386BSD 0.1 development
[unix-history] / usr / src / sys.386bsd / kern / uipc_socket2.c
CommitLineData
b688fc87
WJ
1/*
2 * Copyright (c) 1982, 1986, 1988, 1990 Regents of the University of California.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by the University of
16 * California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 * @(#)uipc_socket2.c 7.17 (Berkeley) 5/4/91
34 */
35
36#include "param.h"
37#include "systm.h"
38#include "proc.h"
39#include "file.h"
40#include "buf.h"
41#include "malloc.h"
42#include "mbuf.h"
43#include "protosw.h"
44#include "socket.h"
45#include "socketvar.h"
46
47/*
48 * Primitive routines for operating on sockets and socket buffers
49 */
50
51/* strings for sleep message: */
52char netio[] = "netio";
53char netcon[] = "netcon";
54char netcls[] = "netcls";
55
56u_long sb_max = SB_MAX; /* patchable */
57
58/*
59 * Procedures to manipulate state flags of socket
60 * and do appropriate wakeups. Normal sequence from the
61 * active (originating) side is that soisconnecting() is
62 * called during processing of connect() call,
63 * resulting in an eventual call to soisconnected() if/when the
64 * connection is established. When the connection is torn down
65 * soisdisconnecting() is called during processing of disconnect() call,
66 * and soisdisconnected() is called when the connection to the peer
67 * is totally severed. The semantics of these routines are such that
68 * connectionless protocols can call soisconnected() and soisdisconnected()
69 * only, bypassing the in-progress calls when setting up a ``connection''
70 * takes no time.
71 *
72 * From the passive side, a socket is created with
73 * two queues of sockets: so_q0 for connections in progress
74 * and so_q for connections already made and awaiting user acceptance.
75 * As a protocol is preparing incoming connections, it creates a socket
76 * structure queued on so_q0 by calling sonewconn(). When the connection
77 * is established, soisconnected() is called, and transfers the
78 * socket structure to so_q, making it available to accept().
79 *
80 * If a socket is closed with sockets on either
81 * so_q0 or so_q, these sockets are dropped.
82 *
83 * If higher level protocols are implemented in
84 * the kernel, the wakeups done here will sometimes
85 * cause software-interrupt process scheduling.
86 */
87
88soisconnecting(so)
89 register struct socket *so;
90{
91
92 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
93 so->so_state |= SS_ISCONNECTING;
94}
95
96soisconnected(so)
97 register struct socket *so;
98{
99 register struct socket *head = so->so_head;
100
101 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
102 so->so_state |= SS_ISCONNECTED;
103 if (head && soqremque(so, 0)) {
104 soqinsque(head, so, 1);
105 sorwakeup(head);
106 wakeup((caddr_t)&head->so_timeo);
107 } else {
108 wakeup((caddr_t)&so->so_timeo);
109 sorwakeup(so);
110 sowwakeup(so);
111 }
112}
113
114soisdisconnecting(so)
115 register struct socket *so;
116{
117
118 so->so_state &= ~SS_ISCONNECTING;
119 so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
120 wakeup((caddr_t)&so->so_timeo);
121 sowwakeup(so);
122 sorwakeup(so);
123}
124
125soisdisconnected(so)
126 register struct socket *so;
127{
128
129 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
130 so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE);
131 wakeup((caddr_t)&so->so_timeo);
132 sowwakeup(so);
133 sorwakeup(so);
134}
135
136/*
137 * When an attempt at a new connection is noted on a socket
138 * which accepts connections, sonewconn is called. If the
139 * connection is possible (subject to space constraints, etc.)
140 * then we allocate a new structure, propoerly linked into the
141 * data structure of the original socket, and return this.
142 * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
143 *
144 * Currently, sonewconn() is defined as sonewconn1() in socketvar.h
145 * to catch calls that are missing the (new) second parameter.
146 */
147struct socket *
148sonewconn1(head, connstatus)
149 register struct socket *head;
150 int connstatus;
151{
152 register struct socket *so;
153 int soqueue = connstatus ? 1 : 0;
154
155 if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
156 return ((struct socket *)0);
157 MALLOC(so, struct socket *, sizeof(*so), M_SOCKET, M_DONTWAIT);
158 if (so == NULL)
159 return ((struct socket *)0);
160 bzero((caddr_t)so, sizeof(*so));
161 so->so_type = head->so_type;
162 so->so_options = head->so_options &~ SO_ACCEPTCONN;
163 so->so_linger = head->so_linger;
164 so->so_state = head->so_state | SS_NOFDREF;
165 so->so_proto = head->so_proto;
166 so->so_timeo = head->so_timeo;
167 so->so_pgid = head->so_pgid;
168 (void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat);
169 soqinsque(head, so, soqueue);
170 if ((*so->so_proto->pr_usrreq)(so, PRU_ATTACH,
171 (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0)) {
172 (void) soqremque(so, soqueue);
173 (void) free((caddr_t)so, M_SOCKET);
174 return ((struct socket *)0);
175 }
176 if (connstatus) {
177 sorwakeup(head);
178 wakeup((caddr_t)&head->so_timeo);
179 so->so_state |= connstatus;
180 }
181 return (so);
182}
183
184soqinsque(head, so, q)
185 register struct socket *head, *so;
186 int q;
187{
188
189 register struct socket **prev;
190 so->so_head = head;
191 if (q == 0) {
192 head->so_q0len++;
193 so->so_q0 = 0;
194 for (prev = &(head->so_q0); *prev; )
195 prev = &((*prev)->so_q0);
196 } else {
197 head->so_qlen++;
198 so->so_q = 0;
199 for (prev = &(head->so_q); *prev; )
200 prev = &((*prev)->so_q);
201 }
202 *prev = so;
203}
204
205soqremque(so, q)
206 register struct socket *so;
207 int q;
208{
209 register struct socket *head, *prev, *next;
210
211 head = so->so_head;
212 prev = head;
213 for (;;) {
214 next = q ? prev->so_q : prev->so_q0;
215 if (next == so)
216 break;
217 if (next == 0)
218 return (0);
219 prev = next;
220 }
221 if (q == 0) {
222 prev->so_q0 = next->so_q0;
223 head->so_q0len--;
224 } else {
225 prev->so_q = next->so_q;
226 head->so_qlen--;
227 }
228 next->so_q0 = next->so_q = 0;
229 next->so_head = 0;
230 return (1);
231}
232
233/*
234 * Socantsendmore indicates that no more data will be sent on the
235 * socket; it would normally be applied to a socket when the user
236 * informs the system that no more data is to be sent, by the protocol
237 * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data
238 * will be received, and will normally be applied to the socket by a
239 * protocol when it detects that the peer will send no more data.
240 * Data queued for reading in the socket may yet be read.
241 */
242
243socantsendmore(so)
244 struct socket *so;
245{
246
247 so->so_state |= SS_CANTSENDMORE;
248 sowwakeup(so);
249}
250
251socantrcvmore(so)
252 struct socket *so;
253{
254
255 so->so_state |= SS_CANTRCVMORE;
256 sorwakeup(so);
257}
258
259/*
260 * Socket select/wakeup routines.
261 */
262
263/*
264 * Queue a process for a select on a socket buffer.
265 */
266sbselqueue(sb, cp)
267 struct sockbuf *sb;
268 struct proc *cp;
269{
270 struct proc *p;
271
272 if ((p = sb->sb_sel) && p->p_wchan == (caddr_t)&selwait)
273 sb->sb_flags |= SB_COLL;
274 else {
275 sb->sb_sel = cp;
276 sb->sb_flags |= SB_SEL;
277 }
278}
279
280/*
281 * Wait for data to arrive at/drain from a socket buffer.
282 */
283sbwait(sb)
284 struct sockbuf *sb;
285{
286
287 sb->sb_flags |= SB_WAIT;
288 return (tsleep((caddr_t)&sb->sb_cc,
289 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, netio,
290 sb->sb_timeo));
291}
292
293/*
294 * Lock a sockbuf already known to be locked;
295 * return any error returned from sleep (EINTR).
296 */
297sb_lock(sb)
298 register struct sockbuf *sb;
299{
300 int error;
301
302 while (sb->sb_flags & SB_LOCK) {
303 sb->sb_flags |= SB_WANT;
304 if (error = tsleep((caddr_t)&sb->sb_flags,
305 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK|PCATCH,
306 netio, 0))
307 return (error);
308 }
309 sb->sb_flags |= SB_LOCK;
310 return (0);
311}
312
313/*
314 * Wakeup processes waiting on a socket buffer.
315 * Do asynchronous notification via SIGIO
316 * if the socket has the SS_ASYNC flag set.
317 */
318sowakeup(so, sb)
319 register struct socket *so;
320 register struct sockbuf *sb;
321{
322 struct proc *p;
323
324 if (sb->sb_sel) {
325 selwakeup(sb->sb_sel, sb->sb_flags & SB_COLL);
326 sb->sb_sel = 0;
327 sb->sb_flags &= ~(SB_SEL|SB_COLL);
328 }
329 if (sb->sb_flags & SB_WAIT) {
330 sb->sb_flags &= ~SB_WAIT;
331 wakeup((caddr_t)&sb->sb_cc);
332 }
333 if (so->so_state & SS_ASYNC) {
334 if (so->so_pgid < 0)
335 gsignal(-so->so_pgid, SIGIO);
336 else if (so->so_pgid > 0 && (p = pfind(so->so_pgid)) != 0)
337 psignal(p, SIGIO);
338 }
339}
340
341/*
342 * Socket buffer (struct sockbuf) utility routines.
343 *
344 * Each socket contains two socket buffers: one for sending data and
345 * one for receiving data. Each buffer contains a queue of mbufs,
346 * information about the number of mbufs and amount of data in the
347 * queue, and other fields allowing select() statements and notification
348 * on data availability to be implemented.
349 *
350 * Data stored in a socket buffer is maintained as a list of records.
351 * Each record is a list of mbufs chained together with the m_next
352 * field. Records are chained together with the m_nextpkt field. The upper
353 * level routine soreceive() expects the following conventions to be
354 * observed when placing information in the receive buffer:
355 *
356 * 1. If the protocol requires each message be preceded by the sender's
357 * name, then a record containing that name must be present before
358 * any associated data (mbuf's must be of type MT_SONAME).
359 * 2. If the protocol supports the exchange of ``access rights'' (really
360 * just additional data associated with the message), and there are
361 * ``rights'' to be received, then a record containing this data
362 * should be present (mbuf's must be of type MT_RIGHTS).
363 * 3. If a name or rights record exists, then it must be followed by
364 * a data record, perhaps of zero length.
365 *
366 * Before using a new socket structure it is first necessary to reserve
367 * buffer space to the socket, by calling sbreserve(). This should commit
368 * some of the available buffer space in the system buffer pool for the
369 * socket (currently, it does nothing but enforce limits). The space
370 * should be released by calling sbrelease() when the socket is destroyed.
371 */
372
373soreserve(so, sndcc, rcvcc)
374 register struct socket *so;
375 u_long sndcc, rcvcc;
376{
377
378 if (sbreserve(&so->so_snd, sndcc) == 0)
379 goto bad;
380 if (sbreserve(&so->so_rcv, rcvcc) == 0)
381 goto bad2;
382 if (so->so_rcv.sb_lowat == 0)
383 so->so_rcv.sb_lowat = 1;
384 if (so->so_snd.sb_lowat == 0)
385 so->so_snd.sb_lowat = MCLBYTES;
386 if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
387 so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
388 return (0);
389bad2:
390 sbrelease(&so->so_snd);
391bad:
392 return (ENOBUFS);
393}
394
395/*
396 * Allot mbufs to a sockbuf.
397 * Attempt to scale mbmax so that mbcnt doesn't become limiting
398 * if buffering efficiency is near the normal case.
399 */
400sbreserve(sb, cc)
401 struct sockbuf *sb;
402 u_long cc;
403{
404
405 if (cc > sb_max * MCLBYTES / (MSIZE + MCLBYTES))
406 return (0);
407 sb->sb_hiwat = cc;
408 sb->sb_mbmax = min(cc * 2, sb_max);
409 if (sb->sb_lowat > sb->sb_hiwat)
410 sb->sb_lowat = sb->sb_hiwat;
411 return (1);
412}
413
414/*
415 * Free mbufs held by a socket, and reserved mbuf space.
416 */
417sbrelease(sb)
418 struct sockbuf *sb;
419{
420
421 sbflush(sb);
422 sb->sb_hiwat = sb->sb_mbmax = 0;
423}
424
425/*
426 * Routines to add and remove
427 * data from an mbuf queue.
428 *
429 * The routines sbappend() or sbappendrecord() are normally called to
430 * append new mbufs to a socket buffer, after checking that adequate
431 * space is available, comparing the function sbspace() with the amount
432 * of data to be added. sbappendrecord() differs from sbappend() in
433 * that data supplied is treated as the beginning of a new record.
434 * To place a sender's address, optional access rights, and data in a
435 * socket receive buffer, sbappendaddr() should be used. To place
436 * access rights and data in a socket receive buffer, sbappendrights()
437 * should be used. In either case, the new data begins a new record.
438 * Note that unlike sbappend() and sbappendrecord(), these routines check
439 * for the caller that there will be enough space to store the data.
440 * Each fails if there is not enough space, or if it cannot find mbufs
441 * to store additional information in.
442 *
443 * Reliable protocols may use the socket send buffer to hold data
444 * awaiting acknowledgement. Data is normally copied from a socket
445 * send buffer in a protocol with m_copy for output to a peer,
446 * and then removing the data from the socket buffer with sbdrop()
447 * or sbdroprecord() when the data is acknowledged by the peer.
448 */
449
450/*
451 * Append mbuf chain m to the last record in the
452 * socket buffer sb. The additional space associated
453 * the mbuf chain is recorded in sb. Empty mbufs are
454 * discarded and mbufs are compacted where possible.
455 */
456sbappend(sb, m)
457 struct sockbuf *sb;
458 struct mbuf *m;
459{
460 register struct mbuf *n;
461
462 if (m == 0)
463 return;
464 if (n = sb->sb_mb) {
465 while (n->m_nextpkt)
466 n = n->m_nextpkt;
467 do {
468 if (n->m_flags & M_EOR) {
469 sbappendrecord(sb, m); /* XXXXXX!!!! */
470 return;
471 }
472 } while (n->m_next && (n = n->m_next));
473 }
474 sbcompress(sb, m, n);
475}
476
477#ifdef SOCKBUF_DEBUG
478sbcheck(sb)
479 register struct sockbuf *sb;
480{
481 register struct mbuf *m;
482 register int len = 0, mbcnt = 0;
483
484 for (m = sb->sb_mb; m; m = m->m_next) {
485 len += m->m_len;
486 mbcnt += MSIZE;
487 if (m->m_flags & M_EXT)
488 mbcnt += m->m_ext.ext_size;
489 if (m->m_nextpkt)
490 panic("sbcheck nextpkt");
491 }
492 if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
493 printf("cc %d != %d || mbcnt %d != %d\n", len, sb->sb_cc,
494 mbcnt, sb->sb_mbcnt);
495 panic("sbcheck");
496 }
497}
498#endif
499
500/*
501 * As above, except the mbuf chain
502 * begins a new record.
503 */
504sbappendrecord(sb, m0)
505 register struct sockbuf *sb;
506 register struct mbuf *m0;
507{
508 register struct mbuf *m;
509
510 if (m0 == 0)
511 return;
512 if (m = sb->sb_mb)
513 while (m->m_nextpkt)
514 m = m->m_nextpkt;
515 /*
516 * Put the first mbuf on the queue.
517 * Note this permits zero length records.
518 */
519 sballoc(sb, m0);
520 if (m)
521 m->m_nextpkt = m0;
522 else
523 sb->sb_mb = m0;
524 m = m0->m_next;
525 m0->m_next = 0;
526 if (m && (m0->m_flags & M_EOR)) {
527 m0->m_flags &= ~M_EOR;
528 m->m_flags |= M_EOR;
529 }
530 sbcompress(sb, m, m0);
531}
532
533/*
534 * As above except that OOB data
535 * is inserted at the beginning of the sockbuf,
536 * but after any other OOB data.
537 */
538sbinsertoob(sb, m0)
539 register struct sockbuf *sb;
540 register struct mbuf *m0;
541{
542 register struct mbuf *m;
543 register struct mbuf **mp;
544
545 if (m0 == 0)
546 return;
547 for (mp = &sb->sb_mb; m = *mp; mp = &((*mp)->m_nextpkt)) {
548 again:
549 switch (m->m_type) {
550
551 case MT_OOBDATA:
552 continue; /* WANT next train */
553
554 case MT_CONTROL:
555 if (m = m->m_next)
556 goto again; /* inspect THIS train further */
557 }
558 break;
559 }
560 /*
561 * Put the first mbuf on the queue.
562 * Note this permits zero length records.
563 */
564 sballoc(sb, m0);
565 m0->m_nextpkt = *mp;
566 *mp = m0;
567 m = m0->m_next;
568 m0->m_next = 0;
569 if (m && (m0->m_flags & M_EOR)) {
570 m0->m_flags &= ~M_EOR;
571 m->m_flags |= M_EOR;
572 }
573 sbcompress(sb, m, m0);
574}
575
576/*
577 * Append address and data, and optionally, control (ancillary) data
578 * to the receive queue of a socket. If present,
579 * m0 must include a packet header with total length.
580 * Returns 0 if no space in sockbuf or insufficient mbufs.
581 */
582sbappendaddr(sb, asa, m0, control)
583 register struct sockbuf *sb;
584 struct sockaddr *asa;
585 struct mbuf *m0, *control;
586{
587 register struct mbuf *m, *n;
588 int space = asa->sa_len;
589
590if (m0 && (m0->m_flags & M_PKTHDR) == 0)
591panic("sbappendaddr");
592 if (m0)
593 space += m0->m_pkthdr.len;
594 for (n = control; n; n = n->m_next) {
595 space += n->m_len;
596 if (n->m_next == 0) /* keep pointer to last control buf */
597 break;
598 }
599 if (space > sbspace(sb))
600 return (0);
601 if (asa->sa_len > MLEN)
602 return (0);
603 MGET(m, M_DONTWAIT, MT_SONAME);
604 if (m == 0)
605 return (0);
606 m->m_len = asa->sa_len;
607 bcopy((caddr_t)asa, mtod(m, caddr_t), asa->sa_len);
608 if (n)
609 n->m_next = m0; /* concatenate data to control */
610 else
611 control = m0;
612 m->m_next = control;
613 for (n = m; n; n = n->m_next)
614 sballoc(sb, n);
615 if (n = sb->sb_mb) {
616 while (n->m_nextpkt)
617 n = n->m_nextpkt;
618 n->m_nextpkt = m;
619 } else
620 sb->sb_mb = m;
621 return (1);
622}
623
624sbappendcontrol(sb, m0, control)
625 struct sockbuf *sb;
626 struct mbuf *control, *m0;
627{
628 register struct mbuf *m, *n;
629 int space = 0;
630
631 if (control == 0)
632 panic("sbappendcontrol");
633 for (m = control; ; m = m->m_next) {
634 space += m->m_len;
635 if (m->m_next == 0)
636 break;
637 }
638 n = m; /* save pointer to last control buffer */
639 for (m = m0; m; m = m->m_next)
640 space += m->m_len;
641 if (space > sbspace(sb))
642 return (0);
643 n->m_next = m0; /* concatenate data to control */
644 for (m = control; m; m = m->m_next)
645 sballoc(sb, m);
646 if (n = sb->sb_mb) {
647 while (n->m_nextpkt)
648 n = n->m_nextpkt;
649 n->m_nextpkt = control;
650 } else
651 sb->sb_mb = control;
652 return (1);
653}
654
655/*
656 * Compress mbuf chain m into the socket
657 * buffer sb following mbuf n. If n
658 * is null, the buffer is presumed empty.
659 */
660sbcompress(sb, m, n)
661 register struct sockbuf *sb;
662 register struct mbuf *m, *n;
663{
664 register int eor = 0;
665 register struct mbuf *o;
666
667 while (m) {
668 eor |= m->m_flags & M_EOR;
669 if (m->m_len == 0 &&
670 (eor == 0 ||
671 (((o = m->m_next) || (o = n)) &&
672 o->m_type == m->m_type))) {
673 m = m_free(m);
674 continue;
675 }
676 if (n && (n->m_flags & (M_EXT | M_EOR)) == 0 &&
677 (n->m_data + n->m_len + m->m_len) < &n->m_dat[MLEN] &&
678 n->m_type == m->m_type) {
679 bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len,
680 (unsigned)m->m_len);
681 n->m_len += m->m_len;
682 sb->sb_cc += m->m_len;
683 m = m_free(m);
684 continue;
685 }
686 if (n)
687 n->m_next = m;
688 else
689 sb->sb_mb = m;
690 sballoc(sb, m);
691 n = m;
692 m->m_flags &= ~M_EOR;
693 m = m->m_next;
694 n->m_next = 0;
695 }
696 if (eor) {
697 if (n)
698 n->m_flags |= eor;
699 else
700 printf("semi-panic: sbcompress\n");
701 }
702}
703
704/*
705 * Free all mbufs in a sockbuf.
706 * Check that all resources are reclaimed.
707 */
708sbflush(sb)
709 register struct sockbuf *sb;
710{
711
712 if (sb->sb_flags & SB_LOCK)
713 panic("sbflush");
714 while (sb->sb_mbcnt)
715 sbdrop(sb, (int)sb->sb_cc);
716 if (sb->sb_cc || sb->sb_mb)
717 panic("sbflush 2");
718}
719
720/*
721 * Drop data from (the front of) a sockbuf.
722 */
723sbdrop(sb, len)
724 register struct sockbuf *sb;
725 register int len;
726{
727 register struct mbuf *m, *mn;
728 struct mbuf *next;
729
730 next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
731 while (len > 0) {
732 if (m == 0) {
733 if (next == 0)
734 panic("sbdrop");
735 m = next;
736 next = m->m_nextpkt;
737 continue;
738 }
739 if (m->m_len > len) {
740 m->m_len -= len;
741 m->m_data += len;
742 sb->sb_cc -= len;
743 break;
744 }
745 len -= m->m_len;
746 sbfree(sb, m);
747 MFREE(m, mn);
748 m = mn;
749 }
750 while (m && m->m_len == 0) {
751 sbfree(sb, m);
752 MFREE(m, mn);
753 m = mn;
754 }
755 if (m) {
756 sb->sb_mb = m;
757 m->m_nextpkt = next;
758 } else
759 sb->sb_mb = next;
760}
761
762/*
763 * Drop a record off the front of a sockbuf
764 * and move the next record to the front.
765 */
766sbdroprecord(sb)
767 register struct sockbuf *sb;
768{
769 register struct mbuf *m, *mn;
770
771 m = sb->sb_mb;
772 if (m) {
773 sb->sb_mb = m->m_nextpkt;
774 do {
775 sbfree(sb, m);
776 MFREE(m, mn);
777 } while (m = mn);
778 }
779}