BSD 4_4_Lite2 development
[unix-history] / usr / src / contrib / gcc-2.3.3 / tree.c
CommitLineData
01fe755c
C
1/* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 1988, 1992 Free Software Foundation, Inc.
3
4This file is part of GNU CC.
5
6GNU CC is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 2, or (at your option)
9any later version.
10
11GNU CC is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with GNU CC; see the file COPYING. If not, write to
18the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20
21/* This file contains the low level primitives for operating on tree nodes,
22 including allocation, list operations, interning of identifiers,
23 construction of data type nodes and statement nodes,
24 and construction of type conversion nodes. It also contains
25 tables index by tree code that describe how to take apart
26 nodes of that code.
27
28 It is intended to be language-independent, but occasionally
29 calls language-dependent routines defined (for C) in typecheck.c.
30
31 The low-level allocation routines oballoc and permalloc
32 are used also for allocating many other kinds of objects
33 by all passes of the compiler. */
34
35#include "config.h"
36#include "flags.h"
37#include "tree.h"
38#include "function.h"
39#include "obstack.h"
40#include "gvarargs.h"
41#include <stdio.h>
42
43#define obstack_chunk_alloc xmalloc
44#define obstack_chunk_free free
45
46/* Tree nodes of permanent duration are allocated in this obstack.
47 They are the identifier nodes, and everything outside of
48 the bodies and parameters of function definitions. */
49
50struct obstack permanent_obstack;
51
52/* The initial RTL, and all ..._TYPE nodes, in a function
53 are allocated in this obstack. Usually they are freed at the
54 end of the function, but if the function is inline they are saved.
55 For top-level functions, this is maybepermanent_obstack.
56 Separate obstacks are made for nested functions. */
57
58struct obstack *function_maybepermanent_obstack;
59
60/* This is the function_maybepermanent_obstack for top-level functions. */
61
62struct obstack maybepermanent_obstack;
63
64/* The contents of the current function definition are allocated
65 in this obstack, and all are freed at the end of the function.
66 For top-level functions, this is temporary_obstack.
67 Separate obstacks are made for nested functions. */
68
69struct obstack *function_obstack;
70
71/* This is used for reading initializers of global variables. */
72
73struct obstack temporary_obstack;
74
75/* The tree nodes of an expression are allocated
76 in this obstack, and all are freed at the end of the expression. */
77
78struct obstack momentary_obstack;
79
80/* The tree nodes of a declarator are allocated
81 in this obstack, and all are freed when the declarator
82 has been parsed. */
83
84static struct obstack temp_decl_obstack;
85
86/* This points at either permanent_obstack
87 or the current function_maybepermanent_obstack. */
88
89struct obstack *saveable_obstack;
90
91/* This is same as saveable_obstack during parse and expansion phase;
92 it points to the current function's obstack during optimization.
93 This is the obstack to be used for creating rtl objects. */
94
95struct obstack *rtl_obstack;
96
97/* This points at either permanent_obstack or the current function_obstack. */
98
99struct obstack *current_obstack;
100
101/* This points at either permanent_obstack or the current function_obstack
102 or momentary_obstack. */
103
104struct obstack *expression_obstack;
105
106/* Stack of obstack selections for push_obstacks and pop_obstacks. */
107
108struct obstack_stack
109{
110 struct obstack_stack *next;
111 struct obstack *current;
112 struct obstack *saveable;
113 struct obstack *expression;
114 struct obstack *rtl;
115};
116
117struct obstack_stack *obstack_stack;
118
119/* Obstack for allocating struct obstack_stack entries. */
120
121static struct obstack obstack_stack_obstack;
122
123/* Addresses of first objects in some obstacks.
124 This is for freeing their entire contents. */
125char *maybepermanent_firstobj;
126char *temporary_firstobj;
127char *momentary_firstobj;
128char *temp_decl_firstobj;
129
130/* Nonzero means all ..._TYPE nodes should be allocated permanently. */
131
132int all_types_permanent;
133
134/* Stack of places to restore the momentary obstack back to. */
135
136struct momentary_level
137{
138 /* Pointer back to previous such level. */
139 struct momentary_level *prev;
140 /* First object allocated within this level. */
141 char *base;
142 /* Value of expression_obstack saved at entry to this level. */
143 struct obstack *obstack;
144};
145
146struct momentary_level *momentary_stack;
147
148/* Table indexed by tree code giving a string containing a character
149 classifying the tree code. Possibilities are
150 t, d, s, c, r, <, 1, 2 and e. See tree.def for details. */
151
152#define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,
153
154char *standard_tree_code_type[] = {
155#include "tree.def"
156};
157#undef DEFTREECODE
158
159/* Table indexed by tree code giving number of expression
160 operands beyond the fixed part of the node structure.
161 Not used for types or decls. */
162
163#define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH,
164
165int standard_tree_code_length[] = {
166#include "tree.def"
167};
168#undef DEFTREECODE
169
170/* Names of tree components.
171 Used for printing out the tree and error messages. */
172#define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,
173
174char *standard_tree_code_name[] = {
175#include "tree.def"
176};
177#undef DEFTREECODE
178
179/* Table indexed by tree code giving a string containing a character
180 classifying the tree code. Possibilities are
181 t, d, s, c, r, e, <, 1 and 2. See tree.def for details. */
182
183char **tree_code_type;
184
185/* Table indexed by tree code giving number of expression
186 operands beyond the fixed part of the node structure.
187 Not used for types or decls. */
188
189int *tree_code_length;
190
191/* Table indexed by tree code giving name of tree code, as a string. */
192
193char **tree_code_name;
194
195/* Statistics-gathering stuff. */
196typedef enum
197{
198 d_kind,
199 t_kind,
200 b_kind,
201 s_kind,
202 r_kind,
203 e_kind,
204 c_kind,
205 id_kind,
206 op_id_kind,
207 perm_list_kind,
208 temp_list_kind,
209 vec_kind,
210 x_kind,
211 lang_decl,
212 lang_type,
213 all_kinds
214} tree_node_kind;
215
216int tree_node_counts[(int)all_kinds];
217int tree_node_sizes[(int)all_kinds];
218int id_string_size = 0;
219
220char *tree_node_kind_names[] = {
221 "decls",
222 "types",
223 "blocks",
224 "stmts",
225 "refs",
226 "exprs",
227 "constants",
228 "identifiers",
229 "op_identifiers",
230 "perm_tree_lists",
231 "temp_tree_lists",
232 "vecs",
233 "random kinds",
234 "lang_decl kinds",
235 "lang_type kinds"
236};
237
238/* Hash table for uniquizing IDENTIFIER_NODEs by name. */
239
240#define MAX_HASH_TABLE 1009
241static tree hash_table[MAX_HASH_TABLE]; /* id hash buckets */
242
243/* 0 while creating built-in identifiers. */
244static int do_identifier_warnings;
245
246/* Unique id for next decl created. */
247static int next_decl_uid;
248
249extern char *mode_name[];
250
251void gcc_obstack_init ();
252static tree stabilize_reference_1 ();
253\f
254/* Init the principal obstacks. */
255
256void
257init_obstacks ()
258{
259 gcc_obstack_init (&obstack_stack_obstack);
260 gcc_obstack_init (&permanent_obstack);
261
262 gcc_obstack_init (&temporary_obstack);
263 temporary_firstobj = (char *) obstack_alloc (&temporary_obstack, 0);
264 gcc_obstack_init (&momentary_obstack);
265 momentary_firstobj = (char *) obstack_alloc (&momentary_obstack, 0);
266 gcc_obstack_init (&maybepermanent_obstack);
267 maybepermanent_firstobj
268 = (char *) obstack_alloc (&maybepermanent_obstack, 0);
269 gcc_obstack_init (&temp_decl_obstack);
270 temp_decl_firstobj = (char *) obstack_alloc (&temp_decl_obstack, 0);
271
272 function_obstack = &temporary_obstack;
273 function_maybepermanent_obstack = &maybepermanent_obstack;
274 current_obstack = &permanent_obstack;
275 expression_obstack = &permanent_obstack;
276 rtl_obstack = saveable_obstack = &permanent_obstack;
277
278 /* Init the hash table of identifiers. */
279 bzero (hash_table, sizeof hash_table);
280}
281
282void
283gcc_obstack_init (obstack)
284 struct obstack *obstack;
285{
286 /* Let particular systems override the size of a chunk. */
287#ifndef OBSTACK_CHUNK_SIZE
288#define OBSTACK_CHUNK_SIZE 0
289#endif
290 /* Let them override the alloc and free routines too. */
291#ifndef OBSTACK_CHUNK_ALLOC
292#define OBSTACK_CHUNK_ALLOC xmalloc
293#endif
294#ifndef OBSTACK_CHUNK_FREE
295#define OBSTACK_CHUNK_FREE free
296#endif
297 _obstack_begin (obstack, OBSTACK_CHUNK_SIZE, 0,
298 (void *(*) ()) OBSTACK_CHUNK_ALLOC,
299 (void (*) ()) OBSTACK_CHUNK_FREE);
300}
301
302/* Save all variables describing the current status into the structure *P.
303 This is used before starting a nested function. */
304
305void
306save_tree_status (p)
307 struct function *p;
308{
309 p->all_types_permanent = all_types_permanent;
310 p->momentary_stack = momentary_stack;
311 p->maybepermanent_firstobj = maybepermanent_firstobj;
312 p->momentary_firstobj = momentary_firstobj;
313 p->function_obstack = function_obstack;
314 p->function_maybepermanent_obstack = function_maybepermanent_obstack;
315 p->current_obstack = current_obstack;
316 p->expression_obstack = expression_obstack;
317 p->saveable_obstack = saveable_obstack;
318 p->rtl_obstack = rtl_obstack;
319
320 function_obstack = (struct obstack *) xmalloc (sizeof (struct obstack));
321 gcc_obstack_init (function_obstack);
322
323 function_maybepermanent_obstack
324 = (struct obstack *) xmalloc (sizeof (struct obstack));
325 gcc_obstack_init (function_maybepermanent_obstack);
326
327 current_obstack = &permanent_obstack;
328 expression_obstack = &permanent_obstack;
329 rtl_obstack = saveable_obstack = &permanent_obstack;
330
331 momentary_firstobj = (char *) obstack_finish (&momentary_obstack);
332 maybepermanent_firstobj
333 = (char *) obstack_finish (function_maybepermanent_obstack);
334}
335
336/* Restore all variables describing the current status from the structure *P.
337 This is used after a nested function. */
338
339void
340restore_tree_status (p)
341 struct function *p;
342{
343 all_types_permanent = p->all_types_permanent;
344 momentary_stack = p->momentary_stack;
345
346 obstack_free (&momentary_obstack, momentary_firstobj);
347 obstack_free (function_obstack, 0);
348 obstack_free (function_maybepermanent_obstack, 0);
349 free (function_obstack);
350
351 momentary_firstobj = p->momentary_firstobj;
352 maybepermanent_firstobj = p->maybepermanent_firstobj;
353 function_obstack = p->function_obstack;
354 function_maybepermanent_obstack = p->function_maybepermanent_obstack;
355 current_obstack = p->current_obstack;
356 expression_obstack = p->expression_obstack;
357 saveable_obstack = p->saveable_obstack;
358 rtl_obstack = p->rtl_obstack;
359}
360\f
361/* Start allocating on the temporary (per function) obstack.
362 This is done in start_function before parsing the function body,
363 and before each initialization at top level, and to go back
364 to temporary allocation after doing end_temporary_allocation. */
365
366void
367temporary_allocation ()
368{
369 /* Note that function_obstack at top level points to temporary_obstack.
370 But within a nested function context, it is a separate obstack. */
371 current_obstack = function_obstack;
372 expression_obstack = function_obstack;
373 rtl_obstack = saveable_obstack = function_maybepermanent_obstack;
374 momentary_stack = 0;
375}
376
377/* Start allocating on the permanent obstack but don't
378 free the temporary data. After calling this, call
379 `permanent_allocation' to fully resume permanent allocation status. */
380
381void
382end_temporary_allocation ()
383{
384 current_obstack = &permanent_obstack;
385 expression_obstack = &permanent_obstack;
386 rtl_obstack = saveable_obstack = &permanent_obstack;
387}
388
389/* Resume allocating on the temporary obstack, undoing
390 effects of `end_temporary_allocation'. */
391
392void
393resume_temporary_allocation ()
394{
395 current_obstack = function_obstack;
396 expression_obstack = function_obstack;
397 rtl_obstack = saveable_obstack = function_maybepermanent_obstack;
398}
399
400/* While doing temporary allocation, switch to allocating in such a
401 way as to save all nodes if the function is inlined. Call
402 resume_temporary_allocation to go back to ordinary temporary
403 allocation. */
404
405void
406saveable_allocation ()
407{
408 /* Note that function_obstack at top level points to temporary_obstack.
409 But within a nested function context, it is a separate obstack. */
410 expression_obstack = current_obstack = saveable_obstack;
411}
412
413/* Switch to current obstack CURRENT and maybepermanent obstack SAVEABLE,
414 recording the previously current obstacks on a stack.
415 This does not free any storage in any obstack. */
416
417void
418push_obstacks (current, saveable)
419 struct obstack *current, *saveable;
420{
421 struct obstack_stack *p
422 = (struct obstack_stack *) obstack_alloc (&obstack_stack_obstack,
423 (sizeof (struct obstack_stack)));
424
425 p->current = current_obstack;
426 p->saveable = saveable_obstack;
427 p->expression = expression_obstack;
428 p->rtl = rtl_obstack;
429 p->next = obstack_stack;
430 obstack_stack = p;
431
432 current_obstack = current;
433 expression_obstack = current;
434 rtl_obstack = saveable_obstack = saveable;
435}
436
437/* Save the current set of obstacks, but don't change them. */
438
439void
440push_obstacks_nochange ()
441{
442 struct obstack_stack *p
443 = (struct obstack_stack *) obstack_alloc (&obstack_stack_obstack,
444 (sizeof (struct obstack_stack)));
445
446 p->current = current_obstack;
447 p->saveable = saveable_obstack;
448 p->expression = expression_obstack;
449 p->rtl = rtl_obstack;
450 p->next = obstack_stack;
451 obstack_stack = p;
452}
453
454/* Pop the obstack selection stack. */
455
456void
457pop_obstacks ()
458{
459 struct obstack_stack *p = obstack_stack;
460 obstack_stack = p->next;
461
462 current_obstack = p->current;
463 saveable_obstack = p->saveable;
464 expression_obstack = p->expression;
465 rtl_obstack = p->rtl;
466
467 obstack_free (&obstack_stack_obstack, p);
468}
469
470/* Nonzero if temporary allocation is currently in effect.
471 Zero if currently doing permanent allocation. */
472
473int
474allocation_temporary_p ()
475{
476 return current_obstack != &permanent_obstack;
477}
478
479/* Go back to allocating on the permanent obstack
480 and free everything in the temporary obstack.
481 This is done in finish_function after fully compiling a function. */
482
483void
484permanent_allocation ()
485{
486 /* Free up previous temporary obstack data */
487 obstack_free (&temporary_obstack, temporary_firstobj);
488 obstack_free (&momentary_obstack, momentary_firstobj);
489 obstack_free (&maybepermanent_obstack, maybepermanent_firstobj);
490 obstack_free (&temp_decl_obstack, temp_decl_firstobj);
491
492 current_obstack = &permanent_obstack;
493 expression_obstack = &permanent_obstack;
494 rtl_obstack = saveable_obstack = &permanent_obstack;
495}
496
497/* Save permanently everything on the maybepermanent_obstack. */
498
499void
500preserve_data ()
501{
502 maybepermanent_firstobj
503 = (char *) obstack_alloc (function_maybepermanent_obstack, 0);
504}
505
506void
507preserve_initializer ()
508{
509 temporary_firstobj
510 = (char *) obstack_alloc (&temporary_obstack, 0);
511 momentary_firstobj
512 = (char *) obstack_alloc (&momentary_obstack, 0);
513 maybepermanent_firstobj
514 = (char *) obstack_alloc (function_maybepermanent_obstack, 0);
515}
516
517/* Start allocating new rtl in current_obstack.
518 Use resume_temporary_allocation
519 to go back to allocating rtl in saveable_obstack. */
520
521void
522rtl_in_current_obstack ()
523{
524 rtl_obstack = current_obstack;
525}
526
527/* Temporarily allocate rtl from saveable_obstack. Return 1 if we were
528 previously allocating it from current_obstack. */
529
530int
531rtl_in_saveable_obstack ()
532{
533 if (rtl_obstack == current_obstack)
534 {
535 rtl_obstack = saveable_obstack;
536 return 1;
537 }
538 else
539 return 0;
540}
541\f
542/* Allocate SIZE bytes in the current obstack
543 and return a pointer to them.
544 In practice the current obstack is always the temporary one. */
545
546char *
547oballoc (size)
548 int size;
549{
550 return (char *) obstack_alloc (current_obstack, size);
551}
552
553/* Free the object PTR in the current obstack
554 as well as everything allocated since PTR.
555 In practice the current obstack is always the temporary one. */
556
557void
558obfree (ptr)
559 char *ptr;
560{
561 obstack_free (current_obstack, ptr);
562}
563
564/* Allocate SIZE bytes in the permanent obstack
565 and return a pointer to them. */
566
567char *
568permalloc (size)
569 int size;
570{
571 return (char *) obstack_alloc (&permanent_obstack, size);
572}
573
574/* Allocate NELEM items of SIZE bytes in the permanent obstack
575 and return a pointer to them. The storage is cleared before
576 returning the value. */
577
578char *
579perm_calloc (nelem, size)
580 int nelem;
581 long size;
582{
583 char *rval = (char *) obstack_alloc (&permanent_obstack, nelem * size);
584 bzero (rval, nelem * size);
585 return rval;
586}
587
588/* Allocate SIZE bytes in the saveable obstack
589 and return a pointer to them. */
590
591char *
592savealloc (size)
593 int size;
594{
595 return (char *) obstack_alloc (saveable_obstack, size);
596}
597\f
598/* Print out which obstack an object is in. */
599
600void
601debug_obstack (object)
602 char *object;
603{
604 struct obstack *obstack = NULL;
605 char *obstack_name = NULL;
606 struct function *p;
607
608 for (p = outer_function_chain; p; p = p->next)
609 {
610 if (_obstack_allocated_p (p->function_obstack, object))
611 {
612 obstack = p->function_obstack;
613 obstack_name = "containing function obstack";
614 }
615 if (_obstack_allocated_p (p->function_maybepermanent_obstack, object))
616 {
617 obstack = p->function_maybepermanent_obstack;
618 obstack_name = "containing function maybepermanent obstack";
619 }
620 }
621
622 if (_obstack_allocated_p (&obstack_stack_obstack, object))
623 {
624 obstack = &obstack_stack_obstack;
625 obstack_name = "obstack_stack_obstack";
626 }
627 else if (_obstack_allocated_p (function_obstack, object))
628 {
629 obstack = function_obstack;
630 obstack_name = "function obstack";
631 }
632 else if (_obstack_allocated_p (&permanent_obstack, object))
633 {
634 obstack = &permanent_obstack;
635 obstack_name = "permanent_obstack";
636 }
637 else if (_obstack_allocated_p (&momentary_obstack, object))
638 {
639 obstack = &momentary_obstack;
640 obstack_name = "momentary_obstack";
641 }
642 else if (_obstack_allocated_p (function_maybepermanent_obstack, object))
643 {
644 obstack = function_maybepermanent_obstack;
645 obstack_name = "function maybepermanent obstack";
646 }
647 else if (_obstack_allocated_p (&temp_decl_obstack, object))
648 {
649 obstack = &temp_decl_obstack;
650 obstack_name = "temp_decl_obstack";
651 }
652
653 /* Check to see if the object is in the free area of the obstack. */
654 if (obstack != NULL)
655 {
656 if (object >= obstack->next_free
657 && object < obstack->chunk_limit)
658 fprintf (stderr, "object in free portion of obstack %s.\n",
659 obstack_name);
660 else
661 fprintf (stderr, "object allocated from %s.\n", obstack_name);
662 }
663 else
664 fprintf (stderr, "object not allocated from any obstack.\n");
665}
666
667/* Return 1 if OBJ is in the permanent obstack.
668 This is slow, and should be used only for debugging.
669 Use TREE_PERMANENT for other purposes. */
670
671int
672object_permanent_p (obj)
673 tree obj;
674{
675 return _obstack_allocated_p (&permanent_obstack, obj);
676}
677\f
678/* Start a level of momentary allocation.
679 In C, each compound statement has its own level
680 and that level is freed at the end of each statement.
681 All expression nodes are allocated in the momentary allocation level. */
682
683void
684push_momentary ()
685{
686 struct momentary_level *tem
687 = (struct momentary_level *) obstack_alloc (&momentary_obstack,
688 sizeof (struct momentary_level));
689 tem->prev = momentary_stack;
690 tem->base = (char *) obstack_base (&momentary_obstack);
691 tem->obstack = expression_obstack;
692 momentary_stack = tem;
693 expression_obstack = &momentary_obstack;
694}
695
696/* Free all the storage in the current momentary-allocation level.
697 In C, this happens at the end of each statement. */
698
699void
700clear_momentary ()
701{
702 obstack_free (&momentary_obstack, momentary_stack->base);
703}
704
705/* Discard a level of momentary allocation.
706 In C, this happens at the end of each compound statement.
707 Restore the status of expression node allocation
708 that was in effect before this level was created. */
709
710void
711pop_momentary ()
712{
713 struct momentary_level *tem = momentary_stack;
714 momentary_stack = tem->prev;
715 expression_obstack = tem->obstack;
716 obstack_free (&momentary_obstack, tem);
717}
718
719/* Call when starting to parse a declaration:
720 make expressions in the declaration last the length of the function.
721 Returns an argument that should be passed to resume_momentary later. */
722
723int
724suspend_momentary ()
725{
726 register int tem = expression_obstack == &momentary_obstack;
727 expression_obstack = saveable_obstack;
728 return tem;
729}
730
731/* Call when finished parsing a declaration:
732 restore the treatment of node-allocation that was
733 in effect before the suspension.
734 YES should be the value previously returned by suspend_momentary. */
735
736void
737resume_momentary (yes)
738 int yes;
739{
740 if (yes)
741 expression_obstack = &momentary_obstack;
742}
743\f
744/* Init the tables indexed by tree code.
745 Note that languages can add to these tables to define their own codes. */
746
747void
748init_tree_codes ()
749{
750 tree_code_type = (char **) xmalloc (sizeof (standard_tree_code_type));
751 tree_code_length = (int *) xmalloc (sizeof (standard_tree_code_length));
752 tree_code_name = (char **) xmalloc (sizeof (standard_tree_code_name));
753 bcopy (standard_tree_code_type, tree_code_type,
754 sizeof (standard_tree_code_type));
755 bcopy (standard_tree_code_length, tree_code_length,
756 sizeof (standard_tree_code_length));
757 bcopy (standard_tree_code_name, tree_code_name,
758 sizeof (standard_tree_code_name));
759}
760
761/* Return a newly allocated node of code CODE.
762 Initialize the node's unique id and its TREE_PERMANENT flag.
763 For decl and type nodes, some other fields are initialized.
764 The rest of the node is initialized to zero.
765
766 Achoo! I got a code in the node. */
767
768tree
769make_node (code)
770 enum tree_code code;
771{
772 register tree t;
773 register int type = TREE_CODE_CLASS (code);
774 register int length;
775 register struct obstack *obstack = current_obstack;
776 register int i;
777 register tree_node_kind kind;
778
779 switch (type)
780 {
781 case 'd': /* A decl node */
782#ifdef GATHER_STATISTICS
783 kind = d_kind;
784#endif
785 length = sizeof (struct tree_decl);
786 /* All decls in an inline function need to be saved. */
787 if (obstack != &permanent_obstack)
788 obstack = saveable_obstack;
789 /* PARM_DECLs always go on saveable_obstack, not permanent,
790 even though we may make them before the function turns
791 on temporary allocation. */
792 else if (code == PARM_DECL)
793 obstack = function_maybepermanent_obstack;
794 break;
795
796 case 't': /* a type node */
797#ifdef GATHER_STATISTICS
798 kind = t_kind;
799#endif
800 length = sizeof (struct tree_type);
801 /* All data types are put where we can preserve them if nec. */
802 if (obstack != &permanent_obstack)
803 obstack = all_types_permanent ? &permanent_obstack : saveable_obstack;
804 break;
805
806 case 'b': /* a lexical block */
807#ifdef GATHER_STATISTICS
808 kind = b_kind;
809#endif
810 length = sizeof (struct tree_block);
811 /* All BLOCK nodes are put where we can preserve them if nec. */
812 if (obstack != &permanent_obstack)
813 obstack = saveable_obstack;
814 break;
815
816 case 's': /* an expression with side effects */
817#ifdef GATHER_STATISTICS
818 kind = s_kind;
819 goto usual_kind;
820#endif
821 case 'r': /* a reference */
822#ifdef GATHER_STATISTICS
823 kind = r_kind;
824 goto usual_kind;
825#endif
826 case 'e': /* an expression */
827 case '<': /* a comparison expression */
828 case '1': /* a unary arithmetic expression */
829 case '2': /* a binary arithmetic expression */
830#ifdef GATHER_STATISTICS
831 kind = e_kind;
832 usual_kind:
833#endif
834 obstack = expression_obstack;
835 /* All BIND_EXPR nodes are put where we can preserve them if nec. */
836 if (code == BIND_EXPR && obstack != &permanent_obstack)
837 obstack = saveable_obstack;
838 length = sizeof (struct tree_exp)
839 + (tree_code_length[(int) code] - 1) * sizeof (char *);
840 break;
841
842 case 'c': /* a constant */
843#ifdef GATHER_STATISTICS
844 kind = c_kind;
845#endif
846 obstack = expression_obstack;
847 /* We can't use tree_code_length for this, since the number of words
848 is machine-dependent due to varying alignment of `double'. */
849 if (code == REAL_CST)
850 {
851 length = sizeof (struct tree_real_cst);
852 break;
853 }
854
855 case 'x': /* something random, like an identifier. */
856#ifdef GATHER_STATISTICS
857 if (code == IDENTIFIER_NODE)
858 kind = id_kind;
859 else if (code == OP_IDENTIFIER)
860 kind = op_id_kind;
861 else if (code == TREE_VEC)
862 kind = vec_kind;
863 else
864 kind = x_kind;
865#endif
866 length = sizeof (struct tree_common)
867 + tree_code_length[(int) code] * sizeof (char *);
868 /* Identifier nodes are always permanent since they are
869 unique in a compiler run. */
870 if (code == IDENTIFIER_NODE) obstack = &permanent_obstack;
871 }
872
873 t = (tree) obstack_alloc (obstack, length);
874
875#ifdef GATHER_STATISTICS
876 tree_node_counts[(int)kind]++;
877 tree_node_sizes[(int)kind] += length;
878#endif
879
880 /* Clear a word at a time. */
881 for (i = (length / sizeof (int)) - 1; i >= 0; i--)
882 ((int *) t)[i] = 0;
883 /* Clear any extra bytes. */
884 for (i = length / sizeof (int) * sizeof (int); i < length; i++)
885 ((char *) t)[i] = 0;
886
887 TREE_SET_CODE (t, code);
888 if (obstack == &permanent_obstack)
889 TREE_PERMANENT (t) = 1;
890
891 switch (type)
892 {
893 case 's':
894 TREE_SIDE_EFFECTS (t) = 1;
895 TREE_TYPE (t) = void_type_node;
896 break;
897
898 case 'd':
899 if (code != FUNCTION_DECL)
900 DECL_ALIGN (t) = 1;
901 DECL_IN_SYSTEM_HEADER (t)
902 = in_system_header && (obstack == &permanent_obstack);
903 DECL_SOURCE_LINE (t) = lineno;
904 DECL_SOURCE_FILE (t) = (input_filename) ? input_filename : "<built-in>";
905 DECL_UID (t) = next_decl_uid++;
906 break;
907
908 case 't':
909 {
910 static unsigned next_type_uid = 1;
911
912 TYPE_UID (t) = next_type_uid++;
913 }
914 TYPE_ALIGN (t) = 1;
915 TYPE_MAIN_VARIANT (t) = t;
916 break;
917
918 case 'c':
919 TREE_CONSTANT (t) = 1;
920 break;
921 }
922
923 return t;
924}
925\f
926/* Return a new node with the same contents as NODE
927 except that its TREE_CHAIN is zero and it has a fresh uid. */
928
929tree
930copy_node (node)
931 tree node;
932{
933 register tree t;
934 register enum tree_code code = TREE_CODE (node);
935 register int length;
936 register int i;
937
938 switch (TREE_CODE_CLASS (code))
939 {
940 case 'd': /* A decl node */
941 length = sizeof (struct tree_decl);
942 break;
943
944 case 't': /* a type node */
945 length = sizeof (struct tree_type);
946 break;
947
948 case 'b': /* a lexical block node */
949 length = sizeof (struct tree_block);
950 break;
951
952 case 'r': /* a reference */
953 case 'e': /* an expression */
954 case 's': /* an expression with side effects */
955 case '<': /* a comparison expression */
956 case '1': /* a unary arithmetic expression */
957 case '2': /* a binary arithmetic expression */
958 length = sizeof (struct tree_exp)
959 + (tree_code_length[(int) code] - 1) * sizeof (char *);
960 break;
961
962 case 'c': /* a constant */
963 /* We can't use tree_code_length for this, since the number of words
964 is machine-dependent due to varying alignment of `double'. */
965 if (code == REAL_CST)
966 {
967 length = sizeof (struct tree_real_cst);
968 break;
969 }
970
971 case 'x': /* something random, like an identifier. */
972 length = sizeof (struct tree_common)
973 + tree_code_length[(int) code] * sizeof (char *);
974 if (code == TREE_VEC)
975 length += (TREE_VEC_LENGTH (node) - 1) * sizeof (char *);
976 }
977
978 t = (tree) obstack_alloc (current_obstack, length);
979
980 for (i = (length / sizeof (int)) - 1; i >= 0; i--)
981 ((int *) t)[i] = ((int *) node)[i];
982 /* Clear any extra bytes. */
983 for (i = length / sizeof (int) * sizeof (int); i < length; i++)
984 ((char *) t)[i] = ((char *) node)[i];
985
986 TREE_CHAIN (t) = 0;
987
988 TREE_PERMANENT (t) = (current_obstack == &permanent_obstack);
989
990 return t;
991}
992
993/* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
994 For example, this can copy a list made of TREE_LIST nodes. */
995
996tree
997copy_list (list)
998 tree list;
999{
1000 tree head;
1001 register tree prev, next;
1002
1003 if (list == 0)
1004 return 0;
1005
1006 head = prev = copy_node (list);
1007 next = TREE_CHAIN (list);
1008 while (next)
1009 {
1010 TREE_CHAIN (prev) = copy_node (next);
1011 prev = TREE_CHAIN (prev);
1012 next = TREE_CHAIN (next);
1013 }
1014 return head;
1015}
1016\f
1017#define HASHBITS 30
1018
1019/* Return an IDENTIFIER_NODE whose name is TEXT (a null-terminated string).
1020 If an identifier with that name has previously been referred to,
1021 the same node is returned this time. */
1022
1023tree
1024get_identifier (text)
1025 register char *text;
1026{
1027 register int hi;
1028 register int i;
1029 register tree idp;
1030 register int len, hash_len;
1031
1032 /* Compute length of text in len. */
1033 for (len = 0; text[len]; len++);
1034
1035 /* Decide how much of that length to hash on */
1036 hash_len = len;
1037 if (warn_id_clash && len > id_clash_len)
1038 hash_len = id_clash_len;
1039
1040 /* Compute hash code */
1041 hi = hash_len * 613 + (unsigned)text[0];
1042 for (i = 1; i < hash_len; i += 2)
1043 hi = ((hi * 613) + (unsigned)(text[i]));
1044
1045 hi &= (1 << HASHBITS) - 1;
1046 hi %= MAX_HASH_TABLE;
1047
1048 /* Search table for identifier */
1049 for (idp = hash_table[hi]; idp; idp = TREE_CHAIN (idp))
1050 if (IDENTIFIER_LENGTH (idp) == len
1051 && IDENTIFIER_POINTER (idp)[0] == text[0]
1052 && !bcmp (IDENTIFIER_POINTER (idp), text, len))
1053 return idp; /* <-- return if found */
1054
1055 /* Not found; optionally warn about a similar identifier */
1056 if (warn_id_clash && do_identifier_warnings && len >= id_clash_len)
1057 for (idp = hash_table[hi]; idp; idp = TREE_CHAIN (idp))
1058 if (!strncmp (IDENTIFIER_POINTER (idp), text, id_clash_len))
1059 {
1060 warning ("`%s' and `%s' identical in first %d characters",
1061 IDENTIFIER_POINTER (idp), text, id_clash_len);
1062 break;
1063 }
1064
1065 if (tree_code_length[(int) IDENTIFIER_NODE] < 0)
1066 abort (); /* set_identifier_size hasn't been called. */
1067
1068 /* Not found, create one, add to chain */
1069 idp = make_node (IDENTIFIER_NODE);
1070 IDENTIFIER_LENGTH (idp) = len;
1071#ifdef GATHER_STATISTICS
1072 id_string_size += len;
1073#endif
1074
1075 IDENTIFIER_POINTER (idp) = obstack_copy0 (&permanent_obstack, text, len);
1076
1077 TREE_CHAIN (idp) = hash_table[hi];
1078 hash_table[hi] = idp;
1079 return idp; /* <-- return if created */
1080}
1081
1082/* Enable warnings on similar identifiers (if requested).
1083 Done after the built-in identifiers are created. */
1084
1085void
1086start_identifier_warnings ()
1087{
1088 do_identifier_warnings = 1;
1089}
1090
1091/* Record the size of an identifier node for the language in use.
1092 SIZE is the total size in bytes.
1093 This is called by the language-specific files. This must be
1094 called before allocating any identifiers. */
1095
1096void
1097set_identifier_size (size)
1098 int size;
1099{
1100 tree_code_length[(int) IDENTIFIER_NODE]
1101 = (size - sizeof (struct tree_common)) / sizeof (tree);
1102}
1103\f
1104/* Return a newly constructed INTEGER_CST node whose constant value
1105 is specified by the two ints LOW and HI.
1106 The TREE_TYPE is set to `int'.
1107
1108 This function should be used via the `build_int_2' macro. */
1109
1110tree
1111build_int_2_wide (low, hi)
1112 HOST_WIDE_INT low, hi;
1113{
1114 register tree t = make_node (INTEGER_CST);
1115 TREE_INT_CST_LOW (t) = low;
1116 TREE_INT_CST_HIGH (t) = hi;
1117 TREE_TYPE (t) = integer_type_node;
1118 return t;
1119}
1120
1121/* Return a new REAL_CST node whose type is TYPE and value is D. */
1122
1123tree
1124build_real (type, d)
1125 tree type;
1126 REAL_VALUE_TYPE d;
1127{
1128 tree v;
1129
1130 /* Check for valid float value for this type on this target machine;
1131 if not, can print error message and store a valid value in D. */
1132#ifdef CHECK_FLOAT_VALUE
1133 CHECK_FLOAT_VALUE (TYPE_MODE (type), d);
1134#endif
1135
1136 v = make_node (REAL_CST);
1137 TREE_TYPE (v) = type;
1138 TREE_REAL_CST (v) = d;
1139 return v;
1140}
1141
1142/* Return a new REAL_CST node whose type is TYPE
1143 and whose value is the integer value of the INTEGER_CST node I. */
1144
1145#if !defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
1146
1147REAL_VALUE_TYPE
1148real_value_from_int_cst (i)
1149 tree i;
1150{
1151 REAL_VALUE_TYPE d;
1152#ifdef REAL_ARITHMETIC
1153 REAL_VALUE_FROM_INT (d, TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i));
1154#else /* not REAL_ARITHMETIC */
1155 if (TREE_INT_CST_HIGH (i) < 0 && ! TREE_UNSIGNED (TREE_TYPE (i)))
1156 {
1157 d = (double) (~ TREE_INT_CST_HIGH (i));
1158 d *= ((double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2))
1159 * (double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)));
1160 d += (double) (unsigned HOST_WIDE_INT) (~ TREE_INT_CST_LOW (i));
1161 d = (- d - 1.0);
1162 }
1163 else
1164 {
1165 d = (double) (unsigned HOST_WIDE_INT) TREE_INT_CST_HIGH (i);
1166 d *= ((double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2))
1167 * (double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)));
1168 d += (double) (unsigned HOST_WIDE_INT) TREE_INT_CST_LOW (i);
1169 }
1170#endif /* not REAL_ARITHMETIC */
1171 return d;
1172}
1173
1174/* This function can't be implemented if we can't do arithmetic
1175 on the float representation. */
1176
1177tree
1178build_real_from_int_cst (type, i)
1179 tree type;
1180 tree i;
1181{
1182 tree v;
1183 REAL_VALUE_TYPE d;
1184
1185 v = make_node (REAL_CST);
1186 TREE_TYPE (v) = type;
1187
1188 d = REAL_VALUE_TRUNCATE (TYPE_MODE (type), real_value_from_int_cst (i));
1189 /* Check for valid float value for this type on this target machine;
1190 if not, can print error message and store a valid value in D. */
1191#ifdef CHECK_FLOAT_VALUE
1192 CHECK_FLOAT_VALUE (TYPE_MODE (type), d);
1193#endif
1194
1195 TREE_REAL_CST (v) = d;
1196 return v;
1197}
1198
1199#endif /* not REAL_IS_NOT_DOUBLE, or REAL_ARITHMETIC */
1200
1201/* Return a newly constructed STRING_CST node whose value is
1202 the LEN characters at STR.
1203 The TREE_TYPE is not initialized. */
1204
1205tree
1206build_string (len, str)
1207 int len;
1208 char *str;
1209{
1210 register tree s = make_node (STRING_CST);
1211 TREE_STRING_LENGTH (s) = len;
1212 TREE_STRING_POINTER (s) = obstack_copy0 (saveable_obstack, str, len);
1213 return s;
1214}
1215
1216/* Return a newly constructed COMPLEX_CST node whose value is
1217 specified by the real and imaginary parts REAL and IMAG.
1218 Both REAL and IMAG should be constant nodes.
1219 The TREE_TYPE is not initialized. */
1220
1221tree
1222build_complex (real, imag)
1223 tree real, imag;
1224{
1225 register tree t = make_node (COMPLEX_CST);
1226 TREE_REALPART (t) = real;
1227 TREE_IMAGPART (t) = imag;
1228 return t;
1229}
1230
1231/* Build a newly constructed TREE_VEC node of length LEN. */
1232tree
1233make_tree_vec (len)
1234 int len;
1235{
1236 register tree t;
1237 register int length = (len-1) * sizeof (tree) + sizeof (struct tree_vec);
1238 register struct obstack *obstack = current_obstack;
1239 register int i;
1240
1241#ifdef GATHER_STATISTICS
1242 tree_node_counts[(int)vec_kind]++;
1243 tree_node_sizes[(int)vec_kind] += length;
1244#endif
1245
1246 t = (tree) obstack_alloc (obstack, length);
1247
1248 for (i = (length / sizeof (int)) - 1; i >= 0; i--)
1249 ((int *) t)[i] = 0;
1250
1251 TREE_SET_CODE (t, TREE_VEC);
1252 TREE_VEC_LENGTH (t) = len;
1253 if (obstack == &permanent_obstack)
1254 TREE_PERMANENT (t) = 1;
1255
1256 return t;
1257}
1258\f
1259/* Return 1 if EXPR is the integer constant zero. */
1260
1261int
1262integer_zerop (expr)
1263 tree expr;
1264{
1265 STRIP_NOPS (expr);
1266
1267 return (TREE_CODE (expr) == INTEGER_CST
1268 && TREE_INT_CST_LOW (expr) == 0
1269 && TREE_INT_CST_HIGH (expr) == 0);
1270}
1271
1272/* Return 1 if EXPR is the integer constant one. */
1273
1274int
1275integer_onep (expr)
1276 tree expr;
1277{
1278 STRIP_NOPS (expr);
1279
1280 return (TREE_CODE (expr) == INTEGER_CST
1281 && TREE_INT_CST_LOW (expr) == 1
1282 && TREE_INT_CST_HIGH (expr) == 0);
1283}
1284
1285/* Return 1 if EXPR is an integer containing all 1's
1286 in as much precision as it contains. */
1287
1288int
1289integer_all_onesp (expr)
1290 tree expr;
1291{
1292 register int prec;
1293 register int uns;
1294
1295 STRIP_NOPS (expr);
1296
1297 if (TREE_CODE (expr) != INTEGER_CST)
1298 return 0;
1299
1300 uns = TREE_UNSIGNED (TREE_TYPE (expr));
1301 if (!uns)
1302 return TREE_INT_CST_LOW (expr) == -1 && TREE_INT_CST_HIGH (expr) == -1;
1303
1304 prec = TYPE_PRECISION (TREE_TYPE (expr));
1305 if (prec >= HOST_BITS_PER_WIDE_INT)
1306 {
1307 int high_value, shift_amount;
1308
1309 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
1310
1311 if (shift_amount > HOST_BITS_PER_WIDE_INT)
1312 /* Can not handle precisions greater than twice the host int size. */
1313 abort ();
1314 else if (shift_amount == HOST_BITS_PER_WIDE_INT)
1315 /* Shifting by the host word size is undefined according to the ANSI
1316 standard, so we must handle this as a special case. */
1317 high_value = -1;
1318 else
1319 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
1320
1321 return TREE_INT_CST_LOW (expr) == -1
1322 && TREE_INT_CST_HIGH (expr) == high_value;
1323 }
1324 else
1325 return TREE_INT_CST_LOW (expr) == ((HOST_WIDE_INT) 1 << prec) - 1;
1326}
1327
1328/* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
1329 one bit on). */
1330
1331int
1332integer_pow2p (expr)
1333 tree expr;
1334{
1335 HOST_WIDE_INT high, low;
1336
1337 STRIP_NOPS (expr);
1338
1339 if (TREE_CODE (expr) != INTEGER_CST)
1340 return 0;
1341
1342 high = TREE_INT_CST_HIGH (expr);
1343 low = TREE_INT_CST_LOW (expr);
1344
1345 if (high == 0 && low == 0)
1346 return 0;
1347
1348 return ((high == 0 && (low & (low - 1)) == 0)
1349 || (low == 0 && (high & (high - 1)) == 0));
1350}
1351
1352/* Return 1 if EXPR is the real constant zero. */
1353
1354int
1355real_zerop (expr)
1356 tree expr;
1357{
1358 STRIP_NOPS (expr);
1359
1360 return (TREE_CODE (expr) == REAL_CST
1361 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0));
1362}
1363
1364/* Return 1 if EXPR is the real constant one. */
1365
1366int
1367real_onep (expr)
1368 tree expr;
1369{
1370 STRIP_NOPS (expr);
1371
1372 return (TREE_CODE (expr) == REAL_CST
1373 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1));
1374}
1375
1376/* Return 1 if EXPR is the real constant two. */
1377
1378int
1379real_twop (expr)
1380 tree expr;
1381{
1382 STRIP_NOPS (expr);
1383
1384 return (TREE_CODE (expr) == REAL_CST
1385 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2));
1386}
1387
1388/* Nonzero if EXP is a constant or a cast of a constant. */
1389
1390int
1391really_constant_p (exp)
1392 tree exp;
1393{
1394 /* This is not quite the same as STRIP_NOPS. It does more. */
1395 while (TREE_CODE (exp) == NOP_EXPR
1396 || TREE_CODE (exp) == CONVERT_EXPR
1397 || TREE_CODE (exp) == NON_LVALUE_EXPR)
1398 exp = TREE_OPERAND (exp, 0);
1399 return TREE_CONSTANT (exp);
1400}
1401\f
1402/* Return first list element whose TREE_VALUE is ELEM.
1403 Return 0 if ELEM is not it LIST. */
1404
1405tree
1406value_member (elem, list)
1407 tree elem, list;
1408{
1409 while (list)
1410 {
1411 if (elem == TREE_VALUE (list))
1412 return list;
1413 list = TREE_CHAIN (list);
1414 }
1415 return NULL_TREE;
1416}
1417
1418/* Return first list element whose TREE_PURPOSE is ELEM.
1419 Return 0 if ELEM is not it LIST. */
1420
1421tree
1422purpose_member (elem, list)
1423 tree elem, list;
1424{
1425 while (list)
1426 {
1427 if (elem == TREE_PURPOSE (list))
1428 return list;
1429 list = TREE_CHAIN (list);
1430 }
1431 return NULL_TREE;
1432}
1433
1434/* Return first list element whose BINFO_TYPE is ELEM.
1435 Return 0 if ELEM is not it LIST. */
1436
1437tree
1438binfo_member (elem, list)
1439 tree elem, list;
1440{
1441 while (list)
1442 {
1443 if (elem == BINFO_TYPE (list))
1444 return list;
1445 list = TREE_CHAIN (list);
1446 }
1447 return NULL_TREE;
1448}
1449
1450/* Return nonzero if ELEM is part of the chain CHAIN. */
1451
1452int
1453chain_member (elem, chain)
1454 tree elem, chain;
1455{
1456 while (chain)
1457 {
1458 if (elem == chain)
1459 return 1;
1460 chain = TREE_CHAIN (chain);
1461 }
1462
1463 return 0;
1464}
1465
1466/* Return the length of a chain of nodes chained through TREE_CHAIN.
1467 We expect a null pointer to mark the end of the chain.
1468 This is the Lisp primitive `length'. */
1469
1470int
1471list_length (t)
1472 tree t;
1473{
1474 register tree tail;
1475 register int len = 0;
1476
1477 for (tail = t; tail; tail = TREE_CHAIN (tail))
1478 len++;
1479
1480 return len;
1481}
1482
1483/* Concatenate two chains of nodes (chained through TREE_CHAIN)
1484 by modifying the last node in chain 1 to point to chain 2.
1485 This is the Lisp primitive `nconc'. */
1486
1487tree
1488chainon (op1, op2)
1489 tree op1, op2;
1490{
1491 tree t;
1492
1493 if (op1)
1494 {
1495 for (t = op1; TREE_CHAIN (t); t = TREE_CHAIN (t))
1496 if (t == op2) abort (); /* Circularity being created */
1497 if (t == op2) abort (); /* Circularity being created */
1498 TREE_CHAIN (t) = op2;
1499 return op1;
1500 }
1501 else return op2;
1502}
1503
1504/* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
1505
1506tree
1507tree_last (chain)
1508 register tree chain;
1509{
1510 register tree next;
1511 if (chain)
1512 while (next = TREE_CHAIN (chain))
1513 chain = next;
1514 return chain;
1515}
1516
1517/* Reverse the order of elements in the chain T,
1518 and return the new head of the chain (old last element). */
1519
1520tree
1521nreverse (t)
1522 tree t;
1523{
1524 register tree prev = 0, decl, next;
1525 for (decl = t; decl; decl = next)
1526 {
1527 next = TREE_CHAIN (decl);
1528 TREE_CHAIN (decl) = prev;
1529 prev = decl;
1530 }
1531 return prev;
1532}
1533
1534/* Given a chain CHAIN of tree nodes,
1535 construct and return a list of those nodes. */
1536
1537tree
1538listify (chain)
1539 tree chain;
1540{
1541 tree result = NULL_TREE;
1542 tree in_tail = chain;
1543 tree out_tail = NULL_TREE;
1544
1545 while (in_tail)
1546 {
1547 tree next = tree_cons (NULL_TREE, in_tail, NULL_TREE);
1548 if (out_tail)
1549 TREE_CHAIN (out_tail) = next;
1550 else
1551 result = next;
1552 out_tail = next;
1553 in_tail = TREE_CHAIN (in_tail);
1554 }
1555
1556 return result;
1557}
1558\f
1559/* Return a newly created TREE_LIST node whose
1560 purpose and value fields are PARM and VALUE. */
1561
1562tree
1563build_tree_list (parm, value)
1564 tree parm, value;
1565{
1566 register tree t = make_node (TREE_LIST);
1567 TREE_PURPOSE (t) = parm;
1568 TREE_VALUE (t) = value;
1569 return t;
1570}
1571
1572/* Similar, but build on the temp_decl_obstack. */
1573
1574tree
1575build_decl_list (parm, value)
1576 tree parm, value;
1577{
1578 register tree node;
1579 register struct obstack *ambient_obstack = current_obstack;
1580 current_obstack = &temp_decl_obstack;
1581 node = build_tree_list (parm, value);
1582 current_obstack = ambient_obstack;
1583 return node;
1584}
1585
1586/* Return a newly created TREE_LIST node whose
1587 purpose and value fields are PARM and VALUE
1588 and whose TREE_CHAIN is CHAIN. */
1589
1590tree
1591tree_cons (purpose, value, chain)
1592 tree purpose, value, chain;
1593{
1594#if 0
1595 register tree node = make_node (TREE_LIST);
1596#else
1597 register int i;
1598 register tree node = (tree) obstack_alloc (current_obstack, sizeof (struct tree_list));
1599#ifdef GATHER_STATISTICS
1600 tree_node_counts[(int)x_kind]++;
1601 tree_node_sizes[(int)x_kind] += sizeof (struct tree_list);
1602#endif
1603
1604 for (i = (sizeof (struct tree_common) / sizeof (int)) - 1; i >= 0; i--)
1605 ((int *) node)[i] = 0;
1606
1607 TREE_SET_CODE (node, TREE_LIST);
1608 if (current_obstack == &permanent_obstack)
1609 TREE_PERMANENT (node) = 1;
1610#endif
1611
1612 TREE_CHAIN (node) = chain;
1613 TREE_PURPOSE (node) = purpose;
1614 TREE_VALUE (node) = value;
1615 return node;
1616}
1617
1618/* Similar, but build on the temp_decl_obstack. */
1619
1620tree
1621decl_tree_cons (purpose, value, chain)
1622 tree purpose, value, chain;
1623{
1624 register tree node;
1625 register struct obstack *ambient_obstack = current_obstack;
1626 current_obstack = &temp_decl_obstack;
1627 node = tree_cons (purpose, value, chain);
1628 current_obstack = ambient_obstack;
1629 return node;
1630}
1631
1632/* Same as `tree_cons' but make a permanent object. */
1633
1634tree
1635perm_tree_cons (purpose, value, chain)
1636 tree purpose, value, chain;
1637{
1638 register tree node;
1639 register struct obstack *ambient_obstack = current_obstack;
1640 current_obstack = &permanent_obstack;
1641
1642 node = tree_cons (purpose, value, chain);
1643 current_obstack = ambient_obstack;
1644 return node;
1645}
1646
1647/* Same as `tree_cons', but make this node temporary, regardless. */
1648
1649tree
1650temp_tree_cons (purpose, value, chain)
1651 tree purpose, value, chain;
1652{
1653 register tree node;
1654 register struct obstack *ambient_obstack = current_obstack;
1655 current_obstack = &temporary_obstack;
1656
1657 node = tree_cons (purpose, value, chain);
1658 current_obstack = ambient_obstack;
1659 return node;
1660}
1661
1662/* Same as `tree_cons', but save this node if the function's RTL is saved. */
1663
1664tree
1665saveable_tree_cons (purpose, value, chain)
1666 tree purpose, value, chain;
1667{
1668 register tree node;
1669 register struct obstack *ambient_obstack = current_obstack;
1670 current_obstack = saveable_obstack;
1671
1672 node = tree_cons (purpose, value, chain);
1673 current_obstack = ambient_obstack;
1674 return node;
1675}
1676\f
1677/* Return the size nominally occupied by an object of type TYPE
1678 when it resides in memory. The value is measured in units of bytes,
1679 and its data type is that normally used for type sizes
1680 (which is the first type created by make_signed_type or
1681 make_unsigned_type). */
1682
1683tree
1684size_in_bytes (type)
1685 tree type;
1686{
1687 if (type == error_mark_node)
1688 return integer_zero_node;
1689 type = TYPE_MAIN_VARIANT (type);
1690 if (TYPE_SIZE (type) == 0)
1691 {
1692 incomplete_type_error (NULL_TREE, type);
1693 return integer_zero_node;
1694 }
1695 return size_binop (CEIL_DIV_EXPR, TYPE_SIZE (type),
1696 size_int (BITS_PER_UNIT));
1697}
1698
1699/* Return the size of TYPE (in bytes) as an integer,
1700 or return -1 if the size can vary. */
1701
1702int
1703int_size_in_bytes (type)
1704 tree type;
1705{
1706 int size;
1707 if (type == error_mark_node)
1708 return 0;
1709 type = TYPE_MAIN_VARIANT (type);
1710 if (TYPE_SIZE (type) == 0)
1711 return -1;
1712 if (TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1713 return -1;
1714 size = TREE_INT_CST_LOW (TYPE_SIZE (type));
1715 return (size + BITS_PER_UNIT - 1) / BITS_PER_UNIT;
1716}
1717
1718/* Return, as an INTEGER_CST node, the number of elements for
1719 TYPE (which is an ARRAY_TYPE) minus one.
1720 This counts only elements of the top array. */
1721
1722tree
1723array_type_nelts (type)
1724 tree type;
1725{
1726 tree index_type = TYPE_DOMAIN (type);
1727 return (tree_int_cst_equal (TYPE_MIN_VALUE (index_type), integer_zero_node)
1728 ? TYPE_MAX_VALUE (index_type)
1729 : fold (build (MINUS_EXPR, integer_type_node,
1730 TYPE_MAX_VALUE (index_type),
1731 TYPE_MIN_VALUE (index_type))));
1732}
1733\f
1734/* Return nonzero if arg is static -- a reference to an object in
1735 static storage. This is not the same as the C meaning of `static'. */
1736
1737int
1738staticp (arg)
1739 tree arg;
1740{
1741 switch (TREE_CODE (arg))
1742 {
1743 case VAR_DECL:
1744 case FUNCTION_DECL:
1745 case CONSTRUCTOR:
1746 return TREE_STATIC (arg) || DECL_EXTERNAL (arg);
1747
1748 case STRING_CST:
1749 return 1;
1750
1751 case COMPONENT_REF:
1752 case BIT_FIELD_REF:
1753 return staticp (TREE_OPERAND (arg, 0));
1754
1755 case INDIRECT_REF:
1756 return TREE_CONSTANT (TREE_OPERAND (arg, 0));
1757
1758 case ARRAY_REF:
1759 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
1760 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
1761 return staticp (TREE_OPERAND (arg, 0));
1762 }
1763
1764 return 0;
1765}
1766\f
1767/* This should be applied to any node which may be used in more than one place,
1768 but must be evaluated only once. Normally, the code generator would
1769 reevaluate the node each time; this forces it to compute it once and save
1770 the result. This is done by encapsulating the node in a SAVE_EXPR. */
1771
1772tree
1773save_expr (expr)
1774 tree expr;
1775{
1776 register tree t = fold (expr);
1777
1778 /* We don't care about whether this can be used as an lvalue in this
1779 context. */
1780 while (TREE_CODE (t) == NON_LVALUE_EXPR)
1781 t = TREE_OPERAND (t, 0);
1782
1783 /* If the tree evaluates to a constant, then we don't want to hide that
1784 fact (i.e. this allows further folding, and direct checks for constants).
1785 However, a read-only object that has side effects cannot be bypassed.
1786 Since it is no problem to reevaluate literals, we just return the
1787 literal node. */
1788
1789 if (TREE_CONSTANT (t) || (TREE_READONLY (t) && ! TREE_SIDE_EFFECTS (t))
1790 || TREE_CODE (t) == SAVE_EXPR)
1791 return t;
1792
1793 t = build (SAVE_EXPR, TREE_TYPE (expr), t, current_function_decl, NULL_TREE);
1794
1795 /* This expression might be placed ahead of a jump to ensure that the
1796 value was computed on both sides of the jump. So make sure it isn't
1797 eliminated as dead. */
1798 TREE_SIDE_EFFECTS (t) = 1;
1799 return t;
1800}
1801
1802/* Stabilize a reference so that we can use it any number of times
1803 without causing its operands to be evaluated more than once.
1804 Returns the stabilized reference.
1805
1806 Also allows conversion expressions whose operands are references.
1807 Any other kind of expression is returned unchanged. */
1808
1809tree
1810stabilize_reference (ref)
1811 tree ref;
1812{
1813 register tree result;
1814 register enum tree_code code = TREE_CODE (ref);
1815
1816 switch (code)
1817 {
1818 case VAR_DECL:
1819 case PARM_DECL:
1820 case RESULT_DECL:
1821 /* No action is needed in this case. */
1822 return ref;
1823
1824 case NOP_EXPR:
1825 case CONVERT_EXPR:
1826 case FLOAT_EXPR:
1827 case FIX_TRUNC_EXPR:
1828 case FIX_FLOOR_EXPR:
1829 case FIX_ROUND_EXPR:
1830 case FIX_CEIL_EXPR:
1831 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
1832 break;
1833
1834 case INDIRECT_REF:
1835 result = build_nt (INDIRECT_REF,
1836 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
1837 break;
1838
1839 case COMPONENT_REF:
1840 result = build_nt (COMPONENT_REF,
1841 stabilize_reference (TREE_OPERAND (ref, 0)),
1842 TREE_OPERAND (ref, 1));
1843 break;
1844
1845 case BIT_FIELD_REF:
1846 result = build_nt (BIT_FIELD_REF,
1847 stabilize_reference (TREE_OPERAND (ref, 0)),
1848 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
1849 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
1850 break;
1851
1852 case ARRAY_REF:
1853 result = build_nt (ARRAY_REF,
1854 stabilize_reference (TREE_OPERAND (ref, 0)),
1855 stabilize_reference_1 (TREE_OPERAND (ref, 1)));
1856 break;
1857
1858 /* If arg isn't a kind of lvalue we recognize, make no change.
1859 Caller should recognize the error for an invalid lvalue. */
1860 default:
1861 return ref;
1862
1863 case ERROR_MARK:
1864 return error_mark_node;
1865 }
1866
1867 TREE_TYPE (result) = TREE_TYPE (ref);
1868 TREE_READONLY (result) = TREE_READONLY (ref);
1869 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
1870 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
1871 TREE_RAISES (result) = TREE_RAISES (ref);
1872
1873 return result;
1874}
1875
1876/* Subroutine of stabilize_reference; this is called for subtrees of
1877 references. Any expression with side-effects must be put in a SAVE_EXPR
1878 to ensure that it is only evaluated once.
1879
1880 We don't put SAVE_EXPR nodes around everything, because assigning very
1881 simple expressions to temporaries causes us to miss good opportunities
1882 for optimizations. Among other things, the opportunity to fold in the
1883 addition of a constant into an addressing mode often gets lost, e.g.
1884 "y[i+1] += x;". In general, we take the approach that we should not make
1885 an assignment unless we are forced into it - i.e., that any non-side effect
1886 operator should be allowed, and that cse should take care of coalescing
1887 multiple utterances of the same expression should that prove fruitful. */
1888
1889static tree
1890stabilize_reference_1 (e)
1891 tree e;
1892{
1893 register tree result;
1894 register int length;
1895 register enum tree_code code = TREE_CODE (e);
1896
1897 /* We cannot ignore const expressions because it might be a reference
1898 to a const array but whose index contains side-effects. But we can
1899 ignore things that are actual constant or that already have been
1900 handled by this function. */
1901
1902 if (TREE_CONSTANT (e) || code == SAVE_EXPR)
1903 return e;
1904
1905 switch (TREE_CODE_CLASS (code))
1906 {
1907 case 'x':
1908 case 't':
1909 case 'd':
1910 case 'b':
1911 case '<':
1912 case 's':
1913 case 'e':
1914 case 'r':
1915 /* If the expression has side-effects, then encase it in a SAVE_EXPR
1916 so that it will only be evaluated once. */
1917 /* The reference (r) and comparison (<) classes could be handled as
1918 below, but it is generally faster to only evaluate them once. */
1919 if (TREE_SIDE_EFFECTS (e))
1920 return save_expr (e);
1921 return e;
1922
1923 case 'c':
1924 /* Constants need no processing. In fact, we should never reach
1925 here. */
1926 return e;
1927
1928 case '2':
1929 /* Recursively stabilize each operand. */
1930 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
1931 stabilize_reference_1 (TREE_OPERAND (e, 1)));
1932 break;
1933
1934 case '1':
1935 /* Recursively stabilize each operand. */
1936 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
1937 break;
1938 }
1939
1940 TREE_TYPE (result) = TREE_TYPE (e);
1941 TREE_READONLY (result) = TREE_READONLY (e);
1942 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
1943 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
1944 TREE_RAISES (result) = TREE_RAISES (e);
1945
1946 return result;
1947}
1948\f
1949/* Low-level constructors for expressions. */
1950
1951/* Build an expression of code CODE, data type TYPE,
1952 and operands as specified by the arguments ARG1 and following arguments.
1953 Expressions and reference nodes can be created this way.
1954 Constants, decls, types and misc nodes cannot be. */
1955
1956tree
1957build (va_alist)
1958 va_dcl
1959{
1960 va_list p;
1961 enum tree_code code;
1962 register tree t;
1963 register int length;
1964 register int i;
1965
1966 va_start (p);
1967
1968 code = va_arg (p, enum tree_code);
1969 t = make_node (code);
1970 length = tree_code_length[(int) code];
1971 TREE_TYPE (t) = va_arg (p, tree);
1972
1973 if (length == 2)
1974 {
1975 /* This is equivalent to the loop below, but faster. */
1976 register tree arg0 = va_arg (p, tree);
1977 register tree arg1 = va_arg (p, tree);
1978 TREE_OPERAND (t, 0) = arg0;
1979 TREE_OPERAND (t, 1) = arg1;
1980 if ((arg0 && TREE_SIDE_EFFECTS (arg0))
1981 || (arg1 && TREE_SIDE_EFFECTS (arg1)))
1982 TREE_SIDE_EFFECTS (t) = 1;
1983 TREE_RAISES (t)
1984 = (arg0 && TREE_RAISES (arg0)) || (arg1 && TREE_RAISES (arg1));
1985 }
1986 else if (length == 1)
1987 {
1988 register tree arg0 = va_arg (p, tree);
1989
1990 /* Call build1 for this! */
1991 if (TREE_CODE_CLASS (code) != 's')
1992 abort ();
1993 TREE_OPERAND (t, 0) = arg0;
1994 if (arg0 && TREE_SIDE_EFFECTS (arg0))
1995 TREE_SIDE_EFFECTS (t) = 1;
1996 TREE_RAISES (t) = (arg0 && TREE_RAISES (arg0));
1997 }
1998 else
1999 {
2000 for (i = 0; i < length; i++)
2001 {
2002 register tree operand = va_arg (p, tree);
2003 TREE_OPERAND (t, i) = operand;
2004 if (operand)
2005 {
2006 if (TREE_SIDE_EFFECTS (operand))
2007 TREE_SIDE_EFFECTS (t) = 1;
2008 if (TREE_RAISES (operand))
2009 TREE_RAISES (t) = 1;
2010 }
2011 }
2012 }
2013 va_end (p);
2014 return t;
2015}
2016
2017/* Same as above, but only builds for unary operators.
2018 Saves lions share of calls to `build'; cuts down use
2019 of varargs, which is expensive for RISC machines. */
2020tree
2021build1 (code, type, node)
2022 enum tree_code code;
2023 tree type;
2024 tree node;
2025{
2026 register struct obstack *obstack = current_obstack;
2027 register int i, length;
2028 register tree_node_kind kind;
2029 register tree t;
2030
2031#ifdef GATHER_STATISTICS
2032 if (TREE_CODE_CLASS (code) == 'r')
2033 kind = r_kind;
2034 else
2035 kind = e_kind;
2036#endif
2037
2038 obstack = expression_obstack;
2039 length = sizeof (struct tree_exp);
2040
2041 t = (tree) obstack_alloc (obstack, length);
2042
2043#ifdef GATHER_STATISTICS
2044 tree_node_counts[(int)kind]++;
2045 tree_node_sizes[(int)kind] += length;
2046#endif
2047
2048 for (i = (length / sizeof (int)) - 1; i >= 0; i--)
2049 ((int *) t)[i] = 0;
2050
2051 TREE_TYPE (t) = type;
2052 TREE_SET_CODE (t, code);
2053
2054 if (obstack == &permanent_obstack)
2055 TREE_PERMANENT (t) = 1;
2056
2057 TREE_OPERAND (t, 0) = node;
2058 if (node)
2059 {
2060 if (TREE_SIDE_EFFECTS (node))
2061 TREE_SIDE_EFFECTS (t) = 1;
2062 if (TREE_RAISES (node))
2063 TREE_RAISES (t) = 1;
2064 }
2065
2066 return t;
2067}
2068
2069/* Similar except don't specify the TREE_TYPE
2070 and leave the TREE_SIDE_EFFECTS as 0.
2071 It is permissible for arguments to be null,
2072 or even garbage if their values do not matter. */
2073
2074tree
2075build_nt (va_alist)
2076 va_dcl
2077{
2078 va_list p;
2079 register enum tree_code code;
2080 register tree t;
2081 register int length;
2082 register int i;
2083
2084 va_start (p);
2085
2086 code = va_arg (p, enum tree_code);
2087 t = make_node (code);
2088 length = tree_code_length[(int) code];
2089
2090 for (i = 0; i < length; i++)
2091 TREE_OPERAND (t, i) = va_arg (p, tree);
2092
2093 va_end (p);
2094 return t;
2095}
2096
2097/* Similar to `build_nt', except we build
2098 on the temp_decl_obstack, regardless. */
2099
2100tree
2101build_parse_node (va_alist)
2102 va_dcl
2103{
2104 register struct obstack *ambient_obstack = expression_obstack;
2105 va_list p;
2106 register enum tree_code code;
2107 register tree t;
2108 register int length;
2109 register int i;
2110
2111 expression_obstack = &temp_decl_obstack;
2112
2113 va_start (p);
2114
2115 code = va_arg (p, enum tree_code);
2116 t = make_node (code);
2117 length = tree_code_length[(int) code];
2118
2119 for (i = 0; i < length; i++)
2120 TREE_OPERAND (t, i) = va_arg (p, tree);
2121
2122 va_end (p);
2123 expression_obstack = ambient_obstack;
2124 return t;
2125}
2126
2127#if 0
2128/* Commented out because this wants to be done very
2129 differently. See cp-lex.c. */
2130tree
2131build_op_identifier (op1, op2)
2132 tree op1, op2;
2133{
2134 register tree t = make_node (OP_IDENTIFIER);
2135 TREE_PURPOSE (t) = op1;
2136 TREE_VALUE (t) = op2;
2137 return t;
2138}
2139#endif
2140\f
2141/* Create a DECL_... node of code CODE, name NAME and data type TYPE.
2142 We do NOT enter this node in any sort of symbol table.
2143
2144 layout_decl is used to set up the decl's storage layout.
2145 Other slots are initialized to 0 or null pointers. */
2146
2147tree
2148build_decl (code, name, type)
2149 enum tree_code code;
2150 tree name, type;
2151{
2152 register tree t;
2153
2154 t = make_node (code);
2155
2156/* if (type == error_mark_node)
2157 type = integer_type_node; */
2158/* That is not done, deliberately, so that having error_mark_node
2159 as the type can suppress useless errors in the use of this variable. */
2160
2161 DECL_NAME (t) = name;
2162 DECL_ASSEMBLER_NAME (t) = name;
2163 TREE_TYPE (t) = type;
2164
2165 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
2166 layout_decl (t, 0);
2167 else if (code == FUNCTION_DECL)
2168 DECL_MODE (t) = FUNCTION_MODE;
2169
2170 return t;
2171}
2172\f
2173/* BLOCK nodes are used to represent the structure of binding contours
2174 and declarations, once those contours have been exited and their contents
2175 compiled. This information is used for outputting debugging info. */
2176
2177tree
2178build_block (vars, tags, subblocks, supercontext, chain)
2179 tree vars, tags, subblocks, supercontext, chain;
2180{
2181 register tree block = make_node (BLOCK);
2182 BLOCK_VARS (block) = vars;
2183 BLOCK_TYPE_TAGS (block) = tags;
2184 BLOCK_SUBBLOCKS (block) = subblocks;
2185 BLOCK_SUPERCONTEXT (block) = supercontext;
2186 BLOCK_CHAIN (block) = chain;
2187 return block;
2188}
2189\f
2190/* Return a type like TYPE except that its TYPE_READONLY is CONSTP
2191 and its TYPE_VOLATILE is VOLATILEP.
2192
2193 Such variant types already made are recorded so that duplicates
2194 are not made.
2195
2196 A variant types should never be used as the type of an expression.
2197 Always copy the variant information into the TREE_READONLY
2198 and TREE_THIS_VOLATILE of the expression, and then give the expression
2199 as its type the "main variant", the variant whose TYPE_READONLY
2200 and TYPE_VOLATILE are zero. Use TYPE_MAIN_VARIANT to find the
2201 main variant. */
2202
2203tree
2204build_type_variant (type, constp, volatilep)
2205 tree type;
2206 int constp, volatilep;
2207{
2208 register tree t, m = TYPE_MAIN_VARIANT (type);
2209 register struct obstack *ambient_obstack = current_obstack;
2210
2211 /* Treat any nonzero argument as 1. */
2212 constp = !!constp;
2213 volatilep = !!volatilep;
2214
2215 /* If not generating auxiliary info, search the chain of variants to see
2216 if there is already one there just like the one we need to have. If so,
2217 use that existing one.
2218
2219 We don't do this in the case where we are generating aux info because
2220 in that case we want each typedef names to get it's own distinct type
2221 node, even if the type of this new typedef is the same as some other
2222 (existing) type. */
2223
2224 if (!flag_gen_aux_info)
2225 for (t = m; t; t = TYPE_NEXT_VARIANT (t))
2226 if (constp == TYPE_READONLY (t) && volatilep == TYPE_VOLATILE (t))
2227 return t;
2228
2229 /* We need a new one. */
2230 current_obstack
2231 = TREE_PERMANENT (type) ? &permanent_obstack : saveable_obstack;
2232
2233 t = copy_node (type);
2234 TYPE_READONLY (t) = constp;
2235 TYPE_VOLATILE (t) = volatilep;
2236 TYPE_POINTER_TO (t) = 0;
2237 TYPE_REFERENCE_TO (t) = 0;
2238
2239 /* Add this type to the chain of variants of TYPE. */
2240 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
2241 TYPE_NEXT_VARIANT (m) = t;
2242
2243 current_obstack = ambient_obstack;
2244 return t;
2245}
2246
2247/* Create a new variant of TYPE, equivalent but distinct.
2248 This is so the caller can modify it. */
2249
2250tree
2251build_type_copy (type)
2252 tree type;
2253{
2254 register tree t, m = TYPE_MAIN_VARIANT (type);
2255 register struct obstack *ambient_obstack = current_obstack;
2256
2257 current_obstack
2258 = TREE_PERMANENT (type) ? &permanent_obstack : saveable_obstack;
2259
2260 t = copy_node (type);
2261 TYPE_POINTER_TO (t) = 0;
2262 TYPE_REFERENCE_TO (t) = 0;
2263
2264 /* Add this type to the chain of variants of TYPE. */
2265 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
2266 TYPE_NEXT_VARIANT (m) = t;
2267
2268 current_obstack = ambient_obstack;
2269 return t;
2270}
2271\f
2272/* Hashing of types so that we don't make duplicates.
2273 The entry point is `type_hash_canon'. */
2274
2275/* Each hash table slot is a bucket containing a chain
2276 of these structures. */
2277
2278struct type_hash
2279{
2280 struct type_hash *next; /* Next structure in the bucket. */
2281 int hashcode; /* Hash code of this type. */
2282 tree type; /* The type recorded here. */
2283};
2284
2285/* Now here is the hash table. When recording a type, it is added
2286 to the slot whose index is the hash code mod the table size.
2287 Note that the hash table is used for several kinds of types
2288 (function types, array types and array index range types, for now).
2289 While all these live in the same table, they are completely independent,
2290 and the hash code is computed differently for each of these. */
2291
2292#define TYPE_HASH_SIZE 59
2293struct type_hash *type_hash_table[TYPE_HASH_SIZE];
2294
2295/* Here is how primitive or already-canonicalized types' hash
2296 codes are made. */
2297#define TYPE_HASH(TYPE) ((HOST_WIDE_INT) (TYPE) & 0777777)
2298
2299/* Compute a hash code for a list of types (chain of TREE_LIST nodes
2300 with types in the TREE_VALUE slots), by adding the hash codes
2301 of the individual types. */
2302
2303int
2304type_hash_list (list)
2305 tree list;
2306{
2307 register int hashcode;
2308 register tree tail;
2309 for (hashcode = 0, tail = list; tail; tail = TREE_CHAIN (tail))
2310 hashcode += TYPE_HASH (TREE_VALUE (tail));
2311 return hashcode;
2312}
2313
2314/* Look in the type hash table for a type isomorphic to TYPE.
2315 If one is found, return it. Otherwise return 0. */
2316
2317tree
2318type_hash_lookup (hashcode, type)
2319 int hashcode;
2320 tree type;
2321{
2322 register struct type_hash *h;
2323 for (h = type_hash_table[hashcode % TYPE_HASH_SIZE]; h; h = h->next)
2324 if (h->hashcode == hashcode
2325 && TREE_CODE (h->type) == TREE_CODE (type)
2326 && TREE_TYPE (h->type) == TREE_TYPE (type)
2327 && (TYPE_MAX_VALUE (h->type) == TYPE_MAX_VALUE (type)
2328 || tree_int_cst_equal (TYPE_MAX_VALUE (h->type),
2329 TYPE_MAX_VALUE (type)))
2330 && (TYPE_MIN_VALUE (h->type) == TYPE_MIN_VALUE (type)
2331 || tree_int_cst_equal (TYPE_MIN_VALUE (h->type),
2332 TYPE_MIN_VALUE (type)))
2333 && (TYPE_DOMAIN (h->type) == TYPE_DOMAIN (type)
2334 || (TYPE_DOMAIN (h->type)
2335 && TREE_CODE (TYPE_DOMAIN (h->type)) == TREE_LIST
2336 && TYPE_DOMAIN (type)
2337 && TREE_CODE (TYPE_DOMAIN (type)) == TREE_LIST
2338 && type_list_equal (TYPE_DOMAIN (h->type), TYPE_DOMAIN (type)))))
2339 return h->type;
2340 return 0;
2341}
2342
2343/* Add an entry to the type-hash-table
2344 for a type TYPE whose hash code is HASHCODE. */
2345
2346void
2347type_hash_add (hashcode, type)
2348 int hashcode;
2349 tree type;
2350{
2351 register struct type_hash *h;
2352
2353 h = (struct type_hash *) oballoc (sizeof (struct type_hash));
2354 h->hashcode = hashcode;
2355 h->type = type;
2356 h->next = type_hash_table[hashcode % TYPE_HASH_SIZE];
2357 type_hash_table[hashcode % TYPE_HASH_SIZE] = h;
2358}
2359
2360/* Given TYPE, and HASHCODE its hash code, return the canonical
2361 object for an identical type if one already exists.
2362 Otherwise, return TYPE, and record it as the canonical object
2363 if it is a permanent object.
2364
2365 To use this function, first create a type of the sort you want.
2366 Then compute its hash code from the fields of the type that
2367 make it different from other similar types.
2368 Then call this function and use the value.
2369 This function frees the type you pass in if it is a duplicate. */
2370
2371/* Set to 1 to debug without canonicalization. Never set by program. */
2372int debug_no_type_hash = 0;
2373
2374tree
2375type_hash_canon (hashcode, type)
2376 int hashcode;
2377 tree type;
2378{
2379 tree t1;
2380
2381 if (debug_no_type_hash)
2382 return type;
2383
2384 t1 = type_hash_lookup (hashcode, type);
2385 if (t1 != 0)
2386 {
2387 struct obstack *o
2388 = TREE_PERMANENT (type) ? &permanent_obstack : saveable_obstack;
2389 obstack_free (o, type);
2390#ifdef GATHER_STATISTICS
2391 tree_node_counts[(int)t_kind]--;
2392 tree_node_sizes[(int)t_kind] -= sizeof (struct tree_type);
2393#endif
2394 return t1;
2395 }
2396
2397 /* If this is a new type, record it for later reuse. */
2398 if (current_obstack == &permanent_obstack)
2399 type_hash_add (hashcode, type);
2400
2401 return type;
2402}
2403
2404/* Given two lists of types
2405 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
2406 return 1 if the lists contain the same types in the same order.
2407 Also, the TREE_PURPOSEs must match. */
2408
2409int
2410type_list_equal (l1, l2)
2411 tree l1, l2;
2412{
2413 register tree t1, t2;
2414 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
2415 {
2416 if (TREE_VALUE (t1) != TREE_VALUE (t2))
2417 return 0;
2418 if (TREE_PURPOSE (t1) != TREE_PURPOSE (t2))
2419 {
2420 int cmp = simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2));
2421 if (cmp < 0)
2422 abort ();
2423 if (cmp == 0)
2424 return 0;
2425 }
2426 }
2427
2428 return t1 == t2;
2429}
2430
2431/* Nonzero if integer constants T1 and T2
2432 represent the same constant value. */
2433
2434int
2435tree_int_cst_equal (t1, t2)
2436 tree t1, t2;
2437{
2438 if (t1 == t2)
2439 return 1;
2440 if (t1 == 0 || t2 == 0)
2441 return 0;
2442 if (TREE_CODE (t1) == INTEGER_CST
2443 && TREE_CODE (t2) == INTEGER_CST
2444 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
2445 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
2446 return 1;
2447 return 0;
2448}
2449
2450/* Nonzero if integer constants T1 and T2 represent values that satisfy <.
2451 The precise way of comparison depends on their data type. */
2452
2453int
2454tree_int_cst_lt (t1, t2)
2455 tree t1, t2;
2456{
2457 if (t1 == t2)
2458 return 0;
2459
2460 if (!TREE_UNSIGNED (TREE_TYPE (t1)))
2461 return INT_CST_LT (t1, t2);
2462 return INT_CST_LT_UNSIGNED (t1, t2);
2463}
2464
2465/* Compare two constructor-element-type constants. */
2466int
2467simple_cst_list_equal (l1, l2)
2468 tree l1, l2;
2469{
2470 while (l1 != NULL_TREE && l2 != NULL_TREE)
2471 {
2472 int cmp = simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2));
2473 if (cmp < 0)
2474 abort ();
2475 if (cmp == 0)
2476 return 0;
2477 l1 = TREE_CHAIN (l1);
2478 l2 = TREE_CHAIN (l2);
2479 }
2480 return (l1 == l2);
2481}
2482
2483/* Return truthvalue of whether T1 is the same tree structure as T2.
2484 Return 1 if they are the same.
2485 Return 0 if they are understandably different.
2486 Return -1 if either contains tree structure not understood by
2487 this function. */
2488
2489int
2490simple_cst_equal (t1, t2)
2491 tree t1, t2;
2492{
2493 register enum tree_code code1, code2;
2494 int cmp;
2495
2496 if (t1 == t2)
2497 return 1;
2498 if (t1 == 0 || t2 == 0)
2499 return 0;
2500
2501 code1 = TREE_CODE (t1);
2502 code2 = TREE_CODE (t2);
2503
2504 if (code1 == NOP_EXPR || code1 == CONVERT_EXPR || code1 == NON_LVALUE_EXPR)
2505 if (code2 == NOP_EXPR || code2 == CONVERT_EXPR || code2 == NON_LVALUE_EXPR)
2506 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
2507 else
2508 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
2509 else if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
2510 || code2 == NON_LVALUE_EXPR)
2511 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
2512
2513 if (code1 != code2)
2514 return 0;
2515
2516 switch (code1)
2517 {
2518 case INTEGER_CST:
2519 return TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
2520 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2);
2521
2522 case REAL_CST:
2523 return REAL_VALUES_EQUAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
2524
2525 case STRING_CST:
2526 return TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
2527 && !bcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
2528 TREE_STRING_LENGTH (t1));
2529
2530 case CONSTRUCTOR:
2531 abort ();
2532
2533 case SAVE_EXPR:
2534 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
2535
2536 case CALL_EXPR:
2537 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
2538 if (cmp <= 0)
2539 return cmp;
2540 return simple_cst_list_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
2541
2542 case TARGET_EXPR:
2543 /* Special case: if either target is an unallocated VAR_DECL,
2544 it means that it's going to be unified with whatever the
2545 TARGET_EXPR is really supposed to initialize, so treat it
2546 as being equivalent to anything. */
2547 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
2548 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
2549 && DECL_RTL (TREE_OPERAND (t1, 0)) == 0)
2550 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
2551 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
2552 && DECL_RTL (TREE_OPERAND (t2, 0)) == 0))
2553 cmp = 1;
2554 else
2555 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
2556 if (cmp <= 0)
2557 return cmp;
2558 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
2559
2560 case WITH_CLEANUP_EXPR:
2561 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
2562 if (cmp <= 0)
2563 return cmp;
2564 return simple_cst_equal (TREE_OPERAND (t1, 2), TREE_OPERAND (t1, 2));
2565
2566 case COMPONENT_REF:
2567 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
2568 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
2569 return 0;
2570
2571 case BIT_FIELD_REF:
2572 return (simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0))
2573 && simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1))
2574 && simple_cst_equal (TREE_OPERAND (t1, 2), TREE_OPERAND (t2, 2)));
2575
2576 case VAR_DECL:
2577 case PARM_DECL:
2578 case CONST_DECL:
2579 case FUNCTION_DECL:
2580 return 0;
2581
2582 case PLUS_EXPR:
2583 case MINUS_EXPR:
2584 case MULT_EXPR:
2585 case TRUNC_DIV_EXPR:
2586 case TRUNC_MOD_EXPR:
2587 case LSHIFT_EXPR:
2588 case RSHIFT_EXPR:
2589 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
2590 if (cmp <= 0)
2591 return cmp;
2592 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
2593
2594 case NEGATE_EXPR:
2595 case ADDR_EXPR:
2596 case REFERENCE_EXPR:
2597 case INDIRECT_REF:
2598 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
2599
2600 default:
2601#if 0
2602 return lang_simple_cst_equal (t1, t2);
2603#else
2604 return -1;
2605#endif
2606 }
2607}
2608\f
2609/* Constructors for pointer, array and function types.
2610 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
2611 constructed by language-dependent code, not here.) */
2612
2613/* Construct, lay out and return the type of pointers to TO_TYPE.
2614 If such a type has already been constructed, reuse it. */
2615
2616tree
2617build_pointer_type (to_type)
2618 tree to_type;
2619{
2620 register tree t = TYPE_POINTER_TO (to_type);
2621 register struct obstack *ambient_obstack = current_obstack;
2622 register struct obstack *ambient_saveable_obstack = saveable_obstack;
2623
2624 /* First, if we already have a type for pointers to TO_TYPE, use it. */
2625
2626 if (t)
2627 return t;
2628
2629 /* We need a new one. If TO_TYPE is permanent, make this permanent too. */
2630 if (TREE_PERMANENT (to_type))
2631 {
2632 current_obstack = &permanent_obstack;
2633 saveable_obstack = &permanent_obstack;
2634 }
2635
2636 t = make_node (POINTER_TYPE);
2637 TREE_TYPE (t) = to_type;
2638
2639 /* Record this type as the pointer to TO_TYPE. */
2640 TYPE_POINTER_TO (to_type) = t;
2641
2642 /* Lay out the type. This function has many callers that are concerned
2643 with expression-construction, and this simplifies them all.
2644 Also, it guarantees the TYPE_SIZE is permanent if the type is. */
2645 layout_type (t);
2646
2647 current_obstack = ambient_obstack;
2648 saveable_obstack = ambient_saveable_obstack;
2649 return t;
2650}
2651
2652/* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
2653 MAXVAL should be the maximum value in the domain
2654 (one less than the length of the array). */
2655
2656tree
2657build_index_type (maxval)
2658 tree maxval;
2659{
2660 register tree itype = make_node (INTEGER_TYPE);
2661 TYPE_PRECISION (itype) = TYPE_PRECISION (sizetype);
2662 TYPE_MIN_VALUE (itype) = build_int_2 (0, 0);
2663 TREE_TYPE (TYPE_MIN_VALUE (itype)) = sizetype;
2664 TYPE_MAX_VALUE (itype) = convert (sizetype, maxval);
2665 TYPE_MODE (itype) = TYPE_MODE (sizetype);
2666 TYPE_SIZE (itype) = TYPE_SIZE (sizetype);
2667 TYPE_ALIGN (itype) = TYPE_ALIGN (sizetype);
2668 if (TREE_CODE (maxval) == INTEGER_CST)
2669 {
2670 int maxint = (int) TREE_INT_CST_LOW (maxval);
2671 return type_hash_canon (maxint < 0 ? ~maxint : maxint, itype);
2672 }
2673 else
2674 return itype;
2675}
2676
2677/* Just like build_index_type, but takes lowval and highval instead
2678 of just highval (maxval). */
2679
2680tree
2681build_index_2_type (lowval,highval)
2682 tree lowval, highval;
2683{
2684 register tree itype = make_node (INTEGER_TYPE);
2685 TYPE_PRECISION (itype) = TYPE_PRECISION (sizetype);
2686 TYPE_MIN_VALUE (itype) = convert (sizetype, lowval);
2687 TYPE_MAX_VALUE (itype) = convert (sizetype, highval);
2688 TYPE_MODE (itype) = TYPE_MODE (sizetype);
2689 TYPE_SIZE (itype) = TYPE_SIZE (sizetype);
2690 TYPE_ALIGN (itype) = TYPE_ALIGN (sizetype);
2691 if ((TREE_CODE (lowval) == INTEGER_CST)
2692 && (TREE_CODE (highval) == INTEGER_CST))
2693 {
2694 HOST_WIDE_INT highint = TREE_INT_CST_LOW (highval);
2695 HOST_WIDE_INT lowint = TREE_INT_CST_LOW (lowval);
2696 int maxint = (int) (highint - lowint);
2697 return type_hash_canon (maxint < 0 ? ~maxint : maxint, itype);
2698 }
2699 else
2700 return itype;
2701}
2702
2703/* Return nonzero iff ITYPE1 and ITYPE2 are equal (in the LISP sense).
2704 Needed because when index types are not hashed, equal index types
2705 built at different times appear distinct, even though structurally,
2706 they are not. */
2707
2708int
2709index_type_equal (itype1, itype2)
2710 tree itype1, itype2;
2711{
2712 if (TREE_CODE (itype1) != TREE_CODE (itype2))
2713 return 0;
2714 if (TREE_CODE (itype1) == INTEGER_TYPE)
2715 {
2716 if (TYPE_PRECISION (itype1) != TYPE_PRECISION (itype2)
2717 || TYPE_MODE (itype1) != TYPE_MODE (itype2)
2718 || ! simple_cst_equal (TYPE_SIZE (itype1), TYPE_SIZE (itype2))
2719 || TYPE_ALIGN (itype1) != TYPE_ALIGN (itype2))
2720 return 0;
2721 if (simple_cst_equal (TYPE_MIN_VALUE (itype1), TYPE_MIN_VALUE (itype2))
2722 && simple_cst_equal (TYPE_MAX_VALUE (itype1), TYPE_MAX_VALUE (itype2)))
2723 return 1;
2724 }
2725 return 0;
2726}
2727
2728/* Construct, lay out and return the type of arrays of elements with ELT_TYPE
2729 and number of elements specified by the range of values of INDEX_TYPE.
2730 If such a type has already been constructed, reuse it. */
2731
2732tree
2733build_array_type (elt_type, index_type)
2734 tree elt_type, index_type;
2735{
2736 register tree t;
2737 int hashcode;
2738
2739 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
2740 {
2741 error ("arrays of functions are not meaningful");
2742 elt_type = integer_type_node;
2743 }
2744
2745 /* Make sure TYPE_POINTER_TO (elt_type) is filled in. */
2746 build_pointer_type (elt_type);
2747
2748 /* Allocate the array after the pointer type,
2749 in case we free it in type_hash_canon. */
2750 t = make_node (ARRAY_TYPE);
2751 TREE_TYPE (t) = elt_type;
2752 TYPE_DOMAIN (t) = index_type;
2753
2754 if (index_type == 0)
2755 return t;
2756
2757 hashcode = TYPE_HASH (elt_type) + TYPE_HASH (index_type);
2758 t = type_hash_canon (hashcode, t);
2759
2760 if (TYPE_SIZE (t) == 0)
2761 layout_type (t);
2762 return t;
2763}
2764
2765/* Construct, lay out and return
2766 the type of functions returning type VALUE_TYPE
2767 given arguments of types ARG_TYPES.
2768 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
2769 are data type nodes for the arguments of the function.
2770 If such a type has already been constructed, reuse it. */
2771
2772tree
2773build_function_type (value_type, arg_types)
2774 tree value_type, arg_types;
2775{
2776 register tree t;
2777 int hashcode;
2778
2779 if (TREE_CODE (value_type) == FUNCTION_TYPE
2780 || TREE_CODE (value_type) == ARRAY_TYPE)
2781 {
2782 error ("function return type cannot be function or array");
2783 value_type = integer_type_node;
2784 }
2785
2786 /* Make a node of the sort we want. */
2787 t = make_node (FUNCTION_TYPE);
2788 TREE_TYPE (t) = value_type;
2789 TYPE_ARG_TYPES (t) = arg_types;
2790
2791 /* If we already have such a type, use the old one and free this one. */
2792 hashcode = TYPE_HASH (value_type) + type_hash_list (arg_types);
2793 t = type_hash_canon (hashcode, t);
2794
2795 if (TYPE_SIZE (t) == 0)
2796 layout_type (t);
2797 return t;
2798}
2799
2800/* Build the node for the type of references-to-TO_TYPE. */
2801
2802tree
2803build_reference_type (to_type)
2804 tree to_type;
2805{
2806 register tree t = TYPE_REFERENCE_TO (to_type);
2807 register struct obstack *ambient_obstack = current_obstack;
2808 register struct obstack *ambient_saveable_obstack = saveable_obstack;
2809
2810 /* First, if we already have a type for pointers to TO_TYPE, use it. */
2811
2812 if (t)
2813 return t;
2814
2815 /* We need a new one. If TO_TYPE is permanent, make this permanent too. */
2816 if (TREE_PERMANENT (to_type))
2817 {
2818 current_obstack = &permanent_obstack;
2819 saveable_obstack = &permanent_obstack;
2820 }
2821
2822 t = make_node (REFERENCE_TYPE);
2823 TREE_TYPE (t) = to_type;
2824
2825 /* Record this type as the pointer to TO_TYPE. */
2826 TYPE_REFERENCE_TO (to_type) = t;
2827
2828 layout_type (t);
2829
2830 current_obstack = ambient_obstack;
2831 saveable_obstack = ambient_saveable_obstack;
2832 return t;
2833}
2834
2835/* Construct, lay out and return the type of methods belonging to class
2836 BASETYPE and whose arguments and values are described by TYPE.
2837 If that type exists already, reuse it.
2838 TYPE must be a FUNCTION_TYPE node. */
2839
2840tree
2841build_method_type (basetype, type)
2842 tree basetype, type;
2843{
2844 register tree t;
2845 int hashcode;
2846
2847 /* Make a node of the sort we want. */
2848 t = make_node (METHOD_TYPE);
2849
2850 if (TREE_CODE (type) != FUNCTION_TYPE)
2851 abort ();
2852
2853 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
2854 TREE_TYPE (t) = TREE_TYPE (type);
2855
2856 /* The actual arglist for this function includes a "hidden" argument
2857 which is "this". Put it into the list of argument types. */
2858
2859 TYPE_ARG_TYPES (t)
2860 = tree_cons (NULL_TREE,
2861 build_pointer_type (basetype), TYPE_ARG_TYPES (type));
2862
2863 /* If we already have such a type, use the old one and free this one. */
2864 hashcode = TYPE_HASH (basetype) + TYPE_HASH (type);
2865 t = type_hash_canon (hashcode, t);
2866
2867 if (TYPE_SIZE (t) == 0)
2868 layout_type (t);
2869
2870 return t;
2871}
2872
2873/* Construct, lay out and return the type of methods belonging to class
2874 BASETYPE and whose arguments and values are described by TYPE.
2875 If that type exists already, reuse it.
2876 TYPE must be a FUNCTION_TYPE node. */
2877
2878tree
2879build_offset_type (basetype, type)
2880 tree basetype, type;
2881{
2882 register tree t;
2883 int hashcode;
2884
2885 /* Make a node of the sort we want. */
2886 t = make_node (OFFSET_TYPE);
2887
2888 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
2889 TREE_TYPE (t) = type;
2890
2891 /* If we already have such a type, use the old one and free this one. */
2892 hashcode = TYPE_HASH (basetype) + TYPE_HASH (type);
2893 t = type_hash_canon (hashcode, t);
2894
2895 if (TYPE_SIZE (t) == 0)
2896 layout_type (t);
2897
2898 return t;
2899}
2900
2901/* Create a complex type whose components are COMPONENT_TYPE. */
2902
2903tree
2904build_complex_type (component_type)
2905 tree component_type;
2906{
2907 register tree t;
2908 int hashcode;
2909
2910 /* Make a node of the sort we want. */
2911 t = make_node (COMPLEX_TYPE);
2912
2913 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
2914 TYPE_VOLATILE (t) = TYPE_VOLATILE (component_type);
2915 TYPE_READONLY (t) = TYPE_READONLY (component_type);
2916
2917 /* If we already have such a type, use the old one and free this one. */
2918 hashcode = TYPE_HASH (component_type);
2919 t = type_hash_canon (hashcode, t);
2920
2921 if (TYPE_SIZE (t) == 0)
2922 layout_type (t);
2923
2924 return t;
2925}
2926\f
2927/* Return OP, stripped of any conversions to wider types as much as is safe.
2928 Converting the value back to OP's type makes a value equivalent to OP.
2929
2930 If FOR_TYPE is nonzero, we return a value which, if converted to
2931 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
2932
2933 If FOR_TYPE is nonzero, unaligned bit-field references may be changed to the
2934 narrowest type that can hold the value, even if they don't exactly fit.
2935 Otherwise, bit-field references are changed to a narrower type
2936 only if they can be fetched directly from memory in that type.
2937
2938 OP must have integer, real or enumeral type. Pointers are not allowed!
2939
2940 There are some cases where the obvious value we could return
2941 would regenerate to OP if converted to OP's type,
2942 but would not extend like OP to wider types.
2943 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
2944 For example, if OP is (unsigned short)(signed char)-1,
2945 we avoid returning (signed char)-1 if FOR_TYPE is int,
2946 even though extending that to an unsigned short would regenerate OP,
2947 since the result of extending (signed char)-1 to (int)
2948 is different from (int) OP. */
2949
2950tree
2951get_unwidened (op, for_type)
2952 register tree op;
2953 tree for_type;
2954{
2955 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
2956 /* TYPE_PRECISION is safe in place of type_precision since
2957 pointer types are not allowed. */
2958 register tree type = TREE_TYPE (op);
2959 register unsigned final_prec
2960 = TYPE_PRECISION (for_type != 0 ? for_type : type);
2961 register int uns
2962 = (for_type != 0 && for_type != type
2963 && final_prec > TYPE_PRECISION (type)
2964 && TREE_UNSIGNED (type));
2965 register tree win = op;
2966
2967 while (TREE_CODE (op) == NOP_EXPR)
2968 {
2969 register int bitschange
2970 = TYPE_PRECISION (TREE_TYPE (op))
2971 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
2972
2973 /* Truncations are many-one so cannot be removed.
2974 Unless we are later going to truncate down even farther. */
2975 if (bitschange < 0
2976 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
2977 break;
2978
2979 /* See what's inside this conversion. If we decide to strip it,
2980 we will set WIN. */
2981 op = TREE_OPERAND (op, 0);
2982
2983 /* If we have not stripped any zero-extensions (uns is 0),
2984 we can strip any kind of extension.
2985 If we have previously stripped a zero-extension,
2986 only zero-extensions can safely be stripped.
2987 Any extension can be stripped if the bits it would produce
2988 are all going to be discarded later by truncating to FOR_TYPE. */
2989
2990 if (bitschange > 0)
2991 {
2992 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
2993 win = op;
2994 /* TREE_UNSIGNED says whether this is a zero-extension.
2995 Let's avoid computing it if it does not affect WIN
2996 and if UNS will not be needed again. */
2997 if ((uns || TREE_CODE (op) == NOP_EXPR)
2998 && TREE_UNSIGNED (TREE_TYPE (op)))
2999 {
3000 uns = 1;
3001 win = op;
3002 }
3003 }
3004 }
3005
3006 if (TREE_CODE (op) == COMPONENT_REF
3007 /* Since type_for_size always gives an integer type. */
3008 && TREE_CODE (type) != REAL_TYPE)
3009 {
3010 unsigned innerprec = TREE_INT_CST_LOW (DECL_SIZE (TREE_OPERAND (op, 1)));
3011 type = type_for_size (innerprec, TREE_UNSIGNED (TREE_OPERAND (op, 1)));
3012
3013 /* We can get this structure field in the narrowest type it fits in.
3014 If FOR_TYPE is 0, do this only for a field that matches the
3015 narrower type exactly and is aligned for it
3016 The resulting extension to its nominal type (a fullword type)
3017 must fit the same conditions as for other extensions. */
3018
3019 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
3020 && (for_type || ! DECL_BIT_FIELD (TREE_OPERAND (op, 1)))
3021 && (! uns || final_prec <= innerprec
3022 || TREE_UNSIGNED (TREE_OPERAND (op, 1)))
3023 && type != 0)
3024 {
3025 win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
3026 TREE_OPERAND (op, 1));
3027 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
3028 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
3029 TREE_RAISES (win) = TREE_RAISES (op);
3030 }
3031 }
3032 return win;
3033}
3034\f
3035/* Return OP or a simpler expression for a narrower value
3036 which can be sign-extended or zero-extended to give back OP.
3037 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
3038 or 0 if the value should be sign-extended. */
3039
3040tree
3041get_narrower (op, unsignedp_ptr)
3042 register tree op;
3043 int *unsignedp_ptr;
3044{
3045 register int uns = 0;
3046 int first = 1;
3047 register tree win = op;
3048
3049 while (TREE_CODE (op) == NOP_EXPR)
3050 {
3051 register int bitschange
3052 = TYPE_PRECISION (TREE_TYPE (op))
3053 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
3054
3055 /* Truncations are many-one so cannot be removed. */
3056 if (bitschange < 0)
3057 break;
3058
3059 /* See what's inside this conversion. If we decide to strip it,
3060 we will set WIN. */
3061 op = TREE_OPERAND (op, 0);
3062
3063 if (bitschange > 0)
3064 {
3065 /* An extension: the outermost one can be stripped,
3066 but remember whether it is zero or sign extension. */
3067 if (first)
3068 uns = TREE_UNSIGNED (TREE_TYPE (op));
3069 /* Otherwise, if a sign extension has been stripped,
3070 only sign extensions can now be stripped;
3071 if a zero extension has been stripped, only zero-extensions. */
3072 else if (uns != TREE_UNSIGNED (TREE_TYPE (op)))
3073 break;
3074 first = 0;
3075 }
3076 /* A change in nominal type can always be stripped. */
3077
3078 win = op;
3079 }
3080
3081 if (TREE_CODE (op) == COMPONENT_REF
3082 /* Since type_for_size always gives an integer type. */
3083 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE)
3084 {
3085 unsigned innerprec = TREE_INT_CST_LOW (DECL_SIZE (TREE_OPERAND (op, 1)));
3086 tree type = type_for_size (innerprec, TREE_UNSIGNED (op));
3087
3088 /* We can get this structure field in a narrower type that fits it,
3089 but the resulting extension to its nominal type (a fullword type)
3090 must satisfy the same conditions as for other extensions.
3091
3092 Do this only for fields that are aligned (not bit-fields),
3093 because when bit-field insns will be used there is no
3094 advantage in doing this. */
3095
3096 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
3097 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
3098 && (first || uns == TREE_UNSIGNED (TREE_OPERAND (op, 1)))
3099 && type != 0)
3100 {
3101 if (first)
3102 uns = TREE_UNSIGNED (TREE_OPERAND (op, 1));
3103 win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
3104 TREE_OPERAND (op, 1));
3105 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
3106 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
3107 TREE_RAISES (win) = TREE_RAISES (op);
3108 }
3109 }
3110 *unsignedp_ptr = uns;
3111 return win;
3112}
3113\f
3114/* Return the precision of a type, for arithmetic purposes.
3115 Supports all types on which arithmetic is possible
3116 (including pointer types).
3117 It's not clear yet what will be right for complex types. */
3118
3119int
3120type_precision (type)
3121 register tree type;
3122{
3123 return ((TREE_CODE (type) == INTEGER_TYPE
3124 || TREE_CODE (type) == ENUMERAL_TYPE
3125 || TREE_CODE (type) == REAL_TYPE)
3126 ? TYPE_PRECISION (type) : POINTER_SIZE);
3127}
3128
3129/* Nonzero if integer constant C has a value that is permissible
3130 for type TYPE (an INTEGER_TYPE). */
3131
3132int
3133int_fits_type_p (c, type)
3134 tree c, type;
3135{
3136 if (TREE_UNSIGNED (type))
3137 return (!INT_CST_LT_UNSIGNED (TYPE_MAX_VALUE (type), c)
3138 && !INT_CST_LT_UNSIGNED (c, TYPE_MIN_VALUE (type))
3139 && (TREE_INT_CST_HIGH (c) >= 0 || TREE_UNSIGNED (TREE_TYPE (c))));
3140 else
3141 return (!INT_CST_LT (TYPE_MAX_VALUE (type), c)
3142 && !INT_CST_LT (c, TYPE_MIN_VALUE (type))
3143 && (TREE_INT_CST_HIGH (c) >= 0 || !TREE_UNSIGNED (TREE_TYPE (c))));
3144}
3145
3146/* Return the innermost context enclosing DECL that is
3147 a FUNCTION_DECL, or zero if none. */
3148
3149tree
3150decl_function_context (decl)
3151 tree decl;
3152{
3153 tree context;
3154
3155 if (TREE_CODE (decl) == ERROR_MARK)
3156 return 0;
3157
3158 if (TREE_CODE (decl) == SAVE_EXPR)
3159 context = SAVE_EXPR_CONTEXT (decl);
3160 else
3161 context = DECL_CONTEXT (decl);
3162
3163 while (context && TREE_CODE (context) != FUNCTION_DECL)
3164 {
3165 if (TREE_CODE (context) == RECORD_TYPE
3166 || TREE_CODE (context) == UNION_TYPE)
3167 context = TYPE_CONTEXT (context);
3168 else if (TREE_CODE (context) == TYPE_DECL)
3169 context = DECL_CONTEXT (context);
3170 else if (TREE_CODE (context) == BLOCK)
3171 context = BLOCK_SUPERCONTEXT (context);
3172 else
3173 /* Unhandled CONTEXT !? */
3174 abort ();
3175 }
3176
3177 return context;
3178}
3179
3180/* Return the innermost context enclosing DECL that is
3181 a RECORD_TYPE or UNION_TYPE, or zero if none.
3182 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
3183
3184tree
3185decl_type_context (decl)
3186 tree decl;
3187{
3188 tree context = DECL_CONTEXT (decl);
3189
3190 while (context)
3191 {
3192 if (TREE_CODE (context) == RECORD_TYPE
3193 || TREE_CODE (context) == UNION_TYPE)
3194 return context;
3195 if (TREE_CODE (context) == TYPE_DECL
3196 || TREE_CODE (context) == FUNCTION_DECL)
3197 context = DECL_CONTEXT (context);
3198 else if (TREE_CODE (context) == BLOCK)
3199 context = BLOCK_SUPERCONTEXT (context);
3200 else
3201 /* Unhandled CONTEXT!? */
3202 abort ();
3203 }
3204 return NULL_TREE;
3205}
3206
3207void
3208print_obstack_statistics (str, o)
3209 char *str;
3210 struct obstack *o;
3211{
3212 struct _obstack_chunk *chunk = o->chunk;
3213 int n_chunks = 0;
3214 int n_alloc = 0;
3215
3216 while (chunk)
3217 {
3218 n_chunks += 1;
3219 n_alloc += chunk->limit - &chunk->contents[0];
3220 chunk = chunk->prev;
3221 }
3222 fprintf (stderr, "obstack %s: %d bytes, %d chunks\n",
3223 str, n_alloc, n_chunks);
3224}
3225void
3226dump_tree_statistics ()
3227{
3228 int i;
3229 int total_nodes, total_bytes;
3230
3231 fprintf (stderr, "\n??? tree nodes created\n\n");
3232#ifdef GATHER_STATISTICS
3233 fprintf (stderr, "Kind Nodes Bytes\n");
3234 fprintf (stderr, "-------------------------------------\n");
3235 total_nodes = total_bytes = 0;
3236 for (i = 0; i < (int) all_kinds; i++)
3237 {
3238 fprintf (stderr, "%-20s %6d %9d\n", tree_node_kind_names[i],
3239 tree_node_counts[i], tree_node_sizes[i]);
3240 total_nodes += tree_node_counts[i];
3241 total_bytes += tree_node_sizes[i];
3242 }
3243 fprintf (stderr, "%-20s %9d\n", "identifier names", id_string_size);
3244 fprintf (stderr, "-------------------------------------\n");
3245 fprintf (stderr, "%-20s %6d %9d\n", "Total", total_nodes, total_bytes);
3246 fprintf (stderr, "-------------------------------------\n");
3247#else
3248 fprintf (stderr, "(No per-node statistics)\n");
3249#endif
3250 print_lang_statistics ();
3251}