multi-disk paging
[unix-history] / usr / src / sys / kern / vfs_cluster.c
CommitLineData
f86df66c 1/* vfs_cluster.c 3.7 %G% */
663dbc72
BJ
2
3#include "../h/param.h"
4#include "../h/systm.h"
5#include "../h/dir.h"
6#include "../h/user.h"
7#include "../h/buf.h"
8#include "../h/conf.h"
9#include "../h/proc.h"
10#include "../h/seg.h"
11#include "../h/pte.h"
12#include "../h/vm.h"
13
5603d07d
BJ
14/*
15 * The following several routines allocate and free
16 * buffers with various side effects. In general the
17 * arguments to an allocate routine are a device and
18 * a block number, and the value is a pointer to
19 * to the buffer header; the buffer is marked "busy"
20 * so that no one else can touch it. If the block was
21 * already in core, no I/O need be done; if it is
22 * already busy, the process waits until it becomes free.
23 * The following routines allocate a buffer:
24 * getblk
25 * bread
26 * breada
27 * baddr (if it is incore)
28 * Eventually the buffer must be released, possibly with the
29 * side effect of writing it out, by using one of
30 * bwrite
31 * bdwrite
32 * bawrite
33 * brelse
34 */
35
36#define BUFHSZ 63
37#define BUFHASH(blkno) (blkno % BUFHSZ)
38short bufhash[BUFHSZ];
39
40/*
41 * Initialize hash links for buffers.
42 */
43bhinit()
44{
45 register int i;
46
47 for (i = 0; i < BUFHSZ; i++)
48 bufhash[i] = -1;
49}
50
663dbc72
BJ
51/* #define DISKMON 1 */
52
53#ifdef DISKMON
54struct {
55 int nbuf;
56 long nread;
57 long nreada;
58 long ncache;
59 long nwrite;
60 long bufcount[NBUF];
61} io_info;
62#endif
63
64/*
65 * Swap IO headers -
66 * They contain the necessary information for the swap I/O.
67 * At any given time, a swap header can be in three
68 * different lists. When free it is in the free list,
69 * when allocated and the I/O queued, it is on the swap
70 * device list, and finally, if the operation was a dirty
71 * page push, when the I/O completes, it is inserted
72 * in a list of cleaned pages to be processed by the pageout daemon.
73 */
74struct buf swbuf[NSWBUF];
75short swsize[NSWBUF]; /* CAN WE JUST USE B_BCOUNT? */
76int swpf[NSWBUF];
77
663dbc72
BJ
78
79#ifdef FASTVAX
80#define notavail(bp) \
81{ \
82 int s = spl6(); \
83 (bp)->av_back->av_forw = (bp)->av_forw; \
84 (bp)->av_forw->av_back = (bp)->av_back; \
85 (bp)->b_flags |= B_BUSY; \
86 splx(s); \
87}
88#endif
89
90/*
91 * Read in (if necessary) the block and return a buffer pointer.
92 */
93struct buf *
94bread(dev, blkno)
95dev_t dev;
96daddr_t blkno;
97{
98 register struct buf *bp;
99
100 bp = getblk(dev, blkno);
101 if (bp->b_flags&B_DONE) {
102#ifdef DISKMON
103 io_info.ncache++;
104#endif
105 return(bp);
106 }
107 bp->b_flags |= B_READ;
108 bp->b_bcount = BSIZE;
109 (*bdevsw[major(dev)].d_strategy)(bp);
110#ifdef DISKMON
111 io_info.nread++;
112#endif
113 u.u_vm.vm_inblk++; /* pay for read */
114 iowait(bp);
115 return(bp);
116}
117
118/*
119 * Read in the block, like bread, but also start I/O on the
120 * read-ahead block (which is not allocated to the caller)
121 */
122struct buf *
123breada(dev, blkno, rablkno)
124dev_t dev;
125daddr_t blkno, rablkno;
126{
127 register struct buf *bp, *rabp;
128
129 bp = NULL;
130 if (!incore(dev, blkno)) {
131 bp = getblk(dev, blkno);
132 if ((bp->b_flags&B_DONE) == 0) {
133 bp->b_flags |= B_READ;
134 bp->b_bcount = BSIZE;
135 (*bdevsw[major(dev)].d_strategy)(bp);
136#ifdef DISKMON
137 io_info.nread++;
138#endif
139 u.u_vm.vm_inblk++; /* pay for read */
140 }
141 }
142 if (rablkno && !incore(dev, rablkno)) {
143 rabp = getblk(dev, rablkno);
144 if (rabp->b_flags & B_DONE)
145 brelse(rabp);
146 else {
147 rabp->b_flags |= B_READ|B_ASYNC;
148 rabp->b_bcount = BSIZE;
149 (*bdevsw[major(dev)].d_strategy)(rabp);
150#ifdef DISKMON
151 io_info.nreada++;
152#endif
153 u.u_vm.vm_inblk++; /* pay in advance */
154 }
155 }
156 if(bp == NULL)
157 return(bread(dev, blkno));
158 iowait(bp);
159 return(bp);
160}
161
162/*
163 * Write the buffer, waiting for completion.
164 * Then release the buffer.
165 */
166bwrite(bp)
167register struct buf *bp;
168{
169 register flag;
170
171 flag = bp->b_flags;
172 bp->b_flags &= ~(B_READ | B_DONE | B_ERROR | B_DELWRI | B_AGE);
173 bp->b_bcount = BSIZE;
174#ifdef DISKMON
175 io_info.nwrite++;
176#endif
177 if ((flag&B_DELWRI) == 0)
178 u.u_vm.vm_oublk++; /* noone paid yet */
179 (*bdevsw[major(bp->b_dev)].d_strategy)(bp);
180 if ((flag&B_ASYNC) == 0) {
181 iowait(bp);
182 brelse(bp);
183 } else if (flag & B_DELWRI)
184 bp->b_flags |= B_AGE;
185 else
186 geterror(bp);
187}
188
189/*
190 * Release the buffer, marking it so that if it is grabbed
191 * for another purpose it will be written out before being
192 * given up (e.g. when writing a partial block where it is
193 * assumed that another write for the same block will soon follow).
194 * This can't be done for magtape, since writes must be done
195 * in the same order as requested.
196 */
197bdwrite(bp)
198register struct buf *bp;
199{
200 register struct buf *dp;
201
202 if ((bp->b_flags&B_DELWRI) == 0)
203 u.u_vm.vm_oublk++; /* noone paid yet */
204 dp = bdevsw[major(bp->b_dev)].d_tab;
205 if(dp->b_flags & B_TAPE)
206 bawrite(bp);
207 else {
208 bp->b_flags |= B_DELWRI | B_DONE;
209 brelse(bp);
210 }
211}
212
213/*
214 * Release the buffer, start I/O on it, but don't wait for completion.
215 */
216bawrite(bp)
217register struct buf *bp;
218{
219
220 bp->b_flags |= B_ASYNC;
221 bwrite(bp);
222}
223
224/*
225 * release the buffer, with no I/O implied.
226 */
227brelse(bp)
228register struct buf *bp;
229{
230 register struct buf **backp;
231 register s;
232
233 if (bp->b_flags&B_WANTED)
234 wakeup((caddr_t)bp);
235 if (bfreelist.b_flags&B_WANTED) {
236 bfreelist.b_flags &= ~B_WANTED;
237 wakeup((caddr_t)&bfreelist);
238 }
5603d07d
BJ
239 if ((bp->b_flags&B_ERROR) && bp->b_dev != NODEV) {
240 bunhash(bp);
663dbc72 241 bp->b_dev = NODEV; /* no assoc. on error */
5603d07d 242 }
663dbc72
BJ
243 s = spl6();
244 if(bp->b_flags & (B_AGE|B_ERROR)) {
245 backp = &bfreelist.av_forw;
246 (*backp)->av_back = bp;
247 bp->av_forw = *backp;
248 *backp = bp;
249 bp->av_back = &bfreelist;
250 } else {
251 backp = &bfreelist.av_back;
252 (*backp)->av_forw = bp;
253 bp->av_back = *backp;
254 *backp = bp;
255 bp->av_forw = &bfreelist;
256 }
257 bp->b_flags &= ~(B_WANTED|B_BUSY|B_ASYNC|B_AGE);
258 splx(s);
259}
260
261/*
262 * See if the block is associated with some buffer
263 * (mainly to avoid getting hung up on a wait in breada)
264 */
265incore(dev, blkno)
266dev_t dev;
267daddr_t blkno;
268{
269 register struct buf *bp;
663dbc72
BJ
270 register int dblkno = fsbtodb(blkno);
271
5603d07d
BJ
272 for (bp = &buf[bufhash[BUFHASH(blkno)]]; bp != &buf[-1];
273 bp = &buf[bp->b_hlink])
fe8987fb 274 if (bp->b_blkno == dblkno && bp->b_dev == dev)
5603d07d 275 return (1);
5603d07d 276 return (0);
663dbc72
BJ
277}
278
279struct buf *
280baddr(dev, blkno)
281dev_t dev;
282daddr_t blkno;
283{
284
285 if (incore(dev, blkno))
286 return (bread(dev, blkno));
287 return (0);
288}
289
290/*
291 * Assign a buffer for the given block. If the appropriate
292 * block is already associated, return it; otherwise search
293 * for the oldest non-busy buffer and reassign it.
294 */
295struct buf *
296getblk(dev, blkno)
297dev_t dev;
298daddr_t blkno;
299{
5603d07d
BJ
300 register struct buf *bp, *dp, *ep;
301 register int i, x;
663dbc72
BJ
302 register int dblkno = fsbtodb(blkno);
303
663dbc72 304 loop:
81263dba 305 (void) spl0();
5603d07d
BJ
306 for (bp = &buf[bufhash[BUFHASH(blkno)]]; bp != &buf[-1];
307 bp = &buf[bp->b_hlink]) {
308 if (bp->b_blkno != dblkno || bp->b_dev != dev)
663dbc72 309 continue;
81263dba 310 (void) spl6();
663dbc72
BJ
311 if (bp->b_flags&B_BUSY) {
312 bp->b_flags |= B_WANTED;
313 sleep((caddr_t)bp, PRIBIO+1);
314 goto loop;
315 }
81263dba 316 (void) spl0();
663dbc72
BJ
317#ifdef DISKMON
318 i = 0;
319 dp = bp->av_forw;
320 while (dp != &bfreelist) {
321 i++;
322 dp = dp->av_forw;
323 }
324 if (i<NBUF)
325 io_info.bufcount[i]++;
326#endif
327 notavail(bp);
328 bp->b_flags |= B_CACHE;
329 return(bp);
330 }
5603d07d
BJ
331 if (major(dev) >= nblkdev)
332 panic("blkdev");
333 dp = bdevsw[major(dev)].d_tab;
334 if (dp == NULL)
335 panic("devtab");
81263dba 336 (void) spl6();
663dbc72
BJ
337 if (bfreelist.av_forw == &bfreelist) {
338 bfreelist.b_flags |= B_WANTED;
339 sleep((caddr_t)&bfreelist, PRIBIO+1);
340 goto loop;
341 }
342 spl0();
343 bp = bfreelist.av_forw;
344 notavail(bp);
345 if (bp->b_flags & B_DELWRI) {
346 bp->b_flags |= B_ASYNC;
347 bwrite(bp);
348 goto loop;
349 }
5603d07d
BJ
350 if (bp->b_dev == NODEV)
351 goto done;
352 /* INLINE EXPANSION OF bunhash(bp) */
353 i = BUFHASH(dbtofsb(bp->b_blkno));
354 x = bp - buf;
355 if (bufhash[i] == x) {
356 bufhash[i] = bp->b_hlink;
357 } else {
358 for (ep = &buf[bufhash[i]]; ep != &buf[-1];
359 ep = &buf[ep->b_hlink])
360 if (ep->b_hlink == x) {
361 ep->b_hlink = bp->b_hlink;
362 goto done;
363 }
364 panic("getblk");
365 }
366done:
367 /* END INLINE EXPANSION */
663dbc72
BJ
368 bp->b_flags = B_BUSY;
369 bp->b_back->b_forw = bp->b_forw;
370 bp->b_forw->b_back = bp->b_back;
371 bp->b_forw = dp->b_forw;
372 bp->b_back = dp;
373 dp->b_forw->b_back = bp;
374 dp->b_forw = bp;
375 bp->b_dev = dev;
376 bp->b_blkno = dblkno;
5603d07d
BJ
377 i = BUFHASH(blkno);
378 bp->b_hlink = bufhash[i];
379 bufhash[i] = bp - buf;
663dbc72
BJ
380 return(bp);
381}
382
383/*
384 * get an empty block,
385 * not assigned to any particular device
386 */
387struct buf *
388geteblk()
389{
436518b9 390 register struct buf *bp, *dp;
663dbc72
BJ
391
392loop:
81263dba 393 (void) spl6();
663dbc72
BJ
394 while (bfreelist.av_forw == &bfreelist) {
395 bfreelist.b_flags |= B_WANTED;
396 sleep((caddr_t)&bfreelist, PRIBIO+1);
397 }
81263dba 398 (void) spl0();
663dbc72
BJ
399 dp = &bfreelist;
400 bp = bfreelist.av_forw;
401 notavail(bp);
402 if (bp->b_flags & B_DELWRI) {
403 bp->b_flags |= B_ASYNC;
404 bwrite(bp);
405 goto loop;
406 }
5603d07d
BJ
407 if (bp->b_dev != NODEV)
408 bunhash(bp);
663dbc72
BJ
409 bp->b_flags = B_BUSY;
410 bp->b_back->b_forw = bp->b_forw;
411 bp->b_forw->b_back = bp->b_back;
412 bp->b_forw = dp->b_forw;
413 bp->b_back = dp;
414 dp->b_forw->b_back = bp;
415 dp->b_forw = bp;
416 bp->b_dev = (dev_t)NODEV;
5603d07d 417 bp->b_hlink = -1;
663dbc72
BJ
418 return(bp);
419}
420
5603d07d
BJ
421bunhash(bp)
422 register struct buf *bp;
423{
424 register struct buf *ep;
425 register int i, x;
426
427 if (bp->b_dev == NODEV)
428 return;
429 i = BUFHASH(dbtofsb(bp->b_blkno));
430 x = bp - buf;
431 if (bufhash[i] == x) {
432 bufhash[i] = bp->b_hlink;
433 return;
434 }
435 for (ep = &buf[bufhash[i]]; ep != &buf[-1];
436 ep = &buf[ep->b_hlink])
437 if (ep->b_hlink == x) {
438 ep->b_hlink = bp->b_hlink;
439 return;
440 }
441 panic("bunhash");
442}
443
663dbc72
BJ
444/*
445 * Wait for I/O completion on the buffer; return errors
446 * to the user.
447 */
448iowait(bp)
449register struct buf *bp;
450{
451
81263dba 452 (void) spl6();
663dbc72
BJ
453 while ((bp->b_flags&B_DONE)==0)
454 sleep((caddr_t)bp, PRIBIO);
81263dba 455 (void) spl0();
663dbc72
BJ
456 geterror(bp);
457}
458
459#ifndef FASTVAX
460/*
461 * Unlink a buffer from the available list and mark it busy.
462 * (internal interface)
463 */
464notavail(bp)
465register struct buf *bp;
466{
467 register s;
468
469 s = spl6();
470 bp->av_back->av_forw = bp->av_forw;
471 bp->av_forw->av_back = bp->av_back;
472 bp->b_flags |= B_BUSY;
473 splx(s);
474}
475#endif
476
477/*
478 * Mark I/O complete on a buffer. If the header
479 * indicates a dirty page push completion, the
480 * header is inserted into the ``cleaned'' list
481 * to be processed by the pageout daemon. Otherwise
482 * release it if I/O is asynchronous, and wake
483 * up anyone waiting for it.
484 */
485iodone(bp)
486register struct buf *bp;
487{
488 register int s;
489
490 bp->b_flags |= B_DONE;
491 if (bp->b_flags & B_DIRTY) {
492 if (bp->b_flags & B_ERROR)
493 panic("IO err in push");
494 s = spl6();
495 cnt.v_pgout++;
496 bp->av_forw = bclnlist;
497 bp->b_bcount = swsize[bp - swbuf];
498 bp->b_pfcent = swpf[bp - swbuf];
499 bclnlist = bp;
500 if (bswlist.b_flags & B_WANTED)
501 wakeup((caddr_t)&proc[2]);
502 splx(s);
503 }
504 if (bp->b_flags&B_ASYNC)
505 brelse(bp);
506 else {
507 bp->b_flags &= ~B_WANTED;
508 wakeup((caddr_t)bp);
509 }
510}
511
512/*
513 * Zero the core associated with a buffer.
514 */
515clrbuf(bp)
516struct buf *bp;
517{
518 register *p;
519 register c;
520
521 p = bp->b_un.b_words;
522 c = BSIZE/sizeof(int);
523 do
524 *p++ = 0;
525 while (--c);
526 bp->b_resid = 0;
527}
528
529/*
530 * swap I/O -
531 *
532 * If the flag indicates a dirty page push initiated
533 * by the pageout daemon, we map the page into the i th
534 * virtual page of process 2 (the daemon itself) where i is
535 * the index of the swap header that has been allocated.
536 * We simply initialize the header and queue the I/O but
537 * do not wait for completion. When the I/O completes,
538 * iodone() will link the header to a list of cleaned
539 * pages to be processed by the pageout daemon.
540 */
541swap(p, dblkno, addr, nbytes, rdflg, flag, dev, pfcent)
542 struct proc *p;
543 swblk_t dblkno;
544 caddr_t addr;
545 int flag, nbytes;
546 dev_t dev;
547 unsigned pfcent;
548{
549 register struct buf *bp;
550 register int c;
551 int p2dp;
552 register struct pte *dpte, *vpte;
553
81263dba 554 (void) spl6();
663dbc72
BJ
555 while (bswlist.av_forw == NULL) {
556 bswlist.b_flags |= B_WANTED;
557 sleep((caddr_t)&bswlist, PSWP+1);
558 }
559 bp = bswlist.av_forw;
560 bswlist.av_forw = bp->av_forw;
81263dba 561 (void) spl0();
663dbc72
BJ
562
563 bp->b_flags = B_BUSY | B_PHYS | rdflg | flag;
564 if ((bp->b_flags & (B_DIRTY|B_PGIN)) == 0)
565 if (rdflg == B_READ)
566 sum.v_pswpin += btoc(nbytes);
567 else
568 sum.v_pswpout += btoc(nbytes);
569 bp->b_proc = p;
570 if (flag & B_DIRTY) {
571 p2dp = ((bp - swbuf) * CLSIZE) * KLMAX;
572 dpte = dptopte(&proc[2], p2dp);
573 vpte = vtopte(p, btop(addr));
574 for (c = 0; c < nbytes; c += NBPG) {
575 if (vpte->pg_pfnum == 0 || vpte->pg_fod)
576 panic("swap bad pte");
577 *dpte++ = *vpte++;
578 }
579 bp->b_un.b_addr = (caddr_t)ctob(p2dp);
580 } else
581 bp->b_un.b_addr = addr;
582 while (nbytes > 0) {
583 c = imin(ctob(120), nbytes);
584 bp->b_bcount = c;
585 bp->b_blkno = dblkno;
586 bp->b_dev = dev;
587 if (dev == swapdev)
588 bp->b_blkno += swplo;
589 (*bdevsw[major(dev)].d_strategy)(bp);
590 if (flag & B_DIRTY) {
591 if (c < nbytes)
592 panic("big push");
593 swsize[bp - swbuf] = nbytes;
594 swpf[bp - swbuf] = pfcent;
595 return;
596 }
81263dba 597 (void) spl6();
663dbc72
BJ
598 while((bp->b_flags&B_DONE)==0)
599 sleep((caddr_t)bp, PSWP);
81263dba 600 (void) spl0();
663dbc72
BJ
601 bp->b_un.b_addr += c;
602 bp->b_flags &= ~B_DONE;
603 if (bp->b_flags & B_ERROR) {
604 if ((flag & (B_UAREA|B_PAGET)) || rdflg == B_WRITE)
605 panic("hard IO err in swap");
606 swkill(p, (char *)0);
607 }
608 nbytes -= c;
609 dblkno += btoc(c);
610 }
81263dba 611 (void) spl6();
663dbc72
BJ
612 bp->b_flags &= ~(B_BUSY|B_WANTED|B_PHYS|B_PAGET|B_UAREA|B_DIRTY);
613 bp->av_forw = bswlist.av_forw;
614 bswlist.av_forw = bp;
615 if (bswlist.b_flags & B_WANTED) {
616 bswlist.b_flags &= ~B_WANTED;
617 wakeup((caddr_t)&bswlist);
618 wakeup((caddr_t)&proc[2]);
619 }
81263dba 620 (void) spl0();
663dbc72
BJ
621}
622
623/*
624 * If rout == 0 then killed on swap error, else
625 * rout is the name of the routine where we ran out of
626 * swap space.
627 */
628swkill(p, rout)
629 struct proc *p;
630 char *rout;
631{
632
633 printf("%d: ", p->p_pid);
634 if (rout)
635 printf("out of swap space in %s\n", rout);
636 else
637 printf("killed on swap error\n");
638 /*
639 * To be sure no looping (e.g. in vmsched trying to
640 * swap out) mark process locked in core (as though
641 * done by user) after killing it so noone will try
642 * to swap it out.
643 */
a30d2e97 644 psignal(p, SIGKILL);
663dbc72
BJ
645 p->p_flag |= SULOCK;
646}
647
648/*
649 * make sure all write-behind blocks
650 * on dev (or NODEV for all)
651 * are flushed out.
652 * (from umount and update)
653 */
654bflush(dev)
655dev_t dev;
656{
657 register struct buf *bp;
658
659loop:
81263dba 660 (void) spl6();
663dbc72
BJ
661 for (bp = bfreelist.av_forw; bp != &bfreelist; bp = bp->av_forw) {
662 if (bp->b_flags&B_DELWRI && (dev == NODEV||dev==bp->b_dev)) {
663 bp->b_flags |= B_ASYNC;
664 notavail(bp);
665 bwrite(bp);
666 goto loop;
667 }
668 }
81263dba 669 (void) spl0();
663dbc72
BJ
670}
671
672/*
673 * Raw I/O. The arguments are
674 * The strategy routine for the device
675 * A buffer, which will always be a special buffer
676 * header owned exclusively by the device for this purpose
677 * The device number
678 * Read/write flag
679 * Essentially all the work is computing physical addresses and
680 * validating them.
681 * If the user has the proper access privilidges, the process is
682 * marked 'delayed unlock' and the pages involved in the I/O are
683 * faulted and locked. After the completion of the I/O, the above pages
684 * are unlocked.
685 */
686physio(strat, bp, dev, rw, mincnt)
687int (*strat)();
688register struct buf *bp;
689unsigned (*mincnt)();
690{
691 register int c;
692 char *a;
693
694 if (useracc(u.u_base,u.u_count,rw==B_READ?B_WRITE:B_READ) == NULL) {
695 u.u_error = EFAULT;
696 return;
697 }
81263dba 698 (void) spl6();
663dbc72
BJ
699 while (bp->b_flags&B_BUSY) {
700 bp->b_flags |= B_WANTED;
701 sleep((caddr_t)bp, PRIBIO+1);
702 }
703 bp->b_error = 0;
704 bp->b_proc = u.u_procp;
705 bp->b_un.b_addr = u.u_base;
706 while (u.u_count != 0 && bp->b_error==0) {
707 bp->b_flags = B_BUSY | B_PHYS | rw;
708 bp->b_dev = dev;
709 bp->b_blkno = u.u_offset >> PGSHIFT;
710 bp->b_bcount = u.u_count;
711 (*mincnt)(bp);
712 c = bp->b_bcount;
713 u.u_procp->p_flag |= SPHYSIO;
714 vslock(a = bp->b_un.b_addr, c);
715 (*strat)(bp);
81263dba 716 (void) spl6();
663dbc72
BJ
717 while ((bp->b_flags&B_DONE) == 0)
718 sleep((caddr_t)bp, PRIBIO);
719 vsunlock(a, c, rw);
720 u.u_procp->p_flag &= ~SPHYSIO;
721 if (bp->b_flags&B_WANTED)
722 wakeup((caddr_t)bp);
81263dba 723 (void) spl0();
663dbc72
BJ
724 bp->b_un.b_addr += c;
725 u.u_count -= c;
726 u.u_offset += c;
727 }
728 bp->b_flags &= ~(B_BUSY|B_WANTED|B_PHYS);
729 u.u_count = bp->b_resid;
730 geterror(bp);
731}
732
733/*ARGSUSED*/
734unsigned
735minphys(bp)
736struct buf *bp;
737{
738
739 if (bp->b_bcount > 60 * 1024)
740 bp->b_bcount = 60 * 1024;
741}
742
743/*
744 * Pick up the device's error number and pass it to the user;
745 * if there is an error but the number is 0 set a generalized
746 * code. Actually the latter is always true because devices
747 * don't yet return specific errors.
748 */
749geterror(bp)
750register struct buf *bp;
751{
752
753 if (bp->b_flags&B_ERROR)
754 if ((u.u_error = bp->b_error)==0)
755 u.u_error = EIO;
756}