Start development on 386BSD 0.0
[unix-history] / .ref-BSD-4_3_Net_2 / usr / src / usr.bin / gcc / cc1 / config / tm-vax.h
CommitLineData
d877af01
C
1/* Definitions of target machine for GNU compiler. Vax version.
2 Copyright (C) 1987, 1988 Free Software Foundation, Inc.
3
4This file is part of GNU CC.
5
6GNU CC is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 1, or (at your option)
9any later version.
10
11GNU CC is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with GNU CC; see the file COPYING. If not, write to
18the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20
21/* Names to predefine in the preprocessor for this target machine. */
22
23#define CPP_PREDEFINES "-Dvax -Dunix"
24
25/* Print subsidiary information on the compiler version in use. */
26
27#define TARGET_VERSION fprintf (stderr, " (vax)");
28
29/* Run-time compilation parameters selecting different hardware subsets. */
30
31extern int target_flags;
32
33/* Macros used in the machine description to test the flags. */
34
35/* Nonzero if compiling code that Unix assembler can assemble. */
36#define TARGET_UNIX_ASM (target_flags & 1)
37
38/* Nonzero if compiling with VAX-11 "C" style structure alignment */
39#define TARGET_VAXC_ALIGNMENT (target_flags & 2)
40
41/* Nonzero if compiling with `G'-format floating point */
42#define TARGET_G_FLOAT (target_flags & 4)
43
44/* Macro to define tables used to set the flags.
45 This is a list in braces of pairs in braces,
46 each pair being { "NAME", VALUE }
47 where VALUE is the bits to set or minus the bits to clear.
48 An empty string NAME is used to identify the default VALUE. */
49
50#define TARGET_SWITCHES \
51 { {"unix", 1}, \
52 {"gnu", -1}, \
53 {"vaxc-alignment", 2}, \
54 {"g", 4}, \
55 {"g-float", 4}, \
56 {"d", -4}, \
57 {"d-float", -4}, \
58 { "", TARGET_DEFAULT}}
59
60/* Default target_flags if no switches specified. */
61
62#ifndef TARGET_DEFAULT
63#define TARGET_DEFAULT 1
64#endif
65\f
66/* Target machine storage layout */
67
68/* Define this if most significant bit is lowest numbered
69 in instructions that operate on numbered bit-fields.
70 This is not true on the vax. */
71/* #define BITS_BIG_ENDIAN */
72
73/* Define this if most significant byte of a word is the lowest numbered. */
74/* That is not true on the vax. */
75/* #define BYTES_BIG_ENDIAN */
76
77/* Define this if most significant word of a multiword number is numbered. */
78/* This is not true on the vax. */
79/* #define WORDS_BIG_ENDIAN */
80
81/* Number of bits in an addressible storage unit */
82#define BITS_PER_UNIT 8
83
84/* Width in bits of a "word", which is the contents of a machine register.
85 Note that this is not necessarily the width of data type `int';
86 if using 16-bit ints on a 68000, this would still be 32.
87 But on a machine with 16-bit registers, this would be 16. */
88#define BITS_PER_WORD 32
89
90/* Width of a word, in units (bytes). */
91#define UNITS_PER_WORD 4
92
93/* Width in bits of a pointer.
94 See also the macro `Pmode' defined below. */
95#define POINTER_SIZE 32
96
97/* Allocation boundary (in *bits*) for storing pointers in memory. */
98#define POINTER_BOUNDARY (TARGET_VAXC_ALIGNMENT ? 8 : 32)
99
100/* Allocation boundary (in *bits*) for storing arguments in argument list. */
101#define PARM_BOUNDARY 32
102
103/* Allocation boundary (in *bits*) for the code of a function. */
104#define FUNCTION_BOUNDARY 16
105
106/* Alignment of field after `int : 0' in a structure. */
107#define EMPTY_FIELD_BOUNDARY (TARGET_VAXC_ALIGNMENT ? 8 : 32)
108
109/* Every structure's size must be a multiple of this. */
110#define STRUCTURE_SIZE_BOUNDARY 8
111
112/* A bitfield declared as `int' forces `int' alignment for the struct. */
113#define PCC_BITFIELD_TYPE_MATTERS (! TARGET_VAXC_ALIGNMENT)
114
115/* No data type wants to be aligned rounder than this. */
116#define BIGGEST_ALIGNMENT (TARGET_VAXC_ALIGNMENT ? 8 : 32)
117
118/* Define this if move instructions will actually fail to work
119 when given unaligned data. */
120/* #define STRICT_ALIGNMENT */
121\f
122/* Standard register usage. */
123
124/* Number of actual hardware registers.
125 The hardware registers are assigned numbers for the compiler
126 from 0 to just below FIRST_PSEUDO_REGISTER.
127 All registers that the compiler knows about must be given numbers,
128 even those that are not normally considered general registers. */
129#define FIRST_PSEUDO_REGISTER 16
130
131/* 1 for registers that have pervasive standard uses
132 and are not available for the register allocator.
133 On the vax, these are the AP, FP, SP and PC. */
134#define FIXED_REGISTERS {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1}
135
136/* 1 for registers not available across function calls.
137 These must include the FIXED_REGISTERS and also any
138 registers that can be used without being saved.
139 The latter must include the registers where values are returned
140 and the register where structure-value addresses are passed.
141 Aside from that, you can include as many other registers as you like. */
142#define CALL_USED_REGISTERS {1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1}
143
144/* Return number of consecutive hard regs needed starting at reg REGNO
145 to hold something of mode MODE.
146 This is ordinarily the length in words of a value of mode MODE
147 but can be less for certain modes in special long registers.
148 On the vax, all registers are one word long. */
149#define HARD_REGNO_NREGS(REGNO, MODE) \
150 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
151
152/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
153 On the vax, all registers can hold all modes. */
154#define HARD_REGNO_MODE_OK(REGNO, MODE) 1
155
156/* Value is 1 if it is a good idea to tie two pseudo registers
157 when one has mode MODE1 and one has mode MODE2.
158 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
159 for any hard reg, then this must be 0 for correct output. */
160#define MODES_TIEABLE_P(MODE1, MODE2) 1
161
162/* Specify the registers used for certain standard purposes.
163 The values of these macros are register numbers. */
164
165/* Vax pc is overloaded on a register. */
166#define PC_REGNUM 15
167
168/* Register to use for pushing function arguments. */
169#define STACK_POINTER_REGNUM 14
170
171/* Base register for access to local variables of the function. */
172#define FRAME_POINTER_REGNUM 13
173
174/* Value should be nonzero if functions must have frame pointers.
175 Zero means the frame pointer need not be set up (and parms
176 may be accessed via the stack pointer) in functions that seem suitable.
177 This is computed in `reload', in reload1.c. */
178#define FRAME_POINTER_REQUIRED 1
179
180/* Base register for access to arguments of the function. */
181#define ARG_POINTER_REGNUM 12
182
183/* Register in which static-chain is passed to a function. */
184#define STATIC_CHAIN_REGNUM 0
185
186/* Register in which address to store a structure value
187 is passed to a function. */
188#define STRUCT_VALUE_REGNUM 1
189\f
190/* Define the classes of registers for register constraints in the
191 machine description. Also define ranges of constants.
192
193 One of the classes must always be named ALL_REGS and include all hard regs.
194 If there is more than one class, another class must be named NO_REGS
195 and contain no registers.
196
197 The name GENERAL_REGS must be the name of a class (or an alias for
198 another name such as ALL_REGS). This is the class of registers
199 that is allowed by "g" or "r" in a register constraint.
200 Also, registers outside this class are allocated only when
201 instructions express preferences for them.
202
203 The classes must be numbered in nondecreasing order; that is,
204 a larger-numbered class must never be contained completely
205 in a smaller-numbered class.
206
207 For any two classes, it is very desirable that there be another
208 class that represents their union. */
209
210/* The vax has only one kind of registers, so NO_REGS and ALL_REGS
211 are the only classes. */
212
213enum reg_class { NO_REGS, ALL_REGS, LIM_REG_CLASSES };
214
215#define N_REG_CLASSES (int) LIM_REG_CLASSES
216
217/* Since GENERAL_REGS is the same class as ALL_REGS,
218 don't give it a different class number; just make it an alias. */
219
220#define GENERAL_REGS ALL_REGS
221
222/* Give names of register classes as strings for dump file. */
223
224#define REG_CLASS_NAMES \
225 {"NO_REGS", "ALL_REGS" }
226
227/* Define which registers fit in which classes.
228 This is an initializer for a vector of HARD_REG_SET
229 of length N_REG_CLASSES. */
230
231#define REG_CLASS_CONTENTS {0, 0xffff}
232
233/* The same information, inverted:
234 Return the class number of the smallest class containing
235 reg number REGNO. This could be a conditional expression
236 or could index an array. */
237
238#define REGNO_REG_CLASS(REGNO) ALL_REGS
239
240/* The class value for index registers, and the one for base regs. */
241
242#define INDEX_REG_CLASS ALL_REGS
243#define BASE_REG_CLASS ALL_REGS
244
245/* Get reg_class from a letter such as appears in the machine description. */
246
247#define REG_CLASS_FROM_LETTER(C) NO_REGS
248
249/* The letters I, J, K, L and M in a register constraint string
250 can be used to stand for particular ranges of immediate operands.
251 This macro defines what the ranges are.
252 C is the letter, and VALUE is a constant value.
253 Return 1 if VALUE is in the range specified by C. */
254
255#define CONST_OK_FOR_LETTER_P(VALUE, C) 0
256
257/* Similar, but for floating constants, and defining letters G and H.
258 Here VALUE is the CONST_DOUBLE rtx itself. */
259
260#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) 1
261
262/* Given an rtx X being reloaded into a reg required to be
263 in class CLASS, return the class of reg to actually use.
264 In general this is just CLASS; but on some machines
265 in some cases it is preferable to use a more restrictive class. */
266
267#define PREFERRED_RELOAD_CLASS(X,CLASS) (CLASS)
268
269/* Return the maximum number of consecutive registers
270 needed to represent mode MODE in a register of class CLASS. */
271/* On the vax, this is always the size of MODE in words,
272 since all registers are the same size. */
273#define CLASS_MAX_NREGS(CLASS, MODE) \
274 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
275\f
276/* Stack layout; function entry, exit and calling. */
277
278/* Define this if pushing a word on the stack
279 makes the stack pointer a smaller address. */
280#define STACK_GROWS_DOWNWARD
281
282/* Define this if longjmp restores from saved registers
283 rather than from what setjmp saved. */
284#define LONGJMP_RESTORE_FROM_STACK
285
286/* Define this if the nominal address of the stack frame
287 is at the high-address end of the local variables;
288 that is, each additional local variable allocated
289 goes at a more negative offset in the frame. */
290#define FRAME_GROWS_DOWNWARD
291
292/* Offset within stack frame to start allocating local variables at.
293 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
294 first local allocated. Otherwise, it is the offset to the BEGINNING
295 of the first local allocated. */
296#define STARTING_FRAME_OFFSET 0
297
298/* If we generate an insn to push BYTES bytes,
299 this says how many the stack pointer really advances by.
300 On the vax, -(sp) pushes only the bytes of the operands. */
301#define PUSH_ROUNDING(BYTES) (BYTES)
302
303/* Offset of first parameter from the argument pointer register value. */
304#define FIRST_PARM_OFFSET(FNDECL) 4
305
306/* Value is 1 if returning from a function call automatically
307 pops the arguments described by the number-of-args field in the call.
308 FUNTYPE is the data type of the function (as a tree),
309 or for a library call it is an identifier node for the subroutine name.
310
311 On the Vax, the RET insn always pops all the args for any function. */
312
313#define RETURN_POPS_ARGS(FUNTYPE) 1
314
315/* Define how to find the value returned by a function.
316 VALTYPE is the data type of the value (as a tree).
317 If the precise function being called is known, FUNC is its FUNCTION_DECL;
318 otherwise, FUNC is 0. */
319
320/* On the Vax the return value is in R0 regardless. */
321
322#define FUNCTION_VALUE(VALTYPE, FUNC) \
323 gen_rtx (REG, TYPE_MODE (VALTYPE), 0)
324
325/* Define how to find the value returned by a library function
326 assuming the value has mode MODE. */
327
328/* On the Vax the return value is in R0 regardless. */
329
330#define LIBCALL_VALUE(MODE) gen_rtx (REG, MODE, 0)
331
332/* Define this if PCC uses the nonreentrant convention for returning
333 structure and union values. */
334
335#define PCC_STATIC_STRUCT_RETURN
336
337/* 1 if N is a possible register number for a function value.
338 On the Vax, R0 is the only register thus used. */
339
340#define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)
341
342/* 1 if N is a possible register number for function argument passing.
343 On the Vax, no registers are used in this way. */
344
345#define FUNCTION_ARG_REGNO_P(N) 0
346\f
347/* Define a data type for recording info about an argument list
348 during the scan of that argument list. This data type should
349 hold all necessary information about the function itself
350 and about the args processed so far, enough to enable macros
351 such as FUNCTION_ARG to determine where the next arg should go.
352
353 On the vax, this is a single integer, which is a number of bytes
354 of arguments scanned so far. */
355
356#define CUMULATIVE_ARGS int
357
358/* Initialize a variable CUM of type CUMULATIVE_ARGS
359 for a call to a function whose data type is FNTYPE.
360 For a library call, FNTYPE is 0.
361
362 On the vax, the offset starts at 0. */
363
364#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE) \
365 ((CUM) = 0)
366
367/* Update the data in CUM to advance over an argument
368 of mode MODE and data type TYPE.
369 (TYPE is null for libcalls where that information may not be available.) */
370
371#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
372 ((CUM) += ((MODE) != BLKmode \
373 ? (GET_MODE_SIZE (MODE) + 3) & ~3 \
374 : (int_size_in_bytes (TYPE) + 3) & ~3))
375
376/* Define where to put the arguments to a function.
377 Value is zero to push the argument on the stack,
378 or a hard register in which to store the argument.
379
380 MODE is the argument's machine mode.
381 TYPE is the data type of the argument (as a tree).
382 This is null for libcalls where that information may
383 not be available.
384 CUM is a variable of type CUMULATIVE_ARGS which gives info about
385 the preceding args and about the function being called.
386 NAMED is nonzero if this argument is a named parameter
387 (otherwise it is an extra parameter matching an ellipsis). */
388
389/* On the vax all args are pushed. */
390
391#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) 0
392
393/* This macro generates the assembly code for function entry.
394 FILE is a stdio stream to output the code to.
395 SIZE is an int: how many units of temporary storage to allocate.
396 Refer to the array `regs_ever_live' to determine which registers
397 to save; `regs_ever_live[I]' is nonzero if register number I
398 is ever used in the function. This macro is responsible for
399 knowing which registers should not be saved even if used. */
400
401#define FUNCTION_PROLOGUE(FILE, SIZE) \
402{ register int regno; \
403 register int mask = 0; \
404 extern char call_used_regs[]; \
405 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) \
406 if (regs_ever_live[regno] && !call_used_regs[regno]) \
407 mask |= 1 << regno; \
408 fprintf (FILE, "\t.word 0x%x\n", mask); \
409 MAYBE_VMS_FUNCTION_PROLOGUE(FILE) \
410 if ((SIZE) >= 64) fprintf (FILE, "\tmovab %d(sp),sp\n", -SIZE);\
411 else if (SIZE) fprintf (FILE, "\tsubl2 $%d,sp\n", (SIZE)); }
412
413/* tm-vms.h redefines this. */
414#define MAYBE_VMS_FUNCTION_PROLOGUE(FILE)
415
416/* Output assembler code to FILE to increment profiler label # LABELNO
417 for profiling a function entry. */
418
419#define FUNCTION_PROFILER(FILE, LABELNO) \
420 fprintf (FILE, "\tmovab LP%d,r0\n\tjsb mcount\n", (LABELNO));
421
422/* Output assembler code to FILE to initialize this source file's
423 basic block profiling info, if that has not already been done. */
424
425#define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
426 fprintf (FILE, "\ttstl LPBX0\n\tjneq LPI%d\n\tpushal LPBX0\n\tcalls $1,__bb_init_func\nLPI%d:\n", \
427 LABELNO, LABELNO);
428
429/* Output assembler code to FILE to increment the entry-count for
430 the BLOCKNO'th basic block in this source file. This is a real pain in the
431 sphincter on a VAX, since we do not want to change any of the bits in the
432 processor status word. The way it is done here, it is pushed onto the stack
433 before any flags have changed, and then the stack is fixed up to account for
434 the fact that the instruction to restore the flags only reads a word.
435 It may seem a bit clumsy, but at least it works.
436*/
437
438#define BLOCK_PROFILER(FILE, BLOCKNO) \
439 fprintf (FILE, "\tmovpsl -(sp)\n\tmovw (sp),2(sp)\n\taddl2 $2,sp\n\taddl2 $1,LPBX2+%d\n\tbicpsw $255\n\tbispsw (sp)+\n", \
440 4 * BLOCKNO)
441
442/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
443 the stack pointer does not matter. The value is tested only in
444 functions that have frame pointers.
445 No definition is equivalent to always zero. */
446
447#define EXIT_IGNORE_STACK 1
448
449/* This macro generates the assembly code for function exit,
450 on machines that need it. If FUNCTION_EPILOGUE is not defined
451 then individual return instructions are generated for each
452 return statement. Args are same as for FUNCTION_PROLOGUE. */
453
454/* #define FUNCTION_EPILOGUE(FILE, SIZE) */
455
456/* If the memory address ADDR is relative to the frame pointer,
457 correct it to be relative to the stack pointer instead.
458 This is for when we don't use a frame pointer.
459 ADDR should be a variable name. */
460
461#define FIX_FRAME_POINTER_ADDRESS(ADDR,DEPTH) abort ();
462\f
463/* Addressing modes, and classification of registers for them. */
464
465#define HAVE_POST_INCREMENT
466/* #define HAVE_POST_DECREMENT */
467
468#define HAVE_PRE_DECREMENT
469/* #define HAVE_PRE_INCREMENT */
470
471/* Macros to check register numbers against specific register classes. */
472
473/* These assume that REGNO is a hard or pseudo reg number.
474 They give nonzero only if REGNO is a hard reg of the suitable class
475 or a pseudo reg currently allocated to a suitable hard reg.
476 Since they use reg_renumber, they are safe only once reg_renumber
477 has been allocated, which happens in local-alloc.c. */
478
479#define REGNO_OK_FOR_INDEX_P(regno) \
480((regno) < FIRST_PSEUDO_REGISTER || reg_renumber[regno] >= 0)
481#define REGNO_OK_FOR_BASE_P(regno) \
482((regno) < FIRST_PSEUDO_REGISTER || reg_renumber[regno] >= 0)
483\f
484/* Maximum number of registers that can appear in a valid memory address. */
485
486#define MAX_REGS_PER_ADDRESS 2
487
488/* 1 if X is an rtx for a constant that is a valid address. */
489
490#define CONSTANT_ADDRESS_P(X) (CONSTANT_P (X) && LEGITIMATE_CONSTANT_P (X))
491
492/* Nonzero if the constant value X is a legitimate general operand.
493 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
494
495#ifdef NO_EXTERNAL_INDIRECT_ADDRESS
496#define LEGITIMATE_CONSTANT_P(X) \
497 (! (GET_CODE ((X)) == CONST \
498 && GET_CODE (XEXP ((X), 0)) == PLUS \
499 && GET_CODE (XEXP (XEXP ((X), 0), 0)) == SYMBOL_REF \
500 && EXTERNAL_SYMBOL_P (XEXP (XEXP ((X), 0), 0))))
501#else
502#define LEGITIMATE_CONSTANT_P(X) 1
503#endif
504
505/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
506 and check its validity for a certain class.
507 We have two alternate definitions for each of them.
508 The usual definition accepts all pseudo regs; the other rejects
509 them unless they have been allocated suitable hard regs.
510 The symbol REG_OK_STRICT causes the latter definition to be used.
511
512 Most source files want to accept pseudo regs in the hope that
513 they will get allocated to the class that the insn wants them to be in.
514 Source files for reload pass need to be strict.
515 After reload, it makes no difference, since pseudo regs have
516 been eliminated by then. */
517
518#ifndef REG_OK_STRICT
519
520/* Nonzero if X is a hard reg that can be used as an index
521 or if it is a pseudo reg. */
522#define REG_OK_FOR_INDEX_P(X) 1
523/* Nonzero if X is a hard reg that can be used as a base reg
524 or if it is a pseudo reg. */
525#define REG_OK_FOR_BASE_P(X) 1
526
527#else
528
529/* Nonzero if X is a hard reg that can be used as an index. */
530#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
531/* Nonzero if X is a hard reg that can be used as a base reg. */
532#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
533
534#endif
535\f
536/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
537 that is a valid memory address for an instruction.
538 The MODE argument is the machine mode for the MEM expression
539 that wants to use this address.
540
541 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
542 except for CONSTANT_ADDRESS_P which is actually machine-independent. */
543
544/* 1 if X is an address that we could indirect through. */
545#ifdef NO_EXTERNAL_INDIRECT_ADDRESS
546#define INDIRECTABLE_CONSTANT_ADDRESS_P(X) \
547 (GET_CODE (X) == LABEL_REF \
548 || (GET_CODE (X) == SYMBOL_REF && !EXTERNAL_SYMBOL_P (X)) \
549 || (GET_CODE (X) == CONST && LEGITIMATE_CONSTANT_P(X)) \
550 || GET_CODE (X) == CONST_INT)
551
552#define INDIRECTABLE_ADDRESS_P(X) \
553 (INDIRECTABLE_CONSTANT_ADDRESS_P (X) \
554 || (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
555 || (GET_CODE (X) == PLUS \
556 && GET_CODE (XEXP (X, 0)) == REG \
557 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
558 && INDIRECTABLE_CONSTANT_ADDRESS_P (XEXP (X, 1))))
559#else
560#define INDIRECTABLE_CONSTANT_ADDRESS_P(X) CONSTANT_ADDRESS_P(X)
561#define INDIRECTABLE_ADDRESS_P(X) \
562 (CONSTANT_ADDRESS_P (X) \
563 || (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
564 || (GET_CODE (X) == PLUS \
565 && GET_CODE (XEXP (X, 0)) == REG \
566 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
567 && CONSTANT_ADDRESS_P (XEXP (X, 1))))
568#endif
569
570/* Non-zero if this is a valid address without indexing or indirection. */
571#define NONINDIRECT_ADDRESS_P(X) \
572 (CONSTANT_ADDRESS_P (X) \
573 || (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
574 || (GET_CODE (X) == PLUS \
575 && GET_CODE (XEXP (X, 0)) == REG \
576 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
577 && CONSTANT_ADDRESS_P (XEXP (X, 1))))
578
579/* Go to ADDR if X is a valid address not using indexing.
580 (This much is the easy part.) */
581#define GO_IF_NONINDEXED_ADDRESS(X, ADDR) \
582{ register rtx xfoob = (X); \
583 if (GET_CODE (xfoob) == REG) goto ADDR; \
584 if (NONINDIRECT_ADDRESS_P (xfoob)) goto ADDR; \
585 xfoob = XEXP (X, 0); \
586 if (GET_CODE (X) == MEM && INDIRECTABLE_ADDRESS_P (xfoob)) \
587 goto ADDR; \
588 if ((GET_CODE (X) == PRE_DEC || GET_CODE (X) == POST_INC) \
589 && GET_CODE (xfoob) == REG && REG_OK_FOR_BASE_P (xfoob)) \
590 goto ADDR; }
591
592/* 1 if PROD is either a reg times size of mode MODE
593 or just a reg, if MODE is just one byte.
594 This macro's expansion uses the temporary variables xfoo0 and xfoo1
595 that must be declared in the surrounding context. */
596#define INDEX_TERM_P(PROD, MODE) \
597(GET_MODE_SIZE (MODE) == 1 \
598 ? (GET_CODE (PROD) == REG && REG_OK_FOR_BASE_P (PROD)) \
599 : (GET_CODE (PROD) == MULT \
600 && \
601 (xfoo0 = XEXP (PROD, 0), xfoo1 = XEXP (PROD, 1), \
602 ((GET_CODE (xfoo0) == CONST_INT \
603 && INTVAL (xfoo0) == GET_MODE_SIZE (MODE) \
604 && GET_CODE (xfoo1) == REG \
605 && REG_OK_FOR_INDEX_P (xfoo1)) \
606 || \
607 (GET_CODE (xfoo1) == CONST_INT \
608 && INTVAL (xfoo1) == GET_MODE_SIZE (MODE) \
609 && GET_CODE (xfoo0) == REG \
610 && REG_OK_FOR_INDEX_P (xfoo0))))))
611
612/* Go to ADDR if X is the sum of a register
613 and a valid index term for mode MODE. */
614#define GO_IF_REG_PLUS_INDEX(X, MODE, ADDR) \
615{ register rtx xfooa; \
616 if (GET_CODE (X) == PLUS) \
617 { if (GET_CODE (XEXP (X, 0)) == REG \
618 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
619 && (xfooa = XEXP (X, 1), \
620 INDEX_TERM_P (xfooa, MODE))) \
621 goto ADDR; \
622 if (GET_CODE (XEXP (X, 1)) == REG \
623 && REG_OK_FOR_BASE_P (XEXP (X, 1)) \
624 && (xfooa = XEXP (X, 0), \
625 INDEX_TERM_P (xfooa, MODE))) \
626 goto ADDR; } }
627
628#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
629{ register rtx xfoo, xfoo0, xfoo1; \
630 GO_IF_NONINDEXED_ADDRESS (X, ADDR); \
631 if (GET_CODE (X) == PLUS) \
632 { /* Handle <address>[index] represented with index-sum outermost */\
633 xfoo = XEXP (X, 0); \
634 if (INDEX_TERM_P (xfoo, MODE)) \
635 { GO_IF_NONINDEXED_ADDRESS (XEXP (X, 1), ADDR); } \
636 xfoo = XEXP (X, 1); \
637 if (INDEX_TERM_P (xfoo, MODE)) \
638 { GO_IF_NONINDEXED_ADDRESS (XEXP (X, 0), ADDR); } \
639 /* Handle offset(reg)[index] with offset added outermost */ \
640 if (INDIRECTABLE_CONSTANT_ADDRESS_P (XEXP (X, 0))) \
641 { if (GET_CODE (XEXP (X, 1)) == REG \
642 && REG_OK_FOR_BASE_P (XEXP (X, 1))) \
643 goto ADDR; \
644 GO_IF_REG_PLUS_INDEX (XEXP (X, 1), MODE, ADDR); } \
645 if (INDIRECTABLE_CONSTANT_ADDRESS_P (XEXP (X, 1))) \
646 { if (GET_CODE (XEXP (X, 0)) == REG \
647 && REG_OK_FOR_BASE_P (XEXP (X, 0))) \
648 goto ADDR; \
649 GO_IF_REG_PLUS_INDEX (XEXP (X, 0), MODE, ADDR); } } }
650\f
651/* Try machine-dependent ways of modifying an illegitimate address
652 to be legitimate. If we find one, return the new, valid address.
653 This macro is used in only one place: `memory_address' in explow.c.
654
655 OLDX is the address as it was before break_out_memory_refs was called.
656 In some cases it is useful to look at this to decide what needs to be done.
657
658 MODE and WIN are passed so that this macro can use
659 GO_IF_LEGITIMATE_ADDRESS.
660
661 It is always safe for this macro to do nothing. It exists to recognize
662 opportunities to optimize the output.
663
664 For the vax, nothing needs to be done. */
665
666#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) {}
667
668/* Go to LABEL if ADDR (a legitimate address expression)
669 has an effect that depends on the machine mode it is used for.
670 On the VAX, the predecrement and postincrement address depend thus
671 (the amount of decrement or increment being the length of the operand)
672 and all indexed address depend thus (because the index scale factor
673 is the length of the operand). */
674#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
675 { if (GET_CODE (ADDR) == POST_INC || GET_CODE (ADDR) == PRE_DEC) \
676 goto LABEL; \
677 if (GET_CODE (ADDR) == PLUS) \
678 { if (CONSTANT_ADDRESS_P (XEXP (ADDR, 0)) \
679 && GET_CODE (XEXP (ADDR, 1)) == REG); \
680 else if (CONSTANT_ADDRESS_P (XEXP (ADDR, 1)) \
681 && GET_CODE (XEXP (ADDR, 0)) == REG); \
682 else goto LABEL; }}
683\f
684/* Specify the machine mode that this machine uses
685 for the index in the tablejump instruction. */
686#define CASE_VECTOR_MODE HImode
687
688/* Define this if the case instruction expects the table
689 to contain offsets from the address of the table.
690 Do not define this if the table should contain absolute addresses. */
691#define CASE_VECTOR_PC_RELATIVE
692
693/* Define this if the case instruction drops through after the table
694 when the index is out of range. Don't define it if the case insn
695 jumps to the default label instead. */
696#define CASE_DROPS_THROUGH
697
698/* Specify the tree operation to be used to convert reals to integers. */
699#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
700
701/* This is the kind of divide that is easiest to do in the general case. */
702#define EASY_DIV_EXPR TRUNC_DIV_EXPR
703
704/* Define this as 1 if `char' should by default be signed; else as 0. */
705#define DEFAULT_SIGNED_CHAR 1
706
707/* This flag, if defined, says the same insns that convert to a signed fixnum
708 also convert validly to an unsigned one. */
709#define FIXUNS_TRUNC_LIKE_FIX_TRUNC
710
711/* Max number of bytes we can move from memory to memory
712 in one reasonably fast instruction. */
713#define MOVE_MAX 8
714
715/* Define this if zero-extension is slow (more than one real instruction). */
716/* #define SLOW_ZERO_EXTEND */
717
718/* Nonzero if access to memory by bytes is slow and undesirable. */
719#define SLOW_BYTE_ACCESS 0
720
721/* Define if shifts truncate the shift count
722 which implies one can omit a sign-extension or zero-extension
723 of a shift count. */
724/* #define SHIFT_COUNT_TRUNCATED */
725
726/* Shift counts can be negative. */
727#define NEGATIVE_SHIFT_COUNTS 1
728
729/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
730 is done just by pretending it is already truncated. */
731#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
732
733/* Specify the machine mode that pointers have.
734 After generation of rtl, the compiler makes no further distinction
735 between pointers and any other objects of this machine mode. */
736#define Pmode SImode
737
738/* A function address in a call instruction
739 is a byte address (for indexing purposes)
740 so give the MEM rtx a byte's mode. */
741#define FUNCTION_MODE QImode
742
743/* Compute the cost of computing a constant rtl expression RTX
744 whose rtx-code is CODE. The body of this macro is a portion
745 of a switch statement. If the code is computed here,
746 return it with a return statement. Otherwise, break from the switch. */
747
748#define CONST_COSTS(RTX,CODE) \
749 case CONST_INT: \
750 /* Constant zero is super cheap due to clr instruction. */ \
751 if (RTX == const0_rtx) return 0; \
752 if ((unsigned) INTVAL (RTX) < 077) return 1; \
753 case CONST: \
754 case LABEL_REF: \
755 case SYMBOL_REF: \
756 return 3; \
757 case CONST_DOUBLE: \
758 return 5;
759
760/*
761 * We can use the BSD C library routines for the gnulib calls that are
762 * still generated, since that's what they boil down to anyways.
763 */
764
765#define UDIVSI3_LIBCALL "*udiv"
766#define UMODSI3_LIBCALL "*urem"
767
768/* Check a `double' value for validity for a particular machine mode. */
769
770/* note that it is very hard to accidently create a number that fits in a
771 double but not in a float, since their ranges are almost the same */
772#define CHECK_FLOAT_VALUE(mode, d) \
773 if ((mode) == SFmode) \
774 { \
775 if ((d) > 1.7014117331926443e+38) \
776 { error ("magnitude of constant too large for `float'"); \
777 (d) = 1.7014117331926443e+38; } \
778 else if ((d) < -1.7014117331926443e+38) \
779 { error ("magnitude of constant too large for `float'"); \
780 (d) = -1.7014117331926443e+38; } \
781 else if (((d) > 0) && ((d) < 2.9387358770557188e-39)) \
782 { warning ("`float' constant truncated to zero"); \
783 (d) = 0.0; } \
784 else if (((d) < 0) && ((d) > -2.9387358770557188e-39)) \
785 { warning ("`float' constant truncated to zero"); \
786 (d) = 0.0; } \
787 }
788
789/* For future reference:
790 D Float: 9 bit, sign magnitude, excess 128 binary exponent
791 normalized 56 bit fraction, redundant bit not represented
792 approximately 16 decimal digits of precision
793
794 The values to use if we trust decimal to binary conversions:
795#define MAX_D_FLOAT 1.7014118346046923e+38
796#define MIN_D_FLOAT .29387358770557188e-38
797
798 G float: 12 bit, sign magnitude, excess 1024 binary exponent
799 normalized 53 bit fraction, redundant bit not represented
800 approximately 15 decimal digits precision
801
802 The values to use if we trust decimal to binary conversions:
803#define MAX_G_FLOAT .898846567431157e+308
804#define MIN_G_FLOAT .556268464626800e-308
805*/
806\f
807/* Tell final.c how to eliminate redundant test instructions. */
808
809/* Here we define machine-dependent flags and fields in cc_status
810 (see `conditions.h'). No extra ones are needed for the vax. */
811
812/* Store in cc_status the expressions
813 that the condition codes will describe
814 after execution of an instruction whose pattern is EXP.
815 Do not alter them if the instruction would not alter the cc's. */
816
817#define NOTICE_UPDATE_CC(EXP, INSN) \
818{ if (GET_CODE (EXP) == SET) \
819 { if (GET_CODE (SET_SRC (EXP)) == CALL) \
820 CC_STATUS_INIT; \
821 else if (GET_CODE (SET_DEST (EXP)) != PC) \
822 { cc_status.flags = 0; \
823 cc_status.value1 = SET_DEST (EXP); \
824 cc_status.value2 = SET_SRC (EXP); } } \
825 else if (GET_CODE (EXP) == PARALLEL \
826 && GET_CODE (XVECEXP (EXP, 0, 0)) == SET \
827 && GET_CODE (SET_DEST (XVECEXP (EXP, 0, 0))) != PC) \
828 { cc_status.flags = 0; \
829 cc_status.value1 = SET_DEST (XVECEXP (EXP, 0, 0)); \
830 cc_status.value2 = SET_SRC (XVECEXP (EXP, 0, 0)); } \
831 /* PARALLELs whose first element sets the PC are aob, sob insns. \
832 They do change the cc's. So drop through and forget the cc's. */ \
833 else CC_STATUS_INIT; \
834 if (cc_status.value1 && GET_CODE (cc_status.value1) == REG \
835 && cc_status.value2 \
836 && reg_overlap_mentioned_p (cc_status.value1, cc_status.value2)) \
837 cc_status.value2 = 0; \
838 if (cc_status.value1 && GET_CODE (cc_status.value1) == MEM \
839 && cc_status.value2 \
840 && GET_CODE (cc_status.value2) == MEM) \
841 cc_status.value2 = 0; }
842/* Actual condition, one line up, should be that value2's address
843 depends on value1, but that is too much of a pain. */
844
845#define OUTPUT_JUMP(NORMAL, FLOAT, NO_OV) \
846{ if (cc_status.flags & CC_NO_OVERFLOW) \
847 return NO_OV; \
848 return NORMAL; }
849\f
850/* Control the assembler format that we output. */
851
852/* Output at beginning of assembler file. */
853
854#define ASM_FILE_START(FILE) fprintf (FILE, "#NO_APP\n");
855
856/* Output to assembler file text saying following lines
857 may contain character constants, extra white space, comments, etc. */
858
859#define ASM_APP_ON "#APP\n"
860
861/* Output to assembler file text saying following lines
862 no longer contain unusual constructs. */
863
864#define ASM_APP_OFF "#NO_APP\n"
865
866/* Output before read-only data. */
867
868#define TEXT_SECTION_ASM_OP ".text"
869
870/* Output before writable data. */
871
872#define DATA_SECTION_ASM_OP ".data"
873
874/* How to refer to registers in assembler output.
875 This sequence is indexed by compiler's hard-register-number (see above). */
876
877#define REGISTER_NAMES \
878{"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", \
879 "r9", "r10", "r11", "ap", "fp", "sp", "pc"}
880
881/* This is BSD, so it wants DBX format. */
882
883#define DBX_DEBUGGING_INFO
884
885/* How to renumber registers for dbx and gdb.
886 Vax needs no change in the numeration. */
887
888#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
889
890/* Do not break .stabs pseudos into continuations. */
891
892#define DBX_CONTIN_LENGTH 0
893
894/* This is the char to use for continuation (in case we need to turn
895 continuation back on). */
896
897#define DBX_CONTIN_CHAR '?'
898
899/* Don't use the `xsfoo;' construct in DBX output; this system
900 doesn't support it. */
901
902#define DBX_NO_XREFS
903
904/* Output the .stabs for a C `static' variable in the data section. */
905#define DBX_STATIC_STAB_DATA_SECTION
906
907/* Vax specific: which type character is used for type double? */
908
909#define ASM_DOUBLE_CHAR (TARGET_G_FLOAT ? 'g' : 'd')
910
911/* This is how to output the definition of a user-level label named NAME,
912 such as the label on a static function or variable NAME. */
913
914#define ASM_OUTPUT_LABEL(FILE,NAME) \
915 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
916
917/* This is how to output a command to make the user-level label named NAME
918 defined for reference from other files. */
919
920#define ASM_GLOBALIZE_LABEL(FILE,NAME) \
921 do { fputs (".globl ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
922
923/* This is how to output a reference to a user-level label named NAME. */
924
925#define ASM_OUTPUT_LABELREF(FILE,NAME) \
926 fprintf (FILE, "_%s", NAME)
927
928/* This is how to output an internal numbered label where
929 PREFIX is the class of label and NUM is the number within the class. */
930
931#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
932 fprintf (FILE, "%s%d:\n", PREFIX, NUM)
933
934/* This is how to store into the string LABEL
935 the symbol_ref name of an internal numbered label where
936 PREFIX is the class of label and NUM is the number within the class.
937 This is suitable for output with `assemble_name'. */
938
939#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
940 sprintf (LABEL, "*%s%d", PREFIX, NUM)
941
942/* This is how to output an assembler line defining a `double' constant.
943 It is .dfloat or .gfloat, depending. */
944
945#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
946 fprintf (FILE, "\t.%cfloat 0%c%.20e\n", ASM_DOUBLE_CHAR, \
947 ASM_DOUBLE_CHAR, (VALUE))
948
949/* This is how to output an assembler line defining a `float' constant. */
950
951#define ASM_OUTPUT_FLOAT(FILE,VALUE) \
952 fprintf (FILE, "\t.float 0f%.20e\n", (VALUE))
953
954/* This is how to output an assembler line defining an `int' constant. */
955
956#define ASM_OUTPUT_INT(FILE,VALUE) \
957( fprintf (FILE, "\t.long "), \
958 output_addr_const (FILE, (VALUE)), \
959 fprintf (FILE, "\n"))
960
961/* Likewise for `char' and `short' constants. */
962
963#define ASM_OUTPUT_SHORT(FILE,VALUE) \
964( fprintf (FILE, "\t.word "), \
965 output_addr_const (FILE, (VALUE)), \
966 fprintf (FILE, "\n"))
967
968#define ASM_OUTPUT_CHAR(FILE,VALUE) \
969( fprintf (FILE, "\t.byte "), \
970 output_addr_const (FILE, (VALUE)), \
971 fprintf (FILE, "\n"))
972
973/* This is how to output an assembler line for a numeric constant byte. */
974
975#define ASM_OUTPUT_BYTE(FILE,VALUE) \
976 fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
977
978/* This is how to output an insn to push a register on the stack.
979 It need not be very fast code. */
980
981#define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
982 fprintf (FILE, "\tpushl %s\n", reg_names[REGNO])
983
984/* This is how to output an insn to pop a register from the stack.
985 It need not be very fast code. */
986
987#define ASM_OUTPUT_REG_POP(FILE,REGNO) \
988 fprintf (FILE, "\tmovl (sp)+,%s\n", reg_names[REGNO])
989
990/* This is how to output an element of a case-vector that is absolute.
991 (The Vax does not use such vectors,
992 but we must define this macro anyway.) */
993
994#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
995 fprintf (FILE, "\t.long L%d\n", VALUE)
996
997/* This is how to output an element of a case-vector that is relative. */
998
999#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
1000 fprintf (FILE, "\t.word L%d-L%d\n", VALUE, REL)
1001
1002/* This is how to output an assembler line
1003 that says to advance the location counter
1004 to a multiple of 2**LOG bytes. */
1005
1006#define ASM_OUTPUT_ALIGN(FILE,LOG) \
1007 fprintf (FILE, "\t.align %d\n", (LOG))
1008
1009/* This is how to output an assembler line
1010 that says to advance the location counter by SIZE bytes. */
1011
1012#define ASM_OUTPUT_SKIP(FILE,SIZE) \
1013 fprintf (FILE, "\t.space %u\n", (SIZE))
1014
1015/* This says how to output an assembler line
1016 to define a global common symbol. */
1017
1018#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1019( fputs (".comm ", (FILE)), \
1020 assemble_name ((FILE), (NAME)), \
1021 fprintf ((FILE), ",%u\n", (ROUNDED)))
1022
1023/* This says how to output an assembler line
1024 to define a local common symbol. */
1025
1026#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
1027( fputs (".lcomm ", (FILE)), \
1028 assemble_name ((FILE), (NAME)), \
1029 fprintf ((FILE), ",%d\n", (ROUNDED)))
1030
1031/* Store in OUTPUT a string (made with alloca) containing
1032 an assembler-name for a local static variable named NAME.
1033 LABELNO is an integer which is different for each call. */
1034
1035#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1036( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1037 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1038
1039/* Define the parentheses used to group arithmetic operations
1040 in assembler code. */
1041
1042#define ASM_OPEN_PAREN "("
1043#define ASM_CLOSE_PAREN ")"
1044
1045/* Define results of standard character escape sequences. */
1046#define TARGET_BELL 007
1047#define TARGET_BS 010
1048#define TARGET_TAB 011
1049#define TARGET_NEWLINE 012
1050#define TARGET_VT 013
1051#define TARGET_FF 014
1052#define TARGET_CR 015
1053
1054/* Print an instruction operand X on file FILE.
1055 CODE is the code from the %-spec that requested printing this operand;
1056 if `%z3' was used to print operand 3, then CODE is 'z'.
1057 On the Vax, the only code used is `#', indicating that either
1058 `d' or `g' should be printed, depending on whether we're using dfloat
1059 or gfloat. */
1060
1061#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
1062 ((CODE) == '#')
1063
1064#define PRINT_OPERAND(FILE, X, CODE) \
1065{ if (CODE == '#') fputc (ASM_DOUBLE_CHAR, FILE); \
1066 else if (GET_CODE (X) == REG) \
1067 fprintf (FILE, "%s", reg_names[REGNO (X)]); \
1068 else if (GET_CODE (X) == MEM) \
1069 output_address (XEXP (X, 0)); \
1070 else if (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) != DImode) \
1071 { union { double d; int i[2]; } u; \
1072 u.i[0] = CONST_DOUBLE_LOW (X); u.i[1] = CONST_DOUBLE_HIGH (X); \
1073 fprintf (FILE, "$0%c%.20e", ASM_DOUBLE_CHAR, u.d); } \
1074 else { putc ('$', FILE); output_addr_const (FILE, X); }}
1075
1076/* Print a memory operand whose address is X, on file FILE.
1077 This uses a function in output-vax.c. */
1078
1079#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1080 print_operand_address (FILE, ADDR)