Updated gzip from 1.1 to 1.2.2
[unix-history] / gnu / usr.bin / gzip / inflate.c
CommitLineData
3013fe88
NW
1/* inflate.c -- Not copyrighted 1992 by Mark Adler
2 version c10p1, 10 January 1993 */
3
4/* You can do whatever you like with this source file, though I would
5 prefer that if you modify it and redistribute it that you include
6 comments to that effect with your name and the date. Thank you.
7 [The history has been moved to the file ChangeLog.]
8 */
9
10/*
11 Inflate deflated (PKZIP's method 8 compressed) data. The compression
12 method searches for as much of the current string of bytes (up to a
13 length of 258) in the previous 32K bytes. If it doesn't find any
14 matches (of at least length 3), it codes the next byte. Otherwise, it
15 codes the length of the matched string and its distance backwards from
16 the current position. There is a single Huffman code that codes both
17 single bytes (called "literals") and match lengths. A second Huffman
18 code codes the distance information, which follows a length code. Each
19 length or distance code actually represents a base value and a number
20 of "extra" (sometimes zero) bits to get to add to the base value. At
21 the end of each deflated block is a special end-of-block (EOB) literal/
22 length code. The decoding process is basically: get a literal/length
23 code; if EOB then done; if a literal, emit the decoded byte; if a
24 length then get the distance and emit the referred-to bytes from the
25 sliding window of previously emitted data.
26
27 There are (currently) three kinds of inflate blocks: stored, fixed, and
28 dynamic. The compressor deals with some chunk of data at a time, and
29 decides which method to use on a chunk-by-chunk basis. A chunk might
30 typically be 32K or 64K. If the chunk is uncompressible, then the
31 "stored" method is used. In this case, the bytes are simply stored as
32 is, eight bits per byte, with none of the above coding. The bytes are
33 preceded by a count, since there is no longer an EOB code.
34
35 If the data is compressible, then either the fixed or dynamic methods
36 are used. In the dynamic method, the compressed data is preceded by
37 an encoding of the literal/length and distance Huffman codes that are
38 to be used to decode this block. The representation is itself Huffman
39 coded, and so is preceded by a description of that code. These code
40 descriptions take up a little space, and so for small blocks, there is
41 a predefined set of codes, called the fixed codes. The fixed method is
42 used if the block codes up smaller that way (usually for quite small
43 chunks), otherwise the dynamic method is used. In the latter case, the
44 codes are customized to the probabilities in the current block, and so
45 can code it much better than the pre-determined fixed codes.
46
47 The Huffman codes themselves are decoded using a mutli-level table
48 lookup, in order to maximize the speed of decoding plus the speed of
49 building the decoding tables. See the comments below that precede the
50 lbits and dbits tuning parameters.
51 */
52
53
54/*
55 Notes beyond the 1.93a appnote.txt:
56
57 1. Distance pointers never point before the beginning of the output
58 stream.
59 2. Distance pointers can point back across blocks, up to 32k away.
60 3. There is an implied maximum of 7 bits for the bit length table and
61 15 bits for the actual data.
62 4. If only one code exists, then it is encoded using one bit. (Zero
63 would be more efficient, but perhaps a little confusing.) If two
64 codes exist, they are coded using one bit each (0 and 1).
65 5. There is no way of sending zero distance codes--a dummy must be
66 sent if there are none. (History: a pre 2.0 version of PKZIP would
67 store blocks with no distance codes, but this was discovered to be
68 too harsh a criterion.) Valid only for 1.93a. 2.04c does allow
69 zero distance codes, which is sent as one code of zero bits in
70 length.
71 6. There are up to 286 literal/length codes. Code 256 represents the
72 end-of-block. Note however that the static length tree defines
73 288 codes just to fill out the Huffman codes. Codes 286 and 287
74 cannot be used though, since there is no length base or extra bits
75 defined for them. Similarly, there are up to 30 distance codes.
76 However, static trees define 32 codes (all 5 bits) to fill out the
77 Huffman codes, but the last two had better not show up in the data.
78 7. Unzip can check dynamic Huffman blocks for complete code sets.
79 The exception is that a single code would not be complete (see #4).
80 8. The five bits following the block type is really the number of
81 literal codes sent minus 257.
82 9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits
83 (1+6+6). Therefore, to output three times the length, you output
84 three codes (1+1+1), whereas to output four times the same length,
85 you only need two codes (1+3). Hmm.
86 10. In the tree reconstruction algorithm, Code = Code + Increment
87 only if BitLength(i) is not zero. (Pretty obvious.)
88 11. Correction: 4 Bits: # of Bit Length codes - 4 (4 - 19)
89 12. Note: length code 284 can represent 227-258, but length code 285
90 really is 258. The last length deserves its own, short code
91 since it gets used a lot in very redundant files. The length
92 258 is special since 258 - 3 (the min match length) is 255.
93 13. The literal/length and distance code bit lengths are read as a
94 single stream of lengths. It is possible (and advantageous) for
95 a repeat code (16, 17, or 18) to go across the boundary between
96 the two sets of lengths.
97 */
98
99#ifndef lint
caed0dfe 100static char rcsid[] = "$Id: inflate.c,v 0.14 1993/06/10 13:27:04 jloup Exp $";
3013fe88
NW
101#endif
102
3013fe88
NW
103#include <sys/types.h>
104
105#include "tailor.h"
106
107#if defined(STDC_HEADERS) || !defined(NO_STDLIB_H)
108# include <stdlib.h>
109#endif
110
111#include "gzip.h"
112#define slide window
113
114/* Huffman code lookup table entry--this entry is four bytes for machines
115 that have 16-bit pointers (e.g. PC's in the small or medium model).
116 Valid extra bits are 0..13. e == 15 is EOB (end of block), e == 16
117 means that v is a literal, 16 < e < 32 means that v is a pointer to
118 the next table, which codes e - 16 bits, and lastly e == 99 indicates
119 an unused code. If a code with e == 99 is looked up, this implies an
120 error in the data. */
121struct huft {
122 uch e; /* number of extra bits or operation */
123 uch b; /* number of bits in this code or subcode */
124 union {
125 ush n; /* literal, length base, or distance base */
126 struct huft *t; /* pointer to next level of table */
127 } v;
128};
129
130
131/* Function prototypes */
132int huft_build OF((unsigned *, unsigned, unsigned, ush *, ush *,
133 struct huft **, int *));
134int huft_free OF((struct huft *));
135int inflate_codes OF((struct huft *, struct huft *, int, int));
136int inflate_stored OF((void));
137int inflate_fixed OF((void));
138int inflate_dynamic OF((void));
139int inflate_block OF((int *));
140int inflate OF((void));
141
142
143/* The inflate algorithm uses a sliding 32K byte window on the uncompressed
144 stream to find repeated byte strings. This is implemented here as a
145 circular buffer. The index is updated simply by incrementing and then
146 and'ing with 0x7fff (32K-1). */
147/* It is left to other modules to supply the 32K area. It is assumed
148 to be usable as if it were declared "uch slide[32768];" or as just
149 "uch *slide;" and then malloc'ed in the latter case. The definition
150 must be in unzip.h, included above. */
151/* unsigned wp; current position in slide */
152#define wp outcnt
153#define flush_output(w) (wp=(w),flush_window())
154
155/* Tables for deflate from PKZIP's appnote.txt. */
156static unsigned border[] = { /* Order of the bit length code lengths */
157 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
158static ush cplens[] = { /* Copy lengths for literal codes 257..285 */
159 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
160 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
161 /* note: see note #13 above about the 258 in this list. */
162static ush cplext[] = { /* Extra bits for literal codes 257..285 */
163 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
164 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 99, 99}; /* 99==invalid */
165static ush cpdist[] = { /* Copy offsets for distance codes 0..29 */
166 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
167 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
168 8193, 12289, 16385, 24577};
169static ush cpdext[] = { /* Extra bits for distance codes */
170 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
171 7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
172 12, 12, 13, 13};
173
174
175
176/* Macros for inflate() bit peeking and grabbing.
177 The usage is:
178
179 NEEDBITS(j)
180 x = b & mask_bits[j];
181 DUMPBITS(j)
182
183 where NEEDBITS makes sure that b has at least j bits in it, and
184 DUMPBITS removes the bits from b. The macros use the variable k
185 for the number of bits in b. Normally, b and k are register
186 variables for speed, and are initialized at the beginning of a
187 routine that uses these macros from a global bit buffer and count.
188
189 If we assume that EOB will be the longest code, then we will never
190 ask for bits with NEEDBITS that are beyond the end of the stream.
191 So, NEEDBITS should not read any more bytes than are needed to
192 meet the request. Then no bytes need to be "returned" to the buffer
193 at the end of the last block.
194
195 However, this assumption is not true for fixed blocks--the EOB code
196 is 7 bits, but the other literal/length codes can be 8 or 9 bits.
197 (The EOB code is shorter than other codes because fixed blocks are
198 generally short. So, while a block always has an EOB, many other
199 literal/length codes have a significantly lower probability of
200 showing up at all.) However, by making the first table have a
201 lookup of seven bits, the EOB code will be found in that first
202 lookup, and so will not require that too many bits be pulled from
203 the stream.
204 */
205
206ulg bb; /* bit buffer */
207unsigned bk; /* bits in bit buffer */
208
209ush mask_bits[] = {
210 0x0000,
211 0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
212 0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
213};
214
215#ifdef CRYPT
216 uch cc;
217# define NEXTBYTE() \
218 (decrypt ? (cc = get_byte(), zdecode(cc), cc) : get_byte())
219#else
220# define NEXTBYTE() (uch)get_byte()
221#endif
222#define NEEDBITS(n) {while(k<(n)){b|=((ulg)NEXTBYTE())<<k;k+=8;}}
223#define DUMPBITS(n) {b>>=(n);k-=(n);}
224
225
226/*
227 Huffman code decoding is performed using a multi-level table lookup.
228 The fastest way to decode is to simply build a lookup table whose
229 size is determined by the longest code. However, the time it takes
230 to build this table can also be a factor if the data being decoded
231 is not very long. The most common codes are necessarily the
232 shortest codes, so those codes dominate the decoding time, and hence
233 the speed. The idea is you can have a shorter table that decodes the
234 shorter, more probable codes, and then point to subsidiary tables for
235 the longer codes. The time it costs to decode the longer codes is
236 then traded against the time it takes to make longer tables.
237
238 This results of this trade are in the variables lbits and dbits
239 below. lbits is the number of bits the first level table for literal/
240 length codes can decode in one step, and dbits is the same thing for
241 the distance codes. Subsequent tables are also less than or equal to
242 those sizes. These values may be adjusted either when all of the
243 codes are shorter than that, in which case the longest code length in
244 bits is used, or when the shortest code is *longer* than the requested
245 table size, in which case the length of the shortest code in bits is
246 used.
247
248 There are two different values for the two tables, since they code a
249 different number of possibilities each. The literal/length table
250 codes 286 possible values, or in a flat code, a little over eight
251 bits. The distance table codes 30 possible values, or a little less
252 than five bits, flat. The optimum values for speed end up being
253 about one bit more than those, so lbits is 8+1 and dbits is 5+1.
254 The optimum values may differ though from machine to machine, and
255 possibly even between compilers. Your mileage may vary.
256 */
257
258
259int lbits = 9; /* bits in base literal/length lookup table */
260int dbits = 6; /* bits in base distance lookup table */
261
262
263/* If BMAX needs to be larger than 16, then h and x[] should be ulg. */
264#define BMAX 16 /* maximum bit length of any code (16 for explode) */
265#define N_MAX 288 /* maximum number of codes in any set */
266
267
268unsigned hufts; /* track memory usage */
269
270
271int huft_build(b, n, s, d, e, t, m)
272unsigned *b; /* code lengths in bits (all assumed <= BMAX) */
273unsigned n; /* number of codes (assumed <= N_MAX) */
274unsigned s; /* number of simple-valued codes (0..s-1) */
275ush *d; /* list of base values for non-simple codes */
276ush *e; /* list of extra bits for non-simple codes */
277struct huft **t; /* result: starting table */
278int *m; /* maximum lookup bits, returns actual */
279/* Given a list of code lengths and a maximum table size, make a set of
280 tables to decode that set of codes. Return zero on success, one if
281 the given code set is incomplete (the tables are still built in this
282 case), two if the input is invalid (all zero length codes or an
283 oversubscribed set of lengths), and three if not enough memory. */
284{
285 unsigned a; /* counter for codes of length k */
286 unsigned c[BMAX+1]; /* bit length count table */
287 unsigned f; /* i repeats in table every f entries */
288 int g; /* maximum code length */
289 int h; /* table level */
290 register unsigned i; /* counter, current code */
291 register unsigned j; /* counter */
292 register int k; /* number of bits in current code */
293 int l; /* bits per table (returned in m) */
294 register unsigned *p; /* pointer into c[], b[], or v[] */
295 register struct huft *q; /* points to current table */
296 struct huft r; /* table entry for structure assignment */
297 struct huft *u[BMAX]; /* table stack */
298 unsigned v[N_MAX]; /* values in order of bit length */
299 register int w; /* bits before this table == (l * h) */
300 unsigned x[BMAX+1]; /* bit offsets, then code stack */
301 unsigned *xp; /* pointer into x */
302 int y; /* number of dummy codes added */
303 unsigned z; /* number of entries in current table */
304
305
306 /* Generate counts for each bit length */
307 memzero(c, sizeof(c));
308 p = b; i = n;
309 do {
310 Tracecv(*p, (stderr, (n-i >= ' ' && n-i <= '~' ? "%c %d\n" : "0x%x %d\n"),
311 n-i, *p));
312 c[*p++]++; /* assume all entries <= BMAX */
313 } while (--i);
314 if (c[0] == n) /* null input--all zero length codes */
315 {
316 *t = (struct huft *)NULL;
317 *m = 0;
318 return 0;
319 }
320
321
322 /* Find minimum and maximum length, bound *m by those */
323 l = *m;
324 for (j = 1; j <= BMAX; j++)
325 if (c[j])
326 break;
327 k = j; /* minimum code length */
328 if ((unsigned)l < j)
329 l = j;
330 for (i = BMAX; i; i--)
331 if (c[i])
332 break;
333 g = i; /* maximum code length */
334 if ((unsigned)l > i)
335 l = i;
336 *m = l;
337
338
339 /* Adjust last length count to fill out codes, if needed */
340 for (y = 1 << j; j < i; j++, y <<= 1)
341 if ((y -= c[j]) < 0)
342 return 2; /* bad input: more codes than bits */
343 if ((y -= c[i]) < 0)
344 return 2;
345 c[i] += y;
346
347
348 /* Generate starting offsets into the value table for each length */
349 x[1] = j = 0;
350 p = c + 1; xp = x + 2;
351 while (--i) { /* note that i == g from above */
352 *xp++ = (j += *p++);
353 }
354
355
356 /* Make a table of values in order of bit lengths */
357 p = b; i = 0;
358 do {
359 if ((j = *p++) != 0)
360 v[x[j]++] = i;
361 } while (++i < n);
362
363
364 /* Generate the Huffman codes and for each, make the table entries */
365 x[0] = i = 0; /* first Huffman code is zero */
366 p = v; /* grab values in bit order */
367 h = -1; /* no tables yet--level -1 */
368 w = -l; /* bits decoded == (l * h) */
369 u[0] = (struct huft *)NULL; /* just to keep compilers happy */
370 q = (struct huft *)NULL; /* ditto */
371 z = 0; /* ditto */
372
373 /* go through the bit lengths (k already is bits in shortest code) */
374 for (; k <= g; k++)
375 {
376 a = c[k];
377 while (a--)
378 {
379 /* here i is the Huffman code of length k bits for value *p */
380 /* make tables up to required level */
381 while (k > w + l)
382 {
383 h++;
384 w += l; /* previous table always l bits */
385
386 /* compute minimum size table less than or equal to l bits */
387 z = (z = g - w) > (unsigned)l ? l : z; /* upper limit on table size */
388 if ((f = 1 << (j = k - w)) > a + 1) /* try a k-w bit table */
389 { /* too few codes for k-w bit table */
390 f -= a + 1; /* deduct codes from patterns left */
391 xp = c + k;
392 while (++j < z) /* try smaller tables up to z bits */
393 {
394 if ((f <<= 1) <= *++xp)
395 break; /* enough codes to use up j bits */
396 f -= *xp; /* else deduct codes from patterns */
397 }
398 }
399 z = 1 << j; /* table entries for j-bit table */
400
401 /* allocate and link in new table */
402 if ((q = (struct huft *)malloc((z + 1)*sizeof(struct huft))) ==
403 (struct huft *)NULL)
404 {
405 if (h)
406 huft_free(u[0]);
407 return 3; /* not enough memory */
408 }
409 hufts += z + 1; /* track memory usage */
410 *t = q + 1; /* link to list for huft_free() */
411 *(t = &(q->v.t)) = (struct huft *)NULL;
412 u[h] = ++q; /* table starts after link */
413
414 /* connect to last table, if there is one */
415 if (h)
416 {
417 x[h] = i; /* save pattern for backing up */
418 r.b = (uch)l; /* bits to dump before this table */
419 r.e = (uch)(16 + j); /* bits in this table */
420 r.v.t = q; /* pointer to this table */
421 j = i >> (w - l); /* (get around Turbo C bug) */
422 u[h-1][j] = r; /* connect to last table */
423 }
424 }
425
426 /* set up table entry in r */
427 r.b = (uch)(k - w);
428 if (p >= v + n)
429 r.e = 99; /* out of values--invalid code */
430 else if (*p < s)
431 {
432 r.e = (uch)(*p < 256 ? 16 : 15); /* 256 is end-of-block code */
433 r.v.n = (ush)(*p); /* simple code is just the value */
434 p++; /* one compiler does not like *p++ */
435 }
436 else
437 {
438 r.e = (uch)e[*p - s]; /* non-simple--look up in lists */
439 r.v.n = d[*p++ - s];
440 }
441
442 /* fill code-like entries with r */
443 f = 1 << (k - w);
444 for (j = i >> w; j < z; j += f)
445 q[j] = r;
446
447 /* backwards increment the k-bit code i */
448 for (j = 1 << (k - 1); i & j; j >>= 1)
449 i ^= j;
450 i ^= j;
451
452 /* backup over finished tables */
453 while ((i & ((1 << w) - 1)) != x[h])
454 {
455 h--; /* don't need to update q */
456 w -= l;
457 }
458 }
459 }
460
461
462 /* Return true (1) if we were given an incomplete table */
463 return y != 0 && g != 1;
464}
465
466
467
468int huft_free(t)
469struct huft *t; /* table to free */
470/* Free the malloc'ed tables built by huft_build(), which makes a linked
471 list of the tables it made, with the links in a dummy first entry of
472 each table. */
473{
474 register struct huft *p, *q;
475
476
477 /* Go through linked list, freeing from the malloced (t[-1]) address. */
478 p = t;
479 while (p != (struct huft *)NULL)
480 {
481 q = (--p)->v.t;
482 free((char*)p);
483 p = q;
484 }
485 return 0;
486}
487
488
489int inflate_codes(tl, td, bl, bd)
490struct huft *tl, *td; /* literal/length and distance decoder tables */
491int bl, bd; /* number of bits decoded by tl[] and td[] */
492/* inflate (decompress) the codes in a deflated (compressed) block.
493 Return an error code or zero if it all goes ok. */
494{
495 register unsigned e; /* table entry flag/number of extra bits */
496 unsigned n, d; /* length and index for copy */
497 unsigned w; /* current window position */
498 struct huft *t; /* pointer to table entry */
499 unsigned ml, md; /* masks for bl and bd bits */
500 register ulg b; /* bit buffer */
501 register unsigned k; /* number of bits in bit buffer */
502
503
504 /* make local copies of globals */
505 b = bb; /* initialize bit buffer */
506 k = bk;
507 w = wp; /* initialize window position */
508
509 /* inflate the coded data */
510 ml = mask_bits[bl]; /* precompute masks for speed */
511 md = mask_bits[bd];
512 for (;;) /* do until end of block */
513 {
514 NEEDBITS((unsigned)bl)
515 if ((e = (t = tl + ((unsigned)b & ml))->e) > 16)
516 do {
517 if (e == 99)
518 return 1;
519 DUMPBITS(t->b)
520 e -= 16;
521 NEEDBITS(e)
522 } while ((e = (t = t->v.t + ((unsigned)b & mask_bits[e]))->e) > 16);
523 DUMPBITS(t->b)
524 if (e == 16) /* then it's a literal */
525 {
526 slide[w++] = (uch)t->v.n;
527 Tracevv((stderr, "%c", slide[w-1]));
528 if (w == WSIZE)
529 {
530 flush_output(w);
531 w = 0;
532 }
533 }
534 else /* it's an EOB or a length */
535 {
536 /* exit if end of block */
537 if (e == 15)
538 break;
539
540 /* get length of block to copy */
541 NEEDBITS(e)
542 n = t->v.n + ((unsigned)b & mask_bits[e]);
543 DUMPBITS(e);
544
545 /* decode distance of block to copy */
546 NEEDBITS((unsigned)bd)
547 if ((e = (t = td + ((unsigned)b & md))->e) > 16)
548 do {
549 if (e == 99)
550 return 1;
551 DUMPBITS(t->b)
552 e -= 16;
553 NEEDBITS(e)
554 } while ((e = (t = t->v.t + ((unsigned)b & mask_bits[e]))->e) > 16);
555 DUMPBITS(t->b)
556 NEEDBITS(e)
557 d = w - t->v.n - ((unsigned)b & mask_bits[e]);
558 DUMPBITS(e)
559 Tracevv((stderr,"\\[%d,%d]", w-d, n));
560
561 /* do the copy */
562 do {
563 n -= (e = (e = WSIZE - ((d &= WSIZE-1) > w ? d : w)) > n ? n : e);
564#if !defined(NOMEMCPY) && !defined(DEBUG)
565 if (w - d >= e) /* (this test assumes unsigned comparison) */
566 {
567 memcpy(slide + w, slide + d, e);
568 w += e;
569 d += e;
570 }
571 else /* do it slow to avoid memcpy() overlap */
572#endif /* !NOMEMCPY */
573 do {
574 slide[w++] = slide[d++];
575 Tracevv((stderr, "%c", slide[w-1]));
576 } while (--e);
577 if (w == WSIZE)
578 {
579 flush_output(w);
580 w = 0;
581 }
582 } while (n);
583 }
584 }
585
586
587 /* restore the globals from the locals */
588 wp = w; /* restore global window pointer */
589 bb = b; /* restore global bit buffer */
590 bk = k;
591
592 /* done */
593 return 0;
594}
595
596
597
598int inflate_stored()
599/* "decompress" an inflated type 0 (stored) block. */
600{
601 unsigned n; /* number of bytes in block */
602 unsigned w; /* current window position */
603 register ulg b; /* bit buffer */
604 register unsigned k; /* number of bits in bit buffer */
605
606
607 /* make local copies of globals */
608 b = bb; /* initialize bit buffer */
609 k = bk;
610 w = wp; /* initialize window position */
611
612
613 /* go to byte boundary */
614 n = k & 7;
615 DUMPBITS(n);
616
617
618 /* get the length and its complement */
619 NEEDBITS(16)
620 n = ((unsigned)b & 0xffff);
621 DUMPBITS(16)
622 NEEDBITS(16)
623 if (n != (unsigned)((~b) & 0xffff))
624 return 1; /* error in compressed data */
625 DUMPBITS(16)
626
627
628 /* read and output the compressed data */
629 while (n--)
630 {
631 NEEDBITS(8)
632 slide[w++] = (uch)b;
633 if (w == WSIZE)
634 {
635 flush_output(w);
636 w = 0;
637 }
638 DUMPBITS(8)
639 }
640
641
642 /* restore the globals from the locals */
643 wp = w; /* restore global window pointer */
644 bb = b; /* restore global bit buffer */
645 bk = k;
646 return 0;
647}
648
649
650
651int inflate_fixed()
652/* decompress an inflated type 1 (fixed Huffman codes) block. We should
653 either replace this with a custom decoder, or at least precompute the
654 Huffman tables. */
655{
656 int i; /* temporary variable */
657 struct huft *tl; /* literal/length code table */
658 struct huft *td; /* distance code table */
659 int bl; /* lookup bits for tl */
660 int bd; /* lookup bits for td */
661 unsigned l[288]; /* length list for huft_build */
662
663
664 /* set up literal table */
665 for (i = 0; i < 144; i++)
666 l[i] = 8;
667 for (; i < 256; i++)
668 l[i] = 9;
669 for (; i < 280; i++)
670 l[i] = 7;
671 for (; i < 288; i++) /* make a complete, but wrong code set */
672 l[i] = 8;
673 bl = 7;
674 if ((i = huft_build(l, 288, 257, cplens, cplext, &tl, &bl)) != 0)
675 return i;
676
677
678 /* set up distance table */
679 for (i = 0; i < 30; i++) /* make an incomplete code set */
680 l[i] = 5;
681 bd = 5;
682 if ((i = huft_build(l, 30, 0, cpdist, cpdext, &td, &bd)) > 1)
683 {
684 huft_free(tl);
685 return i;
686 }
687
688
689 /* decompress until an end-of-block code */
690 if (inflate_codes(tl, td, bl, bd))
691 return 1;
692
693
694 /* free the decoding tables, return */
695 huft_free(tl);
696 huft_free(td);
697 return 0;
698}
699
700
701
702int inflate_dynamic()
703/* decompress an inflated type 2 (dynamic Huffman codes) block. */
704{
705 int i; /* temporary variables */
706 unsigned j;
707 unsigned l; /* last length */
708 unsigned m; /* mask for bit lengths table */
709 unsigned n; /* number of lengths to get */
710 struct huft *tl; /* literal/length code table */
711 struct huft *td; /* distance code table */
712 int bl; /* lookup bits for tl */
713 int bd; /* lookup bits for td */
714 unsigned nb; /* number of bit length codes */
715 unsigned nl; /* number of literal/length codes */
716 unsigned nd; /* number of distance codes */
717#ifdef PKZIP_BUG_WORKAROUND
718 unsigned ll[288+32]; /* literal/length and distance code lengths */
719#else
720 unsigned ll[286+30]; /* literal/length and distance code lengths */
721#endif
722 register ulg b; /* bit buffer */
723 register unsigned k; /* number of bits in bit buffer */
724
725
726 /* make local bit buffer */
727 b = bb;
728 k = bk;
729
730
731 /* read in table lengths */
732 NEEDBITS(5)
733 nl = 257 + ((unsigned)b & 0x1f); /* number of literal/length codes */
734 DUMPBITS(5)
735 NEEDBITS(5)
736 nd = 1 + ((unsigned)b & 0x1f); /* number of distance codes */
737 DUMPBITS(5)
738 NEEDBITS(4)
739 nb = 4 + ((unsigned)b & 0xf); /* number of bit length codes */
740 DUMPBITS(4)
741#ifdef PKZIP_BUG_WORKAROUND
742 if (nl > 288 || nd > 32)
743#else
744 if (nl > 286 || nd > 30)
745#endif
746 return 1; /* bad lengths */
747
748
749 /* read in bit-length-code lengths */
750 for (j = 0; j < nb; j++)
751 {
752 NEEDBITS(3)
753 ll[border[j]] = (unsigned)b & 7;
754 DUMPBITS(3)
755 }
756 for (; j < 19; j++)
757 ll[border[j]] = 0;
758
759
760 /* build decoding table for trees--single level, 7 bit lookup */
761 bl = 7;
762 if ((i = huft_build(ll, 19, 19, NULL, NULL, &tl, &bl)) != 0)
763 {
764 if (i == 1)
765 huft_free(tl);
766 return i; /* incomplete code set */
767 }
768
769
770 /* read in literal and distance code lengths */
771 n = nl + nd;
772 m = mask_bits[bl];
773 i = l = 0;
774 while ((unsigned)i < n)
775 {
776 NEEDBITS((unsigned)bl)
777 j = (td = tl + ((unsigned)b & m))->b;
778 DUMPBITS(j)
779 j = td->v.n;
780 if (j < 16) /* length of code in bits (0..15) */
781 ll[i++] = l = j; /* save last length in l */
782 else if (j == 16) /* repeat last length 3 to 6 times */
783 {
784 NEEDBITS(2)
785 j = 3 + ((unsigned)b & 3);
786 DUMPBITS(2)
787 if ((unsigned)i + j > n)
788 return 1;
789 while (j--)
790 ll[i++] = l;
791 }
792 else if (j == 17) /* 3 to 10 zero length codes */
793 {
794 NEEDBITS(3)
795 j = 3 + ((unsigned)b & 7);
796 DUMPBITS(3)
797 if ((unsigned)i + j > n)
798 return 1;
799 while (j--)
800 ll[i++] = 0;
801 l = 0;
802 }
803 else /* j == 18: 11 to 138 zero length codes */
804 {
805 NEEDBITS(7)
806 j = 11 + ((unsigned)b & 0x7f);
807 DUMPBITS(7)
808 if ((unsigned)i + j > n)
809 return 1;
810 while (j--)
811 ll[i++] = 0;
812 l = 0;
813 }
814 }
815
816
817 /* free decoding table for trees */
818 huft_free(tl);
819
820
821 /* restore the global bit buffer */
822 bb = b;
823 bk = k;
824
825
826 /* build the decoding tables for literal/length and distance codes */
827 bl = lbits;
828 if ((i = huft_build(ll, nl, 257, cplens, cplext, &tl, &bl)) != 0)
829 {
830 if (i == 1) {
831 fprintf(stderr, " incomplete literal tree\n");
832 huft_free(tl);
833 }
834 return i; /* incomplete code set */
835 }
836 bd = dbits;
837 if ((i = huft_build(ll + nl, nd, 0, cpdist, cpdext, &td, &bd)) != 0)
838 {
839 if (i == 1) {
840 fprintf(stderr, " incomplete distance tree\n");
841#ifdef PKZIP_BUG_WORKAROUND
842 i = 0;
843 }
844#else
845 huft_free(td);
846 }
847 huft_free(tl);
848 return i; /* incomplete code set */
849#endif
850 }
851
852
853 /* decompress until an end-of-block code */
854 if (inflate_codes(tl, td, bl, bd))
855 return 1;
856
857
858 /* free the decoding tables, return */
859 huft_free(tl);
860 huft_free(td);
861 return 0;
862}
863
864
865
866int inflate_block(e)
867int *e; /* last block flag */
868/* decompress an inflated block */
869{
870 unsigned t; /* block type */
871 register ulg b; /* bit buffer */
872 register unsigned k; /* number of bits in bit buffer */
873
874
875 /* make local bit buffer */
876 b = bb;
877 k = bk;
878
879
880 /* read in last block bit */
881 NEEDBITS(1)
882 *e = (int)b & 1;
883 DUMPBITS(1)
884
885
886 /* read in block type */
887 NEEDBITS(2)
888 t = (unsigned)b & 3;
889 DUMPBITS(2)
890
891
892 /* restore the global bit buffer */
893 bb = b;
894 bk = k;
895
896
897 /* inflate that block type */
898 if (t == 2)
899 return inflate_dynamic();
900 if (t == 0)
901 return inflate_stored();
902 if (t == 1)
903 return inflate_fixed();
904
905
906 /* bad block type */
907 return 2;
908}
909
910
911
912int inflate()
913/* decompress an inflated entry */
914{
915 int e; /* last block flag */
916 int r; /* result code */
917 unsigned h; /* maximum struct huft's malloc'ed */
918
919
920 /* initialize window, bit buffer */
921 wp = 0;
922 bk = 0;
923 bb = 0;
924
925
926 /* decompress until the last block */
927 h = 0;
928 do {
929 hufts = 0;
930 if ((r = inflate_block(&e)) != 0)
931 return r;
932 if (hufts > h)
933 h = hufts;
934 } while (!e);
935
936 /* Undo too much lookahead. The next read will be byte aligned so we
937 * can discard unused bits in the last meaningful byte.
938 */
939 while (bk >= 8) {
940 bk -= 8;
941 inptr--;
942 }
943
944 /* flush out slide */
945 flush_output(wp);
946
947
948 /* return success */
949#ifdef DEBUG
950 fprintf(stderr, "<%u> ", h);
951#endif /* DEBUG */
952 return 0;
953}