Oh GACK! src-clean doesn't quite work that easily since cleandist rebuilds the
[unix-history] / gnu / usr.bin / gdb / valarith.c
CommitLineData
04497f0b
NW
1/*-
2 * This code is derived from software copyrighted by the Free Software
3 * Foundation.
4 *
5 * Modified 1991 by Donn Seeley at UUNET Technologies, Inc.
6 * Modified 1990 by Van Jacobson at Lawrence Berkeley Laboratory.
7 */
8
9#ifndef lint
10static char sccsid[] = "@(#)valarith.c 6.3 (Berkeley) 5/8/91";
11#endif /* not lint */
12
13/* Perform arithmetic and other operations on values, for GDB.
14 Copyright (C) 1986, 1989 Free Software Foundation, Inc.
15
16This file is part of GDB.
17
18GDB is free software; you can redistribute it and/or modify
19it under the terms of the GNU General Public License as published by
20the Free Software Foundation; either version 1, or (at your option)
21any later version.
22
23GDB is distributed in the hope that it will be useful,
24but WITHOUT ANY WARRANTY; without even the implied warranty of
25MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
26GNU General Public License for more details.
27
28You should have received a copy of the GNU General Public License
29along with GDB; see the file COPYING. If not, write to
30the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
31
32#include "defs.h"
33#include "param.h"
34#include "symtab.h"
35#include "value.h"
36#include "expression.h"
37
38\f
39value value_x_binop ();
40value value_subscripted_rvalue ();
41
42value
43value_add (arg1, arg2)
44 value arg1, arg2;
45{
46 register value val, valint, valptr;
47 register int len;
48
49 COERCE_ARRAY (arg1);
50 COERCE_ARRAY (arg2);
51
52 if ((TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_PTR
53 || TYPE_CODE (VALUE_TYPE (arg2)) == TYPE_CODE_PTR)
54 &&
55 (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_INT
56 || TYPE_CODE (VALUE_TYPE (arg2)) == TYPE_CODE_INT))
57 /* Exactly one argument is a pointer, and one is an integer. */
58 {
59 if (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_PTR)
60 {
61 valptr = arg1;
62 valint = arg2;
63 }
64 else
65 {
66 valptr = arg2;
67 valint = arg1;
68 }
69 len = TYPE_LENGTH (TYPE_TARGET_TYPE (VALUE_TYPE (valptr)));
70 if (len == 0) len = 1; /* For (void *) */
71 val = value_from_long (builtin_type_long,
72 value_as_long (valptr)
73 + (len * value_as_long (valint)));
74 VALUE_TYPE (val) = VALUE_TYPE (valptr);
75 return val;
76 }
77
78 return value_binop (arg1, arg2, BINOP_ADD);
79}
80
81value
82value_sub (arg1, arg2)
83 value arg1, arg2;
84{
85 register value val;
86
87 COERCE_ARRAY (arg1);
88 COERCE_ARRAY (arg2);
89
90 if (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_PTR
91 &&
92 TYPE_CODE (VALUE_TYPE (arg2)) == TYPE_CODE_INT)
93 {
94 val = value_from_long (builtin_type_long,
95 value_as_long (arg1)
96 - TYPE_LENGTH (TYPE_TARGET_TYPE (VALUE_TYPE (arg1))) * value_as_long (arg2));
97 VALUE_TYPE (val) = VALUE_TYPE (arg1);
98 return val;
99 }
100
101 if (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_PTR
102 &&
103 VALUE_TYPE (arg1) == VALUE_TYPE (arg2))
104 {
105 val = value_from_long (builtin_type_long,
106 (value_as_long (arg1) - value_as_long (arg2))
107 / TYPE_LENGTH (TYPE_TARGET_TYPE (VALUE_TYPE (arg1))));
108 return val;
109 }
110
111 return value_binop (arg1, arg2, BINOP_SUB);
112}
113
114/* Return the value of ARRAY[IDX]. */
115
116value
117value_subscript (array, idx)
118 value array, idx;
119{
120 if (TYPE_CODE (VALUE_TYPE (array)) == TYPE_CODE_ARRAY
121 && VALUE_LVAL (array) != lval_memory)
122 return value_subscripted_rvalue (array, idx);
123 else
124 return value_ind (value_add (array, idx));
125}
126
127/* Return the value of EXPR[IDX], expr an aggregate rvalue
128 (eg, a vector register) */
129
130value
131value_subscripted_rvalue (array, idx)
132 value array, idx;
133{
134 struct type *elt_type = TYPE_TARGET_TYPE (VALUE_TYPE (array));
135 int elt_size = TYPE_LENGTH (elt_type);
136 int elt_offs = elt_size * value_as_long (idx);
137 value v;
138
139 if (elt_offs >= TYPE_LENGTH (VALUE_TYPE (array)))
140 error ("no such vector element");
141
142 if (TYPE_CODE (elt_type) == TYPE_CODE_FLT)
143 {
144 if (elt_size == sizeof (float))
145 v = value_from_double (elt_type, (double) *(float *)
146 (VALUE_CONTENTS (array) + elt_offs));
147 else
148 v = value_from_double (elt_type, *(double *)
149 (VALUE_CONTENTS (array) + elt_offs));
150 }
151 else
152 {
153 int offs;
154 union {int i; char c;} test;
155 test.i = 1;
156 if (test.c == 1)
157 offs = 0;
158 else
159 offs = sizeof (LONGEST) - elt_size;
160 v = value_from_long (elt_type, *(LONGEST *)
161 (VALUE_CONTENTS (array) + elt_offs - offs));
162 }
163
164 if (VALUE_LVAL (array) == lval_internalvar)
165 VALUE_LVAL (v) = lval_internalvar_component;
166 else
167 VALUE_LVAL (v) = not_lval;
168 VALUE_ADDRESS (v) = VALUE_ADDRESS (array);
169 VALUE_OFFSET (v) = VALUE_OFFSET (array) + elt_offs;
170 VALUE_BITSIZE (v) = elt_size * 8;
171 return v;
172}
173\f
174/* Check to see if either argument is a structure. This is called so
175 we know whether to go ahead with the normal binop or look for a
176 user defined function instead.
177
178 For now, we do not overload the `=' operator. */
179
180int
181binop_user_defined_p (op, arg1, arg2)
182 enum exp_opcode op;
183 value arg1, arg2;
184{
185 if (op == BINOP_ASSIGN)
186 return 0;
187 return (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_STRUCT
188 || TYPE_CODE (VALUE_TYPE (arg2)) == TYPE_CODE_STRUCT
189 || (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_REF
190 && TYPE_CODE (TYPE_TARGET_TYPE (VALUE_TYPE (arg1))) == TYPE_CODE_STRUCT)
191 || (TYPE_CODE (VALUE_TYPE (arg2)) == TYPE_CODE_REF
192 && TYPE_CODE (TYPE_TARGET_TYPE (VALUE_TYPE (arg2))) == TYPE_CODE_STRUCT));
193}
194
195/* Check to see if argument is a structure. This is called so
196 we know whether to go ahead with the normal unop or look for a
197 user defined function instead.
198
199 For now, we do not overload the `&' operator. */
200
201int unop_user_defined_p (op, arg1)
202 enum exp_opcode op;
203 value arg1;
204{
205 if (op == UNOP_ADDR)
206 return 0;
207 return (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_STRUCT
208 || (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_REF
209 && TYPE_CODE (TYPE_TARGET_TYPE (VALUE_TYPE (arg1))) == TYPE_CODE_STRUCT));
210}
211
212/* We know either arg1 or arg2 is a structure, so try to find the right
213 user defined function. Create an argument vector that calls
214 arg1.operator @ (arg1,arg2) and return that value (where '@' is any
215 binary operator which is legal for GNU C++). */
216
217value
218value_x_binop (arg1, arg2, op, otherop)
219 value arg1, arg2;
220 int op, otherop;
221{
222 value * argvec;
223 char *ptr;
224 char tstr[13];
225 int static_memfuncp;
226
227 COERCE_ENUM (arg1);
228 COERCE_ENUM (arg2);
229
230 /* now we know that what we have to do is construct our
231 arg vector and find the right function to call it with. */
232
233 if (TYPE_CODE (VALUE_TYPE (arg1)) != TYPE_CODE_STRUCT)
234 error ("friend functions not implemented yet");
235
236 argvec = (value *) alloca (sizeof (value) * 4);
237 argvec[1] = value_addr (arg1);
238 argvec[2] = arg2;
239 argvec[3] = 0;
240
241 /* make the right function name up */
242 strcpy(tstr, "operator __");
243 ptr = tstr+9;
244 switch (op)
245 {
246 case BINOP_ADD: strcpy(ptr,"+"); break;
247 case BINOP_SUB: strcpy(ptr,"-"); break;
248 case BINOP_MUL: strcpy(ptr,"*"); break;
249 case BINOP_DIV: strcpy(ptr,"/"); break;
250 case BINOP_REM: strcpy(ptr,"%"); break;
251 case BINOP_LSH: strcpy(ptr,"<<"); break;
252 case BINOP_RSH: strcpy(ptr,">>"); break;
253 case BINOP_LOGAND: strcpy(ptr,"&"); break;
254 case BINOP_LOGIOR: strcpy(ptr,"|"); break;
255 case BINOP_LOGXOR: strcpy(ptr,"^"); break;
256 case BINOP_AND: strcpy(ptr,"&&"); break;
257 case BINOP_OR: strcpy(ptr,"||"); break;
258 case BINOP_MIN: strcpy(ptr,"<?"); break;
259 case BINOP_MAX: strcpy(ptr,">?"); break;
260 case BINOP_ASSIGN: strcpy(ptr,"="); break;
261 case BINOP_ASSIGN_MODIFY:
262 switch (otherop)
263 {
264 case BINOP_ADD: strcpy(ptr,"+="); break;
265 case BINOP_SUB: strcpy(ptr,"-="); break;
266 case BINOP_MUL: strcpy(ptr,"*="); break;
267 case BINOP_DIV: strcpy(ptr,"/="); break;
268 case BINOP_REM: strcpy(ptr,"%="); break;
269 case BINOP_LOGAND: strcpy(ptr,"&="); break;
270 case BINOP_LOGIOR: strcpy(ptr,"|="); break;
271 case BINOP_LOGXOR: strcpy(ptr,"^="); break;
272 default:
273 error ("Invalid binary operation specified.");
274 }
275 break;
276 case BINOP_SUBSCRIPT: strcpy(ptr,"[]"); break;
277 case BINOP_EQUAL: strcpy(ptr,"=="); break;
278 case BINOP_NOTEQUAL: strcpy(ptr,"!="); break;
279 case BINOP_LESS: strcpy(ptr,"<"); break;
280 case BINOP_GTR: strcpy(ptr,">"); break;
281 case BINOP_GEQ: strcpy(ptr,">="); break;
282 case BINOP_LEQ: strcpy(ptr,"<="); break;
283 default:
284 error ("Invalid binary operation specified.");
285 }
286 argvec[0] = value_struct_elt (arg1, argvec+1, tstr, &static_memfuncp, "structure");
287 if (argvec[0])
288 {
289 if (static_memfuncp)
290 {
291 argvec[1] = argvec[0];
292 argvec++;
293 }
294 return call_function (argvec[0], 2 - static_memfuncp, argvec + 1);
295 }
296 error ("member function %s not found", tstr);
297}
298
299/* We know that arg1 is a structure, so try to find a unary user
300 defined operator that matches the operator in question.
301 Create an argument vector that calls arg1.operator @ (arg1)
302 and return that value (where '@' is (almost) any unary operator which
303 is legal for GNU C++). */
304
305value
306value_x_unop (arg1, op)
307 value arg1;
308 int op;
309{
310 value * argvec;
311 char *ptr;
312 char tstr[13];
313 int static_memfuncp;
314
315 COERCE_ENUM (arg1);
316
317 /* now we know that what we have to do is construct our
318 arg vector and find the right function to call it with. */
319
320 if (TYPE_CODE (VALUE_TYPE (arg1)) != TYPE_CODE_STRUCT)
321 error ("friend functions not implemented yet");
322
323 argvec = (value *) alloca (sizeof (value) * 3);
324 argvec[1] = value_addr (arg1);
325 argvec[2] = 0;
326
327 /* make the right function name up */
328 strcpy(tstr,"operator __");
329 ptr = tstr+9;
330 switch (op)
331 {
332 case UNOP_PREINCREMENT: strcpy(ptr,"++"); break;
333 case UNOP_PREDECREMENT: strcpy(ptr,"++"); break;
334 case UNOP_POSTINCREMENT: strcpy(ptr,"++"); break;
335 case UNOP_POSTDECREMENT: strcpy(ptr,"++"); break;
336 case UNOP_ZEROP: strcpy(ptr,"!"); break;
337 case UNOP_LOGNOT: strcpy(ptr,"~"); break;
338 case UNOP_NEG: strcpy(ptr,"-"); break;
339 default:
340 error ("Invalid binary operation specified.");
341 }
342 argvec[0] = value_struct_elt (arg1, argvec+1, tstr, &static_memfuncp, "structure");
343 if (argvec[0])
344 {
345 if (static_memfuncp)
346 {
347 argvec[1] = argvec[0];
348 argvec++;
349 }
350 return call_function (argvec[0], 1 - static_memfuncp, argvec + 1);
351 }
352 error ("member function %s not found", tstr);
353}
354\f
355/* Perform a binary operation on two integers or two floats.
356 Does not support addition and subtraction on pointers;
357 use value_add or value_sub if you want to handle those possibilities. */
358
359value
360value_binop (arg1, arg2, op)
361 value arg1, arg2;
362 int op;
363{
364 register value val;
365
366 COERCE_ENUM (arg1);
367 COERCE_ENUM (arg2);
368
369 if ((TYPE_CODE (VALUE_TYPE (arg1)) != TYPE_CODE_FLT
370 &&
371 TYPE_CODE (VALUE_TYPE (arg1)) != TYPE_CODE_INT)
372 ||
373 (TYPE_CODE (VALUE_TYPE (arg2)) != TYPE_CODE_FLT
374 &&
375 TYPE_CODE (VALUE_TYPE (arg2)) != TYPE_CODE_INT))
376 error ("Argument to arithmetic operation not a number.");
377
378 if (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_FLT
379 ||
380 TYPE_CODE (VALUE_TYPE (arg2)) == TYPE_CODE_FLT)
381 {
382 double v1, v2, v;
383 v1 = value_as_double (arg1);
384 v2 = value_as_double (arg2);
385 switch (op)
386 {
387 case BINOP_ADD:
388 v = v1 + v2;
389 break;
390
391 case BINOP_SUB:
392 v = v1 - v2;
393 break;
394
395 case BINOP_MUL:
396 v = v1 * v2;
397 break;
398
399 case BINOP_DIV:
400 v = v1 / v2;
401 break;
402
403 default:
404 error ("Integer-only operation on floating point number.");
405 }
406
407 val = allocate_value (builtin_type_double);
408 *(double *) VALUE_CONTENTS (val) = v;
409 }
410 else
411 /* Integral operations here. */
412 {
413 /* Should we promote to unsigned longest? */
414 if ((TYPE_UNSIGNED (VALUE_TYPE (arg1))
415 || TYPE_UNSIGNED (VALUE_TYPE (arg2)))
416 && (TYPE_LENGTH (VALUE_TYPE (arg1)) >= sizeof (unsigned LONGEST)
417 || TYPE_LENGTH (VALUE_TYPE (arg2)) >= sizeof (unsigned LONGEST)))
418 {
419 unsigned LONGEST v1, v2, v;
420 v1 = (unsigned LONGEST) value_as_long (arg1);
421 v2 = (unsigned LONGEST) value_as_long (arg2);
422
423 switch (op)
424 {
425 case BINOP_ADD:
426 v = v1 + v2;
427 break;
428
429 case BINOP_SUB:
430 v = v1 - v2;
431 break;
432
433 case BINOP_MUL:
434 v = v1 * v2;
435 break;
436
437 case BINOP_DIV:
438 v = v1 / v2;
439 break;
440
441 case BINOP_REM:
442 v = v1 % v2;
443 break;
444
445 case BINOP_LSH:
446 v = v1 << v2;
447 break;
448
449 case BINOP_RSH:
450 v = v1 >> v2;
451 break;
452
453 case BINOP_LOGAND:
454 v = v1 & v2;
455 break;
456
457 case BINOP_LOGIOR:
458 v = v1 | v2;
459 break;
460
461 case BINOP_LOGXOR:
462 v = v1 ^ v2;
463 break;
464
465 case BINOP_AND:
466 v = v1 && v2;
467 break;
468
469 case BINOP_OR:
470 v = v1 || v2;
471 break;
472
473 case BINOP_MIN:
474 v = v1 < v2 ? v1 : v2;
475 break;
476
477 case BINOP_MAX:
478 v = v1 > v2 ? v1 : v2;
479 break;
480
481 default:
482 error ("Invalid binary operation on numbers.");
483 }
484
485 val = allocate_value (BUILTIN_TYPE_UNSIGNED_LONGEST);
486 *(unsigned LONGEST *) VALUE_CONTENTS (val) = v;
487 }
488 else
489 {
490 LONGEST v1, v2, v;
491 v1 = value_as_long (arg1);
492 v2 = value_as_long (arg2);
493
494 switch (op)
495 {
496 case BINOP_ADD:
497 v = v1 + v2;
498 break;
499
500 case BINOP_SUB:
501 v = v1 - v2;
502 break;
503
504 case BINOP_MUL:
505 v = v1 * v2;
506 break;
507
508 case BINOP_DIV:
509 v = v1 / v2;
510 break;
511
512 case BINOP_REM:
513 v = v1 % v2;
514 break;
515
516 case BINOP_LSH:
517 v = v1 << v2;
518 break;
519
520 case BINOP_RSH:
521 v = v1 >> v2;
522 break;
523
524 case BINOP_LOGAND:
525 v = v1 & v2;
526 break;
527
528 case BINOP_LOGIOR:
529 v = v1 | v2;
530 break;
531
532 case BINOP_LOGXOR:
533 v = v1 ^ v2;
534 break;
535
536 case BINOP_AND:
537 v = v1 && v2;
538 break;
539
540 case BINOP_OR:
541 v = v1 || v2;
542 break;
543
544 case BINOP_MIN:
545 v = v1 < v2 ? v1 : v2;
546 break;
547
548 case BINOP_MAX:
549 v = v1 > v2 ? v1 : v2;
550 break;
551
552 default:
553 error ("Invalid binary operation on numbers.");
554 }
555
556 val = allocate_value (BUILTIN_TYPE_LONGEST);
557 *(LONGEST *) VALUE_CONTENTS (val) = v;
558 }
559 }
560
561 return val;
562}
563\f
564/* Simulate the C operator ! -- return 1 if ARG1 contains zeros. */
565
566int
567value_zerop (arg1)
568 value arg1;
569{
570 register int len;
571 register char *p;
572
573 COERCE_ARRAY (arg1);
574
575 len = TYPE_LENGTH (VALUE_TYPE (arg1));
576 p = VALUE_CONTENTS (arg1);
577
578 while (--len >= 0)
579 {
580 if (*p++)
581 break;
582 }
583
584 return len < 0;
585}
586
587/* Simulate the C operator == by returning a 1
588 iff ARG1 and ARG2 have equal contents. */
589
590int
591value_equal (arg1, arg2)
592 register value arg1, arg2;
593
594{
595 register int len;
596 register char *p1, *p2;
597 enum type_code code1;
598 enum type_code code2;
599
600 COERCE_ARRAY (arg1);
601 COERCE_ARRAY (arg2);
602
603 code1 = TYPE_CODE (VALUE_TYPE (arg1));
604 code2 = TYPE_CODE (VALUE_TYPE (arg2));
605
606 if (code1 == TYPE_CODE_INT && code2 == TYPE_CODE_INT)
607 return value_as_long (arg1) == value_as_long (arg2);
608 else if ((code1 == TYPE_CODE_FLT || code1 == TYPE_CODE_INT)
609 && (code2 == TYPE_CODE_FLT || code2 == TYPE_CODE_INT))
610 return value_as_double (arg1) == value_as_double (arg2);
611 else if ((code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_INT)
612 || (code2 == TYPE_CODE_PTR && code1 == TYPE_CODE_INT))
613 return (char *) value_as_long (arg1) == (char *) value_as_long (arg2);
614 else if (code1 == code2
615 && ((len = TYPE_LENGTH (VALUE_TYPE (arg1)))
616 == TYPE_LENGTH (VALUE_TYPE (arg2))))
617 {
618 p1 = VALUE_CONTENTS (arg1);
619 p2 = VALUE_CONTENTS (arg2);
620 while (--len >= 0)
621 {
622 if (*p1++ != *p2++)
623 break;
624 }
625 return len < 0;
626 }
627 else
628 error ("Invalid type combination in equality test.");
629}
630
631/* Simulate the C operator < by returning 1
632 iff ARG1's contents are less than ARG2's. */
633
634int
635value_less (arg1, arg2)
636 register value arg1, arg2;
637{
638 register enum type_code code1;
639 register enum type_code code2;
640
641 COERCE_ARRAY (arg1);
642 COERCE_ARRAY (arg2);
643
644 code1 = TYPE_CODE (VALUE_TYPE (arg1));
645 code2 = TYPE_CODE (VALUE_TYPE (arg2));
646
647 if (code1 == TYPE_CODE_INT && code2 == TYPE_CODE_INT)
648 return value_as_long (arg1) < value_as_long (arg2);
649 else if ((code1 == TYPE_CODE_FLT || code1 == TYPE_CODE_INT)
650 && (code2 == TYPE_CODE_FLT || code2 == TYPE_CODE_INT))
651 return value_as_double (arg1) < value_as_double (arg2);
652 else if ((code1 == TYPE_CODE_PTR || code1 == TYPE_CODE_INT)
653 && (code2 == TYPE_CODE_PTR || code2 == TYPE_CODE_INT))
654 return (char *) value_as_long (arg1) < (char *) value_as_long (arg2);
655 else
656 error ("Invalid type combination in ordering comparison.");
657}
658\f
659/* The unary operators - and ~. Both free the argument ARG1. */
660
661value
662value_neg (arg1)
663 register value arg1;
664{
665 register struct type *type;
666
667 COERCE_ENUM (arg1);
668
669 type = VALUE_TYPE (arg1);
670
671 if (TYPE_CODE (type) == TYPE_CODE_FLT)
672 return value_from_double (type, - value_as_double (arg1));
673 else if (TYPE_CODE (type) == TYPE_CODE_INT)
674 return value_from_long (type, - value_as_long (arg1));
675 else
676 error ("Argument to negate operation not a number.");
677}
678
679value
680value_lognot (arg1)
681 register value arg1;
682{
683 COERCE_ENUM (arg1);
684
685 if (TYPE_CODE (VALUE_TYPE (arg1)) != TYPE_CODE_INT)
686 error ("Argument to complement operation not an integer.");
687
688 return value_from_long (VALUE_TYPE (arg1), ~ value_as_long (arg1));
689}
690\f