = &ra_info[unit];
848
849 if (check && ra->ra_type != mp->mscp_guse.guse_drivetype) {
850 printf("ra%d: changed types! was %d now %d\n",
851 ra->ra_type, mp->mscp_guse.guse_drivetype);
852 ra->ra_state = CLOSED; /* ??? */
853 }
854 ra->ra_type = mp->mscp_guse.guse_drivetype;
855 ra->ra_mediaid = mp->mscp_guse.guse_mediaid;
856 ra->ra_geom.rg_nsectors = mp->mscp_guse.guse_nspt;
857 ra->ra_geom.rg_ngroups = mp->mscp_guse.guse_group;
858 ra->ra_geom.rg_ngpc = mp->mscp_guse.guse_ngpc;
859 ra->ra_geom.rg_ntracks = ra->ra_geom.rg_ngroups * ra->ra_geom.rg_ngpc;
860 /* ra_geom.rg_ncyl cannot be computed until we have ra_dsize */
861#ifdef notyet
862 ra->ra_geom.rg_rctsize = mp->mscp_guse.guse_rctsize;
863 ra->ra_geom.rg_rbns = mp->mscp_guse.guse_nrpt;
864 ra->ra_geom.rg_nrct = mp->mscp_guse.guse_nrct;
865#endif
866}
867
868/*
869 * Queue a transfer request, and if possible, hand it to the controller.
870 *
871 * This routine is broken into two so that the internal version
872 * udastrat1() can be called by the (nonexistent, as yet) bad block
873 * revectoring routine.
874 */
875udastrategy(bp)
db738443
BJ
876 register struct buf *bp;
877{
23a28927 878 register int unit;
db738443 879 register struct uba_device *ui;
a4a97100 880 register struct disklabel *lp;
23a28927
KB
881 register struct ra_info *ra;
882 struct partition *pp;
883 int p;
db738443
BJ
884 daddr_t sz, maxsz;
885
23a28927
KB
886 /*
887 * Make sure this is a reasonable drive to use.
888 */
889 if ((unit = udaunit(bp->b_dev)) >= NRA ||
890 (ui = udadinfo[unit]) == NULL || ui->ui_alive == 0 ||
891 (ra = &ra_info[unit])->ra_state == CLOSED) {
dac559fa 892 bp->b_error = ENXIO;
db738443 893 goto bad;
dac559fa 894 }
23a28927
KB
895
896 /*
897 * If drive is open `raw' or reading label, let it at it.
898 */
899 if (ra->ra_state < OPEN) {
900 udastrat1(bp);
901 return;
a4a97100 902 }
23a28927
KB
903 p = udapart(bp->b_dev);
904 if ((ra->ra_openpart & (1 << p)) == 0) /* can't happen? */
905 panic("udastrategy");
906 /* alternatively, ENODEV */
907
908 /*
909 * Determine the size of the transfer, and make sure it is
910 * within the boundaries of the partition.
911 */
912 pp = &udalabel[unit].d_partitions[p];
913 maxsz = pp->p_size;
914 if (pp->p_offset + pp->p_size > ra->ra_dsize)
915 maxsz = ra->ra_dsize - pp->p_offset;
a4a97100
MK
916 sz = (bp->b_bcount + DEV_BSIZE - 1) >> DEV_BSHIFT;
917 if (bp->b_blkno < 0 || bp->b_blkno + sz > maxsz) {
23a28927 918 /* if exactly at end of disk, return an EOF */
9d0e0faa
MK
919 if (bp->b_blkno == maxsz) {
920 bp->b_resid = bp->b_bcount;
23a28927
KB
921 biodone(bp);
922 return;
9d0e0faa 923 }
23a28927 924 /* or truncate if part of it fits */
a4a97100
MK
925 sz = maxsz - bp->b_blkno;
926 if (sz <= 0) {
23a28927 927 bp->b_error = EINVAL; /* or hang it up */
a4a97100
MK
928 goto bad;
929 }
930 bp->b_bcount = sz << DEV_BSHIFT;
dac559fa 931 }
23a28927
KB
932 udastrat1(bp);
933 return;
934bad:
935 bp->b_flags |= B_ERROR;
936 biodone(bp);
937}
938
939/*
940 * Work routine for udastrategy.
941 */
942udastrat1(bp)
943 register struct buf *bp;
944{
945 register int unit = udaunit(bp->b_dev);
946 register struct uba_ctlr *um;
947 register struct buf *dp;
948 struct uba_device *ui;
949 int s = spl5();
950
db738443 951 /*
23a28927
KB
952 * Append the buffer to the drive queue, and if it is not
953 * already there, the drive to the controller queue. (However,
954 * if the drive queue is marked to be requeued, we must be
955 * awaiting an on line or get unit status command; in this
956 * case, leave it off the controller queue.)
db738443 957 */
23a28927
KB
958 um = (ui = udadinfo[unit])->ui_mi;
959 dp = &udautab[unit];
960 APPEND(bp, dp, av_forw);
961 if (dp->b_active == 0 && (ui->ui_flags & UNIT_REQUEUE) == 0) {
962 APPEND(dp, &um->um_tab, b_forw);
963 dp->b_active++;
964 }
965
db738443 966 /*
23a28927
KB
967 * Start activity on the controller. Note that unlike other
968 * Unibus drivers, we must always do this, not just when the
969 * controller is not active.
db738443 970 */
23a28927 971 udastart(um);
530d0032 972 splx(s);
db738443
BJ
973}
974
23a28927
KB
975/*
976 * Start up whatever transfers we can find.
977 * Note that udastart() must be called at spl5().
978 */
979udastart(um)
db738443
BJ
980 register struct uba_ctlr *um;
981{
23a28927 982 register struct uda_softc *sc = &uda_softc[um->um_ctlr];
db738443
BJ
983 register struct buf *bp, *dp;
984 register struct mscp *mp;
23a28927 985 struct uba_device *ui;
db738443 986 struct udadevice *udaddr;
23a28927
KB
987 struct partition *pp;
988 int i, sz;
db738443 989
23a28927
KB
990#ifdef lint
991 i = 0; i = i;
992#endif
993 /*
994 * If it is not running, try (again and again...) to initialise
995 * it. If it is currently initialising just ignore it for now.
996 */
997 if (sc->sc_state != ST_RUN) {
998 if (sc->sc_state == ST_IDLE && udainit(um->um_ctlr))
999 printf("uda%d: still hung\n", um->um_ctlr);
1000 return;
db738443 1001 }
23a28927
KB
1002
1003 /*
1004 * If um_cmd is nonzero, this controller is on the Unibus
1005 * resource wait queue. It will not help to try more requests;
1006 * instead, when the Unibus unblocks and calls udadgo(), we
1007 * will call udastart() again.
1008 */
1009 if (um->um_cmd)
1010 return;
1011
1012 sc->sc_flags |= SC_INSTART;
1013 udaddr = (struct udadevice *) um->um_addr;
1014
1015loop:
1016 /*
1017 * Service the drive at the head of the queue. It may not
1018 * need anything, in which case it might be shutting down
1019 * in udaclose().
1020 */
1021 if ((dp = um->um_tab.b_actf) == NULL)
1022 goto out;
db738443 1023 if ((bp = dp->b_actf) == NULL) {
db738443
BJ
1024 dp->b_active = 0;
1025 um->um_tab.b_actf = dp->b_forw;
23a28927
KB
1026 if (ra_info[dp - udautab].ra_openpart == 0)
1027 wakeup((caddr_t)dp); /* finish close protocol */
1028 goto loop;
db738443 1029 }
23a28927
KB
1030
1031 if (udaddr->udasa & UDA_ERR) { /* ctlr fatal error */
1032 udasaerror(um);
1033 goto out;
db738443 1034 }
23a28927
KB
1035
1036 /*
1037 * Get an MSCP packet, then figure out what to do. If
1038 * we cannot get a command packet, the command ring may
1039 * be too small: We should have at least as many command
1040 * packets as credits, for best performance.
1041 */
1042 if ((mp = mscp_getcp(&sc->sc_mi, MSCP_DONTWAIT)) == NULL) {
1043 if (sc->sc_mi.mi_credits > MSCP_MINCREDITS &&
1044 (sc->sc_flags & SC_GRIPED) == 0) {
1045 log(LOG_NOTICE, "uda%d: command ring too small\n",
1046 um->um_ctlr);
1047 sc->sc_flags |= SC_GRIPED;/* complain only once */
2f961121 1048 }
23a28927 1049 goto out;
db738443 1050 }
db738443 1051
23a28927
KB
1052 /*
1053 * Bring the drive on line if it is not already. Get its status
1054 * if we do not already have it. Otherwise just start the transfer.
1055 */
1056 ui = udadinfo[udaunit(bp->b_dev)];
1057 if ((ui->ui_flags & UNIT_ONLINE) == 0) {
1058 mp->mscp_opcode = M_OP_ONLINE;
1059 goto common;
db738443 1060 }
23a28927
KB
1061 if ((ui->ui_flags & UNIT_HAVESTATUS) == 0) {
1062 mp->mscp_opcode = M_OP_GETUNITST;
1063common:
1064if (ui->ui_flags & UNIT_REQUEUE) panic("udastart");
1065 /*
1066 * Take the drive off the controller queue. When the
1067 * command finishes, make sure the drive is requeued.
1068 */
1069 um->um_tab.b_actf = dp->b_forw;
1070 dp->b_active = 0;
1071 ui->ui_flags |= UNIT_REQUEUE;
1072 mp->mscp_unit = ui->ui_slave;
1073 *mp->mscp_addr |= MSCP_OWN | MSCP_INT;
1074 sc->sc_flags |= SC_STARTPOLL;
1075#ifdef POLLSTATS
1076 sc->sc_ncmd++;
cb6ff96f 1077#endif
23a28927 1078 goto loop;
db738443 1079 }
23a28927
KB
1080
1081 pp = &udalabel[ui->ui_unit].d_partitions[udapart(bp->b_dev)];
1082 mp->mscp_opcode = (bp->b_flags & B_READ) ? M_OP_READ : M_OP_WRITE;
db738443 1083 mp->mscp_unit = ui->ui_slave;
23a28927 1084 mp->mscp_seq.seq_lbn = bp->b_blkno + pp->p_offset;
a4a97100 1085 sz = (bp->b_bcount + DEV_BSIZE - 1) >> DEV_BSHIFT;
23a28927
KB
1086 mp->mscp_seq.seq_bytecount = bp->b_blkno + sz > pp->p_size ?
1087 (pp->p_size - bp->b_blkno) >> DEV_BSHIFT : bp->b_bcount;
1088 /* mscp_cmdref is filled in by mscp_go() */
db738443
BJ
1089
1090 /*
23a28927
KB
1091 * Drop the packet pointer into the `command' field so udadgo()
1092 * can tell what to start. If ubago returns 1, we can do another
1093 * transfer. If not, um_cmd will still point at mp, so we will
1094 * know that we are waiting for resources.
db738443 1095 */
23a28927
KB
1096 um->um_cmd = (int)mp;
1097 if (ubago(ui))
1098 goto loop;
1099
db738443 1100 /*
23a28927
KB
1101 * All done, or blocked in ubago(). If we managed to
1102 * issue some commands, start up the beast.
db738443 1103 */
23a28927
KB
1104out:
1105 if (sc->sc_flags & SC_STARTPOLL) {
1106#ifdef POLLSTATS
1107 udastats.cmd[sc->sc_ncmd]++;
1108 sc->sc_ncmd = 0;
1109#endif
1110 i = ((struct udadevice *) um->um_addr)->udaip;
1111 }
1112 sc->sc_flags &= ~(SC_INSTART | SC_STARTPOLL);
db738443
BJ
1113}
1114
1115/*
23a28927
KB
1116 * Start a transfer.
1117 *
1118 * If we are not called from within udastart(), we must have been
1119 * blocked, so call udastart to do more requests (if any). If
1120 * this calls us again immediately we will not recurse, because
1121 * that time we will be in udastart(). Clever....
db738443 1122 */
23a28927
KB
1123udadgo(um)
1124 register struct uba_ctlr *um;
db738443 1125{
23a28927
KB
1126 struct uda_softc *sc = &uda_softc[um->um_ctlr];
1127 struct mscp *mp = (struct mscp *)um->um_cmd;
1128
1129 um->um_tab.b_active++; /* another transfer going */
1130
1131 /*
1132 * Fill in the MSCP packet and move the buffer to the
1133 * I/O wait queue. Mark the controller as no longer on
1134 * the resource queue, and remember to initiate polling.
1135 */
1136 mp->mscp_seq.seq_buffer = (um->um_ubinfo & 0x3ffff) |
1137 (UBAI_BDP(um->um_ubinfo) << 24);
1138 mscp_go(&sc->sc_mi, mp, um->um_ubinfo);
1139 um->um_cmd = 0;
1140 um->um_ubinfo = 0; /* tyke it awye */
1141 sc->sc_flags |= SC_STARTPOLL;
1142#ifdef POLLSTATS
1143 sc->sc_ncmd++;
1144#endif
1145 if ((sc->sc_flags & SC_INSTART) == 0)
1146 udastart(um);
1147}
1148
1149udaiodone(mi, bp, info)
1150 register struct mscp_info *mi;
db738443 1151 struct buf *bp;
23a28927
KB
1152 int info;
1153{
1154 register struct uba_ctlr *um = udaminfo[mi->mi_ctlr];
1155
1156 um->um_ubinfo = info;
1157 ubadone(um);
1158 biodone(bp);
1159 if (um->um_bdp && mi->mi_wtab.av_forw == &mi->mi_wtab)
1160 ubarelse(um->um_ubanum, &um->um_bdp);
1161 um->um_tab.b_active--; /* another transfer done */
1162}
1163
1164/*
1165 * The error bit was set in the controller status register. Gripe,
1166 * reset the controller, requeue pending transfers.
1167 */
1168udasaerror(um)
1169 register struct uba_ctlr *um;
1170{
1171
1172 printf("uda%d: controller error, sa=%b\n", um->um_ctlr,
1173 ((struct udadevice *) um->um_addr)->udasa, udasr_bits);
1174 mscp_requeue(&uda_softc[um->um_ctlr].sc_mi);
1175 (void) udainit(um->um_ctlr);
1176}
1177
1178/*
1179 * Interrupt routine. Depending on the state of the controller,
1180 * continue initialisation, or acknowledge command and response
1181 * interrupts, and process responses.
1182 */
1183udaintr(ctlr)
1184 int ctlr;
1185{
1186 register struct uba_ctlr *um = udaminfo[ctlr];
1187 register struct uda_softc *sc = &uda_softc[ctlr];
1188 register struct udadevice *udaddr = (struct udadevice *) um->um_addr;
1189 register struct uda *ud;
a4a97100 1190 register struct mscp *mp;
23a28927 1191 register int i;
db738443 1192
9d2503c6 1193#ifdef VAX630
23a28927 1194 (void) spl5(); /* Qbus interrupt protocol is odd */
9d2503c6 1195#endif
23a28927
KB
1196 sc->sc_wticks = 0; /* reset interrupt watchdog */
1197
1198 /*
1199 * Combinations during steps 1, 2, and 3: STEPnMASK
1200 * corresponds to which bits should be tested;
1201 * STEPnGOOD corresponds to the pattern that should
1202 * appear after the interrupt from STEPn initialisation.
1203 * All steps test the bits in ALLSTEPS.
1204 */
1205#define ALLSTEPS (UDA_ERR|UDA_STEP4|UDA_STEP3|UDA_STEP2|UDA_STEP1)
1206
1207#define STEP1MASK (ALLSTEPS | UDA_IE | UDA_NCNRMASK)
1208#define STEP1GOOD (UDA_STEP2 | UDA_IE | (NCMDL2 << 3) | NRSPL2)
1209
1210#define STEP2MASK (ALLSTEPS | UDA_IE | UDA_IVECMASK)
1211#define STEP2GOOD (UDA_STEP3 | UDA_IE | (sc->sc_ivec >> 2))
1212
1213#define STEP3MASK ALLSTEPS
1214#define STEP3GOOD UDA_STEP4
1215
db738443 1216 switch (sc->sc_state) {
23a28927
KB
1217
1218 case ST_IDLE:
1219 /*
1220 * Ignore unsolicited interrupts.
1221 */
1222 log(LOG_WARNING, "uda%d: stray intr\n", ctlr);
db738443
BJ
1223 return;
1224
23a28927
KB
1225 case ST_STEP1:
1226 /*
1227 * Begin step two initialisation.
1228 */
1229 if ((udaddr->udasa & STEP1MASK) != STEP1GOOD) {
1230 i = 1;
1231initfailed:
1232 printf("uda%d: init step %d failed, sa=%b\n",
1233 ctlr, i, udaddr->udasa, udasr_bits);
1234 sc->sc_state = ST_IDLE;
1235 if (sc->sc_flags & SC_DOWAKE) {
1236 sc->sc_flags &= ~SC_DOWAKE;
1237 wakeup((caddr_t) sc);
1238 }
db738443
BJ
1239 return;
1240 }
23a28927
KB
1241 udaddr->udasa = (int) &sc->sc_uda->uda_ca.ca_rspdsc[0] |
1242 (cpu == VAX_780 || cpu == VAX_8600 ? UDA_PI : 0);
1243 sc->sc_state = ST_STEP2;
db738443
BJ
1244 return;
1245
23a28927
KB
1246 case ST_STEP2:
1247 /*
1248 * Begin step 3 initialisation.
1249 */
1250 if ((udaddr->udasa & STEP2MASK) != STEP2GOOD) {
1251 i = 2;
1252 goto initfailed;
db738443 1253 }
23a28927
KB
1254 udaddr->udasa = ((int) &sc->sc_uda->uda_ca.ca_rspdsc[0]) >> 16;
1255 sc->sc_state = ST_STEP3;
db738443
BJ
1256 return;
1257
23a28927
KB
1258 case ST_STEP3:
1259 /*
1260 * Set controller characteristics (finish initialisation).
1261 */
1262 if ((udaddr->udasa & STEP3MASK) != STEP3GOOD) {
1263 i = 3;
1264 goto initfailed;
1265 }
1266 i = udaddr->udasa & 0xff;
1267 if (i != sc->sc_micro) {
1268 sc->sc_micro = i;
1269 printf("uda%d: version %d model %d\n",
1270 ctlr, i & 0xf, i >> 4);
db738443 1271 }
23a28927 1272
2f961121 1273 /*
23a28927
KB
1274 * Present the burst size, then remove it. Why this
1275 * should be done this way, I have no idea.
1276 *
1277 * Note that this assumes udaburst[ctlr] > 0.
2f961121 1278 */
23a28927 1279 udaddr->udasa = UDA_GO | (udaburst[ctlr] - 1) << 2;
db738443 1280 udaddr->udasa = UDA_GO;
23a28927
KB
1281 printf("uda%d: DMA burst size set to %d\n",
1282 ctlr, udaburst[ctlr]);
1283
1284 udainitds(ctlr); /* initialise data structures */
db738443
BJ
1285
1286 /*
23a28927
KB
1287 * Before we can get a command packet, we need some
1288 * credits. Fake some up to keep mscp_getcp() happy,
1289 * get a packet, and cancel all credits (the right
1290 * number should come back in the response to the
1291 * SCC packet).
db738443 1292 */
23a28927
KB
1293 sc->sc_mi.mi_credits = MSCP_MINCREDITS + 1;
1294 mp = mscp_getcp(&sc->sc_mi, MSCP_DONTWAIT);
1295 if (mp == NULL) /* `cannot happen' */
1296 panic("udaintr");
1297 sc->sc_mi.mi_credits = 0;
1298 mp->mscp_opcode = M_OP_SETCTLRC;
1299 mp->mscp_unit = 0;
1300 mp->mscp_sccc.sccc_ctlrflags = M_CF_ATTN | M_CF_MISC |
1301 M_CF_THIS;
1302 *mp->mscp_addr |= MSCP_OWN | MSCP_INT;
1303 i = udaddr->udaip;
1304 sc->sc_state = ST_SETCHAR;
db738443
BJ
1305 return;
1306
23a28927
KB
1307 case ST_SETCHAR:
1308 case ST_RUN:
1309 /*
1310 * Handle Set Ctlr Characteristics responses and operational
1311 * responses (via mscp_dorsp).
1312 */
db738443
BJ
1313 break;
1314
1315 default:
23a28927
KB
1316 printf("uda%d: driver bug, state %d\n", ctlr, sc->sc_state);
1317 panic("udastate");
db738443
BJ
1318 }
1319
23a28927
KB
1320 if (udaddr->udasa & UDA_ERR) { /* ctlr fatal error */
1321 udasaerror(um);
1322 return;
db738443
BJ
1323 }
1324
23a28927
KB
1325 ud = &uda[ctlr];
1326
db738443 1327 /*
23a28927
KB
1328 * Handle buffer purge requests.
1329 * I have never seen these to work usefully, thus the log().
db738443
BJ
1330 */
1331 if (ud->uda_ca.ca_bdp) {
23a28927
KB
1332 log(LOG_DEBUG, "uda%d: purge bdp %d\n",
1333 ctlr, ud->uda_ca.ca_bdp);
8011f5df 1334 UBAPURGE(um->um_hd->uh_uba, ud->uda_ca.ca_bdp);
db738443 1335 ud->uda_ca.ca_bdp = 0;
23a28927 1336 udaddr->udasa = 0; /* signal purge complete */
db738443
BJ
1337 }
1338
1339 /*
23a28927 1340 * Check for response and command ring transitions.
db738443
BJ
1341 */
1342 if (ud->uda_ca.ca_rspint) {
1343 ud->uda_ca.ca_rspint = 0;
23a28927 1344 mscp_dorsp(&sc->sc_mi);
db738443 1345 }
db738443 1346 if (ud->uda_ca.ca_cmdint) {
db738443 1347 ud->uda_ca.ca_cmdint = 0;
23a28927 1348 MSCP_DOCMD(&sc->sc_mi);
db738443 1349 }
23a28927 1350 udastart(um);
db738443
BJ
1351}
1352
23a28927
KB
1353#ifndef GENERIC_RAW
1354struct buf rudabuf[NRA];
db738443 1355
2f961121 1356/*
23a28927 1357 * Read and write.
2f961121 1358 */
23a28927
KB
1359udaread(dev, uio)
1360 dev_t dev;
1361 struct uio *uio;
1362{
db738443 1363
23a28927
KB
1364 return (physio(udastrategy, &rudabuf[udaunit(dev)], dev, B_READ,
1365 minphys, uio));
db738443
BJ
1366}
1367
23a28927
KB
1368udawrite(dev, uio)
1369 dev_t dev;
1370 struct uio *uio;
db738443 1371{
2f961121 1372
23a28927
KB
1373 return (physio(udastrategy, &rudabuf[udaunit(dev)], dev, B_WRITE,
1374 minphys, uio));
db738443 1375}
23a28927 1376#endif /* GENERIC_RAW */
db738443
BJ
1377
1378/*
23a28927 1379 * Initialise the various data structures that control the UDA50.
db738443 1380 */
23a28927
KB
1381udainitds(ctlr)
1382 int ctlr;
db738443 1383{
23a28927
KB
1384 register struct uda *ud = &uda[ctlr];
1385 register struct uda *uud = uda_softc[ctlr].sc_uda;
db738443 1386 register struct mscp *mp;
db738443
BJ
1387 register int i;
1388
23a28927
KB
1389 for (i = 0, mp = ud->uda_rsp; i < NRSP; i++, mp++) {
1390 ud->uda_ca.ca_rspdsc[i] = MSCP_OWN | MSCP_INT |
1391 (long)&uud->uda_rsp[i].mscp_cmdref;
1392 mp->mscp_addr = &ud->uda_ca.ca_rspdsc[i];
1393 mp->mscp_msglen = MSCP_MSGLEN;
1394 }
1395 for (i = 0, mp = ud->uda_cmd; i < NCMD; i++, mp++) {
1396 ud->uda_ca.ca_cmddsc[i] = MSCP_INT |
1397 (long)&uud->uda_cmd[i].mscp_cmdref;
1398 mp->mscp_addr = &ud->uda_ca.ca_cmddsc[i];
1399 mp->mscp_msglen = MSCP_MSGLEN;
db738443 1400 }
db738443
BJ
1401}
1402
23a28927
KB
1403/*
1404 * Handle an error datagram. All we do now is decode it.
1405 */
1406udadgram(mi, mp)
1407 struct mscp_info *mi;
1408 struct mscp *mp;
db738443 1409{
db738443 1410
23a28927 1411 mscp_decodeerror(mi->mi_md->md_mname, mi->mi_ctlr, mp);
db738443
BJ
1412}
1413
23a28927
KB
1414/*
1415 * The Set Controller Characteristics command finished.
1416 * Record the new state of the controller.
1417 */
1418udactlrdone(mi, mp)
1419 register struct mscp_info *mi;
1420 struct mscp *mp;
db738443 1421{
23a28927
KB
1422 register struct uda_softc *sc = &uda_softc[mi->mi_ctlr];
1423
1424 if ((mp->mscp_status & M_ST_MASK) == M_ST_SUCCESS)
1425 sc->sc_state = ST_RUN;
1426 else {
1427 printf("uda%d: SETCTLRC failed: ",
1428 mi->mi_ctlr, mp->mscp_status);
1429 mscp_printevent(mp);
1430 sc->sc_state = ST_IDLE;
1431 }
1432 if (sc->sc_flags & SC_DOWAKE) {
1433 sc->sc_flags &= ~SC_DOWAKE;
1434 wakeup((caddr_t)sc);
1435 }
db738443
BJ
1436}
1437
23a28927
KB
1438/*
1439 * Received a response from an as-yet unconfigured drive. Configure it
1440 * in, if possible.
1441 */
1442udaunconf(mi, mp)
1443 struct mscp_info *mi;
1444 register struct mscp *mp;
db738443 1445{
db738443 1446
23a28927
KB
1447 /*
1448 * If it is a slave response, copy it to udaslavereply for
1449 * udaslave() to look at.
1450 */
1451 if (mp->mscp_opcode == (M_OP_GETUNITST | M_OP_END) &&
1452 (uda_softc[mi->mi_ctlr].sc_flags & SC_INSLAVE) != 0) {
1453 udaslavereply = *mp;
1454 return (MSCP_DONE);
db738443 1455 }
db738443 1456
23a28927
KB
1457 /*
1458 * Otherwise, it had better be an available attention response.
1459 */
1460 if (mp->mscp_opcode != M_OP_AVAILATTN)
1461 return (MSCP_FAILED);
1462
1463 /* do what autoconf does */
1464 return (MSCP_FAILED); /* not yet, arwhite, not yet */
1465}
2f961121 1466
23a28927
KB
1467/*
1468 * A drive came on line. Check its type and size. Return DONE if
1469 * we think the drive is truly on line. In any case, awaken anyone
1470 * sleeping on the drive on-line-ness.
1471 */
1472udaonline(ui, mp)
1473 register struct uba_device *ui;
1474 struct mscp *mp;
1475{
1476 register struct ra_info *ra = &ra_info[ui->ui_unit];
1477
1478 wakeup((caddr_t)&ui->ui_flags);
1479 if ((mp->mscp_status & M_ST_MASK) != M_ST_SUCCESS) {
1480 printf("uda%d: attempt to bring ra%d on line failed: ",
1481 ui->ui_ctlr, ui->ui_unit);
1482 mscp_printevent(mp);
1483 ra->ra_state = CLOSED;
1484 return (MSCP_FAILED);
1485 }
2f961121 1486
23a28927
KB
1487 ra->ra_state = OPENRAW;
1488 ra->ra_dsize = (daddr_t)mp->mscp_onle.onle_unitsize;
1489 printf("ra%d: uda%d, unit %d, size = %d sectors\n", ui->ui_unit,
1490 ui->ui_ctlr, mp->mscp_unit, ra->ra_dsize);
1491 /* can now compute ncyl */
1492 ra->ra_geom.rg_ncyl = ra->ra_dsize / ra->ra_geom.rg_ntracks /
1493 ra->ra_geom.rg_nsectors;
1494 return (MSCP_DONE);
1495}
2f961121 1496
23a28927
KB
1497/*
1498 * We got some (configured) unit's status. Return DONE if it succeeded.
1499 */
1500udagotstatus(ui, mp)
2f961121 1501 register struct uba_device *ui;
23a28927
KB
1502 register struct mscp *mp;
1503{
2f961121 1504
23a28927
KB
1505 if ((mp->mscp_status & M_ST_MASK) != M_ST_SUCCESS) {
1506 printf("uda%d: attempt to get status for ra%d failed: ",
1507 ui->ui_ctlr, ui->ui_unit);
1508 mscp_printevent(mp);
1509 return (MSCP_FAILED);
2f961121 1510 }
23a28927
KB
1511 /* record for (future) bad block forwarding and whatever else */
1512 uda_rasave(ui->ui_unit, mp, 1);
1513 return (MSCP_DONE);
1514}
2f961121 1515
23a28927
KB
1516/*
1517 * A transfer failed. We get a chance to fix or restart it.
1518 * Need to write the bad block forwaring code first....
1519 */
1520/*ARGSUSED*/
1521udaioerror(ui, mp, bp)
1522 register struct uba_device *ui;
1523 register struct mscp *mp;
1524 struct buf *bp;
1525{
1526
1527 if (mp->mscp_flags & M_EF_BBLKR) {
1528 /*
1529 * A bad block report. Eventually we will
1530 * restart this transfer, but for now, just
1531 * log it and give up.
1532 */
1533 log(LOG_ERR, "ra%d: bad block report: %d%s\n",
1534 ui->ui_unit, mp->mscp_seq.seq_lbn,
1535 mp->mscp_flags & M_EF_BBLKU ? " + others" : "");
1536 } else {
1537 /*
1538 * What the heck IS a `serious exception' anyway?
1539 * IT SURE WOULD BE NICE IF DEC SOLD DOCUMENTATION
1540 * FOR THEIR OWN CONTROLLERS.
1541 */
1542 if (mp->mscp_flags & M_EF_SEREX)
1543 log(LOG_ERR, "ra%d: serious exception reported\n",
1544 ui->ui_unit);
2f961121 1545 }
23a28927 1546 return (MSCP_FAILED);
2f961121
MK
1547}
1548
23a28927
KB
1549/*
1550 * A replace operation finished.
1551 */
1552/*ARGSUSED*/
1553udareplace(ui, mp)
1554 struct uba_device *ui;
1555 struct mscp *mp;
1556{
2f961121 1557
23a28927
KB
1558 panic("udareplace");
1559}
1560
1561/*
1562 * A bad block related operation finished.
1563 */
1564/*ARGSUSED*/
1565udabb(ui, mp, bp)
1566 struct uba_device *ui;
1567 struct mscp *mp;
1568 struct buf *bp;
db738443 1569{
23a28927
KB
1570
1571 panic("udabb");
db738443 1572}
2f961121 1573
23a28927
KB
1574
1575/*
1576 * I/O controls.
1577 */
1578udaioctl(dev, cmd, data, flag)
94e9abff 1579 dev_t dev;
a4a97100
MK
1580 int cmd;
1581 caddr_t data;
1582 int flag;
94e9abff 1583{
23a28927 1584 register int unit = udaunit(dev);
a4a97100
MK
1585 register struct disklabel *lp;
1586 int error = 0;
1587
23a28927 1588 lp = &udalabel[unit];
94e9abff 1589
a4a97100
MK
1590 switch (cmd) {
1591
1592 case DIOCGDINFO:
1593 *(struct disklabel *)data = *lp;
1594 break;
1595
41a38591
MK
1596 case DIOCGPART:
1597 ((struct partinfo *)data)->disklab = lp;
1598 ((struct partinfo *)data)->part =
23a28927 1599 &lp->d_partitions[udapart(dev)];
a4a97100
MK
1600 break;
1601
1602 case DIOCSDINFO:
1603 if ((flag & FWRITE) == 0)
1604 error = EBADF;
1605 else
7e9892e0
MK
1606 error = setdisklabel(lp, (struct disklabel *)data,
1607 ra_info[unit].ra_openpart);
a4a97100
MK
1608 break;
1609
7e9892e0
MK
1610 case DIOCWDINFO:
1611 if ((flag & FWRITE) == 0)
23a28927 1612 error = EBADF;
7e9892e0
MK
1613 else if ((error = setdisklabel(lp, (struct disklabel *)data,
1614 ra_info[unit].ra_openpart)) == 0)
1615 error = writedisklabel(dev, udastrategy, lp);
a4a97100
MK
1616 break;
1617
23a28927
KB
1618#ifdef notyet
1619 case UDAIOCREPLACE:
1620 /*
1621 * Initiate bad block replacement for the given LBN.
1622 * (Should we allow modifiers?)
1623 */
1624 error = EOPNOTSUPP;
1625 break;
1626
1627 case UDAIOCGMICRO:
1628 /*
1629 * Return the microcode revision for the UDA50 running
1630 * this drive.
1631 */
1632 *(int *) data = uda_softc[uddinfo[unit]->ui_ctlr].sc_micro;
1633 break;
1634#endif
1635
a4a97100
MK
1636 default:
1637 error = ENOTTY;
1638 break;
1639 }
23a28927
KB
1640 return (error);
1641}
1642
1643/*
1644 * A Unibus reset has occurred on UBA uban. Reinitialise the controller(s)
1645 * on that Unibus, and requeue outstanding I/O.
1646 */
1647udareset(uban)
1648 int uban;
1649{
1650 register struct uba_ctlr *um;
1651 register struct uda_softc *sc;
1652 register int ctlr;
1653
1654 for (ctlr = 0, sc = uda_softc; ctlr < NUDA; ctlr++, sc++) {
1655 if ((um = udaminfo[ctlr]) == NULL || um->um_ubanum != uban ||
1656 um->um_alive == 0)
1657 continue;
1658 printf(" uda%d", ctlr);
1659
1660 /*
1661 * Our BDP (if any) is gone; our command (if any) is
1662 * flushed; the device is no longer mapped; and the
1663 * UDA50 is not yet initialised.
1664 */
1665 if (um->um_bdp) {
1666 printf("<%d>", UBAI_BDP(um->um_bdp));
1667 um->um_bdp = 0;
1668 }
1669 um->um_ubinfo = 0;
1670 um->um_cmd = 0;
1671 sc->sc_flags &= ~SC_MAPPED;
1672 sc->sc_state = ST_IDLE;
1673
1674 /* reset queues and requeue pending transfers */
1675 mscp_requeue(&sc->sc_mi);
1676
1677 /*
1678 * If it fails to initialise we will notice later and
1679 * try again (and again...). Do not call udastart()
1680 * here; it will be done after the controller finishes
1681 * initialisation.
1682 */
1683 if (udainit(ctlr))
1684 printf(" (hung)");
1685 }
1686}
1687
1688/*
1689 * Watchdog timer: If the controller is active, and no interrupts
1690 * have occurred for 30 seconds, assume it has gone away.
1691 */
1692udawatch()
1693{
1694 register int i;
1695 register struct uba_ctlr *um;
1696 register struct uda_softc *sc;
1697
1698 timeout(udawatch, (caddr_t) 0, hz); /* every second */
1699 for (i = 0, sc = uda_softc; i < NUDA; i++, sc++) {
1700 if ((um = udaminfo[i]) == 0 || !um->um_alive)
1701 continue;
1702 if (sc->sc_state == ST_IDLE)
1703 continue;
1704 if (sc->sc_state == ST_RUN && !um->um_tab.b_active)
1705 sc->sc_wticks = 0;
1706 else if (++sc->sc_wticks >= 30) {
1707 sc->sc_wticks = 0;
1708 printf("uda%d: lost interrupt\n", i);
1709 ubareset(um->um_ubanum);
1710 }
1711 }
1712}
1713
1714/*
1715 * Do a panic dump. We set up the controller for one command packet
1716 * and one response packet, for which we use `struct uda1'.
1717 */
1718struct uda1 {
1719 struct uda1ca uda1_ca; /* communications area */
1720 struct mscp uda1_rsp; /* response packet */
1721 struct mscp uda1_cmd; /* command packet */
1722} uda1;
1723
1724#define DBSIZE 32 /* dump 16K at a time */
1725
1726udadump(dev)
1727 dev_t dev;
1728{
1729 struct udadevice *udaddr;
1730 struct uda1 *ud_ubaddr;
1731 char *start;
1732 int num, blk, unit, maxsz, blkoff, reg;
1733 struct partition *pp;
1734 register struct uba_regs *uba;
1735 register struct uba_device *ui;
1736 register struct uda1 *ud;
1737 register struct pte *io;
1738 register int i;
1739
1740 /*
1741 * Make sure the device is a reasonable place on which to dump.
1742 */
1743 unit = udaunit(dev);
1744 if (unit >= NRA)
1745 return (ENXIO);
1746#define phys(cast, addr) ((cast) ((int) addr & 0x7fffffff))
1747 ui = phys(struct uba_device *, udadinfo[unit]);
1748 if (ui == NULL || ui->ui_alive == 0)
1749 return (ENXIO);
1750
1751 /*
1752 * Find and initialise the UBA; get the physical address of the
1753 * device registers, and of communications area and command and
1754 * response packet.
1755 */
1756 uba = phys(struct uba_hd *, ui->ui_hd)->uh_physuba;
1757 ubainit(uba);
1758 udaddr = (struct udadevice *)ui->ui_physaddr;
1759 ud = phys(struct uda1 *, &uda1);
1760
1761 /*
1762 * Map the ca+packets into Unibus I/O space so the UDA50 can get
1763 * at them. Use the registers at the end of the Unibus map (since
1764 * we will use the registers at the beginning to map the memory
1765 * we are dumping).
1766 */
1767 num = btoc(sizeof(struct uda1)) + 1;
1768 reg = NUBMREG - num;
1769 io = &uba->uba_map[reg];
1770 for (i = 0; i < num; i++)
1771 *(int *)io++ = UBAMR_MRV | (btop(ud) + i);
1772 ud_ubaddr = (struct uda1 *)(((int)ud & PGOFSET) | (reg << 9));
1773
1774 /*
1775 * Initialise the controller, with one command and one response
1776 * packet.
1777 */
1778 udaddr->udaip = 0;
1779 if (udadumpwait(udaddr, UDA_STEP1))
1780 return (EFAULT);
1781 udaddr->udasa = UDA_ERR;
1782 if (udadumpwait(udaddr, UDA_STEP2))
1783 return (EFAULT);
1784 udaddr->udasa = (int)&ud_ubaddr->uda1_ca.ca_rspdsc;
1785 if (udadumpwait(udaddr, UDA_STEP3))
1786 return (EFAULT);
1787 udaddr->udasa = ((int)&ud_ubaddr->uda1_ca.ca_rspdsc) >> 16;
1788 if (udadumpwait(udaddr, UDA_STEP4))
1789 return (EFAULT);
1790 uda_softc[ui->ui_ctlr].sc_micro = udaddr->udasa & 0xff;
1791 udaddr->udasa = UDA_GO;
1792
1793 /*
1794 * Set up the command and response descriptor, then set the
1795 * controller characteristics and bring the drive on line.
1796 * Note that all uninitialised locations in uda1_cmd are zero.
1797 */
1798 ud->uda1_ca.ca_rspdsc = (long)&ud_ubaddr->uda1_rsp.mscp_cmdref;
1799 ud->uda1_ca.ca_cmddsc = (long)&ud_ubaddr->uda1_cmd.mscp_cmdref;
1800 /* ud->uda1_cmd.mscp_sccc.sccc_ctlrflags = 0; */
1801 /* ud->uda1_cmd.mscp_sccc.sccc_version = 0; */
1802 if (udadumpcmd(M_OP_SETCTLRC, ud, ui))
1803 return (EFAULT);
1804 ud->uda1_cmd.mscp_unit = ui->ui_slave;
1805 if (udadumpcmd(M_OP_ONLINE, ud, ui))
1806 return (EFAULT);
1807
1808 pp = phys(struct partition *,
1809 &udalabel[unit].d_partitions[udapart(dev)]);
1810 maxsz = pp->p_size;
1811 blkoff = pp->p_offset;
1812
1813 /*
1814 * Dump all of physical memory, or as much as will fit in the
1815 * space provided.
1816 */
1817 start = 0;
1818 num = maxfree;
1819 if (dumplo < 0)
1820 return (EINVAL);
1821 if (dumplo + num >= maxsz)
1822 num = maxsz - dumplo;
1823 blkoff += dumplo;
1824
1825 /*
1826 * Write out memory, DBSIZE pages at a time.
1827 * N.B.: this code depends on the fact that the sector
1828 * size == the page size.
1829 */
1830 while (num > 0) {
1831 blk = num > DBSIZE ? DBSIZE : num;
1832 io = uba->uba_map;
1833 /*
1834 * Map in the pages to write, leaving an invalid entry
1835 * at the end to guard against wild Unibus transfers.
1836 * Then do the write.
1837 */
1838 for (i = 0; i < blk; i++)
1839 *(int *) io++ = UBAMR_MRV | (btop(start) + i);
1840 *(int *) io = 0;
1841 ud->uda1_cmd.mscp_unit = ui->ui_slave;
1842 ud->uda1_cmd.mscp_seq.seq_lbn = btop(start) + blkoff;
1843 ud->uda1_cmd.mscp_seq.seq_bytecount = blk << PGSHIFT;
1844 if (udadumpcmd(M_OP_WRITE, ud, ui))
1845 return (EIO);
1846 start += blk << PGSHIFT;
1847 num -= blk;
1848 }
1849 return (0); /* made it! */
1850}
1851
1852/*
1853 * Wait for some of the bits in `bits' to come on. If the error bit
1854 * comes on, or ten seconds pass without response, return true (error).
1855 */
1856udadumpwait(udaddr, bits)
1857 register struct udadevice *udaddr;
1858 register int bits;
1859{
1860 register int timo = todr() + 1000;
1861
1862 while ((udaddr->udasa & bits) == 0) {
1863 if (udaddr->udasa & UDA_ERR) {
1864 printf("udasa=%b\ndump ", udaddr->udasa, udasr_bits);
1865 return (1);
1866 }
1867 if (todr() >= timo) {
1868 printf("timeout\ndump ");
1869 return (1);
1870 }
1871 }
1872 return (0);
1873}
1874
1875/*
1876 * Feed a command to the UDA50, wait for its response, and return
1877 * true iff something went wrong.
1878 */
1879udadumpcmd(op, ud, ui)
1880 int op;
1881 register struct uda1 *ud;
1882 struct uba_device *ui;
1883{
1884 register struct udadevice *udaddr;
1885 register int n;
1886#define mp (&ud->uda1_rsp)
1887
1888 udaddr = (struct udadevice *) ui->ui_physaddr;
1889 ud->uda1_cmd.mscp_opcode = op;
1890 ud->uda1_cmd.mscp_msglen = MSCP_MSGLEN;
1891 ud->uda1_rsp.mscp_msglen = MSCP_MSGLEN;
1892 ud->uda1_ca.ca_rspdsc |= MSCP_OWN | MSCP_INT;
1893 ud->uda1_ca.ca_cmddsc |= MSCP_OWN | MSCP_INT;
1894 if (udaddr->udasa & UDA_ERR) {
1895 printf("udasa=%b\ndump ", udaddr->udasa, udasr_bits);
1896 return (1);
1897 }
1898 n = udaddr->udaip;
1899 n = todr() + 1000;
1900 for (;;) {
1901 if (todr() > n) {
1902 printf("timeout\ndump ");
1903 return (1);
1904 }
1905 if (ud->uda1_ca.ca_cmdint)
1906 ud->uda1_ca.ca_cmdint = 0;
1907 if (ud->uda1_ca.ca_rspint == 0)
1908 continue;
1909 ud->uda1_ca.ca_rspint = 0;
1910 if (mp->mscp_opcode == (op | M_OP_END))
1911 break;
1912 printf("\n");
1913 switch (MSCP_MSGTYPE(mp->mscp_msgtc)) {
1914
1915 case MSCPT_SEQ:
1916 printf("sequential");
1917 break;
1918
1919 case MSCPT_DATAGRAM:
1920 mscp_decodeerror("uda", ui->ui_ctlr, mp);
1921 printf("datagram");
1922 break;
1923
1924 case MSCPT_CREDITS:
1925 printf("credits");
1926 break;
1927
1928 case MSCPT_MAINTENANCE:
1929 printf("maintenance");
1930 break;
1931
1932 default:
1933 printf("unknown (type 0x%x)",
1934 MSCP_MSGTYPE(mp->mscp_msgtc));
1935 break;
1936 }
1937 printf(" ignored\ndump ");
1938 ud->uda1_ca.ca_rspdsc |= MSCP_OWN | MSCP_INT;
1939 }
1940 if ((mp->mscp_status & M_ST_MASK) != M_ST_SUCCESS) {
1941 printf("error: op 0x%x => 0x%x status 0x%x\ndump ", op,
1942 mp->mscp_opcode, mp->mscp_status);
1943 return (1);
1944 }
a4a97100 1945 return (0);
23a28927 1946#undef mp
a4a97100
MK
1947}
1948
23a28927
KB
1949/*
1950 * Return the size of a partition, if known, or -1 if not.
1951 */
1952udasize(dev)
a4a97100
MK
1953 dev_t dev;
1954{
23a28927 1955 register int unit = udaunit(dev);
a4a97100 1956 register struct uba_device *ui;
23a28927 1957 register struct size *st;
a4a97100 1958
23a28927
KB
1959 if (unit >= NRA || (ui = udadinfo[unit]) == NULL ||
1960 ui->ui_alive == 0 || (ui->ui_flags & UNIT_ONLINE) == 0 ||
1961 ra_info[unit].ra_state != OPEN)
94e9abff 1962 return (-1);
23a28927 1963 return ((int)udalabel[unit].d_partitions[udapart(dev)].p_size);
94e9abff 1964}
2f961121 1965
a4a97100 1966#ifdef COMPAT_42
23a28927
KB
1967/*
1968 * Tables mapping unlabelled drives.
1969 */
a4a97100
MK
1970struct size {
1971 daddr_t nblocks;
1972 daddr_t blkoff;
23a28927 1973} ra25_sizes[8] = {
a4a97100
MK
1974 15884, 0, /* A=blk 0 thru 15883 */
1975 10032, 15884, /* B=blk 15884 thru 49323 */
1976 -1, 0, /* C=blk 0 thru end */
1977 0, 0, /* D=blk 340670 thru 356553 */
1978 0, 0, /* E=blk 356554 thru 412489 */
1979 0, 0, /* F=blk 412490 thru end */
1980 -1, 25916, /* G=blk 49324 thru 131403 */
1981 0, 0, /* H=blk 131404 thru end */
23a28927
KB
1982}, rx50_sizes[8] = {
1983 800, 0, /* A=blk 0 thru 799 */
1984 0, 0,
1985 -1, 0, /* C=blk 0 thru end */
1986 0, 0,
1987 0, 0,
1988 0, 0,
1989 0, 0,
1990 0, 0,
a4a97100
MK
1991}, rd52_sizes[8] = {
1992 15884, 0, /* A=blk 0 thru 15883 */
1993 9766, 15884, /* B=blk 15884 thru 25649 */
1994 -1, 0, /* C=blk 0 thru end */
1995 0, 0, /* D=unused */
1996 0, 0, /* E=unused */
1997 0, 0, /* F=unused */
1998 -1, 25650, /* G=blk 25650 thru end */
1999 0, 0, /* H=unused */
2000}, rd53_sizes[8] = {
2001 15884, 0, /* A=blk 0 thru 15883 */
2002 33440, 15884, /* B=blk 15884 thru 49323 */
2003 -1, 0, /* C=blk 0 thru end */
2004 0, 0, /* D=unused */
2005 33440, 0, /* E=blk 0 thru 33439 */
2006 -1, 33440, /* F=blk 33440 thru end */
2007 -1, 49324, /* G=blk 49324 thru end */
2008 -1, 15884, /* H=blk 15884 thru end */
2009}, ra60_sizes[8] = {
2010 15884, 0, /* A=sectors 0 thru 15883 */
2011 33440, 15884, /* B=sectors 15884 thru 49323 */
2012 400176, 0, /* C=sectors 0 thru 400175 */
2013 82080, 49324, /* 4.2 G => D=sectors 49324 thru 131403 */
2014 268772, 131404, /* 4.2 H => E=sectors 131404 thru 400175 */
2015 350852, 49324, /* F=sectors 49324 thru 400175 */
2016 157570, 242606, /* UCB G => G=sectors 242606 thru 400175 */
2017 193282, 49324, /* UCB H => H=sectors 49324 thru 242605 */
2018}, ra80_sizes[8] = {
2019 15884, 0, /* A=sectors 0 thru 15883 */
2020 33440, 15884, /* B=sectors 15884 thru 49323 */
2021 242606, 0, /* C=sectors 0 thru 242605 */
2022 0, 0, /* D=unused */
2023 193282, 49324, /* UCB H => E=sectors 49324 thru 242605 */
2024 82080, 49324, /* 4.2 G => F=sectors 49324 thru 131403 */
2025 192696, 49910, /* G=sectors 49910 thru 242605 */
2026 111202, 131404, /* 4.2 H => H=sectors 131404 thru 242605 */
2027}, ra81_sizes[8] ={
2028/*
2029 * These are the new standard partition sizes for ra81's.
2030 * An RA_COMPAT system is compiled with D, E, and F corresponding
2031 * to the 4.2 partitions for G, H, and F respectively.
2032 */
2033#ifndef UCBRA
2034 15884, 0, /* A=sectors 0 thru 15883 */
2035 66880, 16422, /* B=sectors 16422 thru 83301 */
2036 891072, 0, /* C=sectors 0 thru 891071 */
2037#ifdef RA_COMPAT
2038 82080, 49324, /* 4.2 G => D=sectors 49324 thru 131403 */
2039 759668, 131404, /* 4.2 H => E=sectors 131404 thru 891071 */
2040 478582, 412490, /* 4.2 F => F=sectors 412490 thru 891071 */
2041#else
2042 15884, 375564, /* D=sectors 375564 thru 391447 */
2043 307200, 391986, /* E=sectors 391986 thru 699185 */
2044 191352, 699720, /* F=sectors 699720 thru 891071 */
2045#endif RA_COMPAT
2046 515508, 375564, /* G=sectors 375564 thru 891071 */
2047 291346, 83538, /* H=sectors 83538 thru 374883 */
2048
2049/*
2050 * These partitions correspond to the sizes used by sites at Berkeley,
2051 * and by those sites that have received copies of the Berkeley driver
2052 * with deltas 6.2 or greater (11/15/83).
2053 */
2054#else UCBRA
2055
2056 15884, 0, /* A=sectors 0 thru 15883 */
2057 33440, 15884, /* B=sectors 15884 thru 49323 */
2058 891072, 0, /* C=sectors 0 thru 891071 */
2059 15884, 242606, /* D=sectors 242606 thru 258489 */
2060 307200, 258490, /* E=sectors 258490 thru 565689 */
2061 325382, 565690, /* F=sectors 565690 thru 891071 */
2062 648466, 242606, /* G=sectors 242606 thru 891071 */
2063 193282, 49324, /* H=sectors 49324 thru 242605 */
2064
2065#endif UCBRA
2066};
2067
23a28927
KB
2068/*
2069 * Drive type index decoding table. `ut_name' is null iff the
2070 * type is not known.
2071 */
2072struct udatypes {
2073 char *ut_name; /* drive type name */
2074 struct size *ut_sizes; /* partition tables */
2075 int ut_nsectors, ut_ntracks, ut_ncylinders;
2076} udatypes[] = {
2077 NULL, NULL,
2078 0, 0, 0,
2079 "ra80", ra80_sizes, /* 1 = ra80 */
2080 31, 14, 559,
2081 "rc25-removable", ra25_sizes, /* 2 = rc25-r */
2082 42, 4, 302,
2083 "rc25-fixed", ra25_sizes, /* 3 = rc25-f */
2084 42, 4, 302,
2085 "ra60", ra60_sizes, /* 4 = ra60 */
2086 42, 4, 2382,
2087 "ra81", ra81_sizes, /* 5 = ra81 */
2088 51, 14, 1248,
2089 NULL, NULL, /* 6 = ? */
2090 0, 0, 0,
2091 "rx50", rx50_sizes, /* 7 = rx50 */
2092 10, 1, 80,
2093 "rd52", rd52_sizes, /* 8 = rd52 */
2094 18, 7, 480,
2095 "rd53", rd53_sizes, /* 9 = rd53 */
2096 18, 8, 963,
2097};
2098
2099#define NTYPES (sizeof(udatypes) / sizeof(*udatypes))
2100
2101udamaptype(unit, lp)
2102 int unit;
a4a97100
MK
2103 register struct disklabel *lp;
2104{
23a28927
KB
2105 register struct udatypes *ut;
2106 register struct size *sz;
a4a97100 2107 register struct partition *pp;
23a28927
KB
2108 register char *p;
2109 register int i;
2110 register struct ra_info *ra = &ra_info[unit];
2111
2112 lp->d_secsize = 512;
2113 lp->d_secperunit = ra->ra_dsize;
2114 if ((u_long)ra->ra_type >= NTYPES) {
2115 printf("ra%d: don't have a partition table for", unit);
2116 mscp_printmedia(ra->ra_mediaid);
2117 lp->d_nsectors = ra->ra_geom.rg_nsectors;
2118 lp->d_ntracks = ra->ra_geom.rg_ntracks;
2119 lp->d_ncylinders = ra->ra_geom.rg_ncyl;
2120 printf(";\nusing (t,s,c)=(%d,%d,%d)\n", lp->d_nsectors,
2121 lp->d_ntracks, lp->d_ncylinders);
2122 lp->d_secpercyl = lp->d_nsectors * lp->d_ntracks;
2123 lp->d_typename[0] = 'r';
2124 lp->d_typename[1] = 'a';
2125 lp->d_typename[2] = '?';
2126 lp->d_typename[3] = '?';
2127 lp->d_typename[4] = 0;
a4a97100
MK
2128 lp->d_npartitions = 1;
2129 lp->d_partitions[0].p_offset = 0;
2130 lp->d_partitions[0].p_size = lp->d_secperunit;
2131 return (0);
2132 }
23a28927
KB
2133 ut = &udatypes[ra->ra_type];
2134 p = ut->ut_name;
2135 for (i = 0; i < sizeof(lp->d_typename) - 1 && *p; i++)
2136 lp->d_typename[i] = *p++;
2137 lp->d_typename[i] = 0;
2138 sz = ut->ut_sizes;
2139 /* GET nsectors, ntracks, ncylinders FROM SAVED GEOMETRY? */
2140 lp->d_nsectors = ut->ut_nsectors;
2141 lp->d_ntracks = ut->ut_ntracks;
2142 lp->d_ncylinders = ut->ut_ncylinders;
a4a97100
MK
2143 lp->d_npartitions = 8;
2144 lp->d_secpercyl = lp->d_nsectors * lp->d_ntracks;
23a28927
KB
2145 for (pp = lp->d_partitions; pp < &lp->d_partitions[8]; pp++, sz++) {
2146 pp->p_offset = sz->blkoff;
2147 if ((pp->p_size = sz->nblocks) == (u_long)-1)
2148 pp->p_size = ra->ra_dsize - sz->blkoff;
a4a97100
MK
2149 }
2150 return (1);
2151}
23a28927
KB
2152#endif /* COMPAT_42 */
2153#endif /* NUDA > 0 */