Make loses argument information.
[unix-history] / usr.bin / make / hash.c
CommitLineData
15637ed4
RG
1/*
2 * Copyright (c) 1988, 1989, 1990 The Regents of the University of California.
3 * Copyright (c) 1988, 1989 by Adam de Boor
4 * Copyright (c) 1989 by Berkeley Softworks
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Adam de Boor.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 */
38
39#ifndef lint
40static char sccsid[] = "@(#)hash.c 5.5 (Berkeley) 12/28/90";
41#endif /* not lint */
42
43/* hash.c --
44 *
45 * This module contains routines to manipulate a hash table.
46 * See hash.h for a definition of the structure of the hash
47 * table. Hash tables grow automatically as the amount of
48 * information increases.
49 */
50
51#include "sprite.h"
52#include "hash.h"
53
54/*
55 * Forward references to local procedures that are used before they're
56 * defined:
57 */
58
59static void RebuildTable();
60
61/*
62 * The following defines the ratio of # entries to # buckets
63 * at which we rebuild the table to make it larger.
64 */
65
66#define rebuildLimit 8
67
68/*
69 *---------------------------------------------------------
70 *
71 * Hash_InitTable --
72 *
73 * This routine just sets up the hash table.
74 *
75 * Results:
76 * None.
77 *
78 * Side Effects:
79 * Memory is allocated for the initial bucket area.
80 *
81 *---------------------------------------------------------
82 */
83
84void
85Hash_InitTable(t, numBuckets)
86 register Hash_Table *t; /* Structure to use to hold table. */
87 int numBuckets; /* How many buckets to create for starters.
88 * This number is rounded up to a power of
89 * two. If <= 0, a reasonable default is
90 * chosen. The table will grow in size later
91 * as needed. */
92{
93 register int i;
94 register struct Hash_Entry **hp;
95
96 /*
97 * Round up the size to a power of two.
98 */
99 if (numBuckets <= 0)
100 i = 16;
101 else {
102 for (i = 2; i < numBuckets; i <<= 1)
103 /* void */ ;
104 }
105 t->numEntries = 0;
106 t->size = i;
107 t->mask = i - 1;
108 t->bucketPtr = hp = (struct Hash_Entry **)emalloc(sizeof(*hp) * i);
109 while (--i >= 0)
110 *hp++ = NULL;
111}
112
113/*
114 *---------------------------------------------------------
115 *
116 * Hash_DeleteTable --
117 *
118 * This routine removes everything from a hash table
119 * and frees up the memory space it occupied (except for
120 * the space in the Hash_Table structure).
121 *
122 * Results:
123 * None.
124 *
125 * Side Effects:
126 * Lots of memory is freed up.
127 *
128 *---------------------------------------------------------
129 */
130
131void
132Hash_DeleteTable(t)
133 Hash_Table *t;
134{
135 register struct Hash_Entry **hp, *h, *nexth;
136 register int i;
137
138 for (hp = t->bucketPtr, i = t->size; --i >= 0;) {
139 for (h = *hp++; h != NULL; h = nexth) {
140 nexth = h->next;
141 free((char *)h);
142 }
143 }
144 free((char *)t->bucketPtr);
145
146 /*
147 * Set up the hash table to cause memory faults on any future access
148 * attempts until re-initialization.
149 */
150 t->bucketPtr = NULL;
151}
152
153/*
154 *---------------------------------------------------------
155 *
156 * Hash_FindEntry --
157 *
158 * Searches a hash table for an entry corresponding to key.
159 *
160 * Results:
161 * The return value is a pointer to the entry for key,
162 * if key was present in the table. If key was not
163 * present, NULL is returned.
164 *
165 * Side Effects:
166 * None.
167 *
168 *---------------------------------------------------------
169 */
170
171Hash_Entry *
172Hash_FindEntry(t, key)
173 Hash_Table *t; /* Hash table to search. */
174 char *key; /* A hash key. */
175{
176 register Hash_Entry *e;
177 register unsigned h;
178 register char *p;
179
180 for (h = 0, p = key; *p;)
181 h = (h << 5) - h + *p++;
182 p = key;
183 for (e = t->bucketPtr[h & t->mask]; e != NULL; e = e->next)
184 if (e->namehash == h && strcmp(e->name, p) == 0)
185 return (e);
186 return (NULL);
187}
188
189/*
190 *---------------------------------------------------------
191 *
192 * Hash_CreateEntry --
193 *
194 * Searches a hash table for an entry corresponding to
195 * key. If no entry is found, then one is created.
196 *
197 * Results:
198 * The return value is a pointer to the entry. If *newPtr
199 * isn't NULL, then *newPtr is filled in with TRUE if a
200 * new entry was created, and FALSE if an entry already existed
201 * with the given key.
202 *
203 * Side Effects:
204 * Memory may be allocated, and the hash buckets may be modified.
205 *---------------------------------------------------------
206 */
207
208Hash_Entry *
209Hash_CreateEntry(t, key, newPtr)
210 register Hash_Table *t; /* Hash table to search. */
211 char *key; /* A hash key. */
212 Boolean *newPtr; /* Filled in with TRUE if new entry created,
213 * FALSE otherwise. */
214{
215 register Hash_Entry *e;
216 register unsigned h;
217 register char *p;
218 int keylen;
219 struct Hash_Entry **hp;
220
221 /*
222 * Hash the key. As a side effect, save the length (strlen) of the
223 * key in case we need to create the entry.
224 */
225 for (h = 0, p = key; *p;)
226 h = (h << 5) - h + *p++;
227 keylen = p - key;
228 p = key;
229 for (e = t->bucketPtr[h & t->mask]; e != NULL; e = e->next) {
230 if (e->namehash == h && strcmp(e->name, p) == 0) {
231 if (newPtr != NULL)
232 *newPtr = FALSE;
233 return (e);
234 }
235 }
236
237 /*
238 * The desired entry isn't there. Before allocating a new entry,
239 * expand the table if necessary (and this changes the resulting
240 * bucket chain).
241 */
242 if (t->numEntries >= rebuildLimit * t->size)
243 RebuildTable(t);
244 e = (Hash_Entry *) emalloc(sizeof(*e) + keylen);
245 hp = &t->bucketPtr[h & t->mask];
246 e->next = *hp;
247 *hp = e;
248 e->clientData = NULL;
249 e->namehash = h;
250 (void) strcpy(e->name, p);
251 t->numEntries++;
252
253 if (newPtr != NULL)
254 *newPtr = TRUE;
255 return (e);
256}
257
258/*
259 *---------------------------------------------------------
260 *
261 * Hash_DeleteEntry --
262 *
263 * Delete the given hash table entry and free memory associated with
264 * it.
265 *
266 * Results:
267 * None.
268 *
269 * Side Effects:
270 * Hash chain that entry lives in is modified and memory is freed.
271 *
272 *---------------------------------------------------------
273 */
274
275void
276Hash_DeleteEntry(t, e)
277 Hash_Table *t;
278 Hash_Entry *e;
279{
280 register Hash_Entry **hp, *p;
281
282 if (e == NULL)
283 return;
284 for (hp = &t->bucketPtr[e->namehash & t->mask];
285 (p = *hp) != NULL; hp = &p->next) {
286 if (p == e) {
287 *hp = p->next;
288 free((char *)p);
289 t->numEntries--;
290 return;
291 }
292 }
293 (void) write(2, "bad call to Hash_DeleteEntry\n", 29);
294 abort();
295}
296
297/*
298 *---------------------------------------------------------
299 *
300 * Hash_EnumFirst --
301 * This procedure sets things up for a complete search
302 * of all entries recorded in the hash table.
303 *
304 * Results:
305 * The return value is the address of the first entry in
306 * the hash table, or NULL if the table is empty.
307 *
308 * Side Effects:
309 * The information in searchPtr is initialized so that successive
310 * calls to Hash_Next will return successive HashEntry's
311 * from the table.
312 *
313 *---------------------------------------------------------
314 */
315
316Hash_Entry *
317Hash_EnumFirst(t, searchPtr)
318 Hash_Table *t; /* Table to be searched. */
319 register Hash_Search *searchPtr;/* Area in which to keep state
320 * about search.*/
321{
322 searchPtr->tablePtr = t;
323 searchPtr->nextIndex = 0;
324 searchPtr->hashEntryPtr = NULL;
325 return Hash_EnumNext(searchPtr);
326}
327
328/*
329 *---------------------------------------------------------
330 *
331 * Hash_EnumNext --
332 * This procedure returns successive entries in the hash table.
333 *
334 * Results:
335 * The return value is a pointer to the next HashEntry
336 * in the table, or NULL when the end of the table is
337 * reached.
338 *
339 * Side Effects:
340 * The information in searchPtr is modified to advance to the
341 * next entry.
342 *
343 *---------------------------------------------------------
344 */
345
346Hash_Entry *
347Hash_EnumNext(searchPtr)
348 register Hash_Search *searchPtr; /* Area used to keep state about
349 search. */
350{
351 register Hash_Entry *e;
352 Hash_Table *t = searchPtr->tablePtr;
353
354 /*
355 * The hashEntryPtr field points to the most recently returned
356 * entry, or is nil if we are starting up. If not nil, we have
357 * to start at the next one in the chain.
358 */
359 e = searchPtr->hashEntryPtr;
360 if (e != NULL)
361 e = e->next;
362 /*
363 * If the chain ran out, or if we are starting up, we need to
364 * find the next nonempty chain.
365 */
366 while (e == NULL) {
367 if (searchPtr->nextIndex >= t->size)
368 return (NULL);
369 e = t->bucketPtr[searchPtr->nextIndex++];
370 }
371 searchPtr->hashEntryPtr = e;
372 return (e);
373}
374
375/*
376 *---------------------------------------------------------
377 *
378 * RebuildTable --
379 * This local routine makes a new hash table that
380 * is larger than the old one.
381 *
382 * Results:
383 * None.
384 *
385 * Side Effects:
386 * The entire hash table is moved, so any bucket numbers
387 * from the old table are invalid.
388 *
389 *---------------------------------------------------------
390 */
391
392static void
393RebuildTable(t)
394 register Hash_Table *t;
395{
396 register Hash_Entry *e, *next, **hp, **xp;
397 register int i, mask;
398 register Hash_Entry **oldhp;
399 int oldsize;
400
401 oldhp = t->bucketPtr;
402 oldsize = i = t->size;
403 i <<= 1;
404 t->size = i;
405 t->mask = mask = i - 1;
406 t->bucketPtr = hp = (struct Hash_Entry **) emalloc(sizeof(*hp) * i);
407 while (--i >= 0)
408 *hp++ = NULL;
409 for (hp = oldhp, i = oldsize; --i >= 0;) {
410 for (e = *hp++; e != NULL; e = next) {
411 next = e->next;
412 xp = &t->bucketPtr[e->namehash & mask];
413 e->next = *xp;
414 *xp = e;
415 }
416 }
417 free((char *)oldhp);
418}