delete hardware speed, add machine byte order
[unix-history] / usr / src / sys / kern / kern_time.c
CommitLineData
da7c5cc6 1/*
9cb30eb6
KM
2 * Copyright (c) 1982, 1986, 1989 Regents of the University of California.
3 * All rights reserved.
da7c5cc6 4 *
dbf0c423 5 * %sccs.include.redist.c%
9cb30eb6 6 *
38a01dbe 7 * @(#)kern_time.c 7.20 (Berkeley) %G%
da7c5cc6 8 */
961945a8 9
38a01dbe
KB
10#include <sys/param.h>
11#include <sys/resourcevar.h>
12#include <sys/kernel.h>
13#include <sys/systm.h>
14#include <sys/proc.h>
15#include <sys/vnode.h>
b6f30e0a 16
fb1db32c 17
1edb1cf8
BJ
18/*
19 * Time of day and interval timer support.
aa261505
BJ
20 *
21 * These routines provide the kernel entry points to get and set
22 * the time-of-day and per-process interval timers. Subroutines
23 * here provide support for adding and subtracting timeval structures
24 * and decrementing interval timers, optionally reloading the interval
25 * timers when they expire.
1edb1cf8
BJ
26 */
27
9e97623a
CT
28struct gettimeofday_args {
29 struct timeval *tp;
30 struct timezone *tzp;
31};
fc4a5eac
MK
32/* ARGSUSED */
33gettimeofday(p, uap, retval)
34 struct proc *p;
9e97623a 35 register struct gettimeofday_args *uap;
fc4a5eac
MK
36 int *retval;
37{
b6f30e0a 38 struct timeval atv;
fc4a5eac 39 int error = 0;
4147b3f6 40
2b6a7e0f
KB
41 if (uap->tp) {
42 microtime(&atv);
fc4a5eac
MK
43 if (error = copyout((caddr_t)&atv, (caddr_t)uap->tp,
44 sizeof (atv)))
d9c2f47f 45 return (error);
2b6a7e0f
KB
46 }
47 if (uap->tzp)
fc4a5eac
MK
48 error = copyout((caddr_t)&tz, (caddr_t)uap->tzp,
49 sizeof (tz));
d9c2f47f 50 return (error);
4147b3f6
BJ
51}
52
9e97623a
CT
53struct settimeofday_args {
54 struct timeval *tv;
55 struct timezone *tzp;
56};
cd23cb29 57/* ARGSUSED */
fc4a5eac
MK
58settimeofday(p, uap, retval)
59 struct proc *p;
9e97623a 60 struct settimeofday_args *uap;
fc4a5eac
MK
61 int *retval;
62{
c3a8186d 63 struct timeval atv, delta;
b6f30e0a 64 struct timezone atz;
fc4a5eac 65 int error, s;
4147b3f6 66
8429d022 67 if (error = suser(p->p_ucred, &p->p_acflag))
d9c2f47f 68 return (error);
c3a8186d
CT
69 /* Verify all parameters before changing time. */
70 if (uap->tv &&
71 (error = copyin((caddr_t)uap->tv, (caddr_t)&atv, sizeof(atv))))
72 return (error);
73 if (uap->tzp &&
74 (error = copyin((caddr_t)uap->tzp, (caddr_t)&atz, sizeof(atz))))
75 return (error);
2b6a7e0f 76 if (uap->tv) {
9cb30eb6 77 /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
c3a8186d
CT
78 s = splclock();
79 /* nb. delta.tv_usec may be < 0, but this is OK here */
80 delta.tv_sec = atv.tv_sec - time.tv_sec;
81 delta.tv_usec = atv.tv_usec - time.tv_usec;
82 time = atv;
83 (void) splsoftclock();
84 timevaladd(&boottime, &delta);
85 timevalfix(&boottime);
86 timevaladd(&runtime, &delta);
87 timevalfix(&runtime);
88 LEASE_UPDATETIME(delta.tv_sec);
89 splx(s);
9cb30eb6 90 resettodr();
2b6a7e0f 91 }
c3a8186d 92 if (uap->tzp)
849cbd39 93 tz = atz;
c3a8186d 94 return (0);
4147b3f6
BJ
95}
96
4ca0d0d6
MK
97extern int tickadj; /* "standard" clock skew, us./tick */
98int tickdelta; /* current clock skew, us. per tick */
99long timedelta; /* unapplied time correction, us. */
100long bigadj = 1000000; /* use 10x skew above bigadj us. */
99e47f6b 101
9e97623a
CT
102struct adjtime_args {
103 struct timeval *delta;
104 struct timeval *olddelta;
105};
fc4a5eac
MK
106/* ARGSUSED */
107adjtime(p, uap, retval)
108 struct proc *p;
9e97623a 109 register struct adjtime_args *uap;
fc4a5eac
MK
110 int *retval;
111{
83619c4d
CT
112 struct timeval atv;
113 register long ndelta, ntickdelta, odelta;
fc4a5eac 114 int s, error;
99e47f6b 115
8429d022 116 if (error = suser(p->p_ucred, &p->p_acflag))
d9c2f47f 117 return (error);
fc4a5eac 118 if (error =
83619c4d 119 copyin((caddr_t)uap->delta, (caddr_t)&atv, sizeof(struct timeval)))
d9c2f47f 120 return (error);
83619c4d
CT
121
122 /*
123 * Compute the total correction and the rate at which to apply it.
124 * Round the adjustment down to a whole multiple of the per-tick
125 * delta, so that after some number of incremental changes in
126 * hardclock(), tickdelta will become zero, lest the correction
127 * overshoot and start taking us away from the desired final time.
128 */
4ca0d0d6 129 ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
83619c4d
CT
130 if (ndelta > bigadj)
131 ntickdelta = 10 * tickadj;
132 else
133 ntickdelta = tickadj;
134 if (ndelta % ntickdelta)
135 ndelta = ndelta / ntickdelta * ntickdelta;
4ca0d0d6 136
83619c4d
CT
137 /*
138 * To make hardclock()'s job easier, make the per-tick delta negative
139 * if we want time to run slower; then hardclock can simply compute
140 * tick + tickdelta, and subtract tickdelta from timedelta.
141 */
142 if (ndelta < 0)
143 ntickdelta = -ntickdelta;
8efc019f 144 s = splclock();
83619c4d 145 odelta = timedelta;
4ca0d0d6 146 timedelta = ndelta;
83619c4d 147 tickdelta = ntickdelta;
8efc019f 148 splx(s);
4ca0d0d6 149
83619c4d
CT
150 if (uap->olddelta) {
151 atv.tv_sec = odelta / 1000000;
152 atv.tv_usec = odelta % 1000000;
153 (void) copyout((caddr_t)&atv, (caddr_t)uap->olddelta,
154 sizeof(struct timeval));
155 }
d9c2f47f 156 return (0);
99e47f6b
MK
157}
158
aa261505
BJ
159/*
160 * Get value of an interval timer. The process virtual and
8429d022 161 * profiling virtual time timers are kept in the p_stats area, since
aa261505
BJ
162 * they can be swapped out. These are kept internally in the
163 * way they are specified externally: in time until they expire.
164 *
165 * The real time interval timer is kept in the process table slot
166 * for the process, and its value (it_value) is kept as an
167 * absolute time rather than as a delta, so that it is easy to keep
168 * periodic real-time signals from drifting.
169 *
170 * Virtual time timers are processed in the hardclock() routine of
171 * kern_clock.c. The real time timer is processed by a timeout
172 * routine, called from the softclock() routine. Since a callout
173 * may be delayed in real time due to interrupt processing in the system,
174 * it is possible for the real time timeout routine (realitexpire, given below),
175 * to be delayed in real time past when it is supposed to occur. It
176 * does not suffice, therefore, to reload the real timer .it_value from the
177 * real time timers .it_interval. Rather, we compute the next time in
178 * absolute time the timer should go off.
179 */
9e97623a
CT
180struct getitimer_args {
181 u_int which;
182 struct itimerval *itv;
183};
fc4a5eac
MK
184/* ARGSUSED */
185getitimer(p, uap, retval)
186 struct proc *p;
9e97623a 187 register struct getitimer_args *uap;
fc4a5eac
MK
188 int *retval;
189{
d01b68d6 190 struct itimerval aitv;
b6f30e0a 191 int s;
aac7ea5b 192
fc4a5eac 193 if (uap->which > ITIMER_PROF)
d9c2f47f 194 return (EINVAL);
fa5e5ab4 195 s = splclock();
d01b68d6 196 if (uap->which == ITIMER_REAL) {
aa261505
BJ
197 /*
198 * Convert from absoulte to relative time in .it_value
199 * part of real time timer. If time for real time timer
200 * has passed return 0, else return difference between
201 * current time and time for the timer to go off.
202 */
fc4a5eac 203 aitv = p->p_realtimer;
d01b68d6
BJ
204 if (timerisset(&aitv.it_value))
205 if (timercmp(&aitv.it_value, &time, <))
206 timerclear(&aitv.it_value);
207 else
c3a8186d
CT
208 timevalsub(&aitv.it_value,
209 (struct timeval *)&time);
d01b68d6 210 } else
8429d022 211 aitv = p->p_stats->p_timer[uap->which];
d01b68d6 212 splx(s);
d9c2f47f 213 return (copyout((caddr_t)&aitv, (caddr_t)uap->itv,
fc4a5eac 214 sizeof (struct itimerval)));
aac7ea5b
BJ
215}
216
9e97623a
CT
217struct setitimer_args {
218 u_int which;
219 struct itimerval *itv, *oitv;
220};
fc4a5eac
MK
221/* ARGSUSED */
222setitimer(p, uap, retval)
223 struct proc *p;
9e97623a 224 register struct setitimer_args *uap;
fc4a5eac
MK
225 int *retval;
226{
c4bbb24f
KB
227 struct itimerval aitv;
228 register struct itimerval *itvp;
fc4a5eac 229 int s, error;
aac7ea5b 230
fc4a5eac 231 if (uap->which > ITIMER_PROF)
d9c2f47f 232 return (EINVAL);
c4bbb24f 233 itvp = uap->itv;
fc4a5eac 234 if (itvp && (error = copyin((caddr_t)itvp, (caddr_t)&aitv,
c4bbb24f 235 sizeof(struct itimerval))))
d9c2f47f 236 return (error);
fc4a5eac 237 if ((uap->itv = uap->oitv) && (error = getitimer(p, uap, retval)))
d9c2f47f 238 return (error);
c4bbb24f 239 if (itvp == 0)
fc4a5eac
MK
240 return (0);
241 if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
d9c2f47f 242 return (EINVAL);
fa5e5ab4 243 s = splclock();
d01b68d6 244 if (uap->which == ITIMER_REAL) {
b32450f4 245 untimeout(realitexpire, (caddr_t)p);
d01b68d6 246 if (timerisset(&aitv.it_value)) {
c3a8186d 247 timevaladd(&aitv.it_value, (struct timeval *)&time);
b32450f4 248 timeout(realitexpire, (caddr_t)p, hzto(&aitv.it_value));
d01b68d6
BJ
249 }
250 p->p_realtimer = aitv;
251 } else
8429d022 252 p->p_stats->p_timer[uap->which] = aitv;
b6f30e0a 253 splx(s);
d9c2f47f 254 return (0);
b6f30e0a
BJ
255}
256
aa261505
BJ
257/*
258 * Real interval timer expired:
259 * send process whose timer expired an alarm signal.
260 * If time is not set up to reload, then just return.
261 * Else compute next time timer should go off which is > current time.
262 * This is where delay in processing this timeout causes multiple
263 * SIGALRM calls to be compressed into one.
264 */
c3a8186d
CT
265void
266realitexpire(arg)
267 void *arg;
d01b68d6 268{
c3a8186d 269 register struct proc *p;
d01b68d6
BJ
270 int s;
271
c3a8186d 272 p = (struct proc *)arg;
d01b68d6
BJ
273 psignal(p, SIGALRM);
274 if (!timerisset(&p->p_realtimer.it_interval)) {
275 timerclear(&p->p_realtimer.it_value);
276 return;
277 }
278 for (;;) {
fa5e5ab4 279 s = splclock();
d01b68d6
BJ
280 timevaladd(&p->p_realtimer.it_value,
281 &p->p_realtimer.it_interval);
282 if (timercmp(&p->p_realtimer.it_value, &time, >)) {
b32450f4
BJ
283 timeout(realitexpire, (caddr_t)p,
284 hzto(&p->p_realtimer.it_value));
d01b68d6
BJ
285 splx(s);
286 return;
287 }
288 splx(s);
289 }
290}
291
aa261505
BJ
292/*
293 * Check that a proposed value to load into the .it_value or
294 * .it_interval part of an interval timer is acceptable, and
295 * fix it to have at least minimal value (i.e. if it is less
296 * than the resolution of the clock, round it up.)
297 */
1edb1cf8
BJ
298itimerfix(tv)
299 struct timeval *tv;
b6f30e0a 300{
b6f30e0a 301
d01b68d6
BJ
302 if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
303 tv->tv_usec < 0 || tv->tv_usec >= 1000000)
1edb1cf8 304 return (EINVAL);
c45fcba6 305 if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
1edb1cf8
BJ
306 tv->tv_usec = tick;
307 return (0);
b6f30e0a
BJ
308}
309
aa261505
BJ
310/*
311 * Decrement an interval timer by a specified number
312 * of microseconds, which must be less than a second,
313 * i.e. < 1000000. If the timer expires, then reload
314 * it. In this case, carry over (usec - old value) to
c3a8186d 315 * reduce the value reloaded into the timer so that
aa261505
BJ
316 * the timer does not drift. This routine assumes
317 * that it is called in a context where the timers
318 * on which it is operating cannot change in value.
319 */
b6f30e0a
BJ
320itimerdecr(itp, usec)
321 register struct itimerval *itp;
322 int usec;
323{
324
1edb1cf8
BJ
325 if (itp->it_value.tv_usec < usec) {
326 if (itp->it_value.tv_sec == 0) {
aa261505 327 /* expired, and already in next interval */
1edb1cf8 328 usec -= itp->it_value.tv_usec;
b6f30e0a 329 goto expire;
1edb1cf8
BJ
330 }
331 itp->it_value.tv_usec += 1000000;
332 itp->it_value.tv_sec--;
aac7ea5b 333 }
1edb1cf8
BJ
334 itp->it_value.tv_usec -= usec;
335 usec = 0;
336 if (timerisset(&itp->it_value))
b6f30e0a 337 return (1);
aa261505 338 /* expired, exactly at end of interval */
b6f30e0a 339expire:
1edb1cf8
BJ
340 if (timerisset(&itp->it_interval)) {
341 itp->it_value = itp->it_interval;
342 itp->it_value.tv_usec -= usec;
343 if (itp->it_value.tv_usec < 0) {
344 itp->it_value.tv_usec += 1000000;
345 itp->it_value.tv_sec--;
346 }
347 } else
aa261505 348 itp->it_value.tv_usec = 0; /* sec is already 0 */
b6f30e0a 349 return (0);
aac7ea5b
BJ
350}
351
aa261505
BJ
352/*
353 * Add and subtract routines for timevals.
354 * N.B.: subtract routine doesn't deal with
355 * results which are before the beginning,
356 * it just gets very confused in this case.
357 * Caveat emptor.
358 */
359timevaladd(t1, t2)
360 struct timeval *t1, *t2;
361{
362
363 t1->tv_sec += t2->tv_sec;
364 t1->tv_usec += t2->tv_usec;
365 timevalfix(t1);
366}
367
368timevalsub(t1, t2)
369 struct timeval *t1, *t2;
370{
371
372 t1->tv_sec -= t2->tv_sec;
373 t1->tv_usec -= t2->tv_usec;
374 timevalfix(t1);
375}
376
377timevalfix(t1)
378 struct timeval *t1;
379{
380
381 if (t1->tv_usec < 0) {
382 t1->tv_sec--;
383 t1->tv_usec += 1000000;
384 }
385 if (t1->tv_usec >= 1000000) {
386 t1->tv_sec++;
387 t1->tv_usec -= 1000000;
388 }
389}