386BSD 0.0 development
[unix-history] / usr / src / usr.bin / gcc / cc1 / flow.c
CommitLineData
34098846
WJ
1/* Data flow analysis for GNU compiler.
2 Copyright (C) 1987, 1988 Free Software Foundation, Inc.
3
4This file is part of GNU CC.
5
6GNU CC is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 1, or (at your option)
9any later version.
10
11GNU CC is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with GNU CC; see the file COPYING. If not, write to
18the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20
21/* This file contains the data flow analysis pass of the compiler.
22 It computes data flow information
23 which tells combine_instructions which insns to consider combining
24 and controls register allocation.
25
26 Additional data flow information that is too bulky to record
27 is generated during the analysis, and is used at that time to
28 create autoincrement and autodecrement addressing.
29
30 The first step is dividing the function into basic blocks.
31 find_basic_blocks does this. Then life_analysis determines
32 where each register is live and where it is dead.
33
34 ** find_basic_blocks **
35
36 find_basic_blocks divides the current function's rtl
37 into basic blocks. It records the beginnings and ends of the
38 basic blocks in the vectors basic_block_head and basic_block_end,
39 and the number of blocks in n_basic_blocks.
40
41 find_basic_blocks also finds any unreachable loops
42 and deletes them.
43
44 ** life_analysis **
45
46 life_analysis is called immediately after find_basic_blocks.
47 It uses the basic block information to determine where each
48 hard or pseudo register is live.
49
50 ** live-register info **
51
52 The information about where each register is live is in two parts:
53 the REG_NOTES of insns, and the vector basic_block_live_at_start.
54
55 basic_block_live_at_start has an element for each basic block,
56 and the element is a bit-vector with a bit for each hard or pseudo
57 register. The bit is 1 if the register is live at the beginning
58 of the basic block.
59
60 To each insn's REG_NOTES is added an element for each register
61 that is live before the insn or set by the insn, but is dead
62 after the insn.
63
64 To determine which registers are live after any insn, one can
65 start from the beginning of the basic block and scan insns, noting
66 which registers are set by each insn and which die there.
67
68 ** Other actions of life_analysis **
69
70 life_analysis sets up the LOG_LINKS fields of insns because the
71 information needed to do so is readily available.
72
73 life_analysis deletes insns whose only effect is to store a value
74 that is never used.
75
76 life_analysis notices cases where a reference to a register as
77 a memory address can be combined with a preceding or following
78 incrementation or decrementation of the register. The separate
79 instruction to increment or decrement is deleted and the address
80 is changed to a POST_INC or similar rtx.
81
82 Each time an incrementing or decrementing address is created,
83 a REG_INC element is added to the insn's REG_NOTES list.
84
85 life_analysis fills in certain vectors containing information about
86 register usage: reg_n_refs, reg_n_deaths, reg_n_sets,
87 reg_live_length, reg_n_calls_crosses and reg_basic_block. */
88\f
89#include <stdio.h>
90#include "config.h"
91#include "rtl.h"
92#include "basic-block.h"
93#include "regs.h"
94#include "hard-reg-set.h"
95#include "flags.h"
96
97#include "obstack.h"
98#define obstack_chunk_alloc xmalloc
99#define obstack_chunk_free free
100
101extern int xmalloc ();
102extern void free ();
103
104/* Get the basic block number of an insn.
105 This info should not be expected to remain available
106 after the end of life_analysis. */
107
108#define BLOCK_NUM(INSN) uid_block_number[INSN_UID (INSN)]
109
110/* This is where the BLOCK_NUM values are really stored.
111 This is set up by find_basic_blocks and used there and in life_analysis,
112 and then freed. */
113
114static short *uid_block_number;
115
116/* INSN_VOLATILE (insn) is 1 if the insn refers to anything volatile. */
117
118#define INSN_VOLATILE(INSN) uid_volatile[INSN_UID (INSN)]
119static char *uid_volatile;
120
121/* Number of basic blocks in the current function. */
122
123int n_basic_blocks;
124
125/* Maximum register number used in this function, plus one. */
126
127int max_regno;
128
129/* Indexed by n, gives number of basic block that (REG n) is used in.
130 If the value is REG_BLOCK_GLOBAL (-2),
131 it means (REG n) is used in more than one basic block.
132 REG_BLOCK_UNKNOWN (-1) means it hasn't been seen yet so we don't know.
133 This information remains valid for the rest of the compilation
134 of the current function; it is used to control register allocation. */
135
136short *reg_basic_block;
137
138/* Indexed by n, gives number of times (REG n) is used or set, each
139 weighted by its loop-depth.
140 This information remains valid for the rest of the compilation
141 of the current function; it is used to control register allocation. */
142
143short *reg_n_refs;
144
145/* Indexed by n, gives number of times (REG n) is set.
146 This information remains valid for the rest of the compilation
147 of the current function; it is used to control register allocation. */
148
149short *reg_n_sets;
150
151/* Indexed by N, gives number of places register N dies.
152 This information remains valid for the rest of the compilation
153 of the current function; it is used to control register allocation. */
154
155short *reg_n_deaths;
156
157/* Indexed by N, gives 1 if that reg is live across any CALL_INSNs.
158 This information remains valid for the rest of the compilation
159 of the current function; it is used to control register allocation. */
160
161int *reg_n_calls_crossed;
162
163/* Indexed by N, gives the uid of the first insn that mentions reg N,
164 provided that reg is local to one basic block.
165 The value here is undefined otherwise. */
166
167rtx *reg_first_use;
168
169/* Total number of instructions at which (REG n) is live.
170 The larger this is, the less priority (REG n) gets for
171 allocation in a real register.
172 This information remains valid for the rest of the compilation
173 of the current function; it is used to control register allocation.
174
175 local-alloc.c may alter this number to change the priority.
176
177 Negative values are special.
178 -1 is used to mark a pseudo reg which has a constant or memory equivalent
179 and is used infrequently enough that it should not get a hard register.
180 -2 is used to mark a pseudo reg for a parameter, when a frame pointer
181 is not required. global-alloc.c makes an allocno for this but does
182 not try to assign a hard register to it. */
183
184int *reg_live_length;
185
186/* Element N is the next insn that uses (hard or pseudo) register number N
187 within the current basic block; or zero, if there is no such insn.
188 This is valid only during the final backward scan in propagate_block. */
189
190static rtx *reg_next_use;
191
192/* Size of a regset for the current function,
193 in (1) bytes and (2) elements. */
194
195int regset_bytes;
196int regset_size;
197
198/* Element N is first insn in basic block N.
199 This info lasts until we finish compiling the function. */
200
201rtx *basic_block_head;
202
203/* Element N is last insn in basic block N.
204 This info lasts until we finish compiling the function. */
205
206rtx *basic_block_end;
207
208/* Element N is a regset describing the registers live
209 at the start of basic block N.
210 This info lasts until we finish compiling the function. */
211
212regset *basic_block_live_at_start;
213
214/* Regset of regs live when calls to `setjmp'-like functions happen. */
215
216regset regs_live_at_setjmp;
217
218/* Element N is nonzero if control can drop into basic block N
219 from the preceding basic block. Freed after life_analysis. */
220
221static char *basic_block_drops_in;
222
223/* Element N is depth within loops of basic block number N.
224 Freed after life_analysis. */
225
226static short *basic_block_loop_depth;
227
228/* Element N nonzero if basic block N can actually be reached.
229 Vector exists only during find_basic_blocks. */
230
231static char *block_live_static;
232
233/* Depth within loops of basic block being scanned for lifetime analysis,
234 plus one. This is the weight attached to references to registers. */
235
236static int loop_depth;
237\f
238/* Define AUTO_INC_DEC if machine has any kind of incrementing
239 or decrementing addressing. */
240
241#ifdef HAVE_PRE_DECREMENT
242#define AUTO_INC_DEC
243#endif
244
245#ifdef HAVE_PRE_INCREMENT
246#define AUTO_INC_DEC
247#endif
248
249#ifdef HAVE_POST_DECREMENT
250#define AUTO_INC_DEC
251#endif
252
253#ifdef HAVE_POST_INCREMENT
254#define AUTO_INC_DEC
255#endif
256
257/* Forward declarations */
258static void find_basic_blocks ();
259static void life_analysis ();
260static void mark_label_ref ();
261void allocate_for_life_analysis (); /* Used also in stupid_life_analysis */
262static void init_regset_vector ();
263static void propagate_block ();
264static void mark_set_regs ();
265static void mark_used_regs ();
266static int insn_dead_p ();
267static int libcall_dead_p ();
268static int try_pre_increment ();
269static int try_pre_increment_1 ();
270static rtx find_use_as_address ();
271void dump_flow_info ();
272\f
273/* Find basic blocks of the current function and perform data flow analysis.
274 F is the first insn of the function and NREGS the number of register numbers
275 in use. */
276
277void
278flow_analysis (f, nregs, file)
279 rtx f;
280 int nregs;
281 FILE *file;
282{
283 register rtx insn;
284 register int i;
285 register int max_uid = 0;
286
287 /* Count the basic blocks. Also find maximum insn uid value used. */
288
289 {
290 register RTX_CODE prev_code = JUMP_INSN;
291 register RTX_CODE code;
292
293 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
294 {
295 code = GET_CODE (insn);
296 if (INSN_UID (insn) > max_uid)
297 max_uid = INSN_UID (insn);
298 if (code == CODE_LABEL
299 || (prev_code != INSN && prev_code != CALL_INSN
300 && prev_code != CODE_LABEL
301 && (code == INSN || code == CALL_INSN || code == JUMP_INSN)))
302 i++;
303 if (code != NOTE)
304 prev_code = code;
305 }
306 }
307
308 /* Allocate some tables that last till end of compiling this function
309 and some needed only in find_basic_blocks and life_analysis. */
310
311 n_basic_blocks = i;
312 basic_block_head = (rtx *) oballoc (n_basic_blocks * sizeof (rtx));
313 basic_block_end = (rtx *) oballoc (n_basic_blocks * sizeof (rtx));
314 basic_block_drops_in = (char *) alloca (n_basic_blocks);
315 basic_block_loop_depth = (short *) alloca (n_basic_blocks * sizeof (short));
316 uid_block_number = (short *) alloca ((max_uid + 1) * sizeof (short));
317 uid_volatile = (char *) alloca (max_uid + 1);
318 bzero (uid_volatile, max_uid + 1);
319
320 find_basic_blocks (f);
321 life_analysis (f, nregs);
322 if (file)
323 dump_flow_info (file);
324
325 basic_block_drops_in = 0;
326 uid_block_number = 0;
327 basic_block_loop_depth = 0;
328}
329\f
330/* Find all basic blocks of the function whose first insn is F.
331 Store the correct data in the tables that describe the basic blocks,
332 set up the chains of references for each CODE_LABEL, and
333 delete any entire basic blocks that cannot be reached. */
334
335static void
336find_basic_blocks (f)
337 rtx f;
338{
339 register rtx insn;
340 register int i;
341
342 /* Initialize the ref chain of each label to 0. */
343 /* Record where all the blocks start and end and their depth in loops. */
344 /* For each insn, record the block it is in. */
345
346 {
347 register RTX_CODE prev_code = JUMP_INSN;
348 register RTX_CODE code;
349 int depth = 1;
350
351 for (insn = f, i = -1; insn; insn = NEXT_INSN (insn))
352 {
353 code = GET_CODE (insn);
354 if (code == NOTE)
355 {
356 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
357 depth++;
358 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
359 depth--;
360 }
361 else if (code == CODE_LABEL
362 || (prev_code != INSN && prev_code != CALL_INSN
363 && prev_code != CODE_LABEL
364 && (code == INSN || code == CALL_INSN || code == JUMP_INSN)))
365 {
366 basic_block_head[++i] = insn;
367 basic_block_end[i] = insn;
368 basic_block_loop_depth[i] = depth;
369 if (code == CODE_LABEL)
370 LABEL_REFS (insn) = insn;
371 }
372 else if (code == INSN || code == CALL_INSN || code == JUMP_INSN)
373 basic_block_end[i] = insn;
374 BLOCK_NUM (insn) = i;
375 if (code != NOTE)
376 prev_code = code;
377 }
378 if (i + 1 != n_basic_blocks)
379 abort ();
380 }
381
382 /* Record which basic blocks control can drop in to. */
383
384 {
385 register int i;
386 for (i = 0; i < n_basic_blocks; i++)
387 {
388 register rtx insn = PREV_INSN (basic_block_head[i]);
389 /* TEMP1 is used to avoid a bug in Sequent's compiler. */
390 register int temp1;
391 while (insn && GET_CODE (insn) == NOTE)
392 insn = PREV_INSN (insn);
393 temp1 = insn && GET_CODE (insn) != BARRIER;
394 basic_block_drops_in[i] = temp1;
395 }
396 }
397
398 /* Now find which basic blocks can actually be reached
399 and put all jump insns' LABEL_REFS onto the ref-chains
400 of their target labels. */
401
402 if (n_basic_blocks > 0)
403 {
404 register char *block_live = (char *) alloca (n_basic_blocks);
405 register char *block_marked = (char *) alloca (n_basic_blocks);
406 int something_marked = 1;
407
408 /* Initialize with just block 0 reachable and no blocks marked. */
409
410 bzero (block_live, n_basic_blocks);
411 bzero (block_marked, n_basic_blocks);
412 block_live[0] = 1;
413 block_live_static = block_live;
414
415 /* Pass over all blocks, marking each block that is reachable
416 and has not yet been marked.
417 Keep doing this until, in one pass, no blocks have been marked.
418 Then blocks_live and blocks_marked are identical and correct.
419 In addition, all jumps actually reachable have been marked. */
420
421 while (something_marked)
422 {
423 something_marked = 0;
424 for (i = 0; i < n_basic_blocks; i++)
425 if (block_live[i] && !block_marked[i])
426 {
427 block_marked[i] = 1;
428 something_marked = 1;
429 if (i + 1 < n_basic_blocks && basic_block_drops_in[i + 1])
430 block_live[i + 1] = 1;
431 insn = basic_block_end[i];
432 if (GET_CODE (insn) == JUMP_INSN)
433 mark_label_ref (PATTERN (insn), insn, 0);
434 }
435 }
436
437 /* Now delete the code for any basic blocks that can't be reached.
438 They can occur because jump_optimize does not recognize
439 unreachable loops as unreachable. */
440
441 for (i = 0; i < n_basic_blocks; i++)
442 if (!block_live[i])
443 {
444 insn = basic_block_head[i];
445 while (1)
446 {
447 if (GET_CODE (insn) == BARRIER)
448 abort ();
449 if (GET_CODE (insn) != NOTE)
450 {
451 PUT_CODE (insn, NOTE);
452 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
453 NOTE_SOURCE_FILE (insn) = 0;
454 }
455 if (insn == basic_block_end[i])
456 {
457 /* BARRIERs are between basic blocks, not part of one.
458 Delete a BARRIER if the preceding jump is deleted.
459 We cannot alter a BARRIER into a NOTE
460 because it is too short; but we can really delete
461 it because it is not part of a basic block. */
462 if (NEXT_INSN (insn) != 0
463 && GET_CODE (NEXT_INSN (insn)) == BARRIER)
464 delete_insn (NEXT_INSN (insn));
465 break;
466 }
467 insn = NEXT_INSN (insn);
468 }
469 /* Each time we delete some basic blocks,
470 see if there is a jump around them that is
471 being turned into a no-op. If so, delete it. */
472
473 if (block_live[i - 1])
474 {
475 register int j;
476 for (j = i; j < n_basic_blocks; j++)
477 if (block_live[j])
478 {
479 rtx label;
480 insn = basic_block_end[i - 1];
481 if (GET_CODE (insn) == JUMP_INSN
482 /* An unconditional jump is the only possibility
483 we must check for, since a conditional one
484 would make these blocks live. */
485 && simplejump_p (insn)
486 && (label = XEXP (SET_SRC (PATTERN (insn)), 0), 1)
487 && INSN_UID (label) != 0
488 && BLOCK_NUM (label) == j)
489 {
490 PUT_CODE (insn, NOTE);
491 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
492 NOTE_SOURCE_FILE (insn) = 0;
493 if (GET_CODE (NEXT_INSN (insn)) != BARRIER)
494 abort ();
495 delete_insn (NEXT_INSN (insn));
496 }
497 break;
498 }
499 }
500 }
501 }
502}
503\f
504/* Check expression X for label references;
505 if one is found, add INSN to the label's chain of references.
506
507 CHECKDUP means check for and avoid creating duplicate references
508 from the same insn. Such duplicates do no serious harm but
509 can slow life analysis. CHECKDUP is set only when duplicates
510 are likely. */
511
512static void
513mark_label_ref (x, insn, checkdup)
514 rtx x, insn;
515 int checkdup;
516{
517 register RTX_CODE code = GET_CODE (x);
518 register int i;
519 register char *fmt;
520
521 if (code == LABEL_REF)
522 {
523 register rtx label = XEXP (x, 0);
524 register rtx y;
525 if (GET_CODE (label) != CODE_LABEL)
526 abort ();
527 /* If the label was never emitted, this insn is junk,
528 but avoid a crash trying to refer to BLOCK_NUM (label).
529 This can happen as a result of a syntax error
530 and a diagnostic has already been printed. */
531 if (INSN_UID (label) == 0)
532 return;
533 CONTAINING_INSN (x) = insn;
534 /* if CHECKDUP is set, check for duplicate ref from same insn
535 and don't insert. */
536 if (checkdup)
537 for (y = LABEL_REFS (label); y != label; y = LABEL_NEXTREF (y))
538 if (CONTAINING_INSN (y) == insn)
539 return;
540 LABEL_NEXTREF (x) = LABEL_REFS (label);
541 LABEL_REFS (label) = x;
542 block_live_static[BLOCK_NUM (label)] = 1;
543 return;
544 }
545
546 fmt = GET_RTX_FORMAT (code);
547 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
548 {
549 if (fmt[i] == 'e')
550 mark_label_ref (XEXP (x, i), insn, 0);
551 if (fmt[i] == 'E')
552 {
553 register int j;
554 for (j = 0; j < XVECLEN (x, i); j++)
555 mark_label_ref (XVECEXP (x, i, j), insn, 1);
556 }
557 }
558}
559\f
560/* Determine the which registers are live at the start of each
561 basic block of the function whose first insn is F.
562 NREGS is the number of registers used in F.
563 We allocate the vector basic_block_live_at_start
564 and the regsets that it points to, and fill them with the data.
565 regset_size and regset_bytes are also set here. */
566
567static void
568life_analysis (f, nregs)
569 rtx f;
570 int nregs;
571{
572 register regset tem;
573 int first_pass;
574 int changed;
575 /* For each basic block, a bitmask of regs
576 live on exit from the block. */
577 regset *basic_block_live_at_end;
578 /* For each basic block, a bitmask of regs
579 live on entry to a successor-block of this block.
580 If this does not match basic_block_live_at_end,
581 that must be updated, and the block must be rescanned. */
582 regset *basic_block_new_live_at_end;
583 /* For each basic block, a bitmask of regs
584 whose liveness at the end of the basic block
585 can make a difference in which regs are live on entry to the block.
586 These are the regs that are set within the basic block,
587 possibly excluding those that are used after they are set. */
588 regset *basic_block_significant;
589 register int i;
590 rtx insn;
591
592 struct obstack flow_obstack;
593
594 obstack_init (&flow_obstack);
595
596 max_regno = nregs;
597
598 bzero (regs_ever_live, sizeof regs_ever_live);
599
600 /* Allocate and zero out many data structures
601 that will record the data from lifetime analysis. */
602
603 allocate_for_life_analysis ();
604
605 reg_next_use = (rtx *) alloca (nregs * sizeof (rtx));
606 bzero (reg_next_use, nregs * sizeof (rtx));
607
608 /* Set up several regset-vectors used internally within this function.
609 Their meanings are documented above, with their declarations. */
610
611 basic_block_live_at_end = (regset *) alloca (n_basic_blocks * sizeof (regset));
612 /* Don't use alloca since that leads to a crash rather than an error message
613 if there isn't enough space.
614 Don't use oballoc since we may need to allocate other things during
615 this function on the temporary obstack. */
616 tem = (regset) obstack_alloc (&flow_obstack, n_basic_blocks * regset_bytes);
617 bzero (tem, n_basic_blocks * regset_bytes);
618 init_regset_vector (basic_block_live_at_end, tem, n_basic_blocks, regset_bytes);
619
620 basic_block_new_live_at_end = (regset *) alloca (n_basic_blocks * sizeof (regset));
621 tem = (regset) obstack_alloc (&flow_obstack, n_basic_blocks * regset_bytes);
622 bzero (tem, n_basic_blocks * regset_bytes);
623 init_regset_vector (basic_block_new_live_at_end, tem, n_basic_blocks, regset_bytes);
624
625 basic_block_significant = (regset *) alloca (n_basic_blocks * sizeof (regset));
626 tem = (regset) obstack_alloc (&flow_obstack, n_basic_blocks * regset_bytes);
627 bzero (tem, n_basic_blocks * regset_bytes);
628 init_regset_vector (basic_block_significant, tem, n_basic_blocks, regset_bytes);
629
630 /* Record which insns refer to any volatile memory
631 or for any reason can't be deleted just because they are dead stores.
632 Also, delete any insns that copy a register to itself. */
633
634 for (insn = f; insn; insn = NEXT_INSN (insn))
635 {
636 enum rtx_code code1 = GET_CODE (insn);
637 if (code1 == CALL_INSN)
638 INSN_VOLATILE (insn) = 1;
639 else if (code1 == INSN || code1 == JUMP_INSN)
640 {
641 if (GET_CODE (PATTERN (insn)) == SET
642 && GET_CODE (SET_DEST (PATTERN (insn))) == REG
643 && GET_CODE (SET_SRC (PATTERN (insn))) == REG
644 && REGNO (SET_DEST (PATTERN (insn))) ==
645 REGNO (SET_SRC (PATTERN (insn))))
646 {
647 PUT_CODE (insn, NOTE);
648 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
649 NOTE_SOURCE_FILE (insn) = 0;
650 }
651 else if (GET_CODE (PATTERN (insn)) != USE)
652 INSN_VOLATILE (insn) = volatile_refs_p (PATTERN (insn));
653 /* A SET that makes space on the stack cannot be dead.
654 (Such SETs occur only for allocating variable-size data,
655 so they will always have a PLUS or MINUS according to the
656 direction of stack growth.)
657 Even if this function never uses this stack pointer value,
658 signal handlers do! */
659 else if (code1 == INSN && GET_CODE (PATTERN (insn)) == SET
660 && SET_DEST (PATTERN (insn)) == stack_pointer_rtx
661#ifdef STACK_GROWS_DOWNWARD
662 && GET_CODE (SET_SRC (PATTERN (insn))) == MINUS
663#else
664 && GET_CODE (SET_SRC (PATTERN (insn))) == PLUS
665#endif
666 && XEXP (SET_SRC (PATTERN (insn)), 0) == stack_pointer_rtx)
667 INSN_VOLATILE (insn) = 1;
668 }
669 }
670
671 if (n_basic_blocks > 0)
672#ifdef EXIT_IGNORE_STACK
673 if (! (EXIT_IGNORE_STACK) || ! frame_pointer_needed)
674#endif
675 {
676 /* If exiting needs the right stack value,
677 consider the stack pointer live at the end of the function. */
678 basic_block_live_at_end[n_basic_blocks - 1]
679 [STACK_POINTER_REGNUM / REGSET_ELT_BITS]
680 |= 1 << (STACK_POINTER_REGNUM % REGSET_ELT_BITS);
681 basic_block_new_live_at_end[n_basic_blocks - 1]
682 [STACK_POINTER_REGNUM / REGSET_ELT_BITS]
683 |= 1 << (STACK_POINTER_REGNUM % REGSET_ELT_BITS);
684 }
685
686 /* Propagate life info through the basic blocks
687 around the graph of basic blocks.
688
689 This is a relaxation process: each time a new register
690 is live at the end of the basic block, we must scan the block
691 to determine which registers are, as a consequence, live at the beginning
692 of that block. These registers must then be marked live at the ends
693 of all the blocks that can transfer control to that block.
694 The process continues until it reaches a fixed point. */
695
696 first_pass = 1;
697 changed = 1;
698 while (changed)
699 {
700 changed = 0;
701 for (i = n_basic_blocks - 1; i >= 0; i--)
702 {
703 int consider = first_pass;
704 int must_rescan = first_pass;
705 register int j;
706
707 /* Set CONSIDER if this block needs thinking about at all
708 (that is, if the regs live now at the end of it
709 are not the same as were live at the end of it when
710 we last thought about it).
711 Set must_rescan if it needs to be thought about
712 instruction by instruction (that is, if any additional
713 reg that is live at the end now but was not live there before
714 is one of the significant regs of this basic block). */
715
716 for (j = 0; j < regset_size; j++)
717 {
718 register int x = basic_block_new_live_at_end[i][j]
719 & ~basic_block_live_at_end[i][j];
720 if (x)
721 consider = 1;
722 if (x & basic_block_significant[i][j])
723 {
724 must_rescan = 1;
725 consider = 1;
726 break;
727 }
728 }
729
730 if (! consider)
731 continue;
732
733 /* The live_at_start of this block may be changing,
734 so another pass will be required after this one. */
735 changed = 1;
736
737 if (! must_rescan)
738 {
739 /* No complete rescan needed;
740 just record those variables newly known live at end
741 as live at start as well. */
742 for (j = 0; j < regset_size; j++)
743 {
744 register int x = basic_block_new_live_at_end[i][j]
745 & ~basic_block_live_at_end[i][j];
746 basic_block_live_at_start[i][j] |= x;
747 basic_block_live_at_end[i][j] |= x;
748 }
749 }
750 else
751 {
752 /* Update the basic_block_live_at_start
753 by propagation backwards through the block. */
754 bcopy (basic_block_new_live_at_end[i],
755 basic_block_live_at_end[i], regset_bytes);
756 bcopy (basic_block_live_at_end[i],
757 basic_block_live_at_start[i], regset_bytes);
758 propagate_block (basic_block_live_at_start[i],
759 basic_block_head[i], basic_block_end[i], 0,
760 first_pass ? basic_block_significant[i] : 0,
761 i);
762 }
763
764 {
765 register rtx jump, head;
766 /* Update the basic_block_new_live_at_end's of the block
767 that falls through into this one (if any). */
768 head = basic_block_head[i];
769 jump = PREV_INSN (head);
770 if (basic_block_drops_in[i])
771 {
772 register int from_block = BLOCK_NUM (jump);
773 register int j;
774 for (j = 0; j < regset_size; j++)
775 basic_block_new_live_at_end[from_block][j]
776 |= basic_block_live_at_start[i][j];
777 }
778 /* Update the basic_block_new_live_at_end's of
779 all the blocks that jump to this one. */
780 if (GET_CODE (head) == CODE_LABEL)
781 for (jump = LABEL_REFS (head);
782 jump != head;
783 jump = LABEL_NEXTREF (jump))
784 {
785 register int from_block = BLOCK_NUM (CONTAINING_INSN (jump));
786 register int j;
787 for (j = 0; j < regset_size; j++)
788 basic_block_new_live_at_end[from_block][j]
789 |= basic_block_live_at_start[i][j];
790 }
791 }
792#ifdef USE_C_ALLOCA
793 alloca (0);
794#endif
795 }
796 first_pass = 0;
797 }
798
799#if 0 /* This seems unnecessary; life at start of function shouldn't
800 mean that the reg is live in more than one basic block. */
801
802 /* Process the regs live at the beginning of the function.
803 Mark them as not local to any one basic block. */
804
805 if (n_basic_blocks > 0)
806 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
807 if (basic_block_live_at_start[0][i / REGSET_ELT_BITS]
808 & (1 << (i % REGSET_ELT_BITS)))
809 reg_basic_block[i] = REG_BLOCK_GLOBAL;
810#endif
811
812 /* Now the life information is accurate.
813 Make one more pass over each basic block
814 to delete dead stores, create autoincrement addressing
815 and record how many times each register is used, is set, or dies.
816
817 To save time, we operate directly in basic_block_live_at_end[i],
818 thus destroying it (in fact, converting it into a copy of
819 basic_block_live_at_start[i]). This is ok now because
820 basic_block_live_at_end[i] is no longer used past this point. */
821
822 for (i = 0; i < n_basic_blocks; i++)
823 {
824 propagate_block (basic_block_live_at_end[i],
825 basic_block_head[i], basic_block_end[i], 1, 0, i);
826#ifdef USE_C_ALLOCA
827 alloca (0);
828#endif
829 }
830
831#if 0
832 /* Something live during a setjmp should not be put in a register
833 on certain machines which restore regs from stack frames
834 rather than from the jmpbuf.
835 But we don't need to do this for the user's variables, since
836 ANSI says only volatile variables need this. */
837#ifdef LONGJMP_RESTORE_FROM_STACK
838 for (i = FIRST_PSEUDO_REGISTER; i < nregs; i++)
839 if (regs_live_at_setjmp[i / REGSET_ELT_BITS] & (1 << (i % REGSET_ELT_BITS))
840 && regno_reg_rtx[i] != 0 && ! REG_USERVAR_P (regno_reg_rtx[i]))
841 {
842 reg_live_length[i] = -1;
843 reg_basic_block[i] = -1;
844 }
845#endif
846#endif
847
848 /* We have a problem with any pseudoreg that
849 lives across the setjmp. ANSI says that if a
850 user variable does not change in value
851 between the setjmp and the longjmp, then the longjmp preserves it.
852 This includes longjmp from a place where the pseudo appears dead.
853 (In principle, the value still exists if it is in scope.)
854 If the pseudo goes in a hard reg, some other value may occupy
855 that hard reg where this pseudo is dead, thus clobbering the pseudo.
856 Conclusion: such a pseudo must not go in a hard reg. */
857 for (i = FIRST_PSEUDO_REGISTER; i < nregs; i++)
858 if (regs_live_at_setjmp[i / REGSET_ELT_BITS] & (1 << (i % REGSET_ELT_BITS))
859 && regno_reg_rtx[i] != 0)
860 {
861 reg_live_length[i] = -1;
862 reg_basic_block[i] = -1;
863 }
864
865 obstack_free (&flow_obstack, 0);
866}
867\f
868/* Subroutines of life analysis. */
869
870/* Allocate the permanent data structures that represent the results
871 of life analysis. Not static since used also for stupid life analysis. */
872
873void
874allocate_for_life_analysis ()
875{
876 register int i;
877 register regset tem;
878
879 regset_size = ((max_regno + REGSET_ELT_BITS - 1) / REGSET_ELT_BITS);
880 regset_bytes = regset_size * sizeof (*(regset)0);
881
882 reg_n_refs = (short *) oballoc (max_regno * sizeof (short));
883 bzero (reg_n_refs, max_regno * sizeof (short));
884
885 reg_n_sets = (short *) oballoc (max_regno * sizeof (short));
886 bzero (reg_n_sets, max_regno * sizeof (short));
887
888 reg_n_deaths = (short *) oballoc (max_regno * sizeof (short));
889 bzero (reg_n_deaths, max_regno * sizeof (short));
890
891 reg_first_use = (rtx *) oballoc (max_regno * sizeof (rtx));
892 bzero (reg_first_use, max_regno * sizeof (rtx));
893
894 reg_live_length = (int *) oballoc (max_regno * sizeof (int));
895 bzero (reg_live_length, max_regno * sizeof (int));
896
897 reg_n_calls_crossed = (int *) oballoc (max_regno * sizeof (int));
898 bzero (reg_n_calls_crossed, max_regno * sizeof (int));
899
900 reg_basic_block = (short *) oballoc (max_regno * sizeof (short));
901 for (i = 0; i < max_regno; i++)
902 reg_basic_block[i] = REG_BLOCK_UNKNOWN;
903
904 basic_block_live_at_start = (regset *) oballoc (n_basic_blocks * sizeof (regset));
905 tem = (regset) oballoc (n_basic_blocks * regset_bytes);
906 bzero (tem, n_basic_blocks * regset_bytes);
907 init_regset_vector (basic_block_live_at_start, tem, n_basic_blocks, regset_bytes);
908
909 regs_live_at_setjmp = (regset) oballoc (regset_bytes);
910 bzero (regs_live_at_setjmp, regset_bytes);
911}
912
913/* Make each element of VECTOR point at a regset,
914 taking the space for all those regsets from SPACE.
915 SPACE is of type regset, but it is really as long as NELTS regsets.
916 BYTES_PER_ELT is the number of bytes in one regset. */
917
918static void
919init_regset_vector (vector, space, nelts, bytes_per_elt)
920 regset *vector;
921 regset space;
922 int nelts;
923 int bytes_per_elt;
924{
925 register int i;
926 register regset p = space;
927
928 for (i = 0; i < nelts; i++)
929 {
930 vector[i] = p;
931 p += bytes_per_elt / sizeof (*p);
932 }
933}
934\f
935/* Compute the registers live at the beginning of a basic block
936 from those live at the end.
937
938 When called, OLD contains those live at the end.
939 On return, it contains those live at the beginning.
940 FIRST and LAST are the first and last insns of the basic block.
941
942 FINAL is nonzero if we are doing the final pass which is not
943 for computing the life info (since that has already been done)
944 but for acting on it. On this pass, we delete dead stores,
945 set up the logical links and dead-variables lists of instructions,
946 and merge instructions for autoincrement and autodecrement addresses.
947
948 SIGNIFICANT is nonzero only the first time for each basic block.
949 If it is nonzero, it points to a regset in which we store
950 a 1 for each register that is set within the block.
951
952 BNUM is the number of the basic block. */
953
954static void
955propagate_block (old, first, last, final, significant, bnum)
956 register regset old;
957 rtx first;
958 rtx last;
959 int final;
960 regset significant;
961 int bnum;
962{
963 register rtx insn;
964 rtx prev;
965 regset live;
966 regset dead;
967
968 /* The following variables are used only if FINAL is nonzero. */
969 /* This vector gets one element for each reg that has been live
970 at any point in the basic block that has been scanned so far.
971 SOMETIMES_MAX says how many elements are in use so far.
972 In each element, OFFSET is the byte-number within a regset
973 for the register described by the element, and BIT is a mask
974 for that register's bit within the byte. */
975 register struct foo { short offset; short bit; } *regs_sometimes_live;
976 int sometimes_max = 0;
977 /* This regset has 1 for each reg that we have seen live so far.
978 It and REGS_SOMETIMES_LIVE are updated together. */
979 regset maxlive;
980
981 loop_depth = basic_block_loop_depth[bnum];
982
983 dead = (regset) alloca (regset_bytes);
984 live = (regset) alloca (regset_bytes);
985
986 if (final)
987 {
988 register int i, offset, bit;
989
990 maxlive = (regset) alloca (regset_bytes);
991 bcopy (old, maxlive, regset_bytes);
992 regs_sometimes_live
993 = (struct foo *) alloca (max_regno * sizeof (struct foo));
994
995 /* Process the regs live at the end of the block.
996 Enter them in MAXLIVE and REGS_SOMETIMES_LIVE.
997 Also mark them as not local to any one basic block. */
998
999 for (offset = 0, i = 0; offset < regset_size; offset++)
1000 for (bit = 1; bit; bit <<= 1, i++)
1001 {
1002 if (i == max_regno)
1003 break;
1004 if (old[offset] & bit)
1005 {
1006 reg_basic_block[i] = REG_BLOCK_GLOBAL;
1007 regs_sometimes_live[sometimes_max].offset = offset;
1008 regs_sometimes_live[sometimes_max].bit = i % REGSET_ELT_BITS;
1009 sometimes_max++;
1010 }
1011 }
1012 }
1013
1014 /* Include any notes at the end of the block in the scan.
1015 This is in case the block ends with a call to setjmp. */
1016
1017 while (NEXT_INSN (last) != 0 && GET_CODE (NEXT_INSN (last)) == NOTE)
1018 last = NEXT_INSN (last);
1019
1020 /* Scan the block an insn at a time from end to beginning. */
1021
1022 for (insn = last; ; insn = prev)
1023 {
1024 prev = PREV_INSN (insn);
1025
1026 /* If this is a call to `setjmp' et al,
1027 warn if any non-volatile datum is live. */
1028
1029 if (final && GET_CODE (insn) == NOTE
1030 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_SETJMP)
1031 {
1032 int i;
1033 for (i = 0; i < regset_size; i++)
1034 regs_live_at_setjmp[i] |= old[i];
1035 }
1036
1037 /* Update the life-status of regs for this insn.
1038 First DEAD gets which regs are set in this insn
1039 then LIVE gets which regs are used in this insn.
1040 Then the regs live before the insn
1041 are those live after, with DEAD regs turned off,
1042 and then LIVE regs turned on. */
1043
1044 if (GET_CODE (insn) == INSN
1045 || GET_CODE (insn) == JUMP_INSN
1046 || GET_CODE (insn) == CALL_INSN)
1047 {
1048 register int i;
1049 rtx note = find_reg_note (insn, REG_RETVAL, 0);
1050
1051 /* If an instruction consists of just dead store(s) on final pass,
1052 "delete" it by turning it into a NOTE of type NOTE_INSN_DELETED.
1053 We could really delete it with delete_insn, but that
1054 can cause trouble for first or last insn in a basic block. */
1055 if (final && insn_dead_p (PATTERN (insn), old, 1)
1056 /* Don't delete something that refers to volatile storage! */
1057 && ! INSN_VOLATILE (insn))
1058 {
1059 rtx oldpat = PATTERN (insn);
1060 PUT_CODE (insn, NOTE);
1061 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1062 NOTE_SOURCE_FILE (insn) = 0;
1063 /* If this insn is copying the return value from a library call,
1064 delete the entire library call. */
1065 if (note && libcall_dead_p (oldpat, old))
1066 {
1067 rtx first = XEXP (note, 0);
1068 rtx prev = insn;
1069 while (INSN_DELETED_P (first))
1070 first = NEXT_INSN (first);
1071 while (prev != first)
1072 {
1073 prev = PREV_INSN (prev);
1074 PUT_CODE (prev, NOTE);
1075 NOTE_LINE_NUMBER (prev) = NOTE_INSN_DELETED;
1076 NOTE_SOURCE_FILE (prev) = 0;
1077 }
1078 }
1079 goto flushed;
1080 }
1081
1082 for (i = 0; i < regset_size; i++)
1083 {
1084 dead[i] = 0; /* Faster than bzero here */
1085 live[i] = 0; /* since regset_size is usually small */
1086 }
1087
1088 /* See if this is an increment or decrement that can be
1089 merged into a following memory address. */
1090#ifdef AUTO_INC_DEC
1091 {
1092 register rtx x = PATTERN (insn);
1093 /* Does this instruction increment or decrement a register? */
1094 if (final && GET_CODE (x) == SET
1095 && GET_CODE (SET_DEST (x)) == REG
1096 && (GET_CODE (SET_SRC (x)) == PLUS
1097 || GET_CODE (SET_SRC (x)) == MINUS)
1098 && XEXP (SET_SRC (x), 0) == SET_DEST (x)
1099 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
1100 /* Ok, look for a following memory ref we can combine with.
1101 If one is found, change the memory ref to a PRE_INC
1102 or PRE_DEC, cancel this insn, and return 1.
1103 Return 0 if nothing has been done. */
1104 && try_pre_increment_1 (insn))
1105 goto flushed;
1106 }
1107#endif /* AUTO_INC_DEC */
1108
1109 /* If this is not the final pass, and this insn is copying the
1110 value of a library call and it's dead, don't scan the
1111 insns that perform the library call, so that the call's
1112 arguments are not marked live. */
1113 if (note && insn_dead_p (PATTERN (insn), old, 1)
1114 && libcall_dead_p (PATTERN (insn), old))
1115 {
1116 /* Mark the dest reg as `significant'. */
1117 mark_set_regs (old, dead, PATTERN (insn), 0, significant);
1118
1119 insn = XEXP (note, 0);
1120 prev = PREV_INSN (insn);
1121 }
1122 else if (GET_CODE (PATTERN (insn)) == SET
1123 && SET_DEST (PATTERN (insn)) == stack_pointer_rtx
1124 && GET_CODE (SET_SRC (PATTERN (insn))) == PLUS
1125 && XEXP (SET_SRC (PATTERN (insn)), 0) == stack_pointer_rtx
1126 && GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 1)) == CONST_INT)
1127 /* We have an insn to pop a constant amount off the stack.
1128 (Such insns use PLUS regardless of the direction of the stack,
1129 and any insn to adjust the stack by a constant is always a pop.)
1130 These insns, if not dead stores, have no effect on life. */
1131 ;
1132 else
1133 {
1134 /* LIVE gets the regs used in INSN; DEAD gets those set by it. */
1135 mark_set_regs (old, dead, PATTERN (insn), final ? insn : 0,
1136 significant);
1137 mark_used_regs (old, live, PATTERN (insn), final, insn);
1138
1139 /* Update OLD for the registers used or set. */
1140 for (i = 0; i < regset_size; i++)
1141 {
1142 old[i] &= ~dead[i];
1143 old[i] |= live[i];
1144 }
1145
1146 if (GET_CODE (insn) == CALL_INSN)
1147 {
1148 register int i;
1149
1150 /* Each call clobbers all call-clobbered regs.
1151 Note that the function-value reg is one of these, and
1152 mark_set_regs has already had a chance to handle it. */
1153 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1154 if (call_used_regs[i])
1155 dead[i / REGSET_ELT_BITS] |=
1156 (1 << (i % REGSET_ELT_BITS));
1157
1158 /* The stack ptr is used (honorarily) by a CALL insn. */
1159 live[STACK_POINTER_REGNUM / REGSET_ELT_BITS]
1160 |= (1 << (STACK_POINTER_REGNUM % REGSET_ELT_BITS));
1161 }
1162
1163 /* Update OLD for the registers used or set. */
1164 for (i = 0; i < regset_size; i++)
1165 {
1166 old[i] &= ~dead[i];
1167 old[i] |= live[i];
1168 }
1169
1170 if (GET_CODE (insn) == CALL_INSN && final)
1171 {
1172 /* Any regs live at the time of a call instruction
1173 must not go in a register clobbered by calls.
1174 Find all regs now live and record this for them. */
1175
1176 register struct foo *p = regs_sometimes_live;
1177
1178 for (i = 0; i < sometimes_max; i++, p++)
1179 if (old[p->offset] & (1 << p->bit))
1180 reg_n_calls_crossed[p->offset * REGSET_ELT_BITS + p->bit]+= 1;
1181 }
1182 }
1183
1184 /* On final pass, add any additional sometimes-live regs
1185 into MAXLIVE and REGS_SOMETIMES_LIVE.
1186 Also update counts of how many insns each reg is live at. */
1187
1188 if (final)
1189 {
1190 for (i = 0; i < regset_size; i++)
1191 {
1192 register int diff = live[i] & ~maxlive[i];
1193
1194 if (diff)
1195 {
1196 register int regno;
1197 maxlive[i] |= diff;
1198 for (regno = 0; diff && regno < REGSET_ELT_BITS; regno++)
1199 if (diff & (1 << regno))
1200 {
1201 regs_sometimes_live[sometimes_max].offset = i;
1202 regs_sometimes_live[sometimes_max].bit = regno;
1203 diff &= ~ (1 << regno);
1204 sometimes_max++;
1205 }
1206 }
1207 }
1208
1209 {
1210 register struct foo *p = regs_sometimes_live;
1211 for (i = 0; i < sometimes_max; i++, p++)
1212 {
1213 if (old[p->offset] & (1 << p->bit))
1214 reg_live_length[p->offset * REGSET_ELT_BITS + p->bit]++;
1215 }
1216 }
1217 }
1218 }
1219 flushed: ;
1220 if (insn == first)
1221 break;
1222 }
1223}
1224\f
1225/* Return 1 if X (the body of an insn, or part of it) is just dead stores
1226 (SET expressions whose destinations are registers dead after the insn).
1227 NEEDED is the regset that says which regs are alive after the insn. */
1228
1229static int
1230insn_dead_p (x, needed, strict_low_ok)
1231 rtx x;
1232 regset needed;
1233 int strict_low_ok;
1234{
1235 register RTX_CODE code = GET_CODE (x);
1236#if 0
1237 /* Make sure insns to set the stack pointer are never deleted. */
1238 needed[STACK_POINTER_REGNUM / REGSET_ELT_BITS]
1239 |= 1 << (STACK_POINTER_REGNUM % REGSET_ELT_BITS);
1240#endif
1241
1242 /* If setting something that's a reg or part of one,
1243 see if that register's altered value will be live. */
1244
1245 if (code == SET)
1246 {
1247 register rtx r = SET_DEST (x);
1248 /* A SET that is a subroutine call cannot be dead. */
1249 if (GET_CODE (SET_SRC (x)) == CALL)
1250 return 0;
1251 while (GET_CODE (r) == SUBREG
1252 || (strict_low_ok && GET_CODE (r) == STRICT_LOW_PART)
1253 || GET_CODE (r) == ZERO_EXTRACT
1254 || GET_CODE (r) == SIGN_EXTRACT)
1255 r = SUBREG_REG (r);
1256 if (GET_CODE (r) == REG)
1257 {
1258 register int regno = REGNO (r);
1259 register int offset = regno / REGSET_ELT_BITS;
1260 register int bit = 1 << (regno % REGSET_ELT_BITS);
1261 return (! (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
1262 && (needed[offset] & bit) == 0);
1263 }
1264 }
1265 /* If performing several activities,
1266 insn is dead if each activity is individually dead.
1267 Also, CLOBBERs and USEs can be ignored; a CLOBBER or USE
1268 that's inside a PARALLEL doesn't make the insn worth keeping. */
1269 else if (code == PARALLEL)
1270 {
1271 register int i = XVECLEN (x, 0);
1272 for (i--; i >= 0; i--)
1273 {
1274 rtx elt = XVECEXP (x, 0, i);
1275 if (!insn_dead_p (elt, needed, strict_low_ok)
1276 && GET_CODE (elt) != CLOBBER
1277 && GET_CODE (elt) != USE)
1278 return 0;
1279 }
1280 return 1;
1281 }
1282 /* We do not check CLOBBER or USE here.
1283 An insn consisting of just a CLOBBER or just a USE
1284 should not be deleted. */
1285 return 0;
1286}
1287
1288/* If X is the last insn in a libcall, and assuming X is dead,
1289 return 1 if the entire library call is dead.
1290 This is true if the source of X is a dead register
1291 (as well as the destination, which we tested already).
1292 If this insn doesn't just copy a register, then we don't
1293 have an ordinary libcall. In that case, cse could not have
1294 managed to substitute the source for the dest later on,
1295 so we can assume the libcall is dead. */
1296
1297static int
1298libcall_dead_p (x, needed)
1299 rtx x;
1300 regset needed;
1301{
1302 register RTX_CODE code = GET_CODE (x);
1303
1304 if (code == SET)
1305 {
1306 register rtx r = SET_SRC (x);
1307 if (GET_CODE (r) == REG)
1308 {
1309 register int regno = REGNO (r);
1310 register int offset = regno / REGSET_ELT_BITS;
1311 register int bit = 1 << (regno % REGSET_ELT_BITS);
1312 return (needed[offset] & bit) == 0;
1313 }
1314 }
1315 return 1;
1316}
1317
1318/* Return 1 if register REGNO was used before it was set.
1319 In other words, if it is live at function entry. */
1320
1321int
1322regno_uninitialized (regno)
1323 int regno;
1324{
1325 if (n_basic_blocks == 0)
1326 return 0;
1327
1328 return (basic_block_live_at_start[0][regno / REGSET_ELT_BITS]
1329 & (1 << (regno % REGSET_ELT_BITS)));
1330}
1331
1332/* 1 if register REGNO was alive at a place where `setjmp' was called
1333 and was set more than once. Such regs may be clobbered by `longjmp'. */
1334
1335int
1336regno_clobbered_at_setjmp (regno)
1337 int regno;
1338{
1339 return (reg_n_sets[regno] > 1
1340 && (regs_live_at_setjmp[regno / REGSET_ELT_BITS]
1341 & (1 << (regno % REGSET_ELT_BITS))));
1342}
1343\f
1344/* Process the registers that are set within X.
1345 Their bits are set to 1 in the regset DEAD,
1346 because they are dead prior to this insn.
1347
1348 If INSN is nonzero, it is the insn being processed
1349 and the fact that it is nonzero implies this is the FINAL pass
1350 in propagate_block. In this case, various info about register
1351 usage is stored, LOG_LINKS fields of insns are set up. */
1352
1353static void mark_set_1 ();
1354
1355static void
1356mark_set_regs (needed, dead, x, insn, significant)
1357 regset needed;
1358 regset dead;
1359 rtx x;
1360 rtx insn;
1361 regset significant;
1362{
1363 register RTX_CODE code = GET_CODE (x);
1364
1365 if (code == SET || code == CLOBBER)
1366 mark_set_1 (needed, dead, x, insn, significant);
1367 else if (code == PARALLEL)
1368 {
1369 register int i;
1370 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1371 {
1372 code = GET_CODE (XVECEXP (x, 0, i));
1373 if (code == SET || code == CLOBBER)
1374 mark_set_1 (needed, dead, XVECEXP (x, 0, i), insn, significant);
1375 }
1376 }
1377}
1378
1379/* Process a single SET rtx, X. */
1380
1381static void
1382mark_set_1 (needed, dead, x, insn, significant)
1383 regset needed;
1384 regset dead;
1385 rtx x;
1386 rtx insn;
1387 regset significant;
1388{
1389 register int regno;
1390 register rtx reg = SET_DEST (x);
1391 int subreg_p = 0;
1392
1393 if (reg == 0)
1394 return;
1395 /* Modifying just one hardware register of a multi-reg value
1396 or just a byte field of a register
1397 does not mean the value from before this insn is now dead.
1398 But it does mean liveness of that register at the end of the block
1399 is significant. */
1400 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
1401 || GET_CODE (reg) == SIGN_EXTRACT
1402 || GET_CODE (reg) == STRICT_LOW_PART)
1403 {
1404 if (GET_CODE (reg) == ZERO_EXTRACT
1405 || GET_CODE (reg) == SIGN_EXTRACT
1406 || (GET_CODE (reg) == SUBREG
1407 && REG_SIZE (SUBREG_REG (reg)) > REG_SIZE (reg)))
1408 subreg_p = 1;
1409
1410 reg = XEXP (reg, 0);
1411 }
1412
1413 if (GET_CODE (reg) == REG
1414 && (regno = REGNO (reg), regno != FRAME_POINTER_REGNUM)
1415 && regno != ARG_POINTER_REGNUM
1416 && ! (regno < FIRST_PSEUDO_REGISTER && global_regs[regno]))
1417 /* && regno != STACK_POINTER_REGNUM) -- let's try without this. */
1418 {
1419 register int offset = regno / REGSET_ELT_BITS;
1420 register int bit = 1 << (regno % REGSET_ELT_BITS);
1421 int is_needed = 0;
1422
1423 /* Mark it as a significant register for this basic block. */
1424 if (significant)
1425 significant[offset] |= bit;
1426 /* That's all we do, if we are setting only part of the register. */
1427 if (subreg_p)
1428 return;
1429
1430 /* If entire register being set, mark it as as dead before this insn. */
1431 dead[offset] |= bit;
1432 /* A hard reg in a wide mode may really be multiple registers.
1433 If so, mark all of them just like the first. */
1434 if (regno < FIRST_PSEUDO_REGISTER)
1435 {
1436 int n;
1437
1438 /* Nothing below is needed for the stack pointer; get out asap.
1439 Eg, log links aren't needed, since combine won't use them. */
1440 if (regno == STACK_POINTER_REGNUM)
1441 return;
1442
1443 n = HARD_REGNO_NREGS (regno, GET_MODE (reg));
1444 while (--n > 0)
1445 {
1446 dead[(regno + n) / REGSET_ELT_BITS]
1447 |= 1 << ((regno + n) % REGSET_ELT_BITS);
1448 if (significant)
1449 significant[(regno + n) / REGSET_ELT_BITS]
1450 |= 1 << ((regno + n) % REGSET_ELT_BITS);
1451 is_needed |= (needed[(regno + n) / REGSET_ELT_BITS]
1452 & 1 << ((regno + n) % REGSET_ELT_BITS));
1453 }
1454 }
1455 /* Additional data to record if this is the final pass. */
1456 if (insn)
1457 {
1458 register rtx y = reg_next_use[regno];
1459 register int blocknum = BLOCK_NUM (insn);
1460
1461 /* If this is a hard reg, record this function uses the reg.
1462 `combine.c' will get confused if LOG_LINKs are made
1463 for hard regs. */
1464
1465 if (regno < FIRST_PSEUDO_REGISTER)
1466 {
1467 register int i;
1468 i = HARD_REGNO_NREGS (regno, GET_MODE (reg));
1469 if (i == 0)
1470 i = 1;
1471 do
1472 regs_ever_live[regno + --i] = 1;
1473 while (i > 0);
1474
1475 if (! ((needed[offset] & bit) || is_needed))
1476 {
1477 /* Note that dead stores have already been deleted if poss.
1478 If we get here, we have found a dead store that cannot
1479 be eliminated (because the insn does something useful).
1480 Indicate this by marking the reg set as dying here. */
1481 REG_NOTES (insn)
1482 = gen_rtx (EXPR_LIST, REG_DEAD,
1483 reg, REG_NOTES (insn));
1484 reg_n_deaths[REGNO (reg)]++;
1485 }
1486 return;
1487 }
1488
1489 /* Keep track of which basic blocks each reg appears in. */
1490
1491 if (reg_basic_block[regno] == REG_BLOCK_UNKNOWN)
1492 reg_basic_block[regno] = blocknum;
1493 else if (reg_basic_block[regno] != blocknum)
1494 reg_basic_block[regno] = REG_BLOCK_GLOBAL;
1495
1496 /* Record first insn to use this reg. */
1497 reg_first_use[regno] = insn;
1498
1499 /* Count (weighted) references, stores, etc. */
1500 reg_n_refs[regno] += loop_depth;
1501 reg_n_sets[regno]++;
1502 /* The next use is no longer "next", since a store intervenes. */
1503 reg_next_use[regno] = 0;
1504 /* The insns where a reg is live are normally counted elsewhere,
1505 but we want the count to include the insn where the reg is set,
1506 and the normal counting mechanism would not count it. */
1507 reg_live_length[regno]++;
1508 if ((needed[offset] & bit) || is_needed)
1509 {
1510 /* Make a logical link from the next following insn
1511 that uses this register, back to this insn.
1512 The following insns have already been processed. */
1513 if (y && (BLOCK_NUM (y) == blocknum))
1514 LOG_LINKS (y)
1515 = gen_rtx (INSN_LIST, VOIDmode, insn, LOG_LINKS (y));
1516 }
1517 else
1518 {
1519 /* Note that dead stores have already been deleted when possible
1520 If we get here, we have found a dead store that cannot
1521 be eliminated (because the same insn does something useful).
1522 Indicate this by marking the reg being set as dying here. */
1523 REG_NOTES (insn)
1524 = gen_rtx (EXPR_LIST, REG_DEAD,
1525 reg, REG_NOTES (insn));
1526 reg_n_deaths[REGNO (reg)]++;
1527 }
1528 }
1529 }
1530}
1531\f
1532/* Scan expression X and store a 1-bit in LIVE for each reg it uses.
1533 This is done assuming the registers needed from X
1534 are those that have 1-bits in NEEDED.
1535
1536 On the final pass, FINAL is 1. This means try for autoincrement
1537 and count the uses and deaths of each pseudo-reg.
1538
1539 INSN is the containing instruction. */
1540
1541static void
1542mark_used_regs (needed, live, x, final, insn)
1543 regset needed;
1544 regset live;
1545 rtx x;
1546 rtx insn;
1547 int final;
1548{
1549 register RTX_CODE code;
1550 register int regno;
1551
1552 retry:
1553 code = GET_CODE (x);
1554 switch (code)
1555 {
1556 case LABEL_REF:
1557 case SYMBOL_REF:
1558 case CONST_INT:
1559 case CONST:
1560 case CONST_DOUBLE:
1561 case CC0:
1562 case PC:
1563 case CLOBBER:
1564 case ADDR_VEC:
1565 case ADDR_DIFF_VEC:
1566 case ASM_INPUT:
1567 return;
1568
1569#if defined (HAVE_POST_INCREMENT) || defined (HAVE_POST_DECREMENT)
1570 case MEM:
1571 /* Here we detect use of an index register which might
1572 be good for postincrement or postdecrement. */
1573 if (final)
1574 {
1575 rtx addr = XEXP (x, 0);
1576 register int size = GET_MODE_SIZE (GET_MODE (x));
1577
1578 if (GET_CODE (addr) == REG)
1579 {
1580 register rtx y;
1581 regno = REGNO (addr);
1582 /* Is the next use an increment that might make auto-increment? */
1583 y = reg_next_use[regno];
1584 if (y && GET_CODE (PATTERN (y)) == SET
1585 && BLOCK_NUM (y) == BLOCK_NUM (insn)
1586 /* Can't add side effects to jumps; if reg is spilled and
1587 reloaded, there's no way to store back the altered value. */
1588 && GET_CODE (insn) != JUMP_INSN
1589 && (y = SET_SRC (PATTERN (y)),
1590 (0
1591#ifdef HAVE_POST_INCREMENT
1592 || GET_CODE (y) == PLUS
1593#endif
1594#ifdef HAVE_POST_DECREMENT
1595 || GET_CODE (y) == MINUS
1596#endif
1597 )
1598 && XEXP (y, 0) == addr
1599 && GET_CODE (XEXP (y, 1)) == CONST_INT
1600 && INTVAL (XEXP (y, 1)) == size)
1601 && dead_or_set_p (reg_next_use[regno], addr))
1602 {
1603 rtx use = find_use_as_address (PATTERN (insn), addr, 0);
1604
1605 /* Make sure this register appears only once in this insn. */
1606 if (use != 0 && use != (rtx) 1)
1607 {
1608 /* We have found a suitable auto-increment:
1609 do POST_INC around the register here,
1610 and patch out the increment instruction that follows. */
1611 XEXP (x, 0)
1612 = gen_rtx (GET_CODE (y) == PLUS ? POST_INC : POST_DEC,
1613 Pmode, addr);
1614 /* Record that this insn has an implicit side effect. */
1615 REG_NOTES (insn)
1616 = gen_rtx (EXPR_LIST, REG_INC, addr, REG_NOTES (insn));
1617
1618 /* Modify the old increment-insn to simply copy
1619 the already-incremented value of our register. */
1620 y = reg_next_use[regno];
1621 SET_SRC (PATTERN (y)) = addr;
1622
1623 /* If that makes it a no-op (copying the register
1624 into itself) then change it to a simpler no-op
1625 so it won't appear to be a "use" and a "set"
1626 of this register. */
1627 if (SET_DEST (PATTERN (y)) == addr)
1628 PATTERN (y) = gen_rtx (USE, VOIDmode, const0_rtx);
1629
1630 /* Count an extra reference to the reg for the increment.
1631 When a reg is incremented.
1632 spilling it is worse, so we want to make that
1633 less likely. */
1634 reg_n_refs[regno] += loop_depth;
1635 /* Count the increment as a setting of the register,
1636 even though it isn't a SET in rtl. */
1637 reg_n_sets[regno]++;
1638 }
1639 }
1640 }
1641 }
1642 break;
1643#endif /* HAVE_POST_INCREMENT or HAVE_POST_DECREMENT */
1644
1645 case REG:
1646 /* See a register other than being set
1647 => mark it as needed. */
1648
1649 regno = REGNO (x);
1650 if (regno != FRAME_POINTER_REGNUM)
1651 /* && regno != ARG_POINTER_REGNUM) -- and without this. */
1652 /* && regno != STACK_POINTER_REGNUM) -- let's try without this. */
1653 {
1654 register int offset = regno / REGSET_ELT_BITS;
1655 register int bit = 1 << (regno % REGSET_ELT_BITS);
1656 int is_needed = 0;
1657
1658 live[offset] |= bit;
1659 /* A hard reg in a wide mode may really be multiple registers.
1660 If so, mark all of them just like the first. */
1661 if (regno < FIRST_PSEUDO_REGISTER)
1662 {
1663 int n;
1664
1665 /* For stack ptr or arg pointer,
1666 nothing below can be necessary, so waste no more time. */
1667 if (regno == STACK_POINTER_REGNUM
1668 || regno == ARG_POINTER_REGNUM)
1669 return;
1670 /* No death notes for global register variables;
1671 their values are live after this function exits. */
1672 if (global_regs[regno])
1673 return;
1674
1675 n = HARD_REGNO_NREGS (regno, GET_MODE (x));
1676 while (--n > 0)
1677 {
1678 live[(regno + n) / REGSET_ELT_BITS]
1679 |= 1 << ((regno + n) % REGSET_ELT_BITS);
1680 is_needed |= (needed[(regno + n) / REGSET_ELT_BITS]
1681 & 1 << ((regno + n) % REGSET_ELT_BITS));
1682 }
1683 }
1684 if (final)
1685 {
1686 if (regno < FIRST_PSEUDO_REGISTER)
1687 {
1688 /* If a hard reg is being used,
1689 record that this function does use it. */
1690
1691 register int i;
1692 i = HARD_REGNO_NREGS (regno, GET_MODE (x));
1693 if (i == 0)
1694 i = 1;
1695 do
1696 regs_ever_live[regno + --i] = 1;
1697 while (i > 0);
1698 }
1699 else
1700 {
1701 /* Keep track of which basic block each reg appears in. */
1702
1703 register int blocknum = BLOCK_NUM (insn);
1704
1705 if (reg_basic_block[regno] == REG_BLOCK_UNKNOWN)
1706 reg_basic_block[regno] = blocknum;
1707 else if (reg_basic_block[regno] != blocknum)
1708 reg_basic_block[regno] = REG_BLOCK_GLOBAL;
1709
1710 /* Record the earliest insn that uses this reg,
1711 provided the reg is used only in one basic block.
1712 Do this by recording each insn, and the one that
1713 sticks is the last one scanned (the earliest insn). */
1714
1715 reg_first_use[regno] = insn;
1716
1717 /* Record where each reg is used, so when the reg
1718 is set we know the next insn that uses it. */
1719
1720 reg_next_use[regno] = insn;
1721
1722 /* Count (weighted) number of uses of each reg. */
1723
1724 reg_n_refs[regno] += loop_depth;
1725 }
1726
1727 /* Record and count the insns in which a reg dies.
1728 If it is used in this insn and was dead below the insn
1729 then it dies in this insn. */
1730
1731 if (!(needed[offset] & bit) && !is_needed
1732 && ! find_regno_note (insn, REG_DEAD, regno))
1733 {
1734 REG_NOTES (insn)
1735 = gen_rtx (EXPR_LIST, REG_DEAD, x, REG_NOTES (insn));
1736 reg_n_deaths[regno]++;
1737 }
1738 }
1739 }
1740 return;
1741
1742 case SET:
1743 {
1744 register rtx testreg = SET_DEST (x);
1745 int mark_dest = 0;
1746
1747 /* Storing in STRICT_LOW_PART is like storing in a reg
1748 in that this SET might be dead, so ignore it in TESTREG.
1749 but in some other ways it is like using the reg. */
1750 /* Storing in a SUBREG or a bit field is like storing the entire
1751 register in that if the register's value is not used
1752 then this SET is not needed. */
1753 while (GET_CODE (testreg) == STRICT_LOW_PART
1754 || GET_CODE (testreg) == ZERO_EXTRACT
1755 || GET_CODE (testreg) == SIGN_EXTRACT
1756 || GET_CODE (testreg) == SUBREG)
1757 {
1758 /* Modifying a single register in an alternate mode
1759 does not use any of the old value. But these other
1760 ways of storing in a register do use the old value. */
1761 if (GET_CODE (testreg) == SUBREG
1762 && !(REG_SIZE (SUBREG_REG (testreg)) > REG_SIZE (testreg)))
1763 ;
1764 else
1765 mark_dest = 1;
1766
1767 testreg = XEXP (testreg, 0);
1768 }
1769
1770 /* If this is a store into a register,
1771 recursively scan the only value being stored,
1772 and only if the register's value is live after this insn.
1773 If the value being computed here would never be used
1774 then the values it uses don't need to be computed either. */
1775
1776 if (GET_CODE (testreg) == REG
1777 && (regno = REGNO (testreg), regno != FRAME_POINTER_REGNUM)
1778 && regno != ARG_POINTER_REGNUM
1779 && ! (regno < FIRST_PSEUDO_REGISTER && global_regs[regno]))
1780#if 0 /* This was added in 1.25, but screws up death notes for hard regs.
1781 It probably isn't really needed anyway. */
1782 && (regno >= FIRST_PSEUDO_REGISTER
1783 || INSN_VOLATILE (insn)))
1784#endif
1785 {
1786 register int offset = regno / REGSET_ELT_BITS;
1787 register int bit = 1 << (regno % REGSET_ELT_BITS);
1788 if ((needed[offset] & bit)
1789 /* If insn refers to volatile, we mustn't delete it,
1790 so its inputs are all needed. */
1791 || INSN_VOLATILE (insn))
1792 {
1793 mark_used_regs (needed, live, SET_SRC (x), final, insn);
1794 if (mark_dest)
1795 mark_used_regs (needed, live, SET_DEST (x), final, insn);
1796 }
1797 return;
1798 }
1799 }
1800 break;
1801 }
1802
1803 /* Recursively scan the operands of this expression. */
1804
1805 {
1806 register char *fmt = GET_RTX_FORMAT (code);
1807 register int i;
1808
1809 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1810 {
1811 if (fmt[i] == 'e')
1812 {
1813 /* Tail recursive case: save a function call level. */
1814 if (i == 0)
1815 {
1816 x = XEXP (x, 0);
1817 goto retry;
1818 }
1819 mark_used_regs (needed, live, XEXP (x, i), final, insn);
1820 }
1821 else if (fmt[i] == 'E')
1822 {
1823 register int j;
1824 for (j = 0; j < XVECLEN (x, i); j++)
1825 mark_used_regs (needed, live, XVECEXP (x, i, j), final, insn);
1826 }
1827 }
1828 }
1829}
1830\f
1831#ifdef AUTO_INC_DEC
1832
1833static int
1834try_pre_increment_1 (insn)
1835 rtx insn;
1836{
1837 /* Find the next use of this reg. If in same basic block,
1838 make it do pre-increment or pre-decrement if appropriate. */
1839 rtx x = PATTERN (insn);
1840 int amount = ((GET_CODE (SET_SRC (x)) == PLUS ? 1 : -1)
1841 * INTVAL (XEXP (SET_SRC (x), 1)));
1842 int regno = REGNO (SET_DEST (x));
1843 rtx y = reg_next_use[regno];
1844 if (y != 0
1845 && BLOCK_NUM (y) == BLOCK_NUM (insn)
1846 && try_pre_increment (y, SET_DEST (PATTERN (insn)),
1847 amount))
1848 {
1849 /* We have found a suitable auto-increment
1850 and already changed insn Y to do it.
1851 So flush this increment-instruction. */
1852 PUT_CODE (insn, NOTE);
1853 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1854 NOTE_SOURCE_FILE (insn) = 0;
1855 /* Count a reference to this reg for the increment
1856 insn we are deleting. When a reg is incremented.
1857 spilling it is worse, so we want to make that
1858 less likely. */
1859 reg_n_refs[regno] += loop_depth;
1860 reg_n_sets[regno]++;
1861 return 1;
1862 }
1863 return 0;
1864}
1865
1866/* Try to change INSN so that it does pre-increment or pre-decrement
1867 addressing on register REG in order to add AMOUNT to REG.
1868 AMOUNT is negative for pre-decrement.
1869 Returns 1 if the change could be made.
1870 This checks all about the validity of the result of modifying INSN. */
1871
1872static int
1873try_pre_increment (insn, reg, amount)
1874 rtx insn, reg;
1875 int amount;
1876{
1877 register rtx use;
1878
1879 /* Nonzero if we can try to make a pre-increment or pre-decrement.
1880 For example, addl $4,r1; movl (r1),... can become movl +(r1),... */
1881 int pre_ok = 0;
1882 /* Nonzero if we can try to make a post-increment or post-decrement.
1883 For example, addl $4,r1; movl -4(r1),... can become movl (r1)+,...
1884 It is possible for both PRE_OK and POST_OK to be nonzero if the machine
1885 supports both pre-inc and post-inc, or both pre-dec and post-dec. */
1886 int post_ok = 0;
1887
1888 /* Nonzero if the opportunity actually requires post-inc or post-dec. */
1889 int do_post = 0;
1890
1891 /* From the sign of increment, see which possibilities are conceivable
1892 on this target machine. */
1893#ifdef HAVE_PRE_INCREMENT
1894 if (amount > 0)
1895 pre_ok = 1;
1896#endif
1897#ifdef HAVE_POST_INCREMENT
1898 if (amount > 0)
1899 post_ok = 1;
1900#endif
1901
1902#ifdef HAVE_PRE_DECREMENT
1903 if (amount < 0)
1904 pre_ok = 1;
1905#endif
1906#ifdef HAVE_POST_DECREMENT
1907 if (amount < 0)
1908 post_ok = 1;
1909#endif
1910
1911 if (! (pre_ok || post_ok))
1912 return 0;
1913
1914 /* It is not safe to add a side effect to a jump insn
1915 because if the incremented register is spilled and must be reloaded
1916 there would be no way to store the incremented value back in memory. */
1917
1918 if (GET_CODE (insn) == JUMP_INSN)
1919 return 0;
1920
1921 use = 0;
1922 if (pre_ok)
1923 use = find_use_as_address (PATTERN (insn), reg, 0);
1924 if (post_ok && (use == 0 || use == (rtx) 1))
1925 {
1926 use = find_use_as_address (PATTERN (insn), reg, -amount);
1927 do_post = 1;
1928 }
1929
1930 if (use == 0 || use == (rtx) 1)
1931 return 0;
1932
1933 if (GET_MODE_SIZE (GET_MODE (use)) != (amount > 0 ? amount : - amount))
1934 return 0;
1935
1936 XEXP (use, 0) = gen_rtx (amount > 0
1937 ? (do_post ? POST_INC : PRE_INC)
1938 : (do_post ? POST_DEC : PRE_DEC),
1939 Pmode, reg);
1940
1941 /* Record that this insn now has an implicit side effect on X. */
1942 REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_INC, reg, REG_NOTES (insn));
1943 return 1;
1944}
1945
1946#endif /* AUTO_INC_DEC */
1947\f
1948/* Find the place in the rtx X where REG is used as a memory address.
1949 Return the MEM rtx that so uses it.
1950 If PLUSCONST is nonzero, search instead for a memory address equivalent to
1951 (plus REG (const_int PLUSCONST)).
1952
1953 If such an address does not appear, return 0.
1954 If REG appears more than once, or is used other than in such an address,
1955 return (rtx)1. */
1956
1957static rtx
1958find_use_as_address (x, reg, plusconst)
1959 register rtx x;
1960 rtx reg;
1961 int plusconst;
1962{
1963 enum rtx_code code = GET_CODE (x);
1964 char *fmt = GET_RTX_FORMAT (code);
1965 register int i;
1966 register rtx value = 0;
1967 register rtx tem;
1968
1969 if (code == MEM && XEXP (x, 0) == reg && plusconst == 0)
1970 return x;
1971
1972 if (code == MEM && GET_CODE (XEXP (x, 0)) == PLUS
1973 && XEXP (XEXP (x, 0), 0) == reg
1974 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
1975 && INTVAL (XEXP (XEXP (x, 0), 1)) == plusconst)
1976 return x;
1977
1978 if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
1979 {
1980 /* If REG occurs inside a MEM used in a bit-field reference,
1981 that is unacceptable. */
1982 if (find_use_as_address (XEXP (x, 0), reg, 0) != 0)
1983 return (rtx) 1;
1984 }
1985
1986 if (x == reg)
1987 return (rtx) 1;
1988
1989 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1990 {
1991 if (fmt[i] == 'e')
1992 {
1993 tem = find_use_as_address (XEXP (x, i), reg, plusconst);
1994 if (value == 0)
1995 value = tem;
1996 else if (tem != 0)
1997 return (rtx) 1;
1998 }
1999 if (fmt[i] == 'E')
2000 {
2001 register int j;
2002 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2003 {
2004 tem = find_use_as_address (XVECEXP (x, i, j), reg, plusconst);
2005 if (value == 0)
2006 value = tem;
2007 else if (tem != 0)
2008 return (rtx) 1;
2009 }
2010 }
2011 }
2012
2013 return value;
2014}
2015\f
2016/* Write information about registers and basic blocks into FILE.
2017 This is part of making a debugging dump. */
2018
2019void
2020dump_flow_info (file)
2021 FILE *file;
2022{
2023 register int i;
2024 static char *reg_class_names[] = REG_CLASS_NAMES;
2025
2026 fprintf (file, "%d registers.\n", max_regno);
2027
2028 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
2029 if (reg_n_refs[i])
2030 {
2031 enum reg_class class;
2032 fprintf (file, "\nRegister %d used %d times across %d insns",
2033 i, reg_n_refs[i], reg_live_length[i]);
2034 if (reg_basic_block[i] >= 0)
2035 fprintf (file, " in block %d", reg_basic_block[i]);
2036 if (reg_n_deaths[i] != 1)
2037 fprintf (file, "; dies in %d places", reg_n_deaths[i]);
2038 if (reg_n_calls_crossed[i] == 1)
2039 fprintf (file, "; crosses 1 call", reg_n_calls_crossed[i]);
2040 else if (reg_n_calls_crossed[i])
2041 fprintf (file, "; crosses %d calls", reg_n_calls_crossed[i]);
2042 if (PSEUDO_REGNO_BYTES (i) != UNITS_PER_WORD)
2043 fprintf (file, "; %d bytes", PSEUDO_REGNO_BYTES (i));
2044 class = reg_preferred_class (i);
2045 if (class != GENERAL_REGS)
2046 {
2047 if (reg_preferred_or_nothing (i))
2048 fprintf (file, "; %s or none", reg_class_names[(int) class]);
2049 else
2050 fprintf (file, "; pref %s", reg_class_names[(int) class]);
2051 }
2052 if (REGNO_POINTER_FLAG (i))
2053 fprintf (file, "; pointer");
2054 fprintf (file, ".\n");
2055 }
2056 fprintf (file, "\n%d basic blocks.\n", n_basic_blocks);
2057 for (i = 0; i < n_basic_blocks; i++)
2058 {
2059 register rtx head, jump;
2060 register int regno;
2061 fprintf (file, "\nBasic block %d: first insn %d, last %d.\n",
2062 i,
2063 INSN_UID (basic_block_head[i]),
2064 INSN_UID (basic_block_end[i]));
2065 /* The control flow graph's storage is freed
2066 now when flow_analysis returns.
2067 Don't try to print it if it is gone. */
2068 if (basic_block_drops_in)
2069 {
2070 fprintf (file, "Reached from blocks: ");
2071 head = basic_block_head[i];
2072 if (GET_CODE (head) == CODE_LABEL)
2073 for (jump = LABEL_REFS (head);
2074 jump != head;
2075 jump = LABEL_NEXTREF (jump))
2076 {
2077 register int from_block = BLOCK_NUM (CONTAINING_INSN (jump));
2078 fprintf (file, " %d", from_block);
2079 }
2080 if (basic_block_drops_in[i])
2081 fprintf (file, " previous");
2082 }
2083 fprintf (file, "\nRegisters live at start:");
2084 for (regno = 0; regno < max_regno; regno++)
2085 {
2086 register int offset = regno / REGSET_ELT_BITS;
2087 register int bit = 1 << (regno % REGSET_ELT_BITS);
2088 if (basic_block_live_at_start[i][offset] & bit)
2089 fprintf (file, " %d", regno);
2090 }
2091 fprintf (file, "\n");
2092 }
2093 fprintf (file, "\n");
2094}