date and time created 82/12/15 04:08:53 by linton
[unix-history] / usr / src / old / dbx / process.c
CommitLineData
9a3bab7a
ML
1/* Copyright (c) 1982 Regents of the University of California */
2
3static char sccsid[] = "@(#)@(#)process.c 1.1 %G%";
4
5/*
6 * Process management.
7 *
8 * This module contains the routines to manage the execution and
9 * tracing of the debuggee process.
10 */
11
12#include "defs.h"
13#include "process.h"
14#include "machine.h"
15#include "events.h"
16#include "tree.h"
17#include "operators.h"
18#include "source.h"
19#include "object.h"
20#include "mappings.h"
21#include "main.h"
22#include "coredump.h"
23#include <signal.h>
24#include <errno.h>
25#include <sys/param.h>
26#include <sys/reg.h>
27#include <sys/stat.h>
28
29#ifndef public
30
31typedef struct Process *Process;
32
33Process process;
34
35#include "machine.h"
36
37#endif
38
39#define NOTSTARTED 1
40#define STOPPED 0177
41#define FINISHED 0
42
43/*
44 * Cache-ing of instruction segment is done to reduce the number
45 * of system calls.
46 */
47
48#define CSIZE 1003 /* size of instruction cache */
49
50typedef struct {
51 Word addr;
52 Word val;
53} CacheWord;
54
55/*
56 * This structure holds the information we need from the user structure.
57 */
58
59struct Process {
60 int pid; /* process being traced */
61 int mask; /* ps */
62 Word reg[NREG]; /* process's registers */
63 Word oreg[NREG]; /* registers when process last stopped */
64 short status; /* either STOPPED or FINISHED */
65 short signo; /* signal that stopped process */
66 int exitval; /* return value from exit() */
67 long sigset; /* bit array of traced signals */
68 CacheWord word[CSIZE]; /* text segment cache */
69};
70
71/*
72 * These definitions are for the arguments to "pio".
73 */
74
75typedef enum { PREAD, PWRITE } PioOp;
76typedef enum { TEXTSEG, DATASEG } PioSeg;
77
78private struct Process pbuf;
79
80#define MAXNCMDARGS 10 /* maximum number of arguments to RUN */
81
82private Boolean just_started;
83private int argc;
84private String argv[MAXNCMDARGS];
85private String infile, outfile;
86
87/*
88 * Initialize process information.
89 */
90
91public process_init()
92{
93 register Integer i;
94 Char buf[10];
95
96 process = &pbuf;
97 process->status = (coredump) ? STOPPED : NOTSTARTED;
98 setsigtrace();
99 for (i = 0; i < NREG; i++) {
100 sprintf(buf, "$r%d", i);
101 defregname(identname(buf, false), i);
102 }
103 defregname(identname("$ap", true), ARGP);
104 defregname(identname("$fp", true), FRP);
105 defregname(identname("$sp", true), STKP);
106 defregname(identname("$pc", true), PROGCTR);
107 if (coredump) {
108 coredump_readin(process->mask, process->reg, process->signo);
109 }
110}
111
112/*
113 * Routines to get at process information from outside this module.
114 */
115
116public Word reg(n)
117Integer n;
118{
119 register Word w;
120
121 if (n == NREG) {
122 w = process->mask;
123 } else {
124 w = process->reg[n];
125 }
126 return w;
127}
128
129public setreg(n, w)
130Integer n;
131Word w;
132{
133 process->reg[n] = w;
134}
135
136/*
137 * Begin execution.
138 *
139 * We set a breakpoint at the end of the code so that the
140 * process data doesn't disappear after the program terminates.
141 */
142
143private Boolean remade();
144
145public start(argv, infile, outfile)
146String argv[];
147String infile, outfile;
148{
149 String pargv[4];
150 Node cond;
151
152 if (coredump) {
153 coredump = false;
154 fclose(corefile);
155 coredump_close();
156 }
157 if (argv == nil) {
158 argv = pargv;
159 pargv[0] = objname;
160 pargv[1] = nil;
161 } else {
162 argv[argc] = nil;
163 }
164 if (remade(objname)) {
165 reinit(argv, infile, outfile);
166 }
167 pstart(process, argv, infile, outfile);
168 if (process->status == STOPPED) {
169 pc = 0;
170 curfunc = program;
171 if (objsize != 0) {
172 cond = build(O_EQ, build(O_SYM, pcsym), build(O_LCON, lastaddr()));
173 event_once(cond, buildcmdlist(build(O_ENDX)));
174 }
175 }
176}
177
178/*
179 * Check to see if the object file has changed since the symbolic
180 * information last was read.
181 */
182
183private time_t modtime;
184
185private Boolean remade(filename)
186String filename;
187{
188 struct stat s;
189 Boolean b;
190
191 stat(filename, &s);
192 b = (Boolean) (modtime != 0 and modtime < s.st_mtime);
193 modtime = s.st_mtime;
194 return b;
195}
196
197/*
198 * Set up what signals we want to trace.
199 */
200
201private setsigtrace()
202{
203 register Integer i;
204 register Process p;
205
206 p = process;
207 for (i = 1; i <= NSIG; i++) {
208 psigtrace(p, i, true);
209 }
210 psigtrace(p, SIGHUP, false);
211 psigtrace(p, SIGKILL, false);
212 psigtrace(p, SIGALRM, false);
213 psigtrace(p, SIGTSTP, false);
214 psigtrace(p, SIGCONT, false);
215 psigtrace(p, SIGCHLD, false);
216}
217
218/*
219 * Initialize the argument list.
220 */
221
222public arginit()
223{
224 infile = nil;
225 outfile = nil;
226 argv[0] = objname;
227 argc = 1;
228}
229
230/*
231 * Add an argument to the list for the debuggee.
232 */
233
234public newarg(arg)
235String arg;
236{
237 if (argc >= MAXNCMDARGS) {
238 error("too many arguments");
239 }
240 argv[argc++] = arg;
241}
242
243/*
244 * Set the standard input for the debuggee.
245 */
246
247public inarg(filename)
248String filename;
249{
250 if (infile != nil) {
251 error("multiple input redirects");
252 }
253 infile = filename;
254}
255
256/*
257 * Set the standard output for the debuggee.
258 * Probably should check to avoid overwriting an existing file.
259 */
260
261public outarg(filename)
262String filename;
263{
264 if (outfile != nil) {
265 error("multiple output redirect");
266 }
267 outfile = filename;
268}
269
270/*
271 * Start debuggee executing.
272 */
273
274public run()
275{
276 process->status = STOPPED;
277 fixbps();
278 curline = 0;
279 start(argv, infile, outfile);
280 just_started = true;
281 isstopped = false;
282 cont();
283}
284
285/*
286 * Continue execution wherever we left off.
287 *
288 * Note that this routine never returns. Eventually bpact() will fail
289 * and we'll call printstatus or step will call it.
290 */
291
292typedef int Intfunc();
293
294private Intfunc *dbintr;
295private intr();
296
297#define succeeds == true
298#define fails == false
299
300public cont()
301{
302 dbintr = signal(SIGINT, intr);
303 if (just_started) {
304 just_started = false;
305 } else {
306 if (not isstopped) {
307 error("can't continue execution");
308 }
309 isstopped = false;
310 step();
311 }
312 for (;;) {
313 if (single_stepping) {
314 printnews();
315 } else {
316 setallbps();
317 resume();
318 unsetallbps();
319 if (bpact() fails) {
320 printstatus();
321 }
322 }
323 step();
324 }
325 /* NOTREACHED */
326}
327
328/*
329 * This routine is called if we get an interrupt while "running" px
330 * but actually in the debugger. Could happen, for example, while
331 * processing breakpoints.
332 *
333 * We basically just want to keep going; the assumption is
334 * that when the process resumes it will get the interrupt
335 * which will then be handled.
336 */
337
338private intr()
339{
340 signal(SIGINT, intr);
341}
342
343public fixintr()
344{
345 signal(SIGINT, dbintr);
346}
347
348/*
349 * Resume execution.
350 */
351
352public resume()
353{
354 register Process p;
355
356 p = process;
357 if (traceexec) {
358 printf("execution resumes at pc 0x%x\n", process->reg[PROGCTR]);
359 fflush(stdout);
360 }
361 pcont(p);
362 pc = process->reg[PROGCTR];
363 if (traceexec) {
364 printf("execution stops at pc 0x%x on sig %d\n",
365 process->reg[PROGCTR], p->signo);
366 fflush(stdout);
367 }
368}
369
370/*
371 * Continue execution up to the next source line.
372 *
373 * There are two ways to define the next source line depending on what
374 * is desired when a procedure or function call is encountered. Step
375 * stops at the beginning of the procedure or call; next skips over it.
376 */
377
378/*
379 * Stepc is what is called when the step command is given.
380 * It has to play with the "isstopped" information.
381 */
382
383public stepc()
384{
385 if (not isstopped) {
386 error("can't continue execution");
387 }
388 isstopped = false;
389 dostep(false);
390 isstopped = true;
391}
392
393public next()
394{
395 if (not isstopped) {
396 error("can't continue execution");
397 }
398 isstopped = false;
399 dostep(true);
400 isstopped = true;
401}
402
403public step()
404{
405 dostep(false);
406}
407
408/*
409 * Resume execution up to the given address. It is assumed that
410 * no breakpoints exist between the current address and the one
411 * we're stepping to. This saves us from setting all the breakpoints.
412 */
413
414public stepto(addr)
415Address addr;
416{
417 setbp(addr);
418 resume();
419 unsetbp(addr);
420 if (not isbperr()) {
421 printstatus();
422 }
423}
424
425/*
426 * Print the status of the process.
427 * This routine does not return.
428 */
429
430public printstatus()
431{
432 curfunc = whatblock(pc);
433 if (process->signo == SIGINT) {
434 isstopped = true;
435 printerror();
436 }
437 if (isbperr() and isstopped) {
438 printf("stopped ");
439 getsrcpos();
440 if (curline > 0) {
441 printsrcpos();
442 putchar('\n');
443 printlines(curline, curline);
444 } else {
445 printf("in ");
446 printwhich(stdout, curfunc);
447 printf(" at 0x%x\n", pc);
448 printinst(pc, pc);
449 }
450 erecover();
451 } else {
452 fixbps();
453 fixintr();
454 if (process->status == FINISHED) {
455 exit(0);
456 } else {
457 isstopped = true;
458 printerror();
459 }
460 }
461}
462
463/*
464 * Some functions for testing the state of the process.
465 */
466
467public Boolean notstarted(p)
468Process p;
469{
470 return (Boolean) (p->status == NOTSTARTED);
471}
472
473public Boolean isfinished(p)
474Process p;
475{
476 return (Boolean) (p->status == FINISHED);
477}
478
479/*
480 * Return the signal number which stopped the process.
481 */
482
483public Integer errnum(p)
484Process p;
485{
486 return p->signo;
487}
488
489/*
490 * Return the termination code of the process.
491 */
492
493public Integer exitcode(p)
494Process p;
495{
496 return p->exitval;
497}
498
499/*
500 * These routines are used to access the debuggee process from
501 * outside this module.
502 *
503 * They invoke "pio" which eventually leads to a call to "ptrace".
504 * The system generates an I/O error when a ptrace fails, we catch
505 * that here and assume its due to a misguided address.
506 */
507
508extern Intfunc *onsyserr();
509
510private badaddr;
511private rwerr();
512
513/*
514 * Read from the process' instruction area.
515 */
516
517public iread(buff, addr, nbytes)
518char *buff;
519Address addr;
520int nbytes;
521{
522 Intfunc *f;
523
524 f = onsyserr(EIO, rwerr);
525 badaddr = addr;
526 if (coredump) {
527 coredump_readtext(buff, addr, nbytes);
528 } else {
529 pio(process, PREAD, TEXTSEG, buff, addr, nbytes);
530 }
531 onsyserr(EIO, f);
532}
533
534/*
535 * Write to the process' instruction area, usually in order to set
536 * or unset a breakpoint.
537 */
538
539public iwrite(buff, addr, nbytes)
540char *buff;
541Address addr;
542int nbytes;
543{
544 Intfunc *f;
545
546 if (coredump) {
547 error("no process to write to");
548 }
549 f = onsyserr(EIO, rwerr);
550 badaddr = addr;
551 pio(process, PWRITE, TEXTSEG, buff, addr, nbytes);
552 onsyserr(EIO, f);
553}
554
555/*
556 * Read for the process' data area.
557 */
558
559public dread(buff, addr, nbytes)
560char *buff;
561Address addr;
562int nbytes;
563{
564 Intfunc *f;
565
566 f = onsyserr(EIO, rwerr);
567 badaddr = addr;
568 if (coredump) {
569 coredump_readdata(buff, addr, nbytes);
570 } else {
571 pio(process, PREAD, DATASEG, buff, addr, nbytes);
572 }
573 onsyserr(EIO, f);
574}
575
576/*
577 * Write to the process' data area.
578 */
579
580public dwrite(buff, addr, nbytes)
581char *buff;
582Address addr;
583int nbytes;
584{
585 Intfunc *f;
586
587 if (coredump) {
588 error("no process to write to");
589 }
590 f = onsyserr(EIO, rwerr);
591 badaddr = addr;
592 pio(process, PWRITE, DATASEG, buff, addr, nbytes);
593 onsyserr(EIO, f);
594}
595
596/*
597 * Error handler.
598 */
599
600private rwerr()
601{
602 error("bad read/write process address 0x%x", badaddr);
603}
604
605/*
606 * Ptrace interface.
607 */
608
609/*
610 * This magic macro enables us to look at the process' registers
611 * in its user structure. Very gross.
612 */
613
614#define regloc(reg) (ctob(UPAGES) + ( sizeof(int) * (reg) ))
615
616#define WMASK (~(sizeof(Word) - 1))
617#define cachehash(addr) ((unsigned) ((addr >> 2) % CSIZE))
618
619#define FIRSTSIG SIGINT
620#define LASTSIG SIGQUIT
621#define ischild(pid) ((pid) == 0)
622#define traceme() ptrace(0, 0, 0, 0)
623#define setrep(n) (1 << ((n)-1))
624#define istraced(p) (p->sigset&setrep(p->signo))
625
626/*
627 * Ptrace options (specified in first argument).
628 */
629
630#define UREAD 3 /* read from process's user structure */
631#define UWRITE 6 /* write to process's user structure */
632#define IREAD 1 /* read from process's instruction space */
633#define IWRITE 4 /* write to process's instruction space */
634#define DREAD 2 /* read from process's data space */
635#define DWRITE 5 /* write to process's data space */
636#define CONT 7 /* continue stopped process */
637#define SSTEP 9 /* continue for approximately one instruction */
638#define PKILL 8 /* terminate the process */
639
640/*
641 * Start up a new process by forking and exec-ing the
642 * given argument list, returning when the process is loaded
643 * and ready to execute. The PROCESS information (pointed to
644 * by the first argument) is appropriately filled.
645 *
646 * If the given PROCESS structure is associated with an already running
647 * process, we terminate it.
648 */
649
650/* VARARGS2 */
651private pstart(p, argv, infile, outfile)
652Process p;
653String argv[];
654String infile;
655String outfile;
656{
657 int status;
658 File in, out;
659
660 if (p->pid != 0) { /* child already running? */
661 ptrace(PKILL, p->pid, 0, 0); /* ... kill it! */
662 }
663 psigtrace(p, SIGTRAP, true);
664 if ((p->pid = fork()) == -1) {
665 panic("can't fork");
666 }
667 if (ischild(p->pid)) {
668 traceme();
669 if (infile != nil) {
670 in = fopen(infile, "r");
671 if (in == nil) {
672 printf("can't read %s\n", infile);
673 exit(1);
674 }
675 fswap(0, fileno(in));
676 }
677 if (outfile != nil) {
678 out = fopen(outfile, "w");
679 if (out == nil) {
680 printf("can't write %s\n", outfile);
681 exit(1);
682 }
683 fswap(1, fileno(out));
684 }
685 execvp(argv[0], argv);
686 panic("can't exec %s", argv[0]);
687 }
688 pwait(p->pid, &status);
689 getinfo(p, status);
690 if (p->status != STOPPED) {
691 error("program could not begin execution");
692 }
693}
694
695/*
696 * Continue a stopped process. The argument points to a PROCESS structure.
697 * Before the process is restarted it's user area is modified according to
698 * the values in the structure. When this routine finishes,
699 * the structure has the new values from the process's user area.
700 *
701 * Pcont terminates when the process stops with a signal pending that
702 * is being traced (via psigtrace), or when the process terminates.
703 */
704
705private pcont(p)
706Process p;
707{
708 int status;
709
710 if (p->pid == 0) {
711 error("program not active");
712 }
713 do {
714 setinfo(p);
715 sigs_off();
716 if (ptrace(CONT, p->pid, p->reg[PROGCTR], p->signo) < 0) {
717 panic("can't continue process");
718 }
719 pwait(p->pid, &status);
720 sigs_on();
721 getinfo(p, status);
722 } while (p->status == STOPPED and not istraced(p));
723}
724
725/*
726 * Single step as best ptrace can.
727 */
728
729public pstep(p)
730Process p;
731{
732 int status;
733
734 setinfo(p);
735 sigs_off();
736 ptrace(SSTEP, p->pid, p->reg[PROGCTR], p->signo);
737 pwait(p->pid, &status);
738 sigs_on();
739 getinfo(p, status);
740}
741
742/*
743 * Return from execution when the given signal is pending.
744 */
745
746public psigtrace(p, sig, sw)
747Process p;
748int sig;
749Boolean sw;
750{
751 if (sw) {
752 p->sigset |= setrep(sig);
753 } else {
754 p->sigset &= ~setrep(sig);
755 }
756}
757
758/*
759 * Don't catch any signals.
760 * Particularly useful when letting a process finish uninhibited.
761 */
762
763public unsetsigtraces(p)
764Process p;
765{
766 p->sigset = 0;
767}
768
769/*
770 * Turn off attention to signals not being caught.
771 */
772
773private Intfunc *sigfunc[NSIG];
774
775private sigs_off()
776{
777 register int i;
778
779 for (i = FIRSTSIG; i < LASTSIG; i++) {
780 if (i != SIGKILL) {
781 sigfunc[i] = signal(i, SIG_IGN);
782 }
783 }
784}
785
786/*
787 * Turn back on attention to signals.
788 */
789
790private sigs_on()
791{
792 register int i;
793
794 for (i = FIRSTSIG; i < LASTSIG; i++) {
795 if (i != SIGKILL) {
796 signal(i, sigfunc[i]);
797 }
798 }
799}
800
801/*
802 * Get process information from user area.
803 */
804
805private int rloc[] ={
806 R0, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, AP, FP, SP, PC
807};
808
809private getinfo(p, status)
810register Process p;
811register int status;
812{
813 register int i;
814
815 p->signo = (status&0177);
816 p->exitval = ((status >> 8)&0377);
817 if (p->signo != STOPPED) {
818 p->status = FINISHED;
819 } else {
820 p->status = p->signo;
821 p->signo = p->exitval;
822 p->exitval = 0;
823 p->mask = ptrace(UREAD, p->pid, regloc(PS), 0);
824 for (i = 0; i < NREG; i++) {
825 p->reg[i] = ptrace(UREAD, p->pid, regloc(rloc[i]), 0);
826 p->oreg[i] = p->reg[i];
827 }
828 }
829}
830
831/*
832 * Set process's user area information from given process structure.
833 */
834
835private setinfo(p)
836register Process p;
837{
838 register int i;
839 register int r;
840
841 if (istraced(p)) {
842 p->signo = 0;
843 }
844 for (i = 0; i < NREG; i++) {
845 if ((r = p->reg[i]) != p->oreg[i]) {
846 ptrace(UWRITE, p->pid, regloc(rloc[i]), r);
847 }
848 }
849}
850
851/*
852 * Structure for reading and writing by words, but dealing with bytes.
853 */
854
855typedef union {
856 Word pword;
857 Byte pbyte[sizeof(Word)];
858} Pword;
859
860/*
861 * Read (write) from (to) the process' address space.
862 * We must deal with ptrace's inability to look anywhere other
863 * than at a word boundary.
864 */
865
866private Word fetch();
867private store();
868
869private pio(p, op, seg, buff, addr, nbytes)
870Process p;
871PioOp op;
872PioSeg seg;
873char *buff;
874Address addr;
875int nbytes;
876{
877 register int i;
878 register Address newaddr;
879 register char *cp;
880 char *bufend;
881 Pword w;
882 Address wordaddr;
883 int byteoff;
884
885 if (p->status != STOPPED) {
886 error("program is not active");
887 }
888 cp = buff;
889 newaddr = addr;
890 wordaddr = (newaddr&WMASK);
891 if (wordaddr != newaddr) {
892 w.pword = fetch(p, seg, wordaddr);
893 for (i = newaddr - wordaddr; i < sizeof(Word) and nbytes > 0; i++) {
894 if (op == PREAD) {
895 *cp++ = w.pbyte[i];
896 } else {
897 w.pbyte[i] = *cp++;
898 }
899 nbytes--;
900 }
901 if (op == PWRITE) {
902 store(p, seg, wordaddr, w.pword);
903 }
904 newaddr = wordaddr + sizeof(Word);
905 }
906 byteoff = (nbytes&(~WMASK));
907 nbytes -= byteoff;
908 bufend = cp + nbytes;
909 while (cp < bufend) {
910 if (op == PREAD) {
911 *((Word *) cp) = fetch(p, seg, newaddr);
912 } else {
913 store(p, seg, newaddr, *((Word *) cp));
914 }
915 cp += sizeof(Word);
916 newaddr += sizeof(Word);
917 }
918 if (byteoff > 0) {
919 w.pword = fetch(p, seg, newaddr);
920 for (i = 0; i < byteoff; i++) {
921 if (op == PREAD) {
922 *cp++ = w.pbyte[i];
923 } else {
924 w.pbyte[i] = *cp++;
925 }
926 }
927 if (op == PWRITE) {
928 store(p, seg, newaddr, w.pword);
929 }
930 }
931}
932
933/*
934 * Get a word from a process at the given address.
935 * The address is assumed to be on a word boundary.
936 *
937 * A simple cache scheme is used to avoid redundant ptrace calls
938 * to the instruction space since it is assumed to be pure.
939 *
940 * It is necessary to use a write-through scheme so that
941 * breakpoints right next to each other don't interfere.
942 */
943
944private Integer nfetchs, nreads, nwrites;
945
946private Word fetch(p, seg, addr)
947Process p;
948PioSeg seg;
949register int addr;
950{
951 register CacheWord *wp;
952 register Word w;
953
954 switch (seg) {
955 case TEXTSEG:
956 ++nfetchs;
957 wp = &p->word[cachehash(addr)];
958 if (addr == 0 or wp->addr != addr) {
959 ++nreads;
960 w = ptrace(IREAD, p->pid, addr, 0);
961 wp->addr = addr;
962 wp->val = w;
963 } else {
964 w = wp->val;
965 }
966 break;
967
968 case DATASEG:
969 w = ptrace(DREAD, p->pid, addr, 0);
970 break;
971
972 default:
973 panic("fetch: bad seg %d", seg);
974 /* NOTREACHED */
975 }
976 return w;
977}
978
979/*
980 * Put a word into the process' address space at the given address.
981 * The address is assumed to be on a word boundary.
982 */
983
984private store(p, seg, addr, data)
985Process p;
986PioSeg seg;
987int addr;
988Word data;
989{
990 register CacheWord *wp;
991
992 switch (seg) {
993 case TEXTSEG:
994 ++nwrites;
995 wp = &p->word[cachehash(addr)];
996 wp->addr = addr;
997 wp->val = data;
998 ptrace(IWRITE, p->pid, addr, data);
999 break;
1000
1001 case DATASEG:
1002 ptrace(DWRITE, p->pid, addr, data);
1003 break;
1004
1005 default:
1006 panic("store: bad seg %d", seg);
1007 /* NOTREACHED */
1008 }
1009}
1010
1011public printptraceinfo()
1012{
1013 printf("%d fetchs, %d reads, %d writes\n", nfetchs, nreads, nwrites);
1014}
1015
1016/*
1017 * Swap file numbers so as to redirect standard input and output.
1018 */
1019
1020private fswap(oldfd, newfd)
1021int oldfd;
1022int newfd;
1023{
1024 if (oldfd != newfd) {
1025 close(oldfd);
1026 dup(newfd);
1027 close(newfd);
1028 }
1029}