Oh GACK! src-clean doesn't quite work that easily since cleandist rebuilds the
[unix-history] / gnu / usr.bin / gcc1 / cc1 / config / tm-i386.h
CommitLineData
15637ed4
RG
1/* Definitions of target machine for GNU compiler for Intel 80386.
2 Copyright (C) 1988 Free Software Foundation, Inc.
3
4This file is part of GNU CC.
5
6GNU CC is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 1, or (at your option)
9any later version.
10
11GNU CC is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with GNU CC; see the file COPYING. If not, write to
18the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20
21/* Note that some other tm- files include this one and then override
22 many of the definitions that relate to assembler syntax. */
23
24/* Names to predefine in the preprocessor for this target machine. */
25
26/* the file tm-compaq.h includes this file */
27
28
29#define I386 1
30
31/* Run-time compilation parameters selecting different hardware subsets. */
32
33extern int target_flags;
34
35/* Macros used in the machine description to test the flags. */
36
37/* Compile 80387 insns for floating point (not library calls). */
38#define TARGET_80387 (target_flags & 1)
39/* Compile using ret insn that pops args.
40 This will not work unless you use prototypes at least
41 for all functions that can take varying numbers of args. */
42#define TARGET_RTD (target_flags & 8)
43/* Compile passing first two args in regs 0 and 1.
44 This exists only to test compiler features that will
45 be needed for RISC chips. It is not usable
46 and is not intended to be usable on this cpu. */
47#define TARGET_REGPARM (target_flags & 020)
48
49/* Macro to define tables used to set the flags.
50 This is a list in braces of pairs in braces,
51 each pair being { "NAME", VALUE }
52 where VALUE is the bits to set or minus the bits to clear.
53 An empty string NAME is used to identify the default VALUE. */
54
55#define TARGET_SWITCHES \
56 { { "80387", 1}, \
57 { "soft-float", -1}, \
58 { "rtd", 8}, \
59 { "nortd", -8}, \
60 { "regparm", 020}, \
61 { "noregparm", -020}, \
62 { "", TARGET_DEFAULT}}
63
64/* TARGET_DEFAULT is defined in tm-compaq.h, etc. */
65\f
66/* target machine storage layout */
67
68/* Define this if most significant byte of a word is the lowest numbered. */
69/* That is true on the 80386. */
70
71/* #define BITS_BIG_ENDIAN */
72
73/* Define this if most significant byte of a word is the lowest numbered. */
74/* That is not true on the 80386. */
75/* #define BYTES_BIG_ENDIAN */
76
77/* Define this if most significant word of a multiword number is numbered. */
78/* Not true for 80386 */
79/* #define WORDS_BIG_ENDIAN */
80
81/* number of bits in an addressible storage unit */
82#define BITS_PER_UNIT 8
83
84/* Width in bits of a "word", which is the contents of a machine register.
85 Note that this is not necessarily the width of data type `int';
86 if using 16-bit ints on a 80386, this would still be 32.
87 But on a machine with 16-bit registers, this would be 16. */
88#define BITS_PER_WORD 32
89
90/* Width of a word, in units (bytes). */
91#define UNITS_PER_WORD 4
92
93/* Width in bits of a pointer.
94 See also the macro `Pmode' defined below. */
95#define POINTER_SIZE 32
96
97/* Allocation boundary (in *bits*) for storing pointers in memory. */
98#define POINTER_BOUNDARY 32
99
100/* Allocation boundary (in *bits*) for storing arguments in argument list. */
101#define PARM_BOUNDARY 32
102
103/* Boundary (in *bits*) on which stack pointer should be aligned. */
104#define STACK_BOUNDARY 32
105
106/* Allocation boundary (in *bits*) for the code of a function. */
107#define FUNCTION_BOUNDARY 32
108
109/* Alignment of field after `int : 0' in a structure. */
110
111#define EMPTY_FIELD_BOUNDARY 32
112
113/* There is no point aligning anything to a rounder boundary than this. */
114/* Some structures in the ATT libraries are assumed to round up from 16 to 18
115 bytes, for example the _io_buf */
116#define BIGGEST_ALIGNMENT 32
117
118/* Define this if move instructions will actually fail to work
119 when given unaligned data. */
120/* #define STRICT_ALIGNMENT */
121\f
122/* Standard register usage. */
123
124/* Number of actual hardware registers.
125 The hardware registers are assigned numbers for the compiler
126 from 0 to just below FIRST_PSEUDO_REGISTER.
127 All registers that the compiler knows about must be given numbers,
128 even those that are not normally considered general registers.
129 In the 80387 we give the 8 general purpose registers the numbers 0-7,
130 we assign 6 numbers for floating point registers 8-13,
131 Note that registers 0-7 can be accessed as a short or int,
132 while only 0-3 may be used with mov byte instructions.
133*/
134#define FIRST_PSEUDO_REGISTER 10
135
136/* 1 for registers that have pervasive standard uses
137 and are not available for the register allocator.
138 On the 80386, only the stack pointer is such. */
139#define FIXED_REGISTERS \
140/*ax,ad,ac,ab,si,di,bp,sp,fval,fp0*/ \
141{ 0, 0, 0, 0, 0, 0, 0, 1, 1, 0}
142
143/* ;;change-wfs */
144
145/* 1 for registers not available across function calls.
146 These must include the FIXED_REGISTERS and also any
147 registers that can be used without being saved.
148 The latter must include the registers where values are returned
149 and the register where structure-value addresses are passed.
150 Aside from that, you can include as many other registers as you like. */
151
152#define CALL_USED_REGISTERS \
153/*ax,ad,ac,ab,si,di,bp,sp,*/ \
154{ 1, 1, 1, 0, 0, 0, 0, 1, \
155 1, 1}
156
157/* Return number of consecutive hard regs needed starting at reg REGNO
158 to hold something of mode MODE.
159 This is ordinarily the length in words of a value of mode MODE
160 but can be less for certain modes in special long registers.
161
162 Actually there are no two word move instructions for consecutive
163 registers. And only registers 0-3 may have mov byte instructions
164 applied to them.
165 */
166
167#define HARD_REGNO_NREGS(REGNO, MODE) \
168 ((REGNO) >= 8 ? 1 \
169 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
170
171/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
172 On the 80386, the first 4 cpu registers can hold any mode.
173 While the floating point registers may hold SFmode or DFmode only.
174 */
175
176#define HARD_REGNO_MODE_OK(REGNO, MODE) \
177 hard_regno_mode_ok(REGNO,MODE)
178
179/* Value is 1 if it is a good idea to tie two pseudo registers
180 when one has mode MODE1 and one has mode MODE2.
181 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
182 for any hard reg, then this must be 0 for correct output. */
183
184#define MODES_TIEABLE_P(MODE1, MODE2) ((MODE1) == (MODE2))
185
186/* Specify the registers used for certain standard purposes.
187 The values of these macros are register numbers. */
188
189/* on the 386 the pc register is %eip, and is not usable as a general
190 register. The ordinary mov instructions won't work */
191/* #define PC_REGNUM */
192
193/* Register to use for pushing function arguments. */
194#define STACK_POINTER_REGNUM 7
195
196/* Base register for access to local variables of the function. */
197#define FRAME_POINTER_REGNUM 6
198
199/* First floating point reg */
200#define FIRST_FLOAT_REG 8
201/* Value should be nonzero if functions must have frame pointers.
202 Zero means the frame pointer need not be set up (and parms
203 may be accessed via the stack pointer) in functions that seem suitable.
204 This is computed in `reload', in reload1.c. */
205#define FRAME_POINTER_REQUIRED 0
206
207/* Base register for access to arguments of the function. */
208#define ARG_POINTER_REGNUM 6
209
210/* Register in which static-chain is passed to a function. */
211#define STATIC_CHAIN_REGNUM 2
212
213/* Register in which address to store a structure value
214 arrives in the function. On the 386, the prologue
215 copies this from the stack to register %eax. */
216#define STRUCT_VALUE_INCOMING \
217 gen_rtx (MEM, Pmode, gen_rtx (PLUS, Pmode, frame_pointer_rtx, \
218 gen_rtx (CONST_INT, VOIDmode, 8)))
219
220/* Place in which caller passes the structure value address.
221 Actually, all that matters about this value is it its rtx_code:
222 MEM means push the value on the stack like an argument. */
223#define STRUCT_VALUE \
224 gen_rtx (MEM, Pmode, gen_rtx (PRE_DEC, Pmode, stack_pointer_rtx))
225\f
226/* Define the classes of registers for register constraints in the
227 machine description. Also define ranges of constants.
228
229 One of the classes must always be named ALL_REGS and include all hard regs.
230 If there is more than one class, another class must be named NO_REGS
231 and contain no registers.
232
233 The name GENERAL_REGS must be the name of a class (or an alias for
234 another name such as ALL_REGS). This is the class of registers
235 that is allowed by "g" or "r" in a register constraint.
236 Also, registers outside this class are allocated only when
237 instructions express preferences for them.
238
239 The classes must be numbered in nondecreasing order; that is,
240 a larger-numbered class must never be contained completely
241 in a smaller-numbered class.
242
243 For any two classes, it is very desirable that there be another
244 class that represents their union. */
245
246
247enum reg_class {
248 NO_REGS, AREG, DREG, ADREG, CREG, BREG, Q_REGS, SIREG, DIREG,
249 INDEX_REGS, GENERAL_REGS, FLOAT_REGS, ALL_REGS, LIM_REG_CLASSES };
250
251#define N_REG_CLASSES (int) LIM_REG_CLASSES
252
253/* Give names of register classes as strings for dump file. */
254
255#define REG_CLASS_NAMES \
256{ "NO_REGS", "AREG", "DREG", "ADREG", "CREG", "BREG","Q_REGS", \
257 "SIREG", "DIREG", \
258 "INDEX_REGS", "GENERAL_REGS", "FLOAT_REGS", "ALL_REGS"}
259/* Define which registers fit in which classes.
260 This is an initializer for a vector of HARD_REG_SET
261 of length N_REG_CLASSES. */
262
263
264
265#define REG_CLASS_CONTENTS {0, 0x1, 0x2, 0x3, 0x4, 0x8, 0xf,\
266 0x10, 0x20, 0x7f, 0xff, 0x300, 0x3ff}
267
268/* The same information, inverted:
269 Return the class number of the smallest class containing
270 reg number REGNO. This could be a conditional expression
271 or could index an array. */
272
273#define REGNO_REG_CLASS(REGNO) \
274 ((REGNO) == 0 ? AREG : \
275 (REGNO) == 1 ? DREG : \
276 (REGNO) == 2 ? CREG : \
277 (REGNO) == 3 ? BREG : \
278 (REGNO) == 4 ? SIREG : \
279 (REGNO) == 5 ? DIREG : \
280 (REGNO) == 7 ? GENERAL_REGS : \
281 (REGNO) < 8 ? INDEX_REGS : \
282 FLOAT_REGS)
283
284#define NON_QI_REG_P(X) \
285 (REG_P (X) && REGNO (X) >= 4 && REGNO (X) < FIRST_PSEUDO_REGISTER)
286
287#define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
288#define FP_REGNO_P(n) ((n) >= FIRST_FLOAT_REG && (n) < FIRST_PSEUDO_REGISTER)
289
290/* Try to maintain the accuracy of the death notes for regs satisfying the
291 following. Important for stack like regs, to know when to pop. */
292
293#define PRESERVE_DEATH_INFO_REGNO_P(x) FP_REGNO_P(x)
294
295/* 1 if register REGNO can magically overlap other regs.
296 Note that nonzero values work only in very special circumstances.
297 We return 1 for an FP reg because "both" our FP regs
298 are really the same reg. */
299
300#define OVERLAPPING_REGNO_P(REGNO) FP_REGNO_P (REGNO)
301
302/* The class value for index registers, and the one for base regs. */
303
304#define INDEX_REG_CLASS INDEX_REGS
305#define BASE_REG_CLASS GENERAL_REGS
306
307/* Get reg_class from a letter such as appears in the machine description. */
308
309#define REG_CLASS_FROM_LETTER(C) \
310 ((C) == 'r' ? GENERAL_REGS : \
311 (C) == 'q' ? Q_REGS : \
312 (C) == 'f' ? FLOAT_REGS : \
313 (C) == 'a' ? AREG : (C) == 'b' ? BREG : \
314 (C) == 'c' ? CREG : (C) == 'd' ? DREG : \
315 (C) == 'A' ? ADREG : \
316 (C) == 'S' ? SIREG : \
317 (C) == 'D' ? DIREG : NO_REGS)
318
319/* The letters I, J, K, L and M in a register constraint string
320 can be used to stand for particular ranges of immediate operands.
321 This macro defines what the ranges are.
322 C is the letter, and VALUE is a constant value.
323 Return 1 if VALUE is in the range specified by C.
324
325 I is for the maximum shifts.
326 */
327
328#define CONST_OK_FOR_LETTER_P(VALUE, C) \
329 ((C) == 'I' ? (VALUE) >= 0 && (VALUE) <= 31 :0)
330
331/* Similar, but for floating constants, and defining letters G and H.
332 Here VALUE is the CONST_DOUBLE rtx itself. */
333
334#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
335 ((C) == 'G' ? ! (TARGET_80387 && standard_80387_constant_p (VALUE)) : 1)
336
337/* Given an rtx X being reloaded into a reg required to be
338 in class CLASS, return the class of reg to actually use.
339 In general this is just CLASS; but on some machines
340 in some cases it is preferable to use a more restrictive class.
341 On the 80386 series, we prevent floating constants from being
342 reloaded into floating registers (since no move-insn can do that)
343 and we ensure that QImodes aren't reloaded into the esi or edi reg. */
344
345#define PREFERRED_RELOAD_CLASS(X,CLASS) \
346 (GET_CODE (X) == CONST_DOUBLE \
347 ? ((CLASS) == GENERAL_REGS || (CLASS) == ALL_REGS \
348 ? GENERAL_REGS : NO_REGS) \
349 : GET_MODE (X) == QImode \
350 ? ((CLASS) == GENERAL_REGS || (CLASS) == ALL_REGS \
351 ? Q_REGS \
352 : (CLASS) == INDEX_REGS ? (abort (), INDEX_REGS) \
353 : (CLASS)) \
354 : (CLASS))
355
356/* Return the maximum number of consecutive registers
357 needed to represent mode MODE in a register of class CLASS. */
358/* On the 80386, this is the size of MODE in words,
359 except in the FP regs, where a single reg is always enough. */
360#define CLASS_MAX_NREGS(CLASS, MODE) \
361 ((CLASS) == FLOAT_REGS ? 1 : \
362 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
363\f
364/* Stack layout; function entry, exit and calling. */
365
366/* Define this if pushing a word on the stack
367 makes the stack pointer a smaller address. */
368#define STACK_GROWS_DOWNWARD
369
370/* Define this if the nominal address of the stack frame
371 is at the high-address end of the local variables;
372 that is, each additional local variable allocated
373 goes at a more negative offset in the frame. */
374#define FRAME_GROWS_DOWNWARD
375
376/* Offset within stack frame to start allocating local variables at.
377 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
378 first local allocated. Otherwise, it is the offset to the BEGINNING
379 of the first local allocated. */
380#define STARTING_FRAME_OFFSET 0
381
382/* If we generate an insn to push BYTES bytes,
383 this says how many the stack pointer really advances by.
384 On 386 pushw decrements by exactly 2 no matter what the position was.
385 On the 386 there is no pushb; we use pushw instead, and this
386 has the effect of rounding up to 2. */
387
388#define PUSH_ROUNDING(BYTES) (((BYTES) + 1) & (-2))
389
390/* Offset of first parameter from the argument pointer register value. */
391#define FIRST_PARM_OFFSET(FNDECL) 8
392
393/* Value is 1 if returning from a function call automatically
394 pops the arguments described by the number-of-args field in the call.
395 FUNTYPE is the data type of the function (as a tree),
396 or for a library call it is an identifier node for the subroutine name.
397
398 On the 80386, the RTD insn may be used to pop them if the number
399 of args is fixed, but if the number is variable then the caller
400 must pop them all. RTD can't be used for library calls now
401 because the library is compiled with the Unix compiler.
402 Use of RTD is a selectable option, since it is incompatible with
403 standard Unix calling sequences. If the option is not selected,
404 the caller must always pop the args. */
405
406#define RETURN_POPS_ARGS(FUNTYPE) \
407 (TARGET_RTD && TREE_CODE (FUNTYPE) != IDENTIFIER_NODE \
408 && (TYPE_ARG_TYPES (FUNTYPE) == 0 \
409 || TREE_VALUE (tree_last (TYPE_ARG_TYPES (FUNTYPE))) == void_type_node))
410
411#define FUNCTION_VALUE(VALTYPE, FUNC) \
412 gen_rtx (REG, TYPE_MODE (VALTYPE), \
413 VALUE_REGNO(TYPE_MODE(VALTYPE)))
414
415/* Define how to find the value returned by a library function
416 assuming the value has mode MODE. */
417
418#define LIBCALL_VALUE(MODE) \
419 gen_rtx (REG, MODE, VALUE_REGNO(MODE))
420
421/* 1 if N is a possible register number for function argument passing.
422 On the 80386, no registers are used in this way.
423 *NOTE* -mregparm does not work.
424 It exists only to test register calling conventions. */
425
426#define FUNCTION_ARG_REGNO_P(N) 0
427/* Define a data type for recording info about an argument list
428 during the scan of that argument list. This data type should
429 hold all necessary information about the function itself
430 and about the args processed so far, enough to enable macros
431 such as FUNCTION_ARG to determine where the next arg should go.
432
433 On the 80386, this is a single integer, which is a number of bytes
434 of arguments scanned so far. */
435
436#define CUMULATIVE_ARGS int
437
438/* Initialize a variable CUM of type CUMULATIVE_ARGS
439 for a call to a function whose data type is FNTYPE.
440 For a library call, FNTYPE is 0.
441
442 On the 80386, the offset starts at 0. */
443
444#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE) \
445 ((CUM) = 0)
446
447/* Update the data in CUM to advance over an argument
448 of mode MODE and data type TYPE.
449 (TYPE is null for libcalls where that information may not be available.) */
450
451#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
452 ((CUM) += ((MODE) != BLKmode \
453 ? (GET_MODE_SIZE (MODE) + 3) & ~3 \
454 : (int_size_in_bytes (TYPE) + 3) & ~3))
455
456/* Define where to put the arguments to a function.
457 Value is zero to push the argument on the stack,
458 or a hard register in which to store the argument.
459
460 MODE is the argument's machine mode.
461 TYPE is the data type of the argument (as a tree).
462 This is null for libcalls where that information may
463 not be available.
464 CUM is a variable of type CUMULATIVE_ARGS which gives info about
465 the preceding args and about the function being called.
466 NAMED is nonzero if this argument is a named parameter
467 (otherwise it is an extra parameter matching an ellipsis). */
468
469
470/* On the 80386 all args are pushed, except if -mregparm is specified
471 then the first two words of arguments are passed in EAX, EDX.
472 *NOTE* -mregparm does not work.
473 It exists only to test register calling conventions. */
474
475#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
476((TARGET_REGPARM && (CUM) < 8) ? gen_rtx (REG, (MODE), (CUM) / 4) : 0)
477
478/* For an arg passed partly in registers and partly in memory,
479 this is the number of registers used.
480 For args passed entirely in registers or entirely in memory, zero. */
481
482
483#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
484((TARGET_REGPARM && (CUM) < 8 \
485 && 8 < ((CUM) + ((MODE) == BLKmode \
486 ? int_size_in_bytes (TYPE) \
487 : GET_MODE_SIZE (MODE)))) \
488 ? 2 - (CUM) / 4 : 0)
489
490/* This macro generates the assembly code for function entry.
491 FILE is a stdio stream to output the code to.
492 SIZE is an int: how many units of temporary storage to allocate.
493 Refer to the array `regs_ever_live' to determine which registers
494 to save; `regs_ever_live[I]' is nonzero if register number I
495 is ever used in the function. This macro is responsible for
496 knowing which registers should not be saved even if used. */
497
498#define FUNCTION_PROLOGUE(FILE, SIZE) \
499 function_prologue (FILE, SIZE)
500
501/* Output assembler code to FILE to increment profiler label # LABELNO
502 for profiling a function entry. */
503
504#define FUNCTION_PROFILER(FILE, LABELNO) \
505 fprintf (FILE, "\tmovl $%sP%d,%%edx\n\tcall _mcount\n", LPREFIX, (LABELNO));
506
507/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
508 the stack pointer does not matter. The value is tested only in
509 functions that have frame pointers.
510 No definition is equivalent to always zero. */
511/* Note on the 386 it might be more efficient not to define this since
512 we have to restore it ourselves from the frame pointer, in order to
513 use pop */
514
515#define EXIT_IGNORE_STACK 1
516
517/* This macro generates the assembly code for function exit,
518 on machines that need it. If FUNCTION_EPILOGUE is not defined
519 then individual return instructions are generated for each
520 return statement. Args are same as for FUNCTION_PROLOGUE.
521
522 The function epilogue should not depend on the current stack pointer!
523 It should use the frame pointer only. This is mandatory because
524 of alloca; we also take advantage of it to omit stack adjustments
525 before returning. */
526
527#define FUNCTION_EPILOGUE(FILE, SIZE) \
528 function_epilogue (FILE, SIZE)
529
530/* If the memory address ADDR is relative to the frame pointer,
531 correct it to be relative to the stack pointer instead.
532 This is for when we don't use a frame pointer.
533 ADDR should be a variable name. */
534
535
536#define FIX_FRAME_POINTER_ADDRESS(ADDR,DEPTH) \
537{ int offset = -1; \
538 rtx regs = stack_pointer_rtx; \
539 if (ADDR == frame_pointer_rtx) \
540 offset = 0; \
541 else if (GET_CODE (ADDR) == PLUS && XEXP (ADDR, 0) == frame_pointer_rtx \
542 && GET_CODE (XEXP (ADDR, 1)) == CONST_INT) \
543 offset = INTVAL (XEXP (ADDR, 1)); \
544 else if (GET_CODE (ADDR) == PLUS && XEXP (ADDR, 0) == frame_pointer_rtx) \
545 { rtx other_reg = XEXP (ADDR, 1); \
546 offset = 0; \
547 regs = gen_rtx (PLUS, Pmode, stack_pointer_rtx, other_reg); } \
548 else if (GET_CODE (ADDR) == PLUS && XEXP (ADDR, 1) == frame_pointer_rtx) \
549 { rtx other_reg = XEXP (ADDR, 0); \
550 offset = 0; \
551 regs = gen_rtx (PLUS, Pmode, stack_pointer_rtx, other_reg); } \
552 else if (GET_CODE (ADDR) == PLUS \
553 && GET_CODE (XEXP (ADDR, 0)) == PLUS \
554 && XEXP (XEXP (ADDR, 0), 0) == frame_pointer_rtx \
555 && GET_CODE (XEXP (ADDR, 1)) == CONST_INT) \
556 { rtx other_reg = XEXP (XEXP (ADDR, 0), 1); \
557 offset = INTVAL (XEXP (ADDR, 1)); \
558 regs = gen_rtx (PLUS, Pmode, stack_pointer_rtx, other_reg); } \
559 else if (GET_CODE (ADDR) == PLUS \
560 && GET_CODE (XEXP (ADDR, 0)) == PLUS \
561 && XEXP (XEXP (ADDR, 0), 1) == frame_pointer_rtx \
562 && GET_CODE (XEXP (ADDR, 1)) == CONST_INT) \
563 { rtx other_reg = XEXP (XEXP (ADDR, 0), 0); \
564 offset = INTVAL (XEXP (ADDR, 1)); \
565 regs = gen_rtx (PLUS, Pmode, stack_pointer_rtx, other_reg); } \
566 if (offset >= 0) \
567 { int regno; \
568 extern char call_used_regs[]; \
569 for (regno = FIRST_FLOAT_REG; regno < FIRST_PSEUDO_REGISTER; regno++)\
570 if (regs_ever_live[regno] && ! call_used_regs[regno]) \
571 offset += 8; \
572 for (regno=0 ; regno <FIRST_FLOAT_REG ; regno++) \
573 if (regs_ever_live[regno] && ! call_used_regs[regno]) \
574 offset += 4; \
575 offset -= 4; \
576 ADDR = plus_constant (regs, offset + (DEPTH)); } } \
577\f
578/* Addressing modes, and classification of registers for them. */
579
580/* #define HAVE_POST_INCREMENT */
581/* #define HAVE_POST_DECREMENT */
582
583/* #define HAVE_PRE_DECREMENT */
584/* #define HAVE_PRE_INCREMENT */
585
586/* Macros to check register numbers against specific register classes. */
587
588/* These assume that REGNO is a hard or pseudo reg number.
589 They give nonzero only if REGNO is a hard reg of the suitable class
590 or a pseudo reg currently allocated to a suitable hard reg.
591 Since they use reg_renumber, they are safe only once reg_renumber
592 has been allocated, which happens in local-alloc.c. */
593
594#define REGNO_OK_FOR_INDEX_P(REGNO) \
595 ((REGNO) < STACK_POINTER_REGNUM || (unsigned) reg_renumber[REGNO] < STACK_POINTER_REGNUM)
596#define REGNO_OK_FOR_BASE_P(REGNO) \
597 ((REGNO) <= STACK_POINTER_REGNUM || (unsigned) reg_renumber[REGNO] <= STACK_POINTER_REGNUM)
598
599#define REGNO_OK_FOR_SIREG_P(REGNO) ((REGNO) == 4 || reg_renumber[REGNO] == 4)
600#define REGNO_OK_FOR_DIREG_P(REGNO) ((REGNO) == 5 || reg_renumber[REGNO] == 5)
601
602/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
603 and check its validity for a certain class.
604 We have two alternate definitions for each of them.
605 The usual definition accepts all pseudo regs; the other rejects
606 them unless they have been allocated suitable hard regs.
607 The symbol REG_OK_STRICT causes the latter definition to be used.
608
609 Most source files want to accept pseudo regs in the hope that
610 they will get allocated to the class that the insn wants them to be in.
611 Source files for reload pass need to be strict.
612 After reload, it makes no difference, since pseudo regs have
613 been eliminated by then. */
614
615#ifndef REG_OK_STRICT
616
617/* Nonzero if X is a hard reg that can be used as an index or if
618 it is a pseudo reg. */
619#define REG_OK_FOR_INDEX_P(X) (REGNO (X) < STACK_POINTER_REGNUM || REGNO (X) >= FIRST_PSEUDO_REGISTER)
620/* Nonzero if X is a hard reg that can be used as a base reg
621 of if it is a pseudo reg. */
622 /* ?wfs */
623#define REG_OK_FOR_BASE_P(X) (REGNO (X) <= STACK_POINTER_REGNUM || REGNO(X) >= FIRST_PSEUDO_REGISTER)
624#define REG_OK_FOR_STRREG_P(X) \
625 (REGNO (X) == 4 || REGNO (X) == 5 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
626
627#else
628
629/* Nonzero if X is a hard reg that can be used as an index. */
630#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
631/* Nonzero if X is a hard reg that can be used as a base reg. */
632#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
633#define REG_OK_FOR_STRREG_P(X) \
634 (REGNO_OK_FOR_DIREG_P (REGNO (X)) || REGNO_OK_FOR_SIREG_P (REGNO (X)))
635
636#endif
637
638/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
639 that is a valid memory address for an instruction.
640 The MODE argument is the machine mode for the MEM expression
641 that wants to use this address.
642
643 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
644 except for CONSTANT_ADDRESS_P which is usually machine-independent. */
645
646#define MAX_REGS_PER_ADDRESS 2
647
648#define CONSTANT_ADDRESS_P(X) CONSTANT_P (X)
649
650/* Nonzero if the constant value X is a legitimate general operand.
651 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
652
653#define LEGITIMATE_CONSTANT_P(X) 1
654
655#define GO_IF_INDEXABLE_BASE(X, ADDR) \
656 if (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) goto ADDR
657
658#define LEGITIMATE_INDEX_REG_P(X) \
659 (GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X))
660
661/* Return 1 if X is an index or an index times a scale. */
662
663#define LEGITIMATE_INDEX_P(X) \
664 (LEGITIMATE_INDEX_REG_P (X) \
665 || (GET_CODE (X) == MULT \
666 && LEGITIMATE_INDEX_REG_P (XEXP (X, 0)) \
667 && GET_CODE (XEXP (X, 1)) == CONST_INT \
668 && (INTVAL (XEXP (X, 1)) == 2 \
669 || INTVAL (XEXP (X, 1)) == 4 \
670 || INTVAL (XEXP (X, 1)) == 8)))
671
672/* Go to ADDR if X is an index term, a base reg, or a sum of those. */
673
674#define GO_IF_INDEXING(X, ADDR) \
675{ if (LEGITIMATE_INDEX_P (X)) goto ADDR; \
676 GO_IF_INDEXABLE_BASE (X, ADDR); \
677 if (GET_CODE (X) == PLUS && LEGITIMATE_INDEX_P (XEXP (X, 0))) \
678 { GO_IF_INDEXABLE_BASE (XEXP (X, 1), ADDR); } \
679 if (GET_CODE (X) == PLUS && LEGITIMATE_INDEX_P (XEXP (X, 1))) \
680 { GO_IF_INDEXABLE_BASE (XEXP (X, 0), ADDR); } }
681
682/* We used to allow this, but it isn't ever used.
683 || ((GET_CODE (X) == POST_DEC || GET_CODE (X) == POST_INC) \
684 && REG_P (XEXP (X, 0)) \
685 && REG_OK_FOR_STRREG_P (XEXP (X, 0))) \
686*/
687
688#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
689{ if (CONSTANT_ADDRESS_P (X)) goto ADDR; \
690 GO_IF_INDEXING (X, ADDR); \
691 if (GET_CODE (X) == PLUS) \
692 { if (CONSTANT_ADDRESS_P (XEXP (X, 1))) \
693 GO_IF_INDEXING (XEXP (X, 0), ADDR); \
694 if (CONSTANT_ADDRESS_P (XEXP (X, 0))) \
695 GO_IF_INDEXING (XEXP (X, 1), ADDR); } }
696
697/* Try machine-dependent ways of modifying an illegitimate address
698 to be legitimate. If we find one, return the new, valid address.
699 This macro is used in only one place: `memory_address' in explow.c.
700
701 OLDX is the address as it was before break_out_memory_refs was called.
702 In some cases it is useful to look at this to decide what needs to be done.
703
704 MODE and WIN are passed so that this macro can use
705 GO_IF_LEGITIMATE_ADDRESS.
706
707 It is always safe for this macro to do nothing. It exists to recognize
708 opportunities to optimize the output.
709
710 For the 80386, we handle X+REG by loading X into a register R and
711 using R+REG. R will go in a general reg and indexing will be used.
712 However, if REG is a broken-out memory address or multiplication,
713 nothing needs to be done because REG can certainly go in a general reg. */
714
715#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
716{ register int ch = (X) != (OLDX); \
717 if (GET_CODE (X) == PLUS) \
718 { if (GET_CODE (XEXP (X, 0)) == MULT) \
719 ch = 1, XEXP (X, 0) = force_operand (XEXP (X, 0), 0); \
720 if (GET_CODE (XEXP (X, 1)) == MULT) \
721 ch = 1, XEXP (X, 1) = force_operand (XEXP (X, 1), 0); \
722 if (ch && GET_CODE (XEXP (X, 1)) == REG \
723 && GET_CODE (XEXP (X, 0)) == REG) \
724 return X; \
725 if (ch) { GO_IF_LEGITIMATE_ADDRESS (MODE, X, WIN); } \
726 if (GET_CODE (XEXP (X, 0)) == REG \
727 || (GET_CODE (XEXP (X, 0)) == SIGN_EXTEND \
728 && GET_CODE (XEXP (XEXP (X, 0), 0)) == REG \
729 && GET_MODE (XEXP (XEXP (X, 0), 0)) == HImode)) \
730 { register rtx temp = gen_reg_rtx (Pmode); \
731 register rtx val = force_operand (XEXP (X, 1), temp); \
732 if (val != temp) emit_move_insn (temp, val, 0); \
733 XEXP (X, 1) = temp; \
734 return X; } \
735 else if (GET_CODE (XEXP (X, 1)) == REG \
736 || (GET_CODE (XEXP (X, 1)) == SIGN_EXTEND \
737 && GET_CODE (XEXP (XEXP (X, 1), 0)) == REG \
738 && GET_MODE (XEXP (XEXP (X, 1), 0)) == HImode)) \
739 { register rtx temp = gen_reg_rtx (Pmode); \
740 register rtx val = force_operand (XEXP (X, 0), temp); \
741 if (val != temp) emit_move_insn (temp, val, 0); \
742 XEXP (X, 0) = temp; \
743 return X; }}}
744
745/* Go to LABEL if ADDR (a legitimate address expression)
746 has an effect that depends on the machine mode it is used for.
747 On the 80386, only postdecrement and postincrement address depend thus
748 (the amount of decrement or increment being the length of the operand). */
749#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
750 if (GET_CODE (ADDR) == POST_INC || GET_CODE (ADDR) == POST_DEC) goto LABEL
751\f
752/* Specify the machine mode that this machine uses
753 for the index in the tablejump instruction. */
754#define CASE_VECTOR_MODE Pmode
755
756/* Define this if the tablejump instruction expects the table
757 to contain offsets from the address of the table.
758 Do not define this if the table should contain absolute addresses. */
759/* #define CASE_VECTOR_PC_RELATIVE */
760
761/* Specify the tree operation to be used to convert reals to integers.
762 This should be changed to take advantage of fist --wfs ??
763 */
764#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
765
766/* This is the kind of divide that is easiest to do in the general case. */
767#define EASY_DIV_EXPR TRUNC_DIV_EXPR
768
769/* Define this as 1 if `char' should by default be signed; else as 0. */
770#define DEFAULT_SIGNED_CHAR 1
771
772/* Max number of bytes we can move from memory to memory
773 in one reasonably fast instruction. */
774#define MOVE_MAX 4
775
776/* Define this if zero-extension is slow (more than one real instruction). */
777/* #define SLOW_ZERO_EXTEND */
778
779/* Nonzero if access to memory by bytes is slow and undesirable. */
780#define SLOW_BYTE_ACCESS 0
781
782/* Define if shifts truncate the shift count
783 which implies one can omit a sign-extension or zero-extension
784 of a shift count. */
785#define SHIFT_COUNT_TRUNCATED
786
787/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
788 is done just by pretending it is already truncated. */
789#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
790
791/* We assume that the store-condition-codes instructions store 0 for false
792 and some other value for true. This is the value stored for true. */
793
794#define STORE_FLAG_VALUE 1
795
796/* When a prototype says `char' or `short', really pass an `int'.
797 (The 386 can't easily push less than an int.) */
798
799#define PROMOTE_PROTOTYPES
800
801/* Specify the machine mode that pointers have.
802 After generation of rtl, the compiler makes no further distinction
803 between pointers and any other objects of this machine mode. */
804#define Pmode SImode
805
806/* A function address in a call instruction
807 is a byte address (for indexing purposes)
808 so give the MEM rtx a byte's mode. */
809#define FUNCTION_MODE QImode
810
811/* Define this if addresses of constant functions
812 shouldn't be put through pseudo regs where they can be cse'd.
813 Desirable on the 386 because a CALL with a constant address is
814 not much slower than one with a register address. */
815#define NO_FUNCTION_CSE
816
817/* Compute the cost of computing a constant rtl expression RTX
818 whose rtx-code is CODE. The body of this macro is a portion
819 of a switch statement. If the code is computed here,
820 return it with a return statement. Otherwise, break from the switch. */
821
822#define CONST_COSTS(RTX,CODE) \
823 case CONST_INT: \
824 if (RTX == const0_rtx) return 0; \
825 if ((unsigned) INTVAL (RTX) < 077) return 1; \
826 case CONST: \
827 case LABEL_REF: \
828 case SYMBOL_REF: \
829 return 3; \
830 case CONST_DOUBLE: \
831 return 5; \
832 case PLUS: \
833 if (GET_CODE (XEXP (RTX, 0)) == REG \
834 && GET_CODE (XEXP (RTX, 1)) == CONST_INT) \
835 return 2;
836\f
837/* Tell final.c how to eliminate redundant test instructions. */
838
839/* ??? Find a better place to put this. */
840#if 0
841#define FINAL_PRESCAN_INSN(INSN, OPERANDS, NOPERANDS) \
842 fp_hook (INSN, OPERANDS, NOPERANDS)
843#endif
844
845/* Here we define machine-dependent flags and fields in cc_status
846 (see `conditions.h'). */
847
848/* Set if the cc value is actually in the 80387, so a floating point
849 conditional branch must be output. */
850#define CC_IN_80387 04000
851
852/* Store in cc_status the expressions
853 that the condition codes will describe
854 after execution of an instruction whose pattern is EXP.
855 Do not alter them if the instruction would not alter the cc's. */
856
857#define NOTICE_UPDATE_CC(EXP, INSN) \
858 notice_update_cc((EXP))
859
860/* Output a signed jump insn. Use template NORMAL ordinarily, or
861 FLOAT following a floating point comparison.
862 Use NO_OV following an arithmetic insn that set the cc's
863 before a test insn that was deleted.
864 NO_OV may be zero, meaning final should reinsert the test insn
865 because the jump cannot be handled properly without it. */
866
867#define OUTPUT_JUMP(NORMAL, FLOAT, NO_OV) \
868{ \
869 if (cc_status.flags & CC_IN_80387) \
870 return FLOAT; \
871 if (cc_status.flags & CC_NO_OVERFLOW) \
872 return NO_OV; \
873 return NORMAL; \
874}
875\f
876/* Control the assembler format that we output. */
877
878#ifdef ATT
879#include <syms.h>
880#else
881#define FILNMLEN 14
882#endif
883
884/* How to refer to registers in assembler output.
885 This sequence is indexed by compiler's hard-register-number (see above). */
886
887/* In order to refer to the first 8 regs as 32 bit regs prefix an "e"
888 For non floating point regs, the following are the HImode names.
889 */
890
891
892#define HI_REGISTER_NAMES \
893{"ax","dx","cx","bx","si","di","bp","sp", \
894 "st","st(1)"}
895/* ,"st(2)","st(3)","st(4)","st(5)" } */
896#define REGISTER_NAMES HI_REGISTER_NAMES
897
898/* Note we are omitting these since currently I don't know how
899to get gcc to use these, since they want the same but different
900number as al, and ax.
901*/
902
903/* note the last four are not really qi_registsers, but
904 the md will have to never output movb into one of them
905 only a movw . There is no movb into the hardware reg
906 esi that I can find */
907
908#define QI_REGISTER_NAMES \
909{"al", "dl", "cl", "bl", "si", "di", "bp", "sp",}
910
911/*
912 Don't know how to use these, yet. They overlap with ax,dx,cx,bx
913 and so would clobber al,dl,cl,bl
914#define QI_REGISTER_NAMES_TOP \
915{"ah", \
916 "dh", \
917 "ch", \
918 "bh", }
919*/
920
921/* How to renumber registers for dbxand gdb. */
922
923/* {0,2,1,3,6,7,4,5,12,13,14,15,16,17} */
924#define DBX_REGISTER_NUMBER(n) \
925((n)==0?0 :(n)==1?2 :(n)==2?1 :(n)==3?3 :(n)==4?6 :(n)==5?7 :(n)==6?4 :(n)==7?5 :(n)==8?12 :(n)==9?12 :(n))
926
927/* This is how to output the definition of a user-level label named NAME,
928 such as the label on a static function or variable NAME. */
929
930#define ASM_OUTPUT_LABEL(FILE,NAME) \
931 (assemble_name (FILE, NAME), fputs (":\n", FILE))
932
933/* This is how to output an assembler line defining a `double' constant. */
934
935#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
936 fprintf (FILE, "%s%.22e\n",ASM_DOUBLE, (VALUE))
937
938
939/* This is how to output an assembler line defining a `float' constant. */
940
941#define ASM_OUTPUT_FLOAT(FILE,VALUE) \
942do { union { float f; long l;} tem; \
943 tem.f = (VALUE); \
944 fputs(ASM_LONG,FILE); \
945 fprintf((FILE), "0x%x\n", tem.l); \
946 } while (0)
947
948
949/* Store in OUTPUT a string (made with alloca) containing
950 an assembler-name for a local static variable named NAME.
951 LABELNO is an integer which is different for each call. */
952
953#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
954( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
955 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
956
957
958
959/* This is how to output an assembler line defining an `int' constant. */
960
961#define ASM_OUTPUT_INT(FILE,VALUE) \
962( fprintf (FILE,ASM_LONG), \
963 output_addr_const (FILE,(VALUE)), \
964 putc('\n',FILE))
965
966/* Likewise for `char' and `short' constants. */
967/* is this supposed to do align too?? */
968
969#define ASM_OUTPUT_SHORT(FILE,VALUE) \
970( fprintf (FILE,ASM_SHORT), \
971 output_addr_const (FILE,(VALUE)), \
972 putc('\n',FILE))
973
974/*
975#define ASM_OUTPUT_SHORT(FILE,VALUE) \
976( fputs (ASM_BYTE,FILE), \
977 output_addr_const (FILE,(VALUE)), \
978 fputs ( ",",FILE), \
979 output_addr_const (FILE,(VALUE)), \
980 fputs (" >> 8\n",FILE))
981*/
982
983
984#define ASM_OUTPUT_CHAR(FILE,VALUE) \
985( fprintf (FILE, ASM_BYTE), \
986 output_addr_const (FILE,(VALUE)), \
987 putc('\n',FILE))
988
989/* This is how to output an assembler line for a numeric constant byte. */
990
991#define ASM_OUTPUT_BYTE(FILE,VALUE) \
992 fprintf ((FILE), "%s0x%x\n", ASM_BYTE, (VALUE))
993
994/* This is how to output an insn to push a register on the stack.
995 It need not be very fast code. */
996
997#define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
998 fprintf (FILE, "\tpushl e%s\n", reg_names[REGNO])
999
1000/* This is how to output an insn to pop a register from the stack.
1001 It need not be very fast code. */
1002
1003#define ASM_OUTPUT_REG_POP(FILE,REGNO) \
1004 fprintf (FILE, "\tpopl e%s\n", reg_names[REGNO])
1005
1006/* This is how to output an element of a case-vector that is absolute.
1007 */
1008
1009#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1010 fprintf (FILE, "%s%s%d\n",ASM_LONG,LPREFIX, VALUE)
1011
1012/* This is how to output an element of a case-vector that is relative.
1013 We don't use these on the 386 yet, because the ATT assembler can't do
1014 forward reference the differences.
1015 */
1016
1017#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) abort(); \
1018 fprintf (FILE, "\t.word %s%d-%s%d\n",LPREFIX, VALUE,LPREFIX, REL)
1019
1020/* Define the parentheses used to group arithmetic operations
1021 in assembler code. */
1022
1023#define ASM_OPEN_PAREN ""
1024#define ASM_CLOSE_PAREN ""
1025
1026/* Define results of standard character escape sequences. */
1027#define TARGET_BELL 007
1028#define TARGET_BS 010
1029#define TARGET_TAB 011
1030#define TARGET_NEWLINE 012
1031#define TARGET_VT 013
1032#define TARGET_FF 014
1033#define TARGET_CR 015
1034
1035/* Print operand X (an rtx) in assembler syntax to file FILE.
1036 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1037 The CODE z takes the size of operand from the following digit, and
1038 outputs b,w,or l respectively.
1039
1040 On the 80386, we use several such letters:
1041 f -- float insn (print a CONST_DOUBLE as a float rather than in hex).
1042 L,W,B,Q,S -- print the opcode suffix for specified size of operand.
1043 R -- print the prefix for register names.
1044 z -- print the opcode suffix for the size of the current operand.
1045 * -- print a star (in certain assembler syntax)
1046 w -- print the operand as if it's a "word" (HImode) even if it isn't.
1047 w -- print the operand as if it's a byte (QImode) even if it isn't.
1048 c -- don't print special prefixes before constant operands. */
1049
1050#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
1051 ((CODE) == '*')
1052
1053#define PRINT_OPERAND(FILE, X, CODE) \
1054 print_operand (FILE, X, CODE)
1055\f
1056
1057#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1058 print_operand_address (FILE, ADDR)
1059
1060/* Routines in gnulib that return floats must return them in an fp reg,
1061 just as other functions do which return such values.
1062 These macros make that happen. */
1063
1064#define SFVALUE float
1065#define INTIFY(FLOATVAL) FLOATVAL
1066
1067/* Nonzero if INSN magically clobbers register REGNO. */
1068
1069#define INSN_CLOBBERS_REGNO_P(INSN, REGNO) \
1070 (FP_REGNO_P (REGNO) \
1071 && (GET_CODE (INSN) == JUMP_INSN || GET_CODE (INSN) == BARRIER))
1072
1073/* a letter which is not needed by the normal asm syntax, which
1074 we can use for operand syntax in the extended asm */
1075
1076#define ASM_OPERAND_LETTER '#'
1077\f
1078
1079/*
1080Local variables:
1081version-control: t
1082End:
1083*/