BSD 4_4_Lite2 development
[unix-history] / usr / src / contrib / gcc-2.3.3 / stupid.c
CommitLineData
eb607db8
C
1/* Dummy data flow analysis for GNU compiler in nonoptimizing mode.
2 Copyright (C) 1987, 1991 Free Software Foundation, Inc.
3
4This file is part of GNU CC.
5
6GNU CC is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 2, or (at your option)
9any later version.
10
11GNU CC is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with GNU CC; see the file COPYING. If not, write to
18the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20
21/* This file performs stupid register allocation, which is used
22 when cc1 gets the -noreg switch (which is when cc does not get -O).
23
24 Stupid register allocation goes in place of the the flow_analysis,
25 local_alloc and global_alloc passes. combine_instructions cannot
26 be done with stupid allocation because the data flow info that it needs
27 is not computed here.
28
29 In stupid allocation, the only user-defined variables that can
30 go in registers are those declared "register". They are assumed
31 to have a life span equal to their scope. Other user variables
32 are given stack slots in the rtl-generation pass and are not
33 represented as pseudo regs. A compiler-generated temporary
34 is assumed to live from its first mention to its last mention.
35
36 Since each pseudo-reg's life span is just an interval, it can be
37 represented as a pair of numbers, each of which identifies an insn by
38 its position in the function (number of insns before it). The first
39 thing done for stupid allocation is to compute such a number for each
40 insn. It is called the suid. Then the life-interval of each
41 pseudo reg is computed. Then the pseudo regs are ordered by priority
42 and assigned hard regs in priority order. */
43
44#include <stdio.h>
45#include "config.h"
46#include "rtl.h"
47#include "hard-reg-set.h"
48#include "regs.h"
49#include "flags.h"
50\f
51/* Vector mapping INSN_UIDs to suids.
52 The suids are like uids but increase monotonically always.
53 We use them to see whether a subroutine call came
54 between a variable's birth and its death. */
55
56static int *uid_suid;
57
58/* Get the suid of an insn. */
59
60#define INSN_SUID(INSN) (uid_suid[INSN_UID (INSN)])
61
62/* Record the suid of the last CALL_INSN
63 so we can tell whether a pseudo reg crosses any calls. */
64
65static int last_call_suid;
66
67/* Record the suid of the last JUMP_INSN
68 so we can tell whether a pseudo reg crosses any jumps. */
69
70static int last_jump_suid;
71
72/* Record the suid of the last CODE_LABEL
73 so we can tell whether a pseudo reg crosses any labels. */
74
75static int last_label_suid;
76
77/* Element N is suid of insn where life span of pseudo reg N ends.
78 Element is 0 if register N has not been seen yet on backward scan. */
79
80static int *reg_where_dead;
81
82/* Element N is suid of insn where life span of pseudo reg N begins. */
83
84static int *reg_where_born;
85
86/* Element N is 1 if pseudo reg N lives across labels or jumps. */
87
88static char *reg_crosses_blocks;
89
90/* Numbers of pseudo-regs to be allocated, highest priority first. */
91
92static int *reg_order;
93
94/* Indexed by reg number (hard or pseudo), nonzero if register is live
95 at the current point in the instruction stream. */
96
97static char *regs_live;
98
99/* Indexed by insn's suid, the set of hard regs live after that insn. */
100
101static HARD_REG_SET *after_insn_hard_regs;
102
103/* Record that hard reg REGNO is live after insn INSN. */
104
105#define MARK_LIVE_AFTER(INSN,REGNO) \
106 SET_HARD_REG_BIT (after_insn_hard_regs[INSN_SUID (INSN)], (REGNO))
107
108static void stupid_mark_refs ();
109static int stupid_reg_compare ();
110static int stupid_find_reg ();
111\f
112/* Stupid life analysis is for the case where only variables declared
113 `register' go in registers. For this case, we mark all
114 pseudo-registers that belong to register variables as
115 dying in the last instruction of the function, and all other
116 pseudo registers as dying in the last place they are referenced.
117 Hard registers are marked as dying in the last reference before
118 the end or before each store into them. */
119
120void
121stupid_life_analysis (f, nregs, file)
122 rtx f;
123 int nregs;
124 FILE *file;
125{
126 register int i;
127 register rtx last, insn;
128 int max_uid;
129
130 bzero (regs_ever_live, sizeof regs_ever_live);
131
132 regs_live = (char *) alloca (nregs);
133
134 /* First find the last real insn, and count the number of insns,
135 and assign insns their suids. */
136
137 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
138 if (INSN_UID (insn) > i)
139 i = INSN_UID (insn);
140
141 max_uid = i + 1;
142 uid_suid = (int *) alloca ((i + 1) * sizeof (int));
143
144 /* Compute the mapping from uids to suids.
145 Suids are numbers assigned to insns, like uids,
146 except that suids increase monotonically through the code. */
147
148 last = 0; /* In case of empty function body */
149 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
150 {
151 if (GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN
152 || GET_CODE (insn) == JUMP_INSN)
153 last = insn;
154 INSN_SUID (insn) = ++i;
155 }
156
157 last_call_suid = i + 1;
158 last_jump_suid = i + 1;
159 last_label_suid = i + 1;
160
161 max_regno = nregs;
162
163 /* Allocate tables to record info about regs. */
164
165 reg_where_dead = (int *) alloca (nregs * sizeof (int));
166 bzero (reg_where_dead, nregs * sizeof (int));
167
168 reg_where_born = (int *) alloca (nregs * sizeof (int));
169 bzero (reg_where_born, nregs * sizeof (int));
170
171 reg_crosses_blocks = (char *) alloca (nregs);
172 bzero (reg_crosses_blocks, nregs);
173
174 reg_order = (int *) alloca (nregs * sizeof (int));
175 bzero (reg_order, nregs * sizeof (int));
176
177 reg_renumber = (short *) oballoc (nregs * sizeof (short));
178 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
179 reg_renumber[i] = i;
180
181 for (i = FIRST_VIRTUAL_REGISTER; i <= LAST_VIRTUAL_REGISTER; i++)
182 reg_renumber[i] = -1;
183
184 after_insn_hard_regs = (HARD_REG_SET *) alloca (max_uid * sizeof (HARD_REG_SET));
185 bzero (after_insn_hard_regs, max_uid * sizeof (HARD_REG_SET));
186
187 /* Allocate and zero out many data structures
188 that will record the data from lifetime analysis. */
189
190 allocate_for_life_analysis ();
191
192 for (i = 0; i < max_regno; i++)
193 {
194 reg_n_deaths[i] = 1;
195 }
196
197 bzero (regs_live, nregs);
198
199 /* Find where each pseudo register is born and dies,
200 by scanning all insns from the end to the start
201 and noting all mentions of the registers.
202
203 Also find where each hard register is live
204 and record that info in after_insn_hard_regs.
205 regs_live[I] is 1 if hard reg I is live
206 at the current point in the scan. */
207
208 for (insn = last; insn; insn = PREV_INSN (insn))
209 {
210 register HARD_REG_SET *p = after_insn_hard_regs + INSN_SUID (insn);
211
212 /* Copy the info in regs_live
213 into the element of after_insn_hard_regs
214 for the current position in the rtl code. */
215
216 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
217 if (regs_live[i])
218 SET_HARD_REG_BIT (*p, i);
219
220 /* Mark all call-clobbered regs as live after each call insn
221 so that a pseudo whose life span includes this insn
222 will not go in one of them.
223 Then mark those regs as all dead for the continuing scan
224 of the insns before the call. */
225
226 if (GET_CODE (insn) == CALL_INSN)
227 {
228 last_call_suid = INSN_SUID (insn);
229 IOR_HARD_REG_SET (after_insn_hard_regs[last_call_suid],
230 call_used_reg_set);
231 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
232 if (call_used_regs[i])
233 regs_live[i] = 0;
234 }
235
236 if (GET_CODE (insn) == JUMP_INSN)
237 last_jump_suid = INSN_SUID (insn);
238
239 if (GET_CODE (insn) == CODE_LABEL)
240 last_label_suid = INSN_SUID (insn);
241
242 /* Update which hard regs are currently live
243 and also the birth and death suids of pseudo regs
244 based on the pattern of this insn. */
245
246 if (GET_CODE (insn) == INSN
247 || GET_CODE (insn) == CALL_INSN
248 || GET_CODE (insn) == JUMP_INSN)
249 {
250 stupid_mark_refs (PATTERN (insn), insn);
251 }
252 }
253
254 /* Now decide the order in which to allocate the pseudo registers. */
255
256 for (i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
257 reg_order[i] = i;
258
259 qsort (&reg_order[LAST_VIRTUAL_REGISTER + 1],
260 max_regno - LAST_VIRTUAL_REGISTER - 1, sizeof (int),
261 stupid_reg_compare);
262
263 /* Now, in that order, try to find hard registers for those pseudo regs. */
264
265 for (i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
266 {
267 register int r = reg_order[i];
268 enum reg_class class;
269
270 /* Some regnos disappear from the rtl. Ignore them to avoid crash. */
271 if (regno_reg_rtx[r] == 0)
272 continue;
273
274 /* Now find the best hard-register class for this pseudo register */
275 if (N_REG_CLASSES > 1)
276 {
277 class = reg_preferred_class (r);
278
279 reg_renumber[r] = stupid_find_reg (reg_n_calls_crossed[r], class,
280 PSEUDO_REGNO_MODE (r),
281 reg_where_born[r],
282 reg_where_dead[r],
283 reg_crosses_blocks[r]);
284 }
285 else
286 reg_renumber[r] = -1;
287
288 /* If no reg available in that class,
289 try any reg. */
290 if (reg_renumber[r] == -1)
291 reg_renumber[r] = stupid_find_reg (reg_n_calls_crossed[r],
292 GENERAL_REGS,
293 PSEUDO_REGNO_MODE (r),
294 reg_where_born[r],
295 reg_where_dead[r],
296 reg_crosses_blocks[r]);
297 }
298
299 if (file)
300 dump_flow_info (file);
301}
302
303/* Comparison function for qsort.
304 Returns -1 (1) if register *R1P is higher priority than *R2P. */
305
306static int
307stupid_reg_compare (r1p, r2p)
308 int *r1p, *r2p;
309{
310 register int r1 = *r1p, r2 = *r2p;
311 register int len1 = reg_where_dead[r1] - reg_where_born[r1];
312 register int len2 = reg_where_dead[r2] - reg_where_born[r2];
313 int tem;
314
315 tem = len2 - len1;
316 if (tem != 0) return tem;
317
318 tem = reg_n_refs[r1] - reg_n_refs[r2];
319 if (tem != 0) return tem;
320
321 /* If regs are equally good, sort by regno,
322 so that the results of qsort leave nothing to chance. */
323 return r1 - r2;
324}
325\f
326/* Find a block of SIZE words of hard registers in reg_class CLASS
327 that can hold a value of machine-mode MODE
328 (but actually we test only the first of the block for holding MODE)
329 currently free from after insn whose suid is BIRTH
330 through the insn whose suid is DEATH,
331 and return the number of the first of them.
332 Return -1 if such a block cannot be found.
333
334 If CALL_PRESERVED is nonzero, insist on registers preserved
335 over subroutine calls, and return -1 if cannot find such.
336 If CROSSES_BLOCKS is nonzero, reject registers for which
337 PRESERVE_DEATH_INFO_REGNO_P is true. */
338
339static int
340stupid_find_reg (call_preserved, class, mode,
341 born_insn, dead_insn, crosses_blocks)
342 int call_preserved;
343 enum reg_class class;
344 enum machine_mode mode;
345 int born_insn, dead_insn;
346 int crosses_blocks;
347{
348 register int i, ins;
349#ifdef HARD_REG_SET
350 register /* Declare them register if they are scalars. */
351#endif
352 HARD_REG_SET used, this_reg;
353#ifdef ELIMINABLE_REGS
354 static struct {int from, to; } eliminables[] = ELIMINABLE_REGS;
355#endif
356
357 COPY_HARD_REG_SET (used,
358 call_preserved ? call_used_reg_set : fixed_reg_set);
359
360#ifdef ELIMINABLE_REGS
361 for (i = 0; i < sizeof eliminables / sizeof eliminables[0]; i++)
362 SET_HARD_REG_BIT (used, eliminables[i].from);
363#else
364 SET_HARD_REG_BIT (used, FRAME_POINTER_REGNUM);
365#endif
366
367 for (ins = born_insn; ins < dead_insn; ins++)
368 IOR_HARD_REG_SET (used, after_insn_hard_regs[ins]);
369
370 IOR_COMPL_HARD_REG_SET (used, reg_class_contents[(int) class]);
371
372 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
373 {
374#ifdef REG_ALLOC_ORDER
375 int regno = reg_alloc_order[i];
376#else
377 int regno = i;
378#endif
379
380 /* If we need reasonable death info on this hard reg,
381 don't use it for anything whose life spans a label or a jump. */
382#ifdef PRESERVE_DEATH_INFO_REGNO_P
383 if (PRESERVE_DEATH_INFO_REGNO_P (regno)
384 && crosses_blocks)
385 continue;
386#endif
387 /* If a register has screwy overlap problems,
388 don't use it at all if not optimizing.
389 Actually this is only for the 387 stack register,
390 and it's because subsequent code won't work. */
391#ifdef OVERLAPPING_REGNO_P
392 if (OVERLAPPING_REGNO_P (regno))
393 continue;
394#endif
395
396 if (! TEST_HARD_REG_BIT (used, regno)
397 && HARD_REGNO_MODE_OK (regno, mode))
398 {
399 register int j;
400 register int size1 = HARD_REGNO_NREGS (regno, mode);
401 for (j = 1; j < size1 && ! TEST_HARD_REG_BIT (used, regno + j); j++);
402 if (j == size1)
403 {
404 CLEAR_HARD_REG_SET (this_reg);
405 while (--j >= 0)
406 SET_HARD_REG_BIT (this_reg, regno + j);
407 for (ins = born_insn; ins < dead_insn; ins++)
408 {
409 IOR_HARD_REG_SET (after_insn_hard_regs[ins], this_reg);
410 }
411 return regno;
412 }
413#ifndef REG_ALLOC_ORDER
414 i += j; /* Skip starting points we know will lose */
415#endif
416 }
417 }
418 return -1;
419}
420\f
421/* Walk X, noting all assignments and references to registers
422 and recording what they imply about life spans.
423 INSN is the current insn, supplied so we can find its suid. */
424
425static void
426stupid_mark_refs (x, insn)
427 rtx x, insn;
428{
429 register RTX_CODE code = GET_CODE (x);
430 register char *fmt;
431 register int regno, i;
432
433 if (code == SET || code == CLOBBER)
434 {
435 if (SET_DEST (x) != 0 && GET_CODE (SET_DEST (x)) == REG)
436 {
437 /* Register is being assigned. */
438 regno = REGNO (SET_DEST (x));
439
440 /* For hard regs, update the where-live info. */
441 if (regno < FIRST_PSEUDO_REGISTER)
442 {
443 register int j
444 = HARD_REGNO_NREGS (regno, GET_MODE (SET_DEST (x)));
445 while (--j >= 0)
446 {
447 regs_ever_live[regno+j] = 1;
448 regs_live[regno+j] = 0;
449 /* The following line is for unused outputs;
450 they do get stored even though never used again. */
451 MARK_LIVE_AFTER (insn, regno);
452 /* When a hard reg is clobbered, mark it in use
453 just before this insn, so it is live all through. */
454 if (code == CLOBBER && INSN_SUID (insn) > 0)
455 SET_HARD_REG_BIT (after_insn_hard_regs[INSN_SUID (insn) - 1],
456 regno);
457 }
458 }
459 /* For pseudo regs, record where born, where dead, number of
460 times used, and whether live across a call. */
461 else
462 {
463 /* Update the life-interval bounds of this pseudo reg. */
464
465 /* When a pseudo-reg is CLOBBERed, it is born just before
466 the clobbering insn. When setting, just after. */
467 int where_born = INSN_SUID (insn) - (code == CLOBBER);
468
469 reg_where_born[regno] = where_born;
470 /* The reg must live at least one insn even
471 in it is never again used--because it has to go
472 in SOME hard reg. Mark it as dying after the current
473 insn so that it will conflict with any other outputs of
474 this insn. */
475 if (reg_where_dead[regno] < where_born + 2)
476 reg_where_dead[regno] = where_born + 2;
477
478 /* Count the refs of this reg. */
479 reg_n_refs[regno]++;
480
481 if (last_call_suid < reg_where_dead[regno])
482 reg_n_calls_crossed[regno] += 1;
483 if (last_jump_suid < reg_where_dead[regno]
484 || last_label_suid < reg_where_dead[regno])
485 reg_crosses_blocks[regno] = 1;
486 }
487 }
488 /* Record references from the value being set,
489 or from addresses in the place being set if that's not a reg.
490 If setting a SUBREG, we treat the entire reg as *used*. */
491 if (code == SET)
492 {
493 stupid_mark_refs (SET_SRC (x), insn);
494 if (GET_CODE (SET_DEST (x)) != REG)
495 stupid_mark_refs (SET_DEST (x), insn);
496 }
497 return;
498 }
499
500 /* Register value being used, not set. */
501
502 if (code == REG)
503 {
504 regno = REGNO (x);
505 if (regno < FIRST_PSEUDO_REGISTER)
506 {
507 /* Hard reg: mark it live for continuing scan of previous insns. */
508 register int j = HARD_REGNO_NREGS (regno, GET_MODE (x));
509 while (--j >= 0)
510 {
511 regs_ever_live[regno+j] = 1;
512 regs_live[regno+j] = 1;
513 }
514 }
515 else
516 {
517 /* Pseudo reg: record first use, last use and number of uses. */
518
519 reg_where_born[regno] = INSN_SUID (insn);
520 reg_n_refs[regno]++;
521 if (regs_live[regno] == 0)
522 {
523 regs_live[regno] = 1;
524 reg_where_dead[regno] = INSN_SUID (insn);
525 }
526 }
527 return;
528 }
529
530 /* Recursive scan of all other rtx's. */
531
532 fmt = GET_RTX_FORMAT (code);
533 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
534 {
535 if (fmt[i] == 'e')
536 stupid_mark_refs (XEXP (x, i), insn);
537 if (fmt[i] == 'E')
538 {
539 register int j;
540 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
541 stupid_mark_refs (XVECEXP (x, i, j), insn);
542 }
543 }
544}